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Abstract

The goal of this project is to develop an optimal player selection strategy for a com-

mon playoff hockey pool. The challenge is to make the strategy applicable in real

time. Most selection methods rely on the draftee’s hockey knowledge. Our selection

strategy was created by applying appropriate statistical models to regular season data

and introducing a reasonable optimality criterion. A simulated draft is performed in

order to test our selection method. The results suggest that the approach is superior

to several ad-hoc strategies.
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”You have brains in your head.

You have feet in your shoes.

You can steer yourself any direction you choose.

You’re on your own. And you know what you know.

And YOU are the guy who’ll decide where to go.”

— Dr. Seuss 1904-1991
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Chapter 1

Introduction

Sports and gambling have been associated with one another for generations. From

wagers on bare knuckle boxing and cockfights, sports gambling has evolved into a

multi-million dollar industry. There are web sites dedicated to providing point spreads

for virtually every game in any major sporting event (eg. www.pinnaclesports.com).

The appeal of sports gambling is not limited to die hard fans; even people who

admittingly know next to nothing about sports are willing to wager a few dollars.

There are office pools for major sports such as basketball, football and hockey. The

popularity of office pools resides in the camaraderie between participants and the

notion that winning is a matter of luck rather than skill. With little doubt the most

popular office pools in Canada are hockey pools. Afterall, who has not heard the

phrase “Hockey Night in Canada”?

The idea for this project came from the course STAT 890, Statistics in Sport,

offered in the summer of 2004. One of the requirements was to research and present

an original project on statistics in sport. One idea thrown out in a brainstorming ses-

sion was to find a winning strategy for hockey pools, and since the National Hockey

1



CHAPTER 1. INTRODUCTION 2

League (NHL) playoffs were right around the corner it seemed like kismet. As the

project progressed we discovered that it was beyond the scope of a class project but

a fantastic idea for a Masters project.

Note that unlike some other sports pools, hockey pools are usually concerned with

selecting players who accumulate points rather than selecting teams. Many people

believe that a playoff hockey pool is a boom or a bust. Not only does one have to con-

sider which players to pick, it is important to think about which teams will advance

in the playoffs. Some general advice provided by hockey pool veterans is to begin by

choosing the best players from the best teams and part-way through the draft, opt

for high scoring players from teams which may play only one or two rounds. However,

not everyone uses this strategy. Some people choose players based on very abstract

qualities. People have chosen players based on the colour of their uniforms or the

numbers that they wear. The most bizarre strategy that we heard of involved the

selection of players with the last name Sutter. At the time, the six Sutter brothers

may all have been playing in the league. When the draftee ran out of Sutters, he

then opted for players with last names that sounded like Sutter, for instance Suter or

Sutherland. The goal of this project is to develop an optimal player selection strategy

by applying statistical methods to the data available. In addition, we want to be able

to use this strategy in real time. This implies that any calculations performed during

a draft must be fast.

There is a wide variety of hockey pools, some are available online to all takers

while others are held between friends or co-workers. One particular type of hockey

pool is a fantasy league. Often these are set up at the beginning of the regular

season. Participants pick players (both skaters and goalies) to make up their fantasy

teams and participants can choose the same players. Players are awarded points
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subject to a given scoring method. For example, one particular pool found online at

www.bluerodeo.com/br/hockey.html had the following the scoring system:

• 1.0 point for each goal

• 1.0 point for each assist

• 0.2 points for each penalty minute

• 2.0 points for each win (goalie and team)

• 1.0 point for each tie (goalie and team)

• 0.5 points for each loss in overtime

Often fantasy leagues will specify positions that must be filled, for example, one must

choose 2 goalies, 5 forwards and 3 defensemen. Bonus points can also be awarded for

certain events. In the same on-line pool the following bonus points were included in

the scoring system:

• 1.0 point for each shutout (goalies and team)

• 1.0 point for each shorthanded goal

• 1.0 point for each overtime goal

• 1.0 point for each game-winning goal (per player)

• 1.0 point for each hat trick (per player)

Playoff pools often tend to be smaller than fantasy leagues and usually follow

slightly different rules. In particular, once a player is chosen he becomes ineligible

and is removed from the draft. But really there are a multitude of different scoring

systems that can be employed. In both fantasy leagues and playoff pools the team
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with the most points at the end is declared the winner.

Since the 2003-2004 NHL regular season had just ended when we began our class

project we decided to limit our application to Stanley Cup Playoff pools. The NHL is

organized into two conferences. The Eastern conference is subdivided into three divi-

sions, Atlantic, Northeast and Southeast. The Western conference is also subdivided

into three divisions, Central, Northwest and Pacific. The number of teams qualifying

for the playoffs is sixteen, eight from each conference. The three division winners in

each conference are seeded one through three and wild-card teams are seeded four

through eight based on their regular season point totals. The first round of the play-

offs has the first seed playing the eighth seed, the second playing the seventh, the third

playing the sixth, and the fourth playing the fifth. At the end of the first round, the

teams in each conference are reseeded as before, with the top remaining seed playing

against the fourth remaining seed, and the second remaining seed playing against the

third remaining seed. In the Conference Finals, the two remaining teams play each

other, with the winners playing against one another in the Stanley Cup Finals.

Teams battle in best of seven series; that is to advance to the next round a team

needs four wins, so at most seven games are needed to determine a series winner. In

post-season play there are no ties, instead the result is decided by sudden death over-

time. Twenty minute overtime periods are played until someone scores the final goal.

Each series follows a 2-2-1-1-1 home-away schedule. Home-ice advantage is given to

the higher-ranked team.

In chapter 2, we describe a common playoff pool that is the focus of this project.

The statistical model used to describe hockey scores and individual player performance

is explained and justified. The model is then applied to the playoff pool. A description
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of the steps and assumptions used to simulate the Stanley Cup Playoffs is given which

includes different methods for obtaining team win probabilites as well as determining a

player’s potential worth. We also give a criterion for optimal drafting. We had planned

to test our simulation based selection strategy by running our own Stanley Cup Playoff

pool in the SFU Statistics and Actuarial Science Department. However, the 2004-

2005 NHL regular season was cancelled because salary disputes between the players

and the team owners could not be resolved. So we have postponed testing our player

selection method until the lockout ends. In chapter 3, we present a simulation study

designed to investigate our player selection method. We conclude with a discussion

in chapter 4.



