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Abstract

Multiple sclerosis (MS) is a debilitating disease that attacks the central nervous system.

Much research has been conducted to investigate the efficacy of various treatments in reduc-

ing the number of active brain lesions in patients, an indicator of disease activity. However,

there has been little research regarding the time series nature of these lesion counts.

This project focuses on sample size recommendations for Phase II MS/MRI clinical trials

using a longitudinal model. We explore design recommendations based on two estimators.

One is based on summary statistics, while the other, T̂ML, uses the time series nature of

lesion counts. T̂ML was found to provide robust sample size recommendations and, over

sample size ranges found commonly in current Phase II MS/MRI clinical trials, was a

substantial improvement over T̂POST in terms of sensitivity We further demonstrated that

hypothesis tests based on T̂ML are very powerful even for modest sample sizes.
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“Ninety percent of all statistics are made up on the spot.”

— The ignorant or unbelieving masses
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Chapter 1

Introduction

Multiple Sclerosis (MS) is a highly unpredictable and often debilitating disease affecting

the central nervous system, that is, the brain and spinal cord. The disease attacks the

myelin covering that protects the nerve fibers present in the central nervous system causing

myelin loss and scarring. The presence of such damaged areas, referred to as plaques or

lesions, disrupts the ability of nerve fibers to conduct electrical impulses to and from the

brain. Depending on where these lesions occur, and which nerve impulses are disrupted, a

large variety of symptoms are associated with MS, including numbness, double or blurred

vision, loss of cognitive functions, loss of balance, disabling fatigue, inability to swallow or

to control breathing, pain, or the partial or complete loss of any other function that uses

the brain or spinal cord.

There are four main varieties of MS, each characterized by the distinct manner in which

clinical symptoms manifest themselves: relapsing remitting (RRMS), secondary progressive

(SPMS), progressive relapsing (PRMS), and primary progressive (PPMS). Of these four

categories, RRMS is by far the most common variety, and will be the focus of this project.

It is characterized by clearly defined periods of exacerbations of symptoms, or relapses,

followed by periods of remission where the symptoms experienced during relapse are absent.

Because of the highly heterogeneous nature of the disease, the design of efficient clinical

trials can be challenging. One major difficulty when designing such trials is the determina-

tion of sample size parameters such as the number of patients and duration of the study.

A related issue is determining the scope for which sample size recommendations are valid.

Given the importance of such challenges, both with respect to ethical considerations (such

1



CHAPTER 1. INTRODUCTION 2

as minimizing the time a placebo group receives an inert treatment when an effective treat-

ment is available) and monetary considerations associated with the costs per patient during

the trial, for this project we have chosen to focus on recommending sample size parameters

over a broad range of potential patients.

In the past, researchers have generally used clinical responses to diagnose and track MS

in patients. However, routine neurological MS examinations tend to be highly subjective and

depend heavily on clinical measures such as characterization of symptoms or exacerbation

rate; as a result, the ability to accurately diagnose and assess the status of the disease

fluctuates with the severity of the symptoms and other subjective outcomes. More recently,

non-clinical outcome measures of disease activity, such as magnetic resonance imaging (MRI)

outcomes, which are able to detect the lesions associated with MS, have been introduced

and are increasingly used to supplement standard clinical examinations.

Since research indicates that lesion severity is correlated with the activity of clinical

outcomes ([3], [5]), and that even during periods of remission where no symptoms may be

present, lesion activity is consistently active over time, the use of MRI has the potential

to provide a more sensitive indicator of disease activity ([5]). It is this added sensitivity

that has made MRI a common practice not only in diagnosing MS patients, but also in MS

clinical trials, where increased sensitivity could result in shorter trials with fewer patients.

Though most studies use several different clinical and MRI measures, for this project we

use only one MRI outcome measure, that of combined unique activity per scan, which is a

count that summarizes the number of active lesions per scan.

MRI outcomes are currently used as primary outcome measures in most Phase II MS

clinical trials (Petkau, Personal Communication), but have yet to be accepted in Phase

III trials. Thus, this project restricts itself to the use of MRI in designing Phase II MS

clinical trials. Phase II trials are designed to assess clinical efficacy of the therapy being

investigated and usually consist of patients being randomly assigned to one of two arms:

the first arm being the placebo group where patients receive an inert substance and the

second arm consisting of those patients who will receive a treatment that is thought to be

an effective therapy.

Over the last ten years there has been an increasing interest in developing parametric

models for MS/MRI data ([7]). Significant research has been done in parametric modelling

of independent MS/MRI lesion counts ([7], [8]) which has provided methods for sample size
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recommendations that would not be possible in the absence of such models ([7]). Longitudi-

nal models for lesions counted over time also exist ([1], [2]). However, little is known about

designing clinical trials based on a longitudinal model.

In an attempt to design an efficient RRMS/MRI Phase II clinical trial, that is, to design

trials that minimize costs by optimizing the number of patients and length of time patients

remain in the trial, our project uses the (MRI) outcome of combined unique activity per scan

to make sample size recommendations over a reasonable range of patients and treatments.

While previous work has focused on using summary outcomes to design such trials, our

work focuses on making use of the longitudinal nature of the MRI data. It is hoped that the

additional longitudinal information from our chosen estimator will yield additional power for

detecting treatment efficacy, while at the same time generating insights on issues concerning

the design of MS/MRI trials in general.

For this project we use data from the PRISMS (Prevention of Relapses and Disability by

Interferon β − 1a Subcutaneously in Multiple Sclerosis) study, which included 560 patients

from 22 centres across nine countries. The patients, who were selected for high disease

activity based on scans taken prior to treatment, were randomly assigned to three different

groups, with one group receiving a placebo and the other groups receiving two different

doses of interferon β− 1a. Of these patients, all 560 received biannual post-treatment scans

as well as two pre-treatment scans (scans prior to beginning treatment) as a reference for

subsequent scans. Of the 560 patients, 205 underwent additional monthly MRI scanning.

This project focuses on the cohort receiving the monthly MRI scans. Given the considerable

scope of the PRISMS study, and the rigorous way in which it was conducted, we feel that

the design recommendations yielded from this project will be applicable to many future

RRMS/MRI Phase II clinical trials.

In chapter 2 we begin by specifying a model for longitudinal count data developed by

Altman and Petkau (manuscript in progress) which, over the course of this project, we use

to explore two different estimators. We also introduce the two estimators we use extensively

in chapters 3 and 4.

Chapter 3 deals with the POST estimator, the first of the two estimators used in this

project. This estimator is based on independent summary statistics. We examine the

standard deviation of the POST estimator, particularly in reference to its usefulness in

designing MS/MRI clinical trials. We also consider how the estimator performs over a broad

range of values for important clinical design parameters such as the number of patients
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and the number of post-treatment scans (scans taken after treatment has begun). After

discussing the POST estmator’s robustness of its performance with respect to our model

parameters, we draw upon our findings to make some optimal design recommendations for

MS/MRI clinical trials.

Similarly, chapter 4 examines the maximum likelihood (ML) estimator. This estima-

tor differs from the POST estimator in that it uses the longitudinal information from the

data. This chapter’s structure and organization mirrors that of chapter 3, but given the

added complexity of a longitudinal estimator, includes some additional discussion regarding

subsequent complications.

Chapter 5 compares the two sets of recommendations as well as the power of the two

estimators. We also compare our work with the work of Smith ([6]), that is, the work wich

this project is building off of. Finally, chapter 6 summarizes the results of this project and

suggests future work using the Altman-Petkau model and ML estimator.



Chapter 2

The Setup

The difficulty of modeling an outcome of a disease such as MS is mainly due to the extreme

heterogeneity that characterizes the disease. This is apparent when considering the range of

clinical symptoms associated with MS as well as their degree of severity. In only considering

one very specific and relatively objective outcome of the disease, we have restricted the

variability to a single, relatively objective number.

This chapter reviews an intuitive yet statistically sophisticated model due to Altman and

Petkau (manuscript in progress) that captures the main features of the PRISMS data. The

model is motivated by the idea that the relapsing-remitting nature of RRMS is controlled

by some latent process in the body and that such a process can be modeled using a Markov

chain. At this time, the model incorporates only post-treatment scans; work is in progress

to make use of all available information on the lesion counts.

