
R and Other Languages

Edouard T. Djeutem, Biljana J. Stojkova
under supervision of Dave Campbell

August 8, 2013

1 Introduction

This project is consisted of two parts. The part I explains how to integrate R with C++
using Rcpp and inline libraries, and the second part explains how to integrate R with
C using R CMD SHLIB which has integrated gcc compiler. Both parts are supported
by working examples, including all neccessary explanations. There is a separate .R code
file for each of these two parts:

• for the first part the .R file is named UsingRcpp Edouard Biljana.R along with
the .csv data file named cobb.csv, and

• for the second part the .R file is named Biljana Edouard ProjectI.R and it goes
along with the bootvar3.C file and bootvar3.dll file (which is compiled code of the
.C file).

2 Part I: R and C++ using Rcpp and inline libraries

2.1 Rcpp and inline libraries overwiew

The Rcpp library provides R functions and C++ library that enables C++ and R
integration using the .Call() interface provided by R. Rcpp supports all data types
such as vectors, function, environment. Each of these types is matched to appropriate
C++ class. Numeric vectors are represented as instances of Rcpp::NumericVector Class,
DataFrame objects are represented as instances of Rcpp::DataFrame class. Conversion
from C++ to R is enabled by the template class Rcpp::wrap which is flexible and
transforms an arbitrary object into a SEXP. This Rcpp class enables implementation of
C++ logic in terms of standard C++ types such as STL and then wrap them in order
to be returned to R. The reverse coversion from R to C++ is drive n by Rcpp::as that
offers similar level of flexibility as Rcpp::wrap. Rcpp also provides a framework known
as Rcpp modules that allows using C++ classes and functions to the R level.

As of version Rcpp 0.8.1, usage of an extended function ”cxxfunction” in enabled.The
cxxxfunction requires inline library in addition to the Rcpp.The cxxfunction function
enables easier deployment of C++ code with Rcpp. In more depth, it enforces the usage
of .call() interface, adds the Rcpp namespace and features exception forwarding. It
employs BEGIN RCPP and END RCPP macros to wrap the user code. In addition,
with cfunction and cxxfunction, we can call external libraries and have them linked as
well.

1

2.2 The cxxfunction

The main feature of our example is the function cxxfunction from the package inline.
The cxxfunction provides dynamically creating R function with inlined C++ code using
the .Call calling convention.

cxxfunction(sig = character(), body = character(), plugin = ”default”, includes = ””,
settings = getPlugin(plugin), ..., verbose = FALSE)

rcpp(...)
Arguments:

• sig - Signature of the function which is a named character vector

• body - A character vector containing C++ code that has to be compiled

• plugin -Name of the plugin to use. cxxfunction uses plugin system to assembly
the code that it compiles.

• includes - includes auxiliary functions if there are any

• settings - Result of the call to the plugin

• verbose - additional arguments to the plugin, verbose output boolean

3 System requirements

3.1 Tools that have to be installed

• In order for Rcpp package to run, GNU Compiler Collection (or gcc) along with
the corresponding g++ compiler for the C++ language need to be installed

• Depending on the operative system used, different tools should be installed:

– Windows users need the Rtools package developed and maintained by Dun-
can Murdoch, which comprises all needed tools for Rcpp to run along with
instructions and manuals.

– OS X users need to install Apple Developer Tools (e.g. Xcode)

– Linux users need to install the standard development packages such as r-base-
dev package on Debian and Ubuntu

3.2 Install Rcpp on Windows 7

• Install R: it should be installed on a path that does not contain spaces

• Install Rtools also on a path that does not contain spaces. The version of the
Rtools should be compatible with the version of R

• Edit PATH Environment Variable to point to the following addresses:

– C:\Rtools\bin;

– C:\Rtools\gcc-4.6.3\bin;

– C:\R\R-2.15.1\bin;

– C:\R\R-2.15.1\batchfiles;

– C:\Rtools\MinGW \bin;

2

3.3 Additional installation tips

• Rcpp and inline libraries should be installed on the path with no spaces.

• After following all the previous steps, Rcpp and inline should work.

• If still there is a warning from CYGWIN including the keyword ”nodosfilewarning”,
the new environment variable should be created with name ”CYGWIN” and value
”nodosfilewarning”.