Chapter 2

Optimal Drafting

2.1 A Common Hockey Playoff Pool

As described in the Introduction, we are interested in developing an optimal (or nearly

optimal) drafting strategy for hockey playoff pools. However, there are many different

scoring systems and rules that impact the draft. The focus of this project is a common

playoff pool with the following rules:

• The draft is of skaters only (i.e. no goalies)

• The scoring method is 1 point per goal and 1 point per assist

• The number of draftees, K, is fixed before the draft begins

• The number of rounds in the draft, m, is dependent upon K (more participants

would mean fewer rounds)

• Once a player is drafted he cannot be drafted again

• There are no trades between draftees and no replacement players; if a player is

injured that is too bad

6
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• The draft order is randomized before the first round; afterwards the order is

reversed in each subsequent round

In order to avoid confusion we use the term “lineup” to refer to a unique group of

players drafted by a particular draftee and the term “team” is reserved for actual

hockey teams.

2.2 Statistical Modelling

2.2.1 Hockey Scores

Possession of the puck is key, since whenever a team controls the puck they have an

opportunity to attack the opposing team’s net and score a goal. We assume that the

probability of scoring a goal on a particular possession, p, is constant. Naturally, this

is a simplification which does not account for situations such as power plays. Final

scores in most hockey games are relatively low and there are many possessions; this

supports the claim that p is quite small. In addition, we assume that all possessions

of the puck are independent. Letting X be the number of goals scored by a team in

the game, then X ∼ Binomial(n, p), where the number of possessions in a game, n,

is large but unknown. Since p is small and n is large we set θ = np and apply the

Poisson approximation

P (X = x) ≈
e−θθx

x!
x = 0, 1, . . .

The parameter θ can be interpreted as a measure of a team’s offensive ability and its

opponent’s defensive ability. This model has been used previously (Berry, 2000) to

investigate statistical applications in hockey. An advantage of the Poisson model over

the Binomial model is that there is one less parameter.
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2.2.2 Individual Player Performance

Consider player i who is the ith player drafted to a lineup of m players. Let Xi be the

number of points obtained by player i in a particular game. Then as before, we use

the Poisson approximation (Berry, Reese and Larkey, 1999), and obtain

P (Xi = xi) ≈
e−θiθxi

i

xi!
xi = 0, 1, . . .

where θi can be considered a measure of player i’s ability. The parameter θi can

be estimated by a combination of regular season results and subjective tweaking. A

straightforward method for estimating θi is

θi =
number of points obtained by player i in the regular season

number of games played by player i in the regular season
.

A possible improvement to this estimator is to emphasize a player’s recent perfor-

mances by giving more weight to the latter half of the season. Additional subjective

modifications can be made based on personal knowledge. For instance, perhaps a

player with a large θ breaks his leg in the last week of the regular season. Unable to

play in the post season, you would not choose this player in the draft; therefore you

could set his θ equal to zero. For the remainder of the project, we will assume that

the θ’s are known values that have been determined in some manner.

2.2.3 Playoff Pool Extension

Let Yki be the number of points accumulated in the playoffs by the player chosen in

round i by draftee k. Then,

P (Yki = y) =
∑

gki

P (Yki = y|gki)P (G = gki) (2.1)

where gki is the number of games played in the playoffs by the ith player chosen by

draftee k. In the playoffs of the National Hockey League (NHL), there are a maximum
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of four best of 7 rounds which implies that the summation in (2.1) ranges from 4 to

28. Recall from the previous section that we used the Poisson approximation to model

the number of points accumulated by a player in a single game. The random variable

Yki is a sum of independent Poisson variables; that is

Yki ≡ Xki1 + . . . + Xkigki

where Xkij is the number of points accumulated in the jth game by the ith player

selected by draftee k. It is well known that a sum of independent Poisson variables is

also Poisson; therefore Yki|gki ∼ Poisson(θkigki). This, in turn gives the unconditional

distribution of Yki in (2.1) as a finite mixture of Poissons.

2.2.4 Some Expectations

It turns out that various expectations are required for our drafting strategy. These

expectations make use of the conditional expectation formulae. The expected number

of points scored by the ith player selected by draftee k is given by

E(Yki) = Egki
(E(Yki|gki))

= Egki
(θkigki)

= θkiE(gki). (2.2)

Next, we extend the calculations for a given lineup. Consider the total points accu-

mulated by draftee k = 1, . . . , K,

Tk ≡ Yk1 + . . . + Ykm

where m is the number of rounds in the draft, or in other words, the number of players

per lineup. Then,

E(Tk) =
m
∑

i=1

E(Yki)

=
m
∑

i=1

θkiE(gki). (2.3)
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Next,

V ar(Tk) =
m
∑

i=1

V ar(Yki) + 2
∑

i<j

Cov(Yki, Ykj)

=
m
∑

i=1

[Egki
(V ar(Yki|gki)) + V argki

(E(Yki|gki))] + 2
∑

i<j

Cov(Yki, Ykj)

=
m
∑

i=1

[Egki
(θkigki) + V argki

(θkigki)] + 2
∑

i<j

Cov(Yki, Ykj)

=
m
∑

i=1

[θkiE(gki) + θ2
kiV ar(gki)] + 2

∑

i<j

Cov(Yki, Ykj). (2.4)

We assume conditional independence when expanding the covariance term in (2.4).