Our key assumption in this project is that this model not only adequately describes

the PRISMS data, but also provides a satisfactory characterization of lesion counts under

other (future) treatments. This assumption seems reasonable at least for treatments in the

interferon class as these might all be expected to have a similar mechanism or action.

2.1 Basic model description

Let Yhit be the lesion count for patient i (i = 1, ...,mh) at month t (t = 1, ..., nih) in

group h (h = 1, 2, 3), noting that with t ≥ 1, we are considering only post-treatment scans.

Here, the treatments 1, 2, 3 correspond to placebo (PL), low dose (LD), and high dose (HD)

respectively. Let εhit be a latent variable associated with patient i in group h at time t,

5



CHAPTER 2. THE SETUP 6

where for each h and i, the process {εhit}nhi
t=1 is assumed to be stationary with E[εhit] = 1.

It is convenient to write εhit = eaZhit where Zhit takes on the values of 1 or 2. Altman

and Petkau use the notation σ2
h ≡ Var[εhit] and γh(|t− s|) ≡ Corr[εhis, εhit]. In addition, let

uhi ∼ lognormal(−1
2λ2

h, λ2
h) be a patient specific random effect with {uhi} being independent

and identically distributed while also being independent of {εhit}, denoting Var[uhi] by λ2
h.

Altman and Petkau assume E[uhi] = 1. They also assume that Yhit|uhi, εhi is Poisson

distributed with mean µ∗
hit = gh(t)uhiεhit, where gh(t) is a known function of time and

treatment. Finally, they assume that gh(t), uhi, and εhit are non-negative so that µ∗
hit is

also non-negative. Note that the assumption E[εhit] = E[uhi] = 1 was made for both model

identifiability and convenience in computing E[Yhit].

The marginal first and second moments are calculated as follows:

E[Yhit] = E[E(Yhit|uhi, εhit)]

= gh(t) ≡ µhit (2.1)

and

Var[Yhit] = E[Var(Yhit|uhi, εhit)] + Var[E(Yhit|uhi, εhit)]

= gh(t) + g2
h(t)[σ2

hλ2
h + σ2

h + λ2
h]. (2.2)

Therefore, the model assumes that the data are overdispersed relative to the Poisson

distribution, and that the variance is quadratic in the mean. Also, for t > s, we have

Cov[Yhis, Yhit] = Cov[gh(s)uhiεhis, gh(t)uhiεhit]

= gh(s)gh(t){E[u2
hiεhisεhit]− 1}

= gh(s)gh(t)[γh(|t− s|)σ2
h(1 + λ2

h) + λ2
h]. (2.3)

In choosing the function gh(t), we need to consider the nature of our data. Given that

the patients for the PRISMS study were selected for high disease activity, we reasoned

that the initial scans would yield high counts and that we would expect the subsequent

counts of all treatment groups, including the placebo group, to decrease significantly after

the study began. For this reason, and for convenience, Altman and Petkau suggest gh(t) =

eβ0+βh1t+βh2t2 . Note that this choice for the mean structure also reflects the idea that an
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effective treatment for RRMS should correspond to a decrease in counts over the course of

the study.

The parameters of interest in this project are those that depend on treatment. We can

see from the specification of gh(t) the introduction of two model parameters per treatment

group: βh1 and βh2. While βh1 and βh2 have no direct clinical interpretation, they do have

the practical interpretation as representing the shape of the mean structure of the model,

gh(t). The model parameters associated with uhi are simply the λh for each treatment

group, which, from its definition above, can easily be seen as representing the inter-patient

variability in treatment group h. Finally, the processes {εhit} are characterized by two

parameters per treatment group: Ph1 and Ph2. These parameters are two of the transition

probabilities for the Markov chain described by εhit and can be thought of as the probability

of remaining in relapse or remission respectively. Note that since the rows of the transition

probability matrix for a given treatment group sum to 1, we need only to consider these

two transition probabilities to specify all four transition probabilities.

To design a clinical trial where we compare a treated group to a placebo group, we need

to specify a total of 14 model parameters. However, it seems reasonable to assume that

MRI data from the placebo group of the PRISMS trial are fairly representative of typical

MRI placebo data from other trials with the same protocol, entry criteria, etc.. With that

in mind, we take the maximum likelihood estimates (MLEs) from our model, given in table

2.1, of P11, P12, β11, β12, and λ1 to be representative of those parameters for the placebo

groups of future trials.

h P̂h1 P̂h2 β̂h1 β̂h2 λ̂h

1 0.839585 0.887490 -0.043937 -0.000033 1.513662
2 0.903200 0.904831 -0.262744 0.007714 2.261470
3 0.894576 0.900605 -0.300234 0.012645 5.857623

Table 2.1: Maximum likelihood estimates of model parameters for PRISMS study

Likewise, we assume that the PRISMS trial MLEs of the parameters which do not depend

on treatment (β̂0 = 0.844476 and â1 = 0.639148) are representative of future trials. Thus,

for the designs considered in the remainder of this work, we treat only 5 parameters (βh1,

βh2, λh, Ph1, and Ph2 for the treated group) as variables.
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2.2 The POST estimator and its variance

The first estimator we consider is the POST estimator used by Smith (1999) to study

the PRISMS data. Using independent summary statistics it provides an estimate of the

difference between the mean combined unique activity per scan over the post-treatment

scans of the placebo group and a group undergoing treatment, µ1·· − µh··, where h denotes

a treated group. Essentially, the POST estimator measures the average difference between

the treated group and placebo group in terms of lesion activity.

Assuming, as is the case in most clinical trials of this type, that mh and nhi are constant

across patients and treatment groups (mh = m and nhi for all h and i), the POST estimator,

T̂POST , is easily calculated. Note that

Ȳhi· =
1
n

n∑
t=1

Yhit

is the ith patient’s summary statistic whose expected value is µhi·. We define

T̂POST = Ȳ1·· − Ȳh··

=
1
m

m∑
i=1

Ȳ1i· −
1
m

m∑
i=1

Ȳhi· (2.4)

and therefore E[T̂POST ] = µ1·· − µh··, that is, T̂POST is an unbiased estimator for the true

difference in mean combined unique activity per scan between the placebo and treated

group.

We can now easily calculate the variance of T̂POST by denoting the variance-covariance

matrix for a given treated group h as described by equations (2.2) and (2.3) by Vh, and

denoting the average of all its entries by V̄h and then noticing that

Var
(
Ȳhi·
)

= Var

(
1
n

n∑
t=1

Yhit

)

=
1
n2

 n∑
t=1

Var (Yhit) +
n∑

r 6=s

Cov (Yhir, Yhis)


= V̄h,

and hence,
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Var
(
T̂POST

)
= Var

[
1
m

m∑
i=1

Ȳ1i· −
1
m

m∑
i=1

Ȳhi·

]

=
1

m2

m∑
i=1

Var
(
Ȳ1i·
)

+
1

m2

m∑
i=1

Var
(
Ȳhi·
)

=
1
m

[
V̄1 + V̄h

]
. (2.5)

2.3 The ML estimator and its variance

Like the POST estimator, the ML estimator, T̂ML, provides an estimate of µ1·· − µh··, the

difference between the mean combined unique activity per scan over the post-treatment

scans of the placebo group and a group undergoing treatment. But instead of relying on

summary statistics in estimating µ1·· − µh··, as is the case with the POST estimator, T̂ML

is a function of the MLEs of our model and hence uses the longitudinal information in the

data.

From equation 2.1 it is easy to see that

µ̄h·· =
1
n

n∑
t=1

gh(t)

and so

T̂ML = ̂̄µ1·· − ̂̄µh··

=
1
n

n∑
t=1

(ĝ1(t)− ĝh(t)) ≡ f(θ̂), (2.6)

where θ̂ represents the MLEs of the parameters of the model.

Since we cannot compute the variance of T̂ML analytically, we must settle for an estimate.