• There is a nice web resource that explains in details the process of installing Rcpp:
http://tonybreyal.wordpress.com/2011/12/07/installing-rcpp-on-windows-7-for-r-and-c-integration

4 Working example overview

Our example is a performance study that compares running time of C++ for-loop writ-
ten executed from R with several R methods such as traditional for-loop,apply function,
parallelized function and matrix multiplication. The results and conclusions are as ex-
pected: Rcpp execution time is the smallest of all. Using vectors instead of for loop
showed to be the second fastest method. Traditional for-loop exhibited the worst run-
ning.

4.1 Cobb Douglas production function model

We use the model of Cobb Douglas production function This model measures elasticity
of the labor force and capital According to Cobb-Douglas production function, increased
input in both capital and labor force should lead to increased production output In this
example we work with some real data. Variables are: lnY is gross production output
lnK is capital input lnL is labor force (number of employees) input The model is:

Y = Kβ ∗ Lγ ∗ ErrorU
so we take logarithm of both sides thus turning the model into double logarithmic

multiple regression. We fit the model and the use all above mentioned methods to
generate a dataset which is obtained from binding the original dataset with a variable
that contains fitted values of our regressant

Running time of all methods is plotted in order to present results from our perfor-
mance study.

4.2 Preparing C++ code for cxxfunction

We begin our performance study by loading the data from .csv file and fitting the double
logarithmic model in order to obtain intercept and slope coefficients.

> install.packages("Rcpp",lib="G://",destdir="G://",repos="http://cran.r-project.org")

package Rcpp successfully unpacked and MD5 sums checked

> install.packages("inline",lib="G://",destdir="G://",repos="http://cran.r-project.org")

package inline successfully unpacked and MD5 sums checked

> install.packages("rbenchmark",repos="http://cran.r-project.org")

package rbenchmark successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\authorized user\AppData\Local\Temp\Rtmp8gCeji\downloaded_packages

3

> install.packages("snow",repos="http://cran.r-project.org")

package snow successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\authorized user\AppData\Local\Temp\Rtmp8gCeji\downloaded_packages

> install.packages("ggplot2",repos="http://cran.r-project.org")

package ggplot2 successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\authorized user\AppData\Local\Temp\Rtmp8gCeji\downloaded_packages

> library(Rcpp,lib="G://")

> library(inline,lib="G://")

> library(rbenchmark,lib="G://")

> library(snow)

> library(ggplot2)

> #read data from .csv file and put them into a data.frame

> cobb.dat1<-read.table("C:\\Users\\authorized user\\Dropbox\\STAT853\\FirstProject\\myProject\\cobb.csv" , header=T)

> ds=data.frame(cbind(lnY=cobb.dat1$lnY,lnK=cobb.dat1$lnK,lnL=cobb.dat1$lnL))

> #fit the data into a double logarithmic model

> fitModel = lm(ds$lnY ~ ds$lnK+ds$lnL,data=ds)

> #read the coefficients

> coef=coefficients(fitModel)

4.3 Using cxxfunction

Our goal is to generate a new dataset obtained from binding the original dataset with
fitted values from our regression model. So we write an auxiliary function FittedY cxx
that returns fitted values of the production output variable using original dataset and
estimated regression model. FittedY cxx is written in C++ syntax and this C++
syntax function in wrapped in string variable so that this string could be executed latter
using inline cxxfunction function.

> FittedY_cxx_string <-

+ double FittedY_cxx (double lnK, double lnL){

+ double prod = 0.45+0.34*lnK+0.41*lnL;

+ return(prod);

+ }

+

The main C++ code retrieves columns from the original dataset, executes the aux-
iliary function FittedY cxx in the C++ for-loop over provided dataset (FittedY cxx
returns fitted values of production output lny hat) and then binds original dataset with
fitted value lny hat.