Therefore,

Cov(Yki, Ykj) = E[(Yki − E(Yki))(Ykj − E(Ykj))]

= E[YkiYkj − E(Yki)Ykj − E(Ykj)Yki + E(Yki)E(Ykj)]

= E(YkiYkj) − E(Yki)E(Ykj)

= Egkigkj
[E(YkiYkj|gki, gkj)] − E(Yki)E(Ykj)

= Egkigkj
[E(Yki|gki)E(Ykj|gkj)] − E(Yki)E(Ykj)

= θkiθkjE(gkigkj) − E(Yki)E(Ykj)

= θkiθkjE(gkigkj) − θkiθkjE(gki)E(gkj)

= θkiθkjCov(gki, gkj)

= θkiθkj(E(gkigkj) − E(gki)E(gkj)) (2.5)

Putting (2.4) and (2.5) together we have,

V ar(Tk) =
m
∑

i=1

[θkiE(gki) + θ2
kiV ar(gki)]

+ 2
∑

i<j

θkiθkj(E(gkigkj) − E(gki)E(gkj)). (2.6)

Another relevant quantity for our optimal drafting procedure is the covariance between

two lineups. We have,

Cov(Tk, Tl) = E(TkTl) − E(Tk)E(Tl)
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= E(
m
∑

i=1

Yki

m
∑

j=1

Ylj) − (
m
∑

i=1

θkiE(gki))(
m
∑

j=1

θljE(glj))

=
m
∑

i=1

m
∑

j=1

E(YkiYlj) − (
m
∑

i=1

θkiE(gki))(
m
∑

j=1

θljE(glj))

=
m
∑

i=1

m
∑

j=1

Egkiglj
E(YkiYlj|gkiglj) − (

m
∑

i=1

θkiE(gki))(
m
∑

j=1

θljE(glj))

=
m
∑

i=1

m
∑

j=1

Egkiglj
(θkigkiθljglj) − (

m
∑

i=1

θkiE(gki))(
m
∑

j=1

θljE(glj))

=
m
∑

i=1

m
∑

j=1

θkiθljE(gkiglj) − (
m
∑

i=1

θkiE(gki))(
m
∑

j=1

θljE(glj)) (2.7)

due to the conditional independence assumption. An important point is that the

E(Tk), V ar(Tk) and Cov(Tk, Tl) expressions in (2.3), (2.6) and (2.7) involve the terms

E(gki), V ar(gki) and E(gkigkj), and these terms are found in advance of the draft

by simulation (see section 2.3). Therefore, we can calculate E(Tk), V ar(Tk) and

Cov(Tk, Tl) for every lineup in the draft quickly. One further point is that the covari-

ance in (2.7) assumes that lineups k and l have the same number of players. This

expression is easily modified for two lineups with an unequal numbers of players, and

this is required for optimal drafting.

2.3 Simulating the Stanley Cup Playoffs

In order to calculate the terms E(Tk), V ar(Tk) and Cov(Tk, Tl), we have written an

S-Plus program to simulate the Stanley Cup Playoffs and estimate E(gki), V ar(gki)

and E(gkigkj). We now explain how this is done.

2.3.1 The Probability Matrix P

We estimate the terms E(gki), V ar(gki) and E(gkigkj) by simulating the Stanley Cup

Playoffs. These rely on estimates for the probability of every series outcome. We

require a 16 × 16 matrix of win probabilites, P. The entry P (i, j) is the probability
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that team i wins a best of seven series against team j for i, j = 1, 2, . . . , 16. Therefore,

P (j, i) = 1 − P (i, j) for i 6= j and since a team cannot play against itself, P (i, i) is

left undefined.

We consider three methods for estimating these win probabilites. The first method

was proposed for use in the NCAA Men’s Basketball March Madness tournament (Bre-

iter and Carlin, 1997); it is based solely on team seedings. In the NCAA tournament,

the teams are ranked by a selection committee according to their relative strength.

The win probabilites are given by

P (i, j) =
rank(j)

rank(i) + rank(j)

where rank(i) is the seeding of team i with rank(i) = 1 denoting the “best” team.

Applying this formula to the Stanley Cup Playoffs, we suggest that it can be used

for both within and between conference matchups. However, an implicit assumption

of this formula is that both conferences are equally strong, so that for example, the

probability of two equally ranked teams beating one another is equivalent to 1/2. In

addition, it suggests that a higher ranked team (ie. a team with a lower rank() value)

is always stronger than a lower ranked team. This is not a desirable quality because

hockey teams are not ranked by a committee; seeding is determined by the regular

season point totals. Sometimes a higher ranked team is not stronger than a lower

ranked team. For example, team i may have lost every regular season game against

an opponent j, but still finish with more points and hence P (i, j) > 1/2.

The second method is based on a two step approach that uses the regular season

point totals to estimate win probabilites (Monahan and Berger, 1977). First, the

probability that team i wins a particular game against team j in Stanley Cup play is
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estimated by

p = P(team i wins a game against team j) =
i’s total points

i’s total points+j’s total points
(2.8)

Assuming the outcome of a game is a Bernoulli random variable with probability p,

given in (2.8) then the series win probability is given by

P (i, j) = p4 +

(

4

3

)

p4(1 − p) +

(

5

3

)

p4(1 − p)2 +

(

6

3

)

p4(1 − p)3.

Notice that this method allows for overall differences in conference strength; teams

with the same seeding from the two conferences may have very different regular sea-

son point totals. However, this method also suffers from the same inadequacy as the

March Madness method. Simply because team i has a greater regular season point

total than team j does not necessarily suggest that team i is more likely to beat team

j. For example, perhaps team i has suffered a recent rash of injuries.

The final method that we consider is a graph theory approach that uses first round

Sportsbook odds and the draftee’s subjective hockey knowledge. We believe that this

method is superior to the other two approaches because it is designed to make the

series win probabilites as realistic as possible. Sportsbooks try to determine public

opinion in order to balance bets (Insley, Mok and Swartz, 2004). By balancing the

bets the Sportsbooks are able to guarantee a profit regardless of the winning team.