We will consider two methods for obtaining an estimate of the variance of the ML estimator.

The first method will be to estimate the variance using parametric bootstrapping with the

model described in section 2.1. We first use the model to produce the sampling distribution

of T̂ML by simulating from the specified model, and then we simply calculate the empirical

standard deviation to estimate the SD of T̂ML, denoted as SD(T̂ML)1.

1Note that SD(T̂ML) is actually an estimated standard deviation. We make this choice for notational
simplicity.
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In the second method, we appeal to the usual consistency and asymptotic normality

properties associated with MLEs. We then apply the delta method to obtain an approxi-

mation for the distribution of T̂ML in order to get an estimate for the asymptotic variance

of T̂ML, that is, asymptotically,

f(θ̂) ∼ N

[
f(θ),

(
∂f(θ)

∂θ

)T

Var(θ̂)
(

∂f(θ)
∂θ

)]
.

From equation 2.6 we see that

∂f(θ)
∂θ

=



f(θ)
∂β0

f(θ)
∂β11

f(θ)
∂β12

f(θ)
∂βh1

f(θ)
∂βh2


=

1
n

n∑
t=1



g1(t)− gh(t)

tg1(t)

t2g1(t)

tgh(t)

t2gh(t)


.

So, the estimated variance of the MLE is

V̂ar
(
T̂ML

)
=

(
∂f(θ̂)

∂θ

)T

V̂ar(θ̂)

(
∂f(θ̂)

∂θ

)
(2.7)

where V̂ar(θ̂) is the estimated variance-covariance matrix of the model parameter estimates.

We denote the estimated standard deviation of T̂ML obtained through the delta method by

ŜD(T̂ML). Note that this calculation involves only those model parameters present in f(θ),

namely, β0, β11, β12, βh1, and βh2.



Chapter 3

The POST Estimator

This chapter looks at the POST estimator, an estimator that relies on independent summary

statistics, and the relationship between its standard deviation and the sample size and model

parameters. It also makes optimal sample size recommendations for clinical trials where we

assume that the trial costs are fixed.

For the duration of this project, we will make the assumptions that, as in the PRISMS

design, the numbers of patients in each arm of the study are equal, that is, mh = m for all

h, and the number of scans for each patient are equal, that is, nhi = n for all h and all i.

These assumptions are reasonable since they are commonly made in clinical trials.

In section 2.1 we noted that, given our model, we have a total of five model parameters

to deal with. Thus there remains a considerable amount of complexity in determining any

potential relationships between the standard deviation of our estimator and the model pa-

rameters and sample size parameters. However, by applying elementary experimental design

theory and taking advantage of some clinical knowledge of the disease, some simplifications

become available.

3.1 Designing an experiment

In an effort to reduce the number of model parameters involved in examining the trade-off

between n and m in a design, we ran a simple screening experiment in hopes that one or

more of the model parameters would be found not to be important. However, given that

the model parameters have limited clinical interpretations, designing such an experiment

presents a major challenge in determining clinically appropriate ranges for them. Given

11



CHAPTER 3. THE POST ESTIMATOR 12

the difference between the function of the parameters of the mean structure and that of

the parameters of the hidden process, it is not surprising that finding appropriate levels

requires a different method for each of the different types of parameters. Note that in

the experimental design context, we treat the estimated standard deviation of the POST

estimator as the response, with the parameters as factors and their values as their respective

levels.

Before proceeding to a discussion of the levels of the model parameters, it is useful, for the

sake of clarity, to give a brief description of how the sample size levels were chosen. The levels

of the sample size parameters were among the easiest to choose because, unlike the model

parameters, time and monetary limitations of clinical trials provide natural constraints. The

number of scans, n, has a lower limit that is given by its definition: the smallest number

of post-treatment scans is a single scan. We chose our high level for n to be 18 since the

duration of typical Phase II MS/MRI clinical trials is generally less than a year and a half.

Similarly, the lower bound for the number of patients, m, is also 1, but since most MS/MRI

Phase II clinical trials consist of cohorts that are in excess of 10 patients, we chose 10 as

a more plausible low level. We took our high level to be m = 70 because most such trials

have treatment groups that are smaller than those of the PRISMS study which had roughly

70 patients apiece.

It was also relatively easy to specify ranges for the transition probabilities, Ph1 and

Ph2, of the latent processes, {εhit}. Intuitively, since RRMS is defined by clear periods

of relapse and remission, one would expect the transition probabilities corresponding to

staying in either relapse or remission to be fairly high, that is, the tendency would be for

the process to stay in its current state. This intuition is supported by the ML estimates

for Ph1 and Ph2, given in table 2.1. A reasonable low and high, then would be 0.825

and 0.91 respectively, given that the values of the ML parameter estimates did not change

much under treatment and these levels cover the entire range of values attained by the ML

parameter estimates. Note that a potential difficulty arises if we treat the two transition

probabilities separately: an elementary factorial design would produce the pairing of Ph1+

with Ph2−, whose interpretation would be a drug that increases the chances of patients

staying in relapse while simultaneously decreasing the chances of staying in remission, that

is, a drug that actually worsens the disease it is supposed to help fight. Since this possibility

is highly unlikely in any Phase II clinical trial, we eliminate it from the design by treating

the transition probabilities as a single factor, P h = (Ph1, Ph2), with three levels.
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Despite the fact that the interpretation of the parameters associated with the mean

structure, βh1 and βh2, is not straightforward, it nevertheless provides a convenient means

to determine reasonable ranges from a clinical standpoint. Regarding βh1 and βh2 as a single

factor, βh, as opposed to two separate parameters, lends itself to easily conceiving of a low

level: since we would expect any treatment to be at least as effective as a treatment with no

efficacy, i.e. a placebo, using β̂PL from the PRISMS study seems like a reasonable choice.

Specifically, g−(t) ≡ ĝPL(t), that is, β− ≡ β̂PL. A conceptually simple means of choosing

a high level of βh is to choose a mean structure, a g+(t), that lies far enough below g−(t)

so that most mean structures of future treatments lie between g−(t) and g+(t). It is likely

that new treatments being considered for a clinical trials will be on average as effective as

the high dose treatment of the PRISMS study (Petkau, Personal Communication), so for

our purposes, we take β0 ≡ β̂HD to be a moderately effective treatment, where HD in a

subscript denotes the MLE of the HD group from the PRISMS study. Therefore we choose

a high level for βh by finding a ∈ R such that g0(t) lies roughly halfway between g−(t)

and g+(t), where g+(t) ≈ ag0(t). Ultimately, a = 0.4 was used because it produced such a

graph, giving βh1+ = −0.57 and βh2+ = 0.02 where β+ = (βh1+, βh2+). It is also important

to notice that in using the plot of ĝh(t) to choose the levels of βh, we have illustrated a

simple method for a clinician to graphically select approximate values of βh1 and βh2.

The most difficult levels to choose were those of λh. Given that λh can be thought

of as measuring the inter-patient variability in treatment group h and its high degree of

variability as demonstrated by the PRISMS study (see table 2.1), it is difficult to determine

what range is reasonable for MS/MRI clinical trials in general. However, using the same

reasoning as for choosing the levels of the βh, we can choose what seem to be appropriate

levels for λh. We choose the low level of λh to be equal to the ML estimate of λPL for

the PRISMS trial, that is, λ− ≡ λ̂PL. Similarly, for the high level of λh, we treat λ̂HD

from the PRISMS study to represent the inter-patient variability for a moderately effective

treatment. Taking λ0 ≡ λ̂HD, we therefore want to determine a b ∈ R such that λ+ = bλ0

where b > 1. Analyzing the PRISMS study, we noticed that λ̂LD ≈ 2λ̂PL and λ̂HD ≈ 2λ̂LD.

Ultimately, we chose the same multiplicative factor when picking λ+, that is, we chose b = 2,

therefore λ+ = 11.8.