> rcpp_string <-

+ // using Rcpp::DataFrame object retreive data from the original dataset in R

+ // and pass them in C++

+ Rcpp::DataFrame ds(the_ds);

+ // extract columns and put them in C++ vectors

4

+ // Rcpp::as template class used to pass dataset columns from R to C++

+ std::vector<double> lnY_c = Rcpp::as< std::vector<double> >(ds["lnY"]);

+ std::vector<double> lnK_c = Rcpp::as< std::vector<double> >(ds["lnK"]);

+ std::vector<double> lnL_c = Rcpp::as< std::vector<double> >(ds["lnL"]);

+

+ // initialize a new variable y_hat

+ // this is done on the C++ side only

+ std::vector<double> y_hat(lnL_c.size());

+

+ // iterate over data frame to calculate y_hat

+ // using the auxiliary function FittedY_cxx

+ for (unsigned int i = 0; i < y_hat.size() ; i++) {

+ y_hat[i] = FittedY_cxx(lnK_c[i],lnL_c[i]);

+ }

+

+ // export original dataset combined with y_hat from C++ in R using Rcpp::DataFrame::create

+ return Rcpp::DataFrame::create(Named("lnY")= lnY_c, Named("lnK") =lnK_c,Named("lnL") = lnL_c,Named("prod") = y_hat);

+

So we have main c++ code and auxiliary function in two strings variables that are
waiting to be executed. We execute the both c++ code strings using inline function
cxxfunction.

> results_rcpp <- cxxfunction(signature(the_ds="data.frame"),

+ body=rcpp_string, plugin="Rcpp",

+ includes=c(#include <cmath>,FittedY_cxx_string))

Results are saved into a results rcpp variable. Latter it will be used for the purpose
of measuring the running time of Rcpp - inline approach.

4.4 Measuring the running time of other methods

The same dataset and the same model has been used to perform the same tasks that
Rcpp function cxxfunction performed. Traditional for loop executed function FittedY
(that returns fitted values of the production output variable) for each dataset point thus
returning bonded original dataset with fitted values returned from FittedY function.
Apply method executed function FittedY for each dataset point thus returning bonded
original dataset with fitted values returned from FittedY function. Vectored version used
matrix multiplication, thus avoiding for loops and apply. Since matrix multiplication is
quite fast, we can see that this is the second best method after Rcpp.

> # return fitted values from regression equation for production variable

> # input are values of the variables from original dataset

> # Analogous function to the C++ function FittedY_cxx_string used above.

> FittedY = function(lnK,lnL) {

+ prod <- coef[1]+coef[2]*lnK+coef[3]*lnL

+ return(prod)

+ }

> # add the fitted values of production to the new dataset

> # using the traditional for loop

> for_loop <- function(i,dataset=ds) {

+ i=i+1

+ prod <- vector(length=nrow(dataset),mode="numeric")

5

+

+ for (x in 1:nrow(dataset)) {

+ prod[x] <- FittedY(dataset$lnK[x],dataset$lnL[x])

+ }

+ data.frame(cbind(dataset,y_hat=prod))

+ }

> # add the fitted values of production to the new dataset

> # using the apply function

> my_apply = function(dataset) {

+ prod <- apply(ds, 1, function(x) {FittedY(x[2],x[3])})

+ data.frame(cbind(dataset,prod))

+ }

> # add the fitted values of production to the new dataset

> # using the matrix multiplication - vecorized version

> my_vectorize = function(dataset) {

+ prod =as.matrix(cbind(matrix((rep(1,nrow(dataset)))),dataset[,c("lnK","lnL")]))%*%matrix(coef)

+ data.frame(cbind(dataset,prod))

+ }

>

In the end we use the rbenchmark library that serves as a wrapper around sys-
tem.time. This package allows user to set up counts of replications so we can mea-
sure how each method behaves for different number of replications. So here, each of
the methods (forloop,my apply,results rcpp,my vectorize) are executed for number of
replications c(10,100,500,1000,1500,10000)

> # Benchmark is a wrapper around system.time

> # this package allows user to set up the number of replications

> # so we can measure how each method behaves for different

> # number of replications

> # So here, each of the methods (forloop,my_apply,results_rcpp,my_vectorize)

> # are executed for number of replications c(10,100,500,1000,1500,10000)

> sizeset=c(10,100,500,1000,1500,10000)

> for (x in sizeset) {

+

+

+ bm_results <- benchmark(for_loop(ds),

+ my_apply(ds),

+ results_rcpp(ds),

+ my_vectorize(ds),

+ replications=x,

+ columns=c(test, elapsed, replications))