So using series win probabilites derived from Sportsbook odds seems like a reasonable

idea. Figure 2.1 gives the layout for the first round of the playoffs. Each line in

the graph indicates that the probability P (i, j) between the two connected teams is

available. That is, since the betting odds for the eight first round series are available,

these odds can be transformed to win probabilities. Sportsbook odds are reported

in the form Odds(i, j) : 1 where Odds(i, j) is the payout in dollars on a winning one

dollar bet on team i and P (i, j) = 1/(Odds(i, j) + 1). For example, 3:1 betting odds
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1 2 78 3 6 4 5

1 8 2 7 3 6 4 5

Western Conference

Eastern Conference

Figure 2.1: First round format

1 2 78 3 6 4 5

1 8 2 7 3 6 4 5

Western Conference

Eastern Conference

Figure 2.2: Draftee’s probabilites in bold

for team i defeating team j corresponds to P (i, j) = 0.25.

Now, the only glitch is that we need to complete the probability matrix P before

the playoffs begin and we only have the Sportsbook odds for the first round. To

complete the probability matrix, we use the draftee’s subjective hockey knowledge.

For example, perhaps the draftee is a die hard Canucks fan and can meticulously

predict the probabilities of all possible matchups against the Canucks. The bold lines

in Figure 2.2 represent two of the draftee’s subjective probabilites.

Fortunately, it is not necessary for the draftee to complete the remainder of the

probability matrix P. By assuming that the odds are “transitive”, we can use the

Sportsbook odds and the draftee’s subjective odds to determine the odds and cor-

responding probabilites of other matchups. For example, referring to Figure 2.2, by

transitivity we can calculate P (8E, 7W ) by following the line from 8E to 7W whereby

Odds(8E, 7W ) = Odds(8E, 2W ) • Odds(2W, 7W )
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1 2 78 3 6 4 5

1 8 2 7 3 6 4 5

Western Conference

Eastern Conference

Figure 2.3: Example of a connected graph

The goal is to create a connected graph; a graph is connected if there exists a path

between each pair of vertices. In this situation, the draftee must specify a minimum

of seven subjective probabilities in order to connect the graph and complete the prob-

ability matrix. An example of a connected graph is given in Figure 2.3.

Of course, if one is going to complete the probability matrix P via transitivity

there should not be different paths that lead to different probability calculations. The

draftee must be “transitivity coherent” in his or her subjective probability assign-

ments. For example, one should not have P (4, 5) = 0.5 and then assign P (1, 4) = 0.4

and P (1, 5) = 0.6. Note that transitivity is a strong assumption that is not always

applicable in sports. For example, one could imagine particular matchups where team

i is favoured over team j, team j is favoured over team k, yet team k is favoured over

team i. We believe that the transitivity assumption is fairly sensible in hockey. If one

is adamant that transitivity is inappropriate, they should then simply complete the

entire probability matrix P.

2.3.2 Calculating the Number of Games in a Series

After determining the matrix P, for any possible matchup we have the probability that

a particular team will win the entire best of seven series. However, we do not know the

probability distribution for the number of games that are played in the series. Let pij
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be the probability that team i beats team j in a single game on neutral ice. However,

the playoff games are not played on neutral ice. Recall from the Introduction that

each series follows a 2-2-1-1-1 home away schedule where the home ice advantage is

given to the higher-ranked team. We define home ice advantage as the increase in

probability ǫ of team i beating team j in a single game at home compared to neutral

ice. We obtain an estimate of ǫ common to the league by considering the results of

the regular season and setting

ǫ =
(number of home team wins) + 1

2
(number of tied games)

total number of regular season games
.

From the probability matrix P, we have estimates for P (i, j), the probability that

team i wins the series over team j for i 6= j. We want to find an estimate for pij , the

probability that team i beats team j in a single game on neutral ice. Since each series

is a best of seven games we have

P (i, j) = P (i wins in 4) + P (i wins in 5)

+ P (i wins in 6) + P (i wins in 7) (2.9)

This is not as straightforward as it appears because we must take into account the

2-2-1-1-1 schedule. We examine each term in the right hand side of (2.9) separately.

First we assume that team i is the higher ranked team. The simplest scenario to

calculate is team i sweeping the series by winning the first four games.

P (i wins in 4) = P (i wins the first 4 games)

= P (i wins 2 games at home and 2 games away)

= (pij + ǫ)2(pij − ǫ)2. (2.10)

If team i were to win the series in five games there are two possible outcomes to

consider; team i loses a home game or team i loses an away game. Of course there are
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different combinations to consider as well. If team i were to lose a home game this

means that they must lose either the first or second game of the series. Similarly, if

team i were to lose an away game they must lose either the third or fourth game of

the series. Therefore,

P (i wins in 5) = 2(pij + ǫ)(1 − (pij + ǫ))(pij − ǫ)2(pij + ǫ)

+ 2(pij + ǫ)2(pij − ǫ)(1 − (pij − ǫ))(pij + ǫ). (2.11)

If team i were to win the series in six games we must consider three possible

outcomes; team i loses two home games, team i loses two away games, or team i loses

one home game and one away game. Abiding by the 2-2-1-1-1 schedule there are three

combinations (games 12, 15, 25) of two home losses, one combination (games 34) of

two away losses and six combinations (games 13, 14, 23, 24, 35, 45) of one home loss

and one away loss. Therefore,

P (i wins in 6) = 3(pij + ǫ)(1 − (pij + ǫ))2(pij − ǫ)2(pij − ǫ)

+ (pij + ǫ)3(1 − (pij − ǫ))2(pij − ǫ)

+ 6(pij + ǫ)2(1 − (pij + ǫ))(pij − ǫ)2(1 − (pij − ǫ)). (2.12)

If team i were to win the series in seven games we must consider four possible

outcomes; team i loses three home games (games 125), team i loses three away games

(games 346), team i loses two home games and one away game (nine combinations

games 123, 124, 126, 135, 145, 156, 235, 245, 256) and team i loses one home game

and two away games (nine combinations consisting of games 134, 136, 146, 234, 236,

246, 345, 356, 456). Therefore,

P (i wins in 7) = (1 − (pij + ǫ))3(pij − ǫ)3(pij + ǫ)

+ (pij + ǫ)3(1 − (pij − ǫ))3(pij + ǫ)

