

Path: a tool to facilitate pathwaybased association analysis

presented by David Zamar

on behalf of the Daley Lab

Background

Genome Wide Association Studies (GWAS)

> What is a genetic pathway?

Challenges in the analysis of complex diseases

GWAS?

A genome wide association study (GWAS) examines genetic variation across a given genome.

Designed to help identify genetic associations with an observable human trait or disease.

GWAS?

- Typically >1 million single nucleotide polymorphisms (SNPs) are genotyped.
- Cost of genome-wide genotyping has dropped dramatically in the last few years.
- Number of studies utilizing GWAS has increased and is now relatively common.

What is a genetic pathway?

- A genetic pathway is a summary of our current understanding of how a particular set of genes interact with one another within a biological process.
- Commonly, pathways are shown using the same graphical conventions as graph theory.

The asthma pathway

Challenges in the analysis of complex diseases

- In most complex diseases, genes don't function alone. Instead, genes may interact to increase or decrease disease susceptibility.
- Unfortunately, the vast majority of diseases fall into this category (asthma, Alzheimer's disease, Parkinson's disease, etc.,).
- Most GWAS focus on single SNP association with disease and have had limited success.

Real World Example

- Amundadottir et al. (2009) measured >500,000 SNPs in 1896 patients with pancreatic cancer and 1939 controls.
- A simple logistic regression analysis only identified a single SNP (in the ABO blood group gene) with an odds ratio of 1.2.
- This association was already reported over 50 years ago!

Real world example

The failure to identify new susceptibility genes for complex diseases using GWAS in large sample sizes highlights some of the limitations of the single SNP at a time analysis approach.

Multiple testing problem

- In a GWAS study, a brute force search of all possible combinations of SNPs associated with disease is inefficient.
- It also results in a multiple testing paradigm whereby larger and larger samples sizes are needed to maintain statistical power.

The idea behind Path

- Use existing biological knowledge to prioritize which genetic variations to analyze for gene-gene interactions.
- For any given disease there are often multiple pathways that have been experimentally confirmed to play an important role.
- Genes in these pathways can be selected for genegene interaction analysis, thus significantly reducing the number of tests performed.
- Can also look at smaller additive effects of genes that work together in a pathway.

The Path software application

- Designed to help researchers interface their data with biological information from several online bioinformatics resources.
- Help identify SNP-SNP interactions to test.
- Help store, retrieve, and visualizing results of a GWAS.

Path software

Path software is freely available and may be downloaded at:

http://genapha.icapture.ubc.ca/PathTutorial

Path homepage

WELCOME TUTORIAL DOWNLOAD FAQ CONTACT & LICENSE INFO

Welcome to Path!

Path is designed to help researchers interface bioinformatic information from several online resources with data from genetic association studies. Path is a valuable tool for investigating gene-gene interactions in large genetic association studies. In addition, Path can be used to help store and visualize data from genetic association studies. Path is compatible with LINKAGE pre-makeped data files that are accompanied by standard QTDT data files.

Information from the following resources are collected on each SNP included in the imported data files:

- National Center for Biotechnology Information (NCBI) ---> SNP function and gene it belongs to.
- Online Mendelian Inheritance in Man (OMIM)
- UCSC Genome Browser
- Seattle SNPs
- PharmGKB

Path

- The Single Nucleotide Polymorphism database (dbSNP)
- The Innate Immune Database (IIDB)
- Kyoto Encyclopedia of Genes and Genomes (KEGG) ----> Biological pathways and diagrams each gene is involved in
- Genetic Association Database -----> Links to results of published association studies.

The best way to become familiar with Path is to go through the Tutorial. To download Path, see the Download page.

RETURN TO GENAPHA

Path Application

Path is split up into two applications:

- 1. Java application that sets up a database housing your data and stores bioinformatics information downloaded from online resources.
- 2. Web browser based application that allows you to explore and view your data and analysis results.

Some tools provided by Path

- Search your database for genes or SNPs that match a criteria (i.e. found on a specific chromosome or involved in a specific pathway).
- Search your database for association results that match a criteria (i.e. P-values less than or equal to a given threshold).
- Conduct pathway-driven gene-gene interaction analyses.

Association Search Tool

LIST GENES SEARCH GENES SEARCH SNPS SEARCH ASSOCIATIONS SEA	DME LIST GENES SEARCH GENES SEARCH SNPS SEARCH ASSOCIATIONS SEARCH PATHWAYS GENE-GENE RE
Available Phenotypes: Asthma Atopy	P-value < > Extendence Search Garage Search Addoctarions Search Partmans Gene Gene Re
Snp Enter one rsnumber on each line.	0 1.50 1.28 [I.13[rs20541] pvalue = 0.0688] 0.76 0.76 0.50
Chromosome Enter one chromosome on each	0.25 0.00 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Chromosome Atopy Asthma
☑ Kegg Pathway Asthma	

SNP summary page

HOME LIST GENES SEARCH GENES SEARCH SNPS SEARCH ASSOCIATIONS SEARCH PATHWAYS GENE-GENE RESULTS

SNP SUMMARY

Path

SNP:	rs20541
Function:	missense,reference
Gene:	IL13 rs20541 💙
Gene Alias:	ALRH, BHR1, IL-13, MGC116786, MGC116788, MGC116789, P600

Association Results

Phenotype	P-Value	Odds Ratio	Allele
Asthma	0.092	0.6965	G
Atopy	0.069	0.5383	G

Genotype Details

 Cohort
 Ethnicity
 Sample Cnt.
 C/C
 C/G
 G/G
 HWP
 C
 G

 HapMap_CEU
 Caucasian
 162
 0.72
 0.27
 0.02
 0.33
 0.85
 0.15

Gene Links
NCBI
OMIM
UCSC Genome Browser
SeattleSNPs Sequenced
SeattleSNPs Genotyped
PharmGKB
Genetic Association Database
SNP Links
dbSNP
Kegg Pathways
Cytokine-cytokine receptor interaction
lak-STAT signaling pathway
Asthena
Asuma
Fc epsilon RI signaling pathway

Pathway Analysis Tool

Gene-gene analysis results

HOME LIST GENES SEARCH GENES SEARCH SNPS SEARCH ASSOCIATIONS SEARCH PATHWAYS GENE-GENE RESULTS

GENE-GENE ANALYSIS RESULTS

Job ID	Status	Pedigree File	Data File	Options File	Output File
1	Completed analysis.	D:\David\PATH SOFTWARE\Path- 1.0.6\Path\tomcat\webapps \Path\results \results188439918787904666 \Asthma.ped	D:\David\PATH SOFTWARE\Path- 1.0.6\Path\tomcat\webapps \Path\results \results188439918787904666 \Asthma.ped.qtdt.txt	D:\David\PATH SOFTWARE\Path- 1.0.6\Path\tomcat\webapps \Path\results \results188439918787904666 \options.txt	D:\David\PATH SOFTWARE\Path- 1.0.6\Path\tomcat\webapps \Path\results \results188439918787904666 \out.txt

Summary

- Automatically generate a database for your genomic data.
- Interface your data with information from online bioinformatics resources.
- Explore your data with simple point and click query tools and interactive plots.

Perform pathway-driven gene-gene interaction analyses.

Acknowledgments

- Dr. Denise Daley (Supervisor)
- **Ben Tripp** (Implemented and developed the Java application and database for Path)
- **George Ellis** (Assisted in the development of Path and its homepage)
- Special thanks to Thea Van Rossum and Kelly Burkett for beta testing Path.

New solutions for health