+ if (x==10) {

+ mat=bm_results

+ }else{

+ mat=rbind(mat,bm_results)

+ }

+ }

In the end we perform paralleling using my parallel function defined above

> # add the fitted values of production to the new dataset

> # using the parallelized code

> my_parallel = function(param,dataset2=ds) {

6

+ vec=matrix(1:param)

+ c(system.time(apply(vec,1,for_loop,dataset=dataset2))[[1]],param)

+ }

> #Parallelizing

> cl =makeCluster(2, type = "SOCK")

> clusterExport(cl, list = ls())

> ffited = unlist(clusterApplyLB(cl, sizeset,my_parallel))

> stopCluster(cl)

> ffited=t(matrix(ffited,nrow=2))

> colnames(ffited)=c("elapsed", "replications")

> ffited=data.frame(ffited)

> ffited$test=matrix(rep("My_parallel",nrow(ffited)))

> mat=rbind(mat,ffited)

>

4.5 Presenting the plot and conclusions

In the end we generate a plot that present results from our performance study. From
the plot, it can be clearly seen that

• the Rcpp methods have the ”best” running time.

• the traditional for loop have the ”Worst” execution time.

• The second best running time is for the vectored functions, using matrix multipli-
cation.

• Apply and paralleling are between vectored functions and traditional for-loop
method.

5 Part II: R and C

In this part we are using R CMD SHLIB to compile the bootvar3.c if the computer is
32 bits or R –arch x64 CMD SHLIB if the computer is 64 bits.

Normally to compile a C code we use gcc compiler which is already integrated in R.
That is why we can use R CMD SHLIB bootvar3.c instead of gcc -o bootvar3.c.

Alternatively, we can simply set the working directory properly using setwd() and
system(“R CMD SHLIB bootvar3.c”). If everything goes smoothly, a file bootvar3.dll
will be generated, which is actually compiled C code that is written in C. Then we
load in R the C code by using dyn.load(”bootvar3.dll”). That dll is indeed loaded using
is.loaded(”bootvar3.dll”).

5.1 Working example overview

We are going to estimate Bootstrap variances using vectorized code written in R and a
compiled version from C and then we will compare running time for different number of
replications and sample size and present in plot.

Consider a sample {Yt}T1 with Yt ∼ iidN (0, σ2) and the following estimator of the
variance:

σ̂2 =
1

T

T∑
t=1

(Yt − Ȳ)2 (1)

This is the same example we covered in class.

7

0

5

10

15

0 2500 5000 7500 10000
replications

el
ap

se
d

test

for_loop(ds)

my_apply(ds)

my_vectorize(ds)

results_rcpp(ds)

My_parallel

Figure 1: Performance Study, R and C++

8

> #Checking the Available packages

> checkpackages=function(package){

+ if (!package %in% installed.packages())

+ install.packages(package,repos="http://cran.r-project.org")

+ }

> listpackage=c("reshape","gglot2","snow")

> lapply(listpackage,checkpackages)

[[1]]

NULL

[[2]]

NULL

[[3]]

NULL

> #Set the work directory such that R can access the complied C code

>

> setwd("C://Users//authorized user//Dropbox//ProjectIStat890//Submission")

> library(reshape)

> library(ggplot2)

> library(snow)

Next, we call a Wrapper to call the C subroutine
Input Y: Matrix of observations. Each locum corresponds to a sample Output VarY:

Bootstrap variance

> bootvarC <- function(Y)

+ {

+ .C("bootvar3",

+ as.double(Y),

+ as.integer(nrow(Y)),

+ as.integer(ncol(Y)),

+ as.double(Y),

+ varY = double(ncol(Y)) # Should always be equal to the length of the vector we want back

+)$varY

+ }

We write a function to estimate bootstrap std by VECTORIZATION Input Y: Ma-
trix of observations. Each column correspond to a sample Output : Bootstrap variance

> bootVectorize = function(Y){

+ # variance calculated with the wrong denominator

+ res=(Y-mean(Y))

+ # Recall that linear algebra is way way way way way way better than using a for loop

+ return(res%*%res/length(Y))

+ }

And a function to evaluate running time
Input Y: Matrix of observations. Each locum correspond to a sample. Output :

Bootstrap variance.