+ 9(1 − (pij + ǫ))2(1 − (pij − ǫ))(pij + ǫ)(pij − ǫ)2(pij + ǫ)

+ 9(1 − (pij + ǫ))(1 − (pij − ǫ))2(pij + ǫ)3(pij − ǫ). (2.13)
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The equation given in (2.9) is expanded by substituting equations (2.10), (2.11),

(2.12) and (2.13) and we note that pij is the only unknown in the expanded equa-

tion. In order to obtain pij we use the Newton-Raphson algorithm and set the initial

value pij
(0) = 0.5. We then substitute pij into the expressions (2.10)-(2.13) to ob-

tain P (i wins in 4), P (i wins in 5), P (i wins in 6) and P (i wins in 7). Now using

equations (2.10)-(2.13) and pji = 1 − pij , we can similarly obtain P (j wins in 4),

P (j wins in 5), P (j wins in 6) and P (j wins in 7). We then have a discrete probabil-

ity distribution with 8 cells describing the outcome of the series between teams i and j.

To simulate the total number of games played by team i in the playoffs, we simulate

each round of the playoffs using the 8-cell discrete probability distributions and keep

a running total of the games played for team i. This is done for each of the 16 teams.

After completing many (thousands of) simulations, S-Plus has built-in functions that

are used to estimate the terms E(gki), V ar(gki) and Cov(gki, gkj).

2.4 Optimality Criterion

Recall from section 2.2.4 that we defined Tk as the total number of points accumulated

by draftee k = 1, . . . , K. In addition, we defined gki to be the number of games played

in the playoffs by the ith player selected in the draft by draftee k. In section 2.2.3

we argued that Yki|gki ∼ Poisson(θkigki). Furthermore, it can be argued (Summers,

Swartz and Lockhart 2005) that Tk can be approximated by a normal distribution,

with parameters E(Tk), V ar(Tk) and Cov(Tk, Tl) known in advance of the draft and

given by (2.3), (2.4) and (2.7) respectively. Ideally, and without loss of generality, we

would like to draft a lineup T1 so as to maximize

P (T1 = max
j=1,...,K

Tj) = P (T1 > T2, . . . , T1 > TK)
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= P (T1 − T2 > 0, . . . , T1 − TK > 0) (2.14)

Now assuming that (T1, . . . , TK) is multivariate normal NK(µ, Σ), the probability

(2.14) is equal to P (Q > 0) where Q ∼ NK−1(µQ, ΣQ) with parameters µQ = Xµ and

ΣQ = XΣX′ where

X =























1 −1 0 0 0 · · · 0

1 0 −1 0 0 · · · 0

...

1 0 0 0 0 · · · −1























.

This is known as an orthant probability and it is notoriously difficult to approximate in

moderate/high dimensions in reasonable computing times (Evans and Swartz, 1988).

We want an optimality criterion that is logical and effective in real time. We

therefore attempt to maximize

P ∗ =
1

K − 1
[P (T1 > T2) + · · ·+ P (T1 > TK)]. (2.15)

We interpret P ∗ as the average probability that lineup 1 beats one of its competitors.

Note that the terms in P ∗ are easily obtained via

P (T1 > Tj) = P (T1 − Tj > 0)

= P (Z > −µj/σj)

= Φ(µj/σj)

where T1 − Tj ∼ N(µj , σj
2) with µj = (1 0 · · · − 1 0 · · ·0) and

σj
2 = (1 0 · · · − 1 0 · · ·0) Σ (1 0 · · · − 1 0 · · ·0)′.

2.5 Putting Theory into Action

The optimality criterion established in section 2.4 was the last step in our theoretical

development. The next step is to test our player selection method by entering a NHL
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playoff pool. In chapter 3 we simulate a playoff pool of m rounds with K draftees.

In order to implement our selection method we need to create a realistic probability

matrix P to determine estimates for E(gki), V ar(gki) and Cov(gki, gkj) via simulation

as described in section 2.3. In addition, regular season data is used to determine

estimates of θ for eligible players.

Before the draft begins the order of player selection is randomized. After the first

round of drafting is complete the order of drafting is then reversed for the second

round, and the process continues for m rounds. We let T1 correspond to the total

number of points accumulated by our lineup chosen by our optimality criterion even

if we are not the first draftee. The question that we want to answer is, “which player

should we choose next?” By keeping track of all the draftees’ lineups we calculate

P (T1 > Tj) for j 6= 1. Following the optimality criterion (2.15) we choose the player

from those remaining in the draft who maximizes P ∗. Once the draft is complete we

tally the points obtained by each player in the playoffs and determine the winning

lineup(s).



Chapter 3

Simulation

3.1 Simulation Prerequisites

Due to the cancellation of the 2004-2005 NHL season, we were unable to conduct a

real office playoff pool to test our player selection method. To test the performance of

our methods, we simulate a playoff pool of m rounds with K draftees. Using the data

from the 2003-2004 regular season we consider the 2004 NHL playoffs. The team sum-

maries at the end of the regular season are given in Table 3.1 where W denotes wins,

L denotes losses, T denotes ties, OTL denotes overtime losses, Pts denotes points and

W% denotes win percentage. To calculate W% we take the number of points and

divide it by twice the number of games played.