Applying an elementary experimental design to our parameters described above results

in a 3 ·24 full factorial experiment. Notice that the response in this experiment, SD(T̂POST ),

is deterministic and thus we cannot use a standard ANOVA to determine the effects of the
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parameters. Instead, we can only look at the sum squares (SS) of the effects of the factors

and their interactions and, from their relative sizes, gauge which factors are important or

not. Using the aov() function in R (see table A.1), we can see that only the transition

probabilities were not important, that is, they have little to no effect on the standard

deviation of T̂POST . This reduces the number of factors we need to consider when evaluating

T̂POST as an estimator from five factors to four.

3.2 Examining the effects of the parameters on SD(T̂POST )

Now that we have reduced the parameters that we need to examine when considering

SD(T̂POST ) to just n, m, λh, and βh, we can begin investigating their effect on the standard

deviation of the POST estimator under different clinical trial design considerations. To do

so we use plots of SD(T̂POST ) for various parameter combinations. Notice that both λh

and βh are model parameters which respectively represent the inter-patient variability and

mean structure of combined unique activity per scan, and also depend on the characteristics

of the treatment groups of a particular trial. So, in designing a clinical trial we do not have

the opportunity to choose and fix their levels explicitly. The other two parameters, n and

m, however, are sample size parameters; we have the freedom to specify their levels as we

see fit. Thus, the goal of this section is to investigate how the choice of n and m impact

SD(T̂POST ) for various values of λh and βh.

We first investigate the effect of inter-patient variability on SD(T̂POST ). From the screen-

ing experiment whose results are tabulated in table A.1, we can see that out of the parame-

ters we are considering, inter-patient variability, or λh, has the largest effect on SD(T̂POST ).

Its effect on SD(T̂POST ) can be seen graphically by comparing figures 3.1(a-c). Looking at

figures 3.1(a-c), and noting that each curve on a plot is for the specified number of patients,

we see that as λh gets larger, the standard deviation of T̂POST increases dramatically. This

effect is robust over the ranges we have chosen for mean structure, number of scans, and

number patients as can be seen in appendix B.1, and in fact, is increasingly evident as βh

decreases (which is consistent with the high SS associated with the lambda:beta interaction

effect in table A.1.

The screening experiment also gives us some insight into the effect of the mean structure

on our response. From section 3.1, recall that we define βh as “low” if it corresponds to a

less effective treatment, and βh as “high” if it corresponds to a more effective treatment.
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Figure 3.1: SD(T̂POST ) vs. n for varying inter-patient variabilities: each curve represents
the estimated standard deviation curve for the specified number of patients

As table A.1 makes clear, βh has a substantial effect on SD(T̂POST ). This can also be seen

from figures 3.2(a,b) where an increase in βh results in a smaller SD(T̂POST ) (1-5 correspond

to five different levels of βh, 1 and 5 representing the least and most effective treatments,

respectively). Clinically, we would hope that a more effective treatment would result in a

lowered and more homogeneous lesion count, and hence a lowered SD(T̂POST ). The model

does indeed capture this behavior, as can be seen on any plot with varying levels of βh (e.g.

Fig 3.2). Furthermore, as is evidenced in the figure in appendix B.1, the effect is robust

over the ranges considered for the three remaining parameters. However, from the plots in

the appendix we can also note that this effect is more pronounced as λh gets larger.

We now consider the effect that the number of scans has on the standard deviation of

T̂POST . From figure 3.3(a) we see that the curves for the various number of patients all

decrease as n increases. This effect holds true across m, λh, and βh. Figure 3.3(a) also

shows that the curves for the various number of patients all begin with a steep negative

slope starting at n = 1 and level off substantially at around n = 5. This demonstrates that

there is little gain in terms of a smaller SD(T̂POST ) by increasing the number of scans taken

in an RRMS clinical trial past five or six when using the POST estimator. The same effect
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Figure 3.2: SD(T̂POST ) for varying mean structures: each curve represents the estimated
standard deviation curve for a given treatment group with 1 to 5 denoting the mean struc-
tures that represent the weakest to strongest treatment effect respectively

can also be seen from figure 3.4(a), which shows that increasing n by more than 5 yields

only a relatively small decrease in the standard deviation of T̂POST . From figure 3.3(b) we

can see that this result holds true under the ranges considered regardless of which mean

structure we are dealing with. Figures 3.1(a-c) demonstrate that this result is robust over

the range of λh considered as well.

Finally, we examine the effect that the number of patients has on the standard deviation

of T̂POST . As with examining the effect that the number of scans has on SD(T̂POST ), we use

figures to determine the relationship between the number of patients and SD(T̂POST ). From

figures 3.4(a,b) it is immediately apparent that increasing the number of patients results in

a corresponding decrease in SD(T̂POST ). In particular, figures 3.4(a,b) show a substantial

decrease in the slopes of curves at around m = 30, with 3.4(b) indicating that this result is

robust over the mean structures we are considering. Similarly, 3.3(a) illustrates this result

by examining the ever diminishing decrease in SD(T̂POST ) that is gained by increasing the

number of patients by increments of 10. Referring to figures B.1-B.4, it is easily seen that

this result is robust over the range of inter-patient variabilities that we are considering.
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Figure 3.3: SD(T̂POST ) vs. n for varying numbers of patients, (a), or mean structures, (b)

Notice that table A.1 indicates a clear patient:scan interaction effect. From figures B.2-B.4

we see that as m increases, a change in n produces an ever decreasing change in SD(T̂ML).

Likewise, as n increases, increasing m has less impact on SD. These effects are robust across

βh and λh.

Assuming the monetary restriction of a fixed cost for a clinical trial, we briefly consider

the trade-off between the number of scans and the number of patients. Since most Phase II

MS/MRI clinical trials last longer than 6 months (Petkau, Personal Communication) with at

least 20 patients per treatment group ([6]), we will examine the trade-off between increasing

scans versus patients beyond n = 6 and m = 20. An increase of 3 scans per patient with

m fixed at 20 is cost equivalent to an increase in 10 patients with n fixed at 6 (i.e. both

choices require an additional 60 scans in total). From figures B.13 and B.14 we can see that

when m < 40 and n ≥ 12, for nearly every combination of βh and λh, choosing to have an

additional 10 patients almost always results in greater sensitivity than choosing to have an

additional 3 scans per patient. This is not quite the case when we are considering a smaller

number of scans per patient, say n < 12, with stronger treatment and stronger inter-patient

variability combinations. In such cases, the choice between scans and patients reverses, with

increasing the number of scans per patient being preferable. However, when m > 40, the
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Figure 3.4: SD(T̂POST ) vs. m for varying levels of scans, (a), or mean structures, (b)

advantageous choice seems to be to increase the number of scans per patient over increasing

the number of patients, though the difference can often be small or, at times, negligible.

Thus, based on our model and the POST estimator, we now have some guidelines for

appropriately choosing sample size parameters as well as an idea of the robustness to different

treatment effects of those choices in order to optimize designs of Phase II MS/MRI clinical

trials. To summarize, increasing the number of scans past 5 produces meager gain in terms

of sensitivity, as does increasing the number of patients past 30. We also showed that these

choices of sample size parameters are robust across the entire range of each parameter we

considered, making them ideal candidates in terms of a balance between minimizing the

number of scans and patients while maximizing sensitivity, regardless of the expected mean

structure and inter-patient variability within the ranges of those parameters we explored. We

also saw that the sensitivity of SD(T̂POST ) is susceptible to changes in the model parameters,

which represent population and treatment characteristics. Finally, we have commented on

the case where there is a fixed budget, and a choice must be made as to whether to recruit

more patients or to have more scans per patient.



Chapter 4

The Maximum Likelihood

Estimator

This chapter examines the maximum likelihood estimator, T̂ML, which, unlike the POST

estimator, is an estimator that depends on longitudinal information. As in chapter 3, we

investigate any potential relationships that exist between the estimated standard deviation

of the estimator and both the sample size and model parameters, but also summarize some

of the difficulties encountered using T̂ML with our choice of model. Though the manner

in which we examine the ML estimator in this chapter will have many similarities to the

approach used to explore the POST estimator in chapter 3, there are some minor differences

in how we analyze the estimator.