> runtime = function(param,mu0=0,sd0=1){

+ nn=param[1];

9

+ BB=param[2];

+ Y=rnorm(n=nn,mean=mu0,sd=sd0)

+ bootsample=matrix(rnorm(n=nn*BB,mean=mean(Y),sd=var(Y)),nrow=nn,ncol=BB)

+ return(list(system.time(apply(bootsample,2,bootVectorize))[[1]],"Vec",

+ system.time(bootvarC(bootsample))[[1]],"C",nn,BB))

+ }

Main Program
This part compiles C code directly in R using R CMD SHLIB, so the C code is

compiled into a .dll file which is then loaded back to R.

> #compile the C code directly in R or in command line using

> system("R --arch x64 CMD SHLIB bootvar3.c") #system("R CMD SHLIB bootvar3.c") if 32bits computer

> #Upload the compiled C code

> dyn.load("bootvar3.dll")

> #Checking that the dll is indeed uploaded

> is.loaded("bootvar3")

[1] TRUE

Then we test whether R and C code give the same results.

> n=25;

> B=1000;

> Y=rnorm(n=25,mean=0,sd=1)

> bootsample=matrix(rnorm(n=n*B,mean=mean(Y),sd=var(Y)),nrow=n,ncol=B)

> #Executing the C code

> sigmaboot=bootvarC(bootsample)

> #R code

> bootV1 = apply(bootsample,2,bootVectorize)

> #Ploting the results to see if they differ

> varlist=list(sigmaboot,bootV1)

> varname=c("C","R")

> stat.df=NULL

> for (k in 1:length(varlist)){

+ temp.df=varlist[[k]]

+ temp.df=melt(data.frame(temp.df))

+ temp.df$var=matrix(rep(varname[k],nrow(temp.df)))

+ stat.df=rbind(stat.df,temp.df)

+ }

> p = ggplot(stat.df, aes(x=value, colour=var))

> p=p + geom_density() + labs(list(title = "bootstrap variance estimates ", x = "", y = ""))

> print(p)

Time performance evaluation

> #vector of sample size

> nset=c(25,50,75,100,125,200)

> #vector of number of replications

> Bset=c(25,1e2,1e3,1e4,1e5,2e5)

> simset= expand.grid(n =nset, B =Bset)

> runtime=data.frame(simset)

> for (k in 1:nrow(simset)){

+ Y=rnorm(n=simset[k,1],mean=0,sd=1)

10

+ bootsample=matrix(rnorm(n=simset[k,1]*simset[k,2],mean=mean(Y),sd=var(Y)),nrow=simset[k,1],ncol=simset[k,2])

+ runtime$vec[k]=system.time(apply(bootsample,2,bootVectorize))[[1]]

+ runtime$C[k]=system.time(bootvarC(bootsample))[[1]]

+ }

> #Ploting the running time

> time.df=melt(runtime,id=c("n","B"))

>

5.2 Resources

http://stackoverflow.com/questions/4916853/

problem-with-loading-compiled-c-code-in-r-x64-using-dyn-load http://www.

stat.ubc.ca/~webmaste/howto/faq/windows/rlinkwin.html

http://www.stat.nctu.edu.tw/~misg/SUmmer_Course/C_language/Ch15/RCallCinWindows.

txt

http://www.info-emilio.net/programming/interfacing-c-in-r/

http://www.sfu.ca/~sblay/R-C-interface.txt

http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp

Other Resources
Venables and Ripley (2000, Appendix A),”S programming”, Springer
”An Introduction to the .C Interface to R” by Roger D. Peng Jan de Leeuw, UCLA

Department of Statistics.

11

> ggplot(time.df, aes(x=B, y=value, colour =variable))+ facet_wrap(~n)+geom_line()

> labs(list(title = "", x = "Number Replications" , y = "Time"))

$title

[1] ""

$x

[1] "Number Replications"

$y

[1] "Time"

attr(,"class")

[1] "labels"

 25 50 75

100 125 200

0

2

4

6

0

2

4

6

0 500001000001500002000000 500001000001500002000000 50000100000150000200000
B

va
lu

e

variable

vec

C

Figure 2: Performance Study, R and C

12