Table 3.1: 2003-2004 Regular season team summary

Team Conference Seed W L T OTL Pts W%

DET Western 1 48 21 11 2 109 0.665

TAM Eastern 1 46 22 8 6 106 0.646

–continued on next page

21
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– continued from previous page

Team Conference Seed W L T OTL Pts W%

BOS Eastern 2 41 19 15 7 104 0.634

SJ Western 2 43 21 12 6 104 0.634

TOR Eastern 4 45 24 10 3 103 0.628

OTT Eastern 5 43 23 10 6 102 0.622

PHI Eastern 3 40 21 15 6 101 0.616

VAN Western 3 43 24 10 5 101 0.616

NJ Eastern 6 43 25 12 2 100 0.610

COL Western 4 40 22 13 7 100 0.610

DAL Western 5 41 26 13 2 97 0.591

CAL Western 6 42 30 7 3 94 0.573

MON Eastern 7 41 30 7 4 93 0.567

NYI Eastern 8 38 29 11 4 91 0.555

STL Western 7 39 30 11 2 91 0.555

NAS Western 8 38 29 11 4 91 0.555

EDM Western 9 36 29 12 5 89 0.543

BUF Eastern 9 37 34 7 4 85 0.518

MIN Western 10 30 29 20 3 83 0.506

LOS Western 11 28 29 16 9 81 0.494

ATL Eastern 10 33 37 8 4 78 0.476

CAR Eastern 11 28 34 14 6 76 0.463

ANA Western 12 29 35 10 8 76 0.463

FLA Eastern 12 28 35 15 4 75 0.457

NYR Eastern 13 27 40 7 8 69 0.421

PHO Western 13 22 36 18 6 68 0.415

–continued on next page
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– continued from previous page

Team Conference Seed W L T OTL Pts W%

CLB Western 14 25 45 8 4 62 0.378

WAS Eastern 14 23 46 10 3 59 0.360

CHI Western 15 20 43 11 8 59 0.360

PIT Eastern 15 23 47 8 4 58 0.354

Since the 2004 playoffs have already been completed, the Sportsbook odds for

round one are no longer available. We employed the assistance of a “hockey guru”

(David Beaudoin) to construct realistic first round odds and the subjective odds of

seven hypothetical matchups given in Table 3.2.

Using the odds given in Table 3.2 we are able to complete the probability matrix

using the transitivity assumption described in Section 2.3.1. In Table 3.3, the (i, j)th

entry is the probability that team i wins the series against team j given that team i

has the home ice advantage, and in parentheses is the probability that team i wins a

single game against team j on neutral ice. Recall the estimate of home ice advantage

given in section 2.3.2; for the 2003-2004 regular season data we found ǫ = 0.05.

3.2 The Draft

For our playoff pool simulation we choose K = 10, m = 10 and restrict our atten-

tion to the 10 players per team who had the highest θ’s as estimated via the method

described in section 2.2.2. A sample of the 160 eligible players, their teams, regular

season points, games played and corresponding θ’s are given in Table 3.4.
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Table 3.2: Subset of Sportsbook and subjective odds

Team i vs Team j Odds:1 P (i, j)
First Rounds Odds

Detroit vs Nashville 0.190 0.84
San Jose vs St. Louis 0.724 0.58
Vancouver vs Calgary 0.786 0.56
Colorado vs Dallas 0.818 0.55
Tampa Bay vs NY Islanders 0.449 0.69
Boston vs Montreal 0.667 0.60
Philadelphia vs New Jersey 0.923 0.52
Toronto vs Ottawa 1.083 0.48

Subjective Odds

Detroit vs Vancouver 0.639 0.61
Vancouver vs Colorado 0.923 0.52
Tampa Bay vs Boston 0.923 0.52
Boston vs Vancouver 0.887 0.53
Calgary vs Ottawa 1.326 0.43
Detroit vs San Jose 0.786 0.56
Calgary vs New Jersey 1.222 0.45

To simulate a playoff pool we need to create “virtual” draftees. Draftees follow

specific rules to determine their lineups.

• Draftee 1 ∼ chooses players using the optimality criterion (2.15).

• Draftee 2 ∼ chooses players with the largest θ values. If there is a tie then the

draftee chooses the player with the most regular season points.

• Draftee 3 ∼ chooses players with the largest expected number of points dur-

ing the playoffs. The expected points are the product of the player’s θ with

his expected number of games played obtained from the Stanley Cup playoff

simulation.

• Draftee 4 ∼ is an advocate of numerology. The draftee believes that the numbers

8 and 9 are lucky, and chooses players with the most regular season point totals
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Table 3.3: Probability matrix
DET SJ VAN COL DAL CAL STL NSH TAM BOS PHI TOR OTT NJ MON NYI

DET 0.56 0.61 0.63 0.67 0.67 0.64 0.84 0.56 0.58 0.6 0.62 0.6 0.62 0.68 0.74
(0.54) (0.57) (0.58) (0.60) (0.60) (0.58) (0.70) (0.54) (0.55) (0.56) (0.57) (0.56) (0.57) (0.60) (0.64)

SJ 0.44 0.55 0.57 0.62 0.61 0.58 0.81 0.50 0.52 0.54 0.56 0.54 0.56 0.62 0.69
(0.48) (0.54) (0.55) (0.57) (0.57) (0.55) (0.68) (0.51) (0.52) (0.53) (0.54) (0.53) (0.54) (0.57) (0.61)

VAN 0.39 0.45 0.52 0.57 0.56 0.53 0.77 0.45 0.47 0.49 0.51 0.49 0.51 0.57 0.65
(0.46) (0.49) (0.52) (0.55) (0.54) (0.53) (0.66) (0.49) (0.50) (0.51) (0.52) (0.51) (0.52) (0.55) (0.59)

COL 0.37 0.43 0.48 0.55 0.54 0.51 0.76 0.43 0.45 0.47 0.49 0.47 0.49 0.55 0.63
(0.45) (0.48) (0.50) (0.54) (0.53) (0.52) (0.65) (0.48) (0.49) (0.50) (0.51) (0.50) (0.51) (0.54) (0.58)

DAL 0.33 0.38 0.43 0.45 0.49 0.46 0.72 0.38 0.40 0.42 0.44 0.42 0.44 0.50 0.58
(0.43) (0.45) (0.48) (0.49) (0.51) (0.49) (0.63) (0.45) (0.46) (0.47) (0.48) (0.47) (0.48) (0.51) (0.55)

CAL 0.33 0.39 0.44 0.46 0.51 0.47 0.73 0.39 0.41 0.43 0.45 0.43 0.45 0.51 0.59
(0.43) (0.46) (0.48) (0.49) (0.52) (0.50) (0.63) (0.46) (0.47) (0.48) (0.49) (0.48) (0.49) (0.52) (0.56)