For this chapter we will use a similar approach to investigate the same seven1 parameters

that we investigated in chapter 3, namely, Ph, βh, λh, m, and n. Recall from chapter 3 that

we have made the assumptions of equal numbers of patients in each arm (mh = m for all

h) and equal numbers of scans for each patient (nhi = n for all h and i). We compute T̂ML

and its standard error using a quasi-Newton routine (e.g., Nash 1979). This method has the

added benefit of producing, as a by-product, the estimated variance-covariance matrix of

the parameter estimates (as given by the inverse of the observed Fisher information matrix).

1Recall that both Ph and βh are vectors.

19



CHAPTER 4. THE MAXIMUM LIKELIHOOD ESTIMATOR 20

4.1 Computational details

Due to the complexity added from considering an estimator based on a longitudinal model,

there arise some computational problems. In particular, the complexity of the model along

with the number of parameters to be estimated sometimes causes convergence problems

when attempting to determine maximum likelihood estimates of the parameters.

One of the reasons for convergence problems seems to be due to the chosen mean struc-

ture. The mean structure was chosen to accurately reflect how lesion counts behave under

treatment, but such behavior is quite difficult to deal with computationally. For example,

under an effective treatment, lesion counts tend to fall sharply to zero after the very first

post-treatment scan. Capturing this effect in the estimate of gh(t) is challenging for small

sample sizes. Another cause of convergence issues seems to be the large number of zero

lesion counts produced when a group is under treatment: as with the PRISMS data, even

a moderately effective treatment, as defined in section 3.1, produces mostly zeros for the

vast majority of patients. With so little data, estimation of a relatively large number of

parameters quickly becomes difficult. It thus appears that the complexity of the model is

both an advantage and a disadvantage: it captures the difficult structure of the data rea-

sonably well, but moderate sample sizes are required in order to compute the MLEs of its

parameters.

A simple solution is available for the difficulties identified above, namely, to decrease the

range of the sample size parameters. By considering larger values of m and n, we were able

to compute the MLEs without problems.

Unfortunately, even though the modified ranges of n and m produced reasonable esti-

mates for the model parameters, they still did not always produce acceptable estimates for

the variance-covariance matrix of the model parameters (which would be required to de-

termine an estimate for the standard deviation of T̂ML using the delta method). Although

increasing the lower bounds on n and m further would result in adequate estimates of the

standard deviation of T̂ML, we chose instead to use the bootstrapped estimate of the SD,

SD(T̂ML), and hence to maintain a greater scope for recommendations.
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4.2 Designing another experiment

Given the aforementioned challenge presented by our choice of model and estimator, any

appropriate reduction of complexity is both useful and welcome. In this section we attempt

such a simplification by using a screening experiment similar to chapter 3 in the hopes

that one or more parameters will be found to have little effect on our response of interest,

SD(T̂ML). This screening experiment has the same number of parameters and correspond-

ing number of levels to consider as the experiment used to examine the POST estimator.

Likewise, the interpretations for these parameters, the setup, and notation used in chapter

3 are unchanged.

While the previous chapter considered an estimator based solely on independent sum-

mary statistics, this chapter deals with an estimator that takes advantage of the additional

information provided by the time series nature of the counts. As mentioned in section 4.1,

our choices of estimator and model require some additional care including reducing the

range of our model parameters. Ultimately, we found that changing from low levels n = 1

and m = 10 of the POST estimator to n = 6 and m = 20 for the low levels of the ML es-

timator was sufficient to produce acceptable parameter estimates. While it may seem that

the ranges of sample size parameters for the ML estimator are restrictive, as mentioned in

chapter 3, current Phase II MS/MRI clinical trials are commonly longer than 6 months in

duration, with monthly scans usually taken for up to a year and, typically, have at least 20

patients per treatment arm.

With the levels of our parameters fixed, we are again left with a 3 · 24 full factorial

experiment. Although we could have performed the standard ANOVA by dividing the total

number of simulations to form groups of replicates, the number of simulations2 required to

have reliable estimates for the standard deviation of T̂ML for each replicate was prohibitive.

Using the methods of chapter 3 and the ANOVA table A.2, we can see that the transition

probabilities are not important. So, again, we exclude them from our consideration of

parameter effects. Table A.2 also suggests that βh may not be important. However, as a

conservative measure, we chose to include the mean structure in our analysis, since some of

the interactions involving βh are substantial.

2Each simulation provides an estimate of TML, whereas for each SD estimate, SD(T̂ML), we used between
750 and 1500 simulations.
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4.3 Examining the effects of the parameters on SD(T̂ML)

As done previously, we first examine the effects of the model parameters on the estimated

standard deviation of the ML estimator and consider the robustness of these effects. We sub-

sequently do the same with sample size parameters, before making some recommendations

for future trials based on our findings.

We begin by looking at the effect of inter-patient variability, or λh, on the estimated

standard deviation of the ML estimator. By comparing figures 4.1(a-c), we first notice that

the general shape of the plots remain the same across the different levels of λh. It is also clear

that changing the level of λh has little to no impact of the value of SD(T̂ML). Examining

the plots in section B.2 reveals that this also appears to be the case for any βh. The fact

that λh does not have much of an influence on the magnitude of SD(T̂ML) is not surprising

if we consider its associated sum of squares in table A.2. This value is relatively small when

compared to those of the number of scans or patients.
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Figure 4.1: SD(T̂ML) vs. n for varying inter-patient variabilities: each curve represents the
estimated standard deviation curve for the specified number of patients

If we consider the βh parameter, we are left with a similar conclusion to that of λh.

Figures 4.2(a,b) reveal a decreasing estimated standard deviation for the ML estimator for

increasing m or n, but it seems that the influence that βh has on SD(T̂ML) is not strong

enough to overcome any possible noise that may be present in our estimates of the standard
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deviation of T̂ML in any well defined way. Every plot with curves representing either number

of patients or scans has the same general shape, exhibiting a gentle negative slope, and sits

roughly within the same range of standard deviation. The relative inefficacy of the various

mean structures in changing the estimated standard deviation of the ML estimator is also

reflected in the figures 4.2(a,b) and others where the curves represent a mean structure:

the curves of various mean structures have no vertical order. That is, a particular mean

structure does not consistently produce a smaller or larger standard deviation than another

mean structure. Note that again, this is should not come as a surprise if we recall the results

in table A.2 and the relatively small SS value for βh.
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Figure 4.2: SD(T̂ML) for varying mean structures: each curve represents the estimated stan-
dard deviation curve for a given treatment group with 1 to 3 denoting the mean structures
that represent the weakest to strongest treatment effect respectively

We now consider how the number of scans affects the estimated standard deviation of

the ML estimator. Looking at figures 4.3(a,b) it is immediately apparent that increasing

n results in a decrease in our response. However, in terms of making recommendations

based on trying to minimize SD(T̂ML), there is considerable noise present. This makes it

somewhat difficult to tell which number of scans would be optimal. Looking at figure 4.3(a),

substantial gains are evident when the number of scans is increased from n = 6 to n = 8,

but increasing n from 8 to 10 also yields a generous decrease in SD(T̂ML). Figures 4.1(a-

c) demonstrate the same behavior, which aside from lending credence to our conclusions,



CHAPTER 4. THE MAXIMUM LIKELIHOOD ESTIMATOR 24

also demonstrates their robustness across inter-patient variability. Assuming that a larger

vertical white space between two curves indicates a larger change in SD(T̂ML), figure B.18

shows a noticeably larger amount of space on average between the n = 8 and n = 10 curves

when compared to the space between the n = 10 and n = 12 curves. Thus it seems that

n = 10 provides the optimal number of scans in terms of minimizing the estimated standard

deviation of the ML estimator. The effect of n and the corresponding recommendations can

be seen to be robust over the ranges of βh we have discussed by looking at figure 4.3(b) and

by comparing the plots in figures B.15-B.18.
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Figure 4.3: SD(T̂ML) vs. n for varying levels of patients, (a), or mean structures, (b)

Similar to the effect of number of scans, an increase in the number of patients decreases

SD(T̂ML). Figures 4.4(a,b) show a decreasing trend as m increases. The slopes of the

curves level off when m ≥ 40, demonstrating that increasing m past 40 does not yield much

increase in terms of sensitivity. Again using the idea of space between curves, figures 4.1(a-c)

indicate this conclusion to be true and independent of λh. This optimal choice of m can be

seen to be robust across βh by looking at figures 4.4(b), 4.3(b), or 4.2(b). Like the case of

SD(T̂POST ), it seems there is a fair sized scans:patients interaction effect when considering

SD(T̂ML). Given a small value of m, SD(T̂ML) is more heavily influenced by a change in

the value of n than if we considered a larger value of m. This can be seen graphically in

figures B.15-B.18 by noticing that as m increases, increasing n produces diminishing returns
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in terms of SD(T̂ML). Likewise, as n increases, increasing m has less impact on SD(T̂ML).