STL 0.36 0.42 0.47 0.49 0.54 0.53 0.75 0.42 0.44 0.46 0.48 0.46 0.48 0.54 0.62
(0.44) (0.47) (0.50) (0.51) (0.53) (0.53) (0.64) (0.47) (0.48) (0.49) (0.50) (0.49) (0.50) (0.53) (0.57)

NSH 0.16 0.19 0.23 0.24 0.28 0.27 0.25 0.20 0.21 0.22 0.24 0.22 0.24 0.28 0.35
(0.33) (0.35) (0.37) (0.38) (0.40) (0.39) (0.38) (0.35) (0.36) (0.37) (0.38) (0.37) (0.38) (0.4) (0.44)

TAM 0.44 0.50 0.55 0.57 0.62 0.61 0.58 0.80 0.52 0.54 0.56 0.54 0.56 0.62 0.69
(0.48) (0.51) (0.54) (0.55) (0.57) (0.57) (0.55) (0.68) (0.52) (0.53) (0.54) (0.53) (0.54) (0.57) (0.61)

BOS 0.42 0.48 0.53 0.55 0.6 0.59 0.56 0.79 0.48 0.52 0.54 0.52 0.54 0.60 0.67
(0.47) (0.50) (0.53) (0.54) (0.56) (0.56) (0.54) (0.67) (0.50) (0.52) (0.53) (0.52) (0.53) (0.56) (0.60)

PHI 0.40 0.46 0.51 0.53 0.58 0.57 0.54 0.78 0.46 0.48 0.52 0.50 0.52 0.58 0.66
(0.46) (0.49) (0.52) (0.53) (0.55) (0.55) (0.53) (0.66) (0.49) (0.50) (0.52) (0.51) (0.52) (0.55) (0.59)

TOR 0.38 0.44 0.49 0.51 0.56 0.55 0.52 0.76 0.44 0.46 0.48 0.48 0.50 0.56 0.64
(0.45) (0.48) (0.51) (0.52) (0.54) (0.54) (0.52) (0.65) (0.48) (0.49) (0.50) (0.50) (0.51) (0.54) (0.58)

OTT 0.40 0.46 0.51 0.53 0.58 0.57 0.54 0.78 0.46 0.48 0.50 0.52 0.52 0.58 0.66
(0.46) (0.49) (0.52) (0.53) (0.55) (0.55) (0.53) (0.66) (0.49) (0.50) (0.51) (0.52) (0.52) (0.55) (0.59)

NJ 0.38 0.44 0.49 0.51 0.56 0.55 0.52 0.76 0.44 0.46 0.48 0.50 0.48 0.56 0.64
(0.45) (0.48) (0.51) (0.52) (0.54) (0.54) (0.52) (0.65) (0.48) (0.49) (0.50) (0.51) (0.50) (0.54) (0.58)

MON 0.32 0.38 0.43 0.45 0.50 0.49 0.46 0.72 0.38 0.40 0.42 0.44 0.42 0.44 0.58
(0.42) (0.45) (0.48) (0.49) (0.51) (0.51) (0.49) (0.63) (0.45) (0.46) (0.47) (0.48) (0.47) (0.48) (0.55)

NYI 0.26 0.31 0.35 0.37 0.42 0.41 0.38 0.65 0.31 0.33 0.34 0.36 0.34 0.36 0.42
(0.39) (0.42) (0.44) (0.45) (0.47) (0.47) (0.45) (0.59) (0.42) (0.43) (0.43) (0.44) (0.43) (0.44) (0.47)
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Table 3.4: Sample of player information

Player Team Pts GP θ
Martin St. Louis TAM 94 82 1.1463
Joe Sakic COL 87 81 1.0741
Markus Naslund VAN 84 78 1.0769
Marian Hossa OTT 82 81 1.0123
Patrick Elias NJ 81 82 0.9878
Daniel Alfredsson OTT 80 77 1.0390
Cory Stillman TAM 80 81 0.9877
Alex Tanguay COL 79 69 1.1449
Robert Lang DET 79 69 1.1449
Brad Richards TAM 79 82 0.9634
Milan Hejduk COL 75 82 0.9146
Mark Recchi PHI 75 82 0.9146
Mats Sundin TOR 75 81 0.9259
Joe Thorton BOS 73 77 0.9481
Jarome Iginla CAL 73 81 0.9012

that are divisible by 8 or 9. If there is a tie the draftee chooses the player with

the largest θ value.

• Draftee 5 ∼ roots for the underdog by choosing players with the most points,

alternating between the lowest seeded teams in the Eastern and Western Con-

ferences.

• Draftee 6 ∼ alternates between the two top seeded teams in the Eastern and

Western Conferences, choosing the player with the most regular season points.

• Draftee 7 ∼ chooses players with the most regular season points. If there is a

tie the draftee chooses the player that belongs to the highest seeded team. If

there is still a tie the draftee chooses the player with the largest θ value.

• Draftee 8 ∼ is a Vancouver Canucks “Superfan”. The draftee always picks

Canuck players in order of regular season points. If there is a tie the draftee

chooses the Canuck with the largest θ value.
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• Draftee 9 ∼ chooses players with the most regular season points whose first

names begin with the letter S. If there is a tie between players, the draftee

chooses the player with the larger θ value.

• Draftee 10 ∼ chooses players with the highest θ values from the top four seeded

teams in the first four rounds of the draft. For the remaining six rounds the

draftee chooses players with the highest θ values regardless of the team seeding.

We make special note of Draftee 3. Draftee 3 can be considered a “ringer” because

the expected points are based on the probability matrix and our playoff simulation

also uses the probability matrix. In a sense, Draftee 3’s underlying knowledge of play-

ers’ playoff production is perfect in the same way as Draftee 1. In a real playoff pool

we would not be so willing to share our results with other draftees. Thus, a draftee

who chooses players based on expected points would have to conduct an independent

simulation with results that are unlikely to match ours. This raises the question why

do we include a draftee with such a competitive edge? We use this draftee to check

our player selection method. To be more specific, when we use the optimality criterion

to choose the next player in our lineup do we inadvertantly choose the player with

the most expected points?