These effects are robust across βh and λh.

20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

E
st

im
at

ed
 S

D
 o

f M
L 

es
tim

at
or

Patients
(a)

6

810

12

18

λλ0
ββ0

20 30 40 50 60 70
0.

0
0.

1
0.

2
0.

3
0.

4

E
st

im
at

ed
 S

D
 o

f M
L 

es
tim

at
or

Patients
(b)

3

2=HD

1=PL λλ0
n=18

Figure 4.4: SD(T̂ML) vs. m for varying levels of scans, (a), or mean structures, (b)

Similar to chapter 3, we analyze the practical situation where there is a fixed budget for a

clinical trial, and the trade-off between number of patients and number of scans per patient

must be considered. Unfortunately, there is too much noise to make any straightforward

and specific conclusions. From figures B.16 and B.18 we can see that similar to the analysis

for the POST estimator, the choice would generally depend on the level combination of the

model parameters, but for this case no clear general pattern emerges.

In summary, even with the added complexity of working with simulated data from a

sophisticated model, some optimal design recommendations are still available: an ideal

number of scans would appear to be roughly 10. This choice simultaneously minimizes

the estimated SD of the MLE and the cost associated with the number of MRI scans per

patient. Moreover, it appears robust across all parameters. And in terms of simultaneously

minimizing SD(T̂ML) and the overall price per patient, the optimal number of patients seems

to be around 40 - a conclusion that is also robust over the parameters we considered within

their respective ranges. This chapter also demonstrated that T̂ML is highly robust to the

model parameters.



Chapter 5

Comparing The Estimators

This chapter compares the recommendations based on the POST and ML estimators and

evaluates their performance as estimators in relation to their sensitivity and power. It also

compares our recommendations for Phase II RRMS/MRI clinical trials with those made by

Smith.

5.1 Comparing the sensitivities of and the power based on

the estimators

The ML estimator provides great gains in terms of sensitivity over the POST estimator.

This is evident when comparing figures 5.1(a,b) below. The curves representing the standard

deviation for a fixed λh and βh combination over the MLEs sample size parameter ranges

are displayed for both the POST and ML estimator. From these figures it is clear that

there is a substantial advantage in sensitivity when using T̂ML. The SD range for the curves

corresponding to the POST estimator in figure 5.1(a) is between 0.6 and 2.1, whereas the

same curves for the ML estimator in figure 5.1(b) lie between 0.3 and 0.8. Though the

difference in sensitivity between the two estimators can be greater and smaller than that

depicted in figures 5.2(a,b), figures B.19-B.24 show that the difference is substantial and

almost always favors the ML estimator.

Looking further at the figures in appendix B.2, the superior sensitivity of the ML esti-

mator appears to be due, in part, to how robust its estimated standard deviation is to the

model parameters. Looking at figures B.19-B.24, we see that the SD ranges for the curves

26
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Figure 5.1: Estimated standard deviation vs. n for varying levels of patients

corresponding to T̂POST change for different levels of λh and βh, whereas for T̂ML the SD

ranges stay generally constant between 0.2 and 1.0, independent of what underlying mean

structure or inter-patient variability is present. This feature of T̂ML is clearly advantageous,

since then precise estimates of λh and βh are not required in the planning of a trial.

Note that there is one case that we considered where the sensitivity of the POST estima-

tor actually beats that of the ML estimator, that is, a case where SD(T̂POST ) < SD(T̂ML).

From figure B.21 we see that the POST estimator performs better than T̂ML when our

model parameter levels are set at λ− and β+. This discrepancy is likely due to errors in

the estimation of SD(T̂ML) caused by too many zeros that result from a highly effective

treatment being coupled with a relatively uniform inter-patient variability. (See also fig-

ure B.15(g), which shows that SD(T̂ML) is much greater for this case than for the others

considered). Fortunately this situation looks better for higher sample sizes where the SD

values are similar to other cases. In any event, this situation is unlikely to arise in a clinical

trial since, according to the PRISMS data, the efficacy of the treatment exhibits a strong

positive correlation with inter-patient variability.

The relative sensitivities of the estimators are reflected in their power to detect a treat-

ment effect. Using our simulation data, we compute estimates of the power for a variety
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of parameter values, assuming a significance level of 0.05. When βh = β0 (i.e. there is a

moderate treatment effect), the power differs considerably depending on whether we use the

POST or ML estimator. Tables A.3-A.5 show that the power estimates for T̂ML are always

substantially better than the power estimates for T̂POST with a power of at least 80% the

majority of the time over the level combinations we considered. And while the performance

of T̂POST improved with a decrease in inter-patient variability, even at its best, the power

based on T̂POST exceeds 80% only once.

Though we were not able to estimate the power for all level combinations of βh and λh
1,

we were able to gain some insight into the performance of T̂ML over a fairly broad range

of the model parameters. From tables A.3-A.5 we see that when m ≥ 30, only 10 scans

are needed to detect a treatment effect with a power of at least 80%. In fact, if there are

40 or more patients, it is likely that even fewer scans are required for even higher power.

However, if only 20 or fewer patients are available, a perhaps prohibitively large number of

scans would be required to achieve a reasonable level of power.

Number of Number of Estimated power Estimated power
patients scans based on T̂POST based on T̂ML

8 0.142 0.642
20 10 0.162 0.680

12 0.179 0.798
8 0.173 0.752

30 10 0.202 0.850
12 0.225 0.915
8 0.203 0.859

40 10 0.239 0.949
12 0.269 0.970
8 0.232 0.938

50 10 0.275 0.983
12 0.310 0.989
8 0.284 0.984

70 10 0.342 0.995
12 0.388 0.999

Table 5.1: Power estimates for POST and ML estimators for β0 and λ0

1Power estimates were calculated only when appropriate to do so, that is, when the distribution of T̂ML

was approximately normal.
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5.2 Comparing recommendations based on our estimators

Despite having substantially less sensitivity than the ML estimator, the POST estimator

may still be preferred by some clinicians due to its simplicity. For such clinicians there is

an additional benefit to be gained from using T̂POST : its associated optimal sample sizes

are relatively small. Summarizing our results from chapters 3 and 4 in table 5.2, at first

glance, it appears that the POST estimator has an advantage over T̂ML since the “optimal”

sample size recommendations associated with T̂POST require half the number of scans and

one quarter less patients than those associated with T̂ML. However, it is also important to

note that these recommendations are based on different ranges. Therefore, considering a

different range for the parameters could conceivably yield different recommendations. This

is indeed the case here. Figures 5.2(a,b) show the plotted curves for the standard deviation of

the POST estimator under the ranges of the sample size parameters for the ML estimator.

Based on these and the related plots in figures B.19-B.24, the recommendations for the

POST estimator are very similar to those made for the ML estimator.

POST Estimator ML Estimator
Range of n considered 1-18 6-18
Optimal choice for n 5 10
Range of m considered 10-70 20-70
Optimal choice for m 30 40

Table 5.2: Sample size recommendations based on T̂POST and T̂ML

5.3 Comparing our results with Smith’s work

In 1999, Smith created a semi-parametric model for MS lesion count data and used three

estimators of the treatment effect, one of which was the POST estimator, and two that

incorporated pre-treatment scan data. Smith compared the sensitivity of the three esti-

mators and made sample size recommendations based on the most sensitive of the three.

Unfortunately, since the model we considered does not incorporate pre-treatment scans,

we are unable to compare our estimators directly. However, we are able to make a rough

comparison of Smith’s most promising estimator, the ANCOVA estimator, used with his

model, with the ML estimator used with Altman and Petkau’s model. We can also com-

pare Smith’s recommendations based on his ANCOVA estimator with our recommendations
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Figure 5.2: SD(T̂POST ) vs. n for differing numbers of patients (a) and SD(T̂ML) vs. m for
differing numbers of scans (b)

based on T̂ML. It is important to note that comparing the ANCOVA and ML estimators is

not an entirely fair comparison: since we use two different models of the treatment effect,

the true values of the two estimators are inherently different. Nonetheless, a study of the

the sensitivities of the estimators provides some insight.

Pre-treatment scans Post-treatment scans SD(T̂ANCOV A) SD(T̂ML)
0 6 - 0.36

9 - 0.27
1 6 0.24 -

9 0.22 -
2 6 0.22 -

9 0.20 -
3 6 0.21 -

9 0.19 -
4 6 0.21 -

9 0.18 -

Table 5.3: SD for ANCOVA and ML estimators for the treated group with m = 60

For the ANCOVA estimator using Smith’s model, the estimated standard deviation
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varies depending on the number of pre-treatment scans according to tables 5.3 and 5.4.

It seems that the sensitivity of Smith’s preferred estimator is decidedly greater when the

number of patients is fixed at 60 and the number of post-treatment scans varies between

n = 6 and n = 9 or when the number of post-treatment scans is fixed at 6 and the number

of patients varies between m = 40 and m = 70.

Pre-treatment scans Number of patients SD(T̂ANCOV A) SD(T̂ML)
0 40 - 0.43

70 - 0.34
1 40 0.30 -

70 0.22 -
2 40 0.27 -

70 0.21 -
3 40 0.26 -

70 0.20 -
4 40 0.25 -

70 0.19 -

Table 5.4: SD for ANCOVA and ML estimators for the treated group with n = 6

As for recommendations, since Smith only makes optimal design recommendations based

on the ANCOVA estimator with a fixed number of patients, the value of comparisons with

the design recommendations we made based on the ML estimator will be limited. We are

still able to make a crude comparison of the recommendations based on the competing

estimators. Using his model and the ANCOVA estimator with the number of patients fixed

at 60, Smith’s optimal recommendation is to fix the number of post-treatment scans at

7, whereas for the ML estimator and our model, with any number of fixed patients we

recommend 10 post-treatment scans.



Chapter 6

Conclusions and Future Work

Notwithstanding challenges brought about by a complex model and estimator, it seems the

longitudinal information used by T̂ML results in an estimator that outperforms the summary

statistic-based POST estimator in terms of sensitivity. Our estimator is also far more robust

to the wide ranges of the model parameters that we explored – model parameters that reflect

population and treatment characteristics encountered when performing RRMS/MRI clinical

trials in practice. In addition, the optimal sample size recommendations for a fixed budget

made based on the ML estimator fall within standard sample sizes for current Phase II

MS/MRI clinical trials.

Since Smith focused largely on the effect of pre-treatment scans and the ML estimator

considers only post-treatment scans, the comparison of the ML estimator with the ANCOVA

estimator was necessarily indirect. The sensitivity of T̂ANCOV A currently proves to be a

substantial improvement on the POST estimator and, as section 5.3 points out, on the ML

estimator as well. These results suggest that the ML estimator based on a model which

incorporates pre-treatment scan information would likely be highly sensitive. Such a model

would also allow for a more direct comparison of Smith’s ANCOVA estimator with the ML

estimator.

There are some limitations with our choices of model and the ML estimator. The con-

vergence problems mentioned in section 4.1 complicate estimation of the model parameters,

and hence the treatment effect and its standard deviation, unless the sample size parame-

ters are sufficiently large. Throughout this project the estimation of model parameters has

been a considerable challenge. This is in part due to the choice of our mean structure, gh(t).

Although our current choice for gh(t) seems to capture the basic behavior of the lesion count

32
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data, as alluded to in section 4.1, our choice of mean structure was difficult to work with

and is perhaps overly sensitive to changes in values of βh1 and βh2. With a different choice

for gh(t), it may be easier to estimate the parameters of the model. In particular, further

investigation of the reliability of the estimated asymptotic standard deviation is required.

Since the method we used to find the MLEs (Quasi-Newton routine) can sometimes pro-

duce a negative-definite estimate of the variance-covariance matrix, a different maximization

method might produce better estimates of the asymptotic standard deviation. This is de-

sirable since a comparison between the empirical bootstrapped estimates and asymptotic

estimates could provide some insight.

Despite the challenges that have surfaced over the course of this project, the ML esti-

mator shows great promise for use in MS/MRI phase II clinical trials and provides a sizable

step towards an improved means of investigating multiple sclerosis.



Appendix A

Data

A.1 Experimental design data from ANOVA tables

This section contains the results, as given from the aov() function in R, of the experimental

designs for each of the estimators from chapter 3 and 4. The designs were both full factorial

experiments. The tables have been cut and pasted from R but have not been modified in

any way other than formatting.

34



APPENDIX A. DATA 35

Df Sum Sq Mean Sq

scans 1 136.060 136.060

patients 1 130.155 130.155

betas 1 63.699 63.699

lambda 1 275.143 275.143

P 2 0.489 0.244

scans:patients 1 27.726 27.726

scans:betas 1 0.001 0.001

patients:betas 1 12.980 12.980

scans:lambda 1 64.828 64.828

patients:lambda 1 56.068 56.068

betas:lambda 1 48.489 48.489

scans:P 2 0.159 0.080

patients:P 2 0.100 0.050

betas:P 2 0.075 0.038

lambda:P 2 0.341 0.171

scans:patients:betas 1 0.0003 0.0003

scans:patients:lambda 1 13.210 13.210

scans:betas:lambda 1 0.013 0.013

patients:betas:lambda 1 9.881 9.881

scans:patients:P 2 0.032 0.016

scans:betas:P 2 0.010 0.005

patients:betas:P 2 0.015 0.008

scans:lambda:P 2 0.113 0.057

patients:lambda:P 2 0.070 0.035

betas:lambda:P 2 0.045 0.023

scans:patients:betas:lambda 1 0.003 0.003

scans:patients:betas:P 2 0.002 0.001

scans:patients:lambda:P 2 0.023 0.012

scans:betas:lambda:P 2 0.006 0.003

patients:betas:lambda:P 2 0.009 0.005

scans:patients:betas:lambda:P 2 0.001 0.001

Table A.1: ANOVA table of the experimental design for the SD of the POST estimator
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Df Sum Sq Mean Sq

scans 1 8.9484 8.9484

patients 1 15.5054 15.5054

betas 1 1.3851 1.3851

lambda 1 5.5663 5.5663

P 2 0.3368 0.1684

scans:patients 1 8.0975 8.0975

scans:betas 1 1.2341 1.2341

patients:betas 1 1.6077 1.6077

scans:lambda 1 3.1012 3.1012

patients:lambda 1 5.7467 5.7467

betas:lambda 1 2.6181 2.6181

scans:P 2 1.0850 0.5425

patients:P 2 0.3146 0.1573

betas:P 2 0.2240 0.1120

lambda:P 2 0.7930 0.3965

scans:patients:betas 1 1.2420 1.2420

scans:patients:lambda 1 3.1400 3.1400

scans:betas:lambda 1 1.3005 1.3005

patients:betas:lambda 1 2.3528 2.3528

scans:patients:P 2 1.0939 0.5470

scans:betas:P 2 0.1470 0.0735

patients:betas:P 2 0.2385 0.1193

scans:lambda:P 2 1.8825 0.9412

patients:lambda:P 2 0.7751 0.3875

betas:lambda:P 2 0.7787 0.3894

scans:patients:betas:lambda 1 1.2364 1.2364

scans:patients:betas:P 2 0.1498 0.0749

scans:patients:lambda:P 2 1.8537 0.9268

scans:betas:lambda:P 2 1.2313 0.6156

patients:betas:lambda:P 2 0.7479 0.3740

scans:patients:betas:lambda:P 2 1.2241 0.6121

Table A.2: ANOVA table of the experimental design for the SD of the ML estimator
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A.2 Power comparison tables for POST and ML estimators

This section contains the full results of the power comparison from chapter 5.

Level combination of Number of Number of Estimated power Estimated power
model parameters patients scans based on T̂POST based on T̂ML

β0, λ− 20 6 0.233 0.306
β0, λ− 20 8 0.284 0.413
β0, λ− 20 10 0.326 0.559
β0, λ− 20 12 0.357 0.663
β0, λ− 20 18 0.383 0.765
β0, λ− 30 6 0.300 0.486
β0, λ− 30 8 0.371 0.697
β0, λ− 30 10 0.427 0.852
β0, λ− 30 12 0.469 0.920
β0, λ− 30 18 0.502 0.964
β0, λ− 40 6 0.363 0.493
β0, λ− 40 8 0.450 0.781
β0, λ− 40 10 0.517 0.864
β0, λ− 40 12 0.565 0.961
β0, λ− 40 18 0.602 0.981
β0, λ− 50 6 0.421 0.625
β0, λ− 50 8 0.521 0.875
β0, λ− 50 10 0.596 0.974
β0, λ− 50 12 0.647 0.992
β0, λ− 50 18 0.686 0.996
β0, λ− 70 6 0.527 0.788
β0, λ− 70 8 0.642 0.956
β0, λ− 70 10 0.722 0.993
β0, λ− 70 12 0.773 0.997
β0, λ− 70 18 0.809 1.000

Table A.3: Power estimates for POST and ML estimators for β0 and λ−
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Level combination of Number of Number of Estimated power Estimated power
model parameters patients scans based on T̂POST based on T̂ML

β0, λ0 20 6 0.119 0.337
β0, λ0 20 8 0.142 0.642
β0, λ0 20 10 0.163 0.680
β0, λ0 20 12 0.179 0.798
β0, λ0 20 18 0.190 0.871
β0, λ0 30 6 0.142 0.511
β0, λ0 30 8 0.173 0.752
β0, λ0 30 10 0.202 0.850
β0, λ0 30 12 0.225 0.915
β0, λ0 30 18 0.241 0.954
β0, λ0 40 6 0.162 0.707
β0, λ0 40 8 0.203 0.859
β0, λ0 40 10 0.239 0.949
β0, λ0 40 12 0.269 0.970
β0, λ0 40 18 0.288 0.987
β0, λ0 50 6 0.182 0.831
β0, λ0 50 8 0.231 0.938
β0, λ0 50 10 0.275 0.983
β0, λ0 50 12 0.310 0.989
β0, λ0 50 18 0.333 0.993
β0, λ0 70 6 0.220 0.870
β0, λ0 70 8 0.284 0.984
β0, λ0 70 10 0.342 0.995
β0, λ0 70 12 0.388 0.999
β0, λ0 70 18 0.417 1.000

Table A.4: Power estimates for POST and ML estimators for β0 and λ0
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Level combination of Number of Number of Estimated power Estimated power
model parameters patients scans based on T̂POST based on T̂ML

β0, λ+ 20 6 0.082 0.334
β0, λ+ 20 8 0.091 0.497
β0, λ+ 20 10 0.100 0.652
β0, λ+ 20 12 0.107 0.697
β0, λ+ 20 18 0.112 0.819
β0, λ+ 30 6 0.091 0.457
β0, λ+ 30 8 0.104 0.744
β0, λ+ 30 10 0.115 0.845
β0, λ+ 30 12 0.125 0.909
β0, λ+ 30 18 0.131 0.959
β0, λ+ 40 6 0.099 0.676
β0, λ+ 40 8 0.115 0.892
β0, λ+ 40 10 0.129 0.952
β0, λ+ 40 12 0.141 0.959
β0, λ+ 40 18 0.149 0.981
β0, λ+ 50 6 0.106 0.750
β0, λ+ 50 8 0.125 0.935
β0, λ+ 50 10 0.143 0.980
β0, λ+ 50 12 0.157 0.992
β0, λ+ 50 18 0.166 0.992
β0, λ+ 70 6 0.120 0.900
β0, λ+ 70 8 0.145 0.981
β0, λ+ 70 10 0.168 0.995
β0, λ+ 70 12 0.187 0.999
β0, λ+ 70 18 0.199 1.000

Table A.5: Power estimates for POST and ML estimators for β0 and λ+



Appendix B

Plots

This appendix contains various plots.

B.1 Extra plots for the POST estimator

40
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Figure B.1: SD(T̂POST ) vs. m with varying λh and βh with SD axis fixed (curves correspond
to the specified number of scans)
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Figure B.2: SD(T̂POST ) vs. m with varying λh and βh with SD axis scaled to best fit plot
(curves correspond to the specified number of scans)
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Figure B.3: SD(T̂POST ) vs. n with varying λh and βh with SD axis fixed (curves correspond
to the specified number of patients)
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Figure B.4: SD(T̂POST ) vs. n with varying λh and βh with SD axis scaled to best fit plot
(curves correspond to the specified number of patients)
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Figure B.5: SD(T̂POST ) vs. m with varying λh and n with SD axis fixed (curves correspond
to the specified mean structure)
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Figure B.6: SD(T̂POST ) vs. m with varying λh and n with SD axis fixed (curves correspond
to the specified mean structure)
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Figure B.7: SD(T̂POST ) vs. m with varying λh and n with SD axis scaled to best fit plot
(curves correspond to the specified mean structure)
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Figure B.8: SD(T̂POST ) vs. m with varying λh and n with SD axis scaled to best fit plot
(curves correspond to the specified mean structure)
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Figure B.9: SD(T̂POST ) vs. n with varying λh and m with SD axis fixed (curves correspond
to the specified mean structure)
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Figure B.10: SD(T̂POST ) vs. n with varying λh and m with SD axis fixed
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Figure B.11: SD(T̂POST ) vs. n with varying λh and m with SD axis scaled to best fit plot
(curves correspond to the specified mean structure)
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Figure B.12: SD(T̂POST ) vs. n with varying λh and m with SD axis scaled to best fit plot
(curves correspond to the specified mean structure)
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Figure B.13: SD(T̂POST ) vs. n with varying λh and βh with modified sample size parameter
range and SD axis scaled to best fit plot (curves correspond to the specified number of
patients)
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Figure B.14: SD(T̂POST ) vs. m with varying λh and βh with modified sample size parameter
range and SD axis scaled to best fit plot (curves correspond to the specified number of scans)
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B.2 Extra plots for the ML estimator
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Figure B.15: SD(T̂ML) vs. n with varying λh and βh with SD axis fixed (curves correspond
to the specified number of patients)
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Figure B.16: SD(T̂ML) vs. n with varying λh and βh with SD axis scaled to best fit plot
(curves correspond to the specified number of patients)
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Figure B.17: SD(T̂ML) vs. m with varying λh and βh with SD axis fixed (curves correspond
to the specified number of scans)
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Figure B.18: SD(T̂ML) vs. m with varying λh and βh with SD axis scaled to best fit plot
(curves correspond to the specified number of scans)
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Figure B.19: Estimated standard deviation vs. n for the POST and ML estimators with
β− and varying λh (curves correspond to the specified number of patients)
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Figure B.20: Estimated standard deviation vs. n for the POST and ML estimators with β0

and varying λh (curves correspond to the specified number of patients)
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Figure B.21: Estimated standard deviation vs. n for the POST and ML estimators with
β+ and varying λh (curves correspond to the specified number of patients)
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Figure B.22: Estimated standard deviation vs. m for the POST and ML estimators with
β− and varying λh (curves correspond to the specified number of scans)
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Figure B.23: Estimated standard deviation vs. m for the POST and ML estimators with
β0 and varying λh (curves correspond to the specified number of scans)
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Figure B.24: Estimated standard deviation vs. m for the POST and ML estimators with
β+ and varying λh (curves correspond to the specified number of scans)
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