We also want to investigate whether or not the draftee’s position in the player

selection order is influential on the final results. In order to test this we performed

a second draft modifying the order by moving Draftee 1 from the desirable position

of choosing first to choosing last. The lineups for the first draft are given in Table

3.5 where the order of the players within each lineup corresponds to their order of

drafting. In order to save space the lineups from the second draft have been omitted.
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Table 3.5: Lineups: Draftee 1 ∼ first pick

Player Team θ Expected Points

Draftee 1

Robert Lang DET 1.145 17.211

Martin Havlat OTT 1.000 10.965

Vincent Lecavalier TAM 0.815 10.586

Ray Whitney DET 0.642 9.648

Alexei Zhamnov PHI 0.837 9.221

Sergei Samsonov BOS 0.690 8.215

Brian Leetch TOR 0.708 7.393

Paul Kariya COL 0.706 7.685

Marco Sturm SJ 0.641 7.631

Jonathan Cheechoo SJ 0.580 6.912

Draftee 2

Peter Forsberg COL 1.410 15.353

Alex Tanguay COL 1.145 12.464

Keith Tkachuk STL 0.947 8.965

Jarome Iginla CAL 0.901 8.659

Doug Weight STL 0.867 8.207

Joe Nieuwendyk TOR 0.781 8.154

Jason Arnott DAL 0.781 7.591

Alexei Yashin NYI 0.723 5.892

Bryan McCabe TOR 0.707 7.375

Rob Blake COL 0.622 6.767

–continued on next page
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– continued from previous page

Player Team θ Expected Points

Draftee 3

Martin St. Louis TAM 1.146 14.894

Brett Hull DET 0.840 12.620

Henrik Zetterberg DET 0.705 10.596

Milan Hejduk COL 0.915 9.957

Kris Draper DET 0.597 8.974

Jeremy Roenick PHI 0.758 8.349

John Leclair PHI 0.733 8.077

Jason Spezza OTT 0.705 7.731

Radek Bonk OTT 0.667 7.310

Alexander Korolyuk SJ 0.587 6.996

Draftee 4

Patrick Elias NJD 0.988 10.278

Daniel Alfredsson OTT 1.039 11.392

Michael Ryder MON 0.778 7.172

Chris Pronger STL 0.675 6.392

Scott Niedermayer NJD 0.667 6.937

Owen Nolan TOR 0.738 7.707

Gary Roberts TOR 0.667 6.958

Brian Rolston BOS 0.585 6.972

Alex Kovalev MON 0.577 5.320

Pierre Turgeon DAL 0.526 5.117

Draftee 5

Steve Sullivan NAS 0.913 5.875

–continued on next page
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– continued from previous page

Player Team θ Expected Points

Trent Hunter NYI 0.662 5.395

Marek Zidlicky NAS 0.646 4.162

Oleg Kvasha NYI 0.630 5.129

Martin Erat NAS 0.645 4.151

Mariusz Czerkawski NYI 0.605 4.927

David Legwand NAS 0.573 3.691

Jason Blake NYI 0.627 5.104

Kimmo Timonen NAS 0.571 3.679

Adrian Aucoin NYI 0.543 4.425

Draftee 6

Cory Stillman TAM 0.988 12.832

Pavel Datsyuk DET 0.907 13.629

Fredrik Modin TAM 0.695 9.031

Brendan Shanahan DET 0.646 9.716

Ruslan Fedotenko TAM 0.506 6.581

Mathieu Schneider DET 0.590 8.865

Dan Boyle TAM 0.500 6.496

Nicklas Lidstrom DET 0.469 7.052

Dave Anderychuk TAM 0.476 6.179

Pavel Kubina TAM 0.432 5.614

Draftee 7

Joe Sakic COL 1.074 11.693

Marian Hossa OTT 1.012 11.100

Mark Recchi PHI 0.915 10.073

–continued on next page
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– continued from previous page

Player Team θ Expected Points

Mats Sundin TOR 0.926 9.664

Bill Guerin DAL 0.841 8.181

Glen Murray BOS 0.741 8.823

Michael Handzus PHI 0.707 7.790

Nils Ekman SJ 0.671 7.989

Tony Amonte PHI 0.663 7.297

Richard Zednik MON 0.617 5.692

Draftee 8

Markus Naslund VAN 1.077 12.150

Todd Bertuzzi VAN 0.870 9.811

Brendan Morrison VAN 0.732 8.255

Daniel Sedin VAN 0.659 7.430

Martin Rucinsky VAN 0.549 6.191

Henrik Sedin VAN 0.553 6.235

Brent Sopel VAN 0.525 5.923

Geoff Sanderson VAN 0.450 5.077

Trevor Linden VAN 0.439 4.953

Mattias Ohlund VAN 0.415 4.678

Draftee 9

Scott Gomez NJD 0.875 9.104

Scott Walker NAS 0.893 5.752

Sergei Gonchar BOS 0.817 9.730

Saku Koivu MON 0.809 7.458

Simon Gagne PHI 0.563 6.195

–continued on next page
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– continued from previous page

Player Team θ Expected Points

Sergei Zubov DAL 0.545 5.303

Shean Donovan CAL 0.512 4.921

Steve Konowalchuk COL 0.488 5.311

Sheldon Souray MON 0.556 5.123

Scott Hartnell NAS 0.559 3.601

Draftee 10

Brad Richards TAM 0.963 12.517

Joe Thornton BOS 0.948 11.292

Patrick Marleau SJ 0.713 8.487

Steve Yzerman DET 0.680 10.222

Pavol Demitra STL 0.853 8.077

Mike Ribeiro MON 0.802 7.400

Valeri Bure DAL 0.765 7.435

Craig Conroy CAL 0.746 7.168

Steven Reinprecht CAL 0.659 6.332

Peter Bondra OTT 0.636 6.977

We want to check that our player selection method is not identical to that of

Draftee 3 otherwise there is little point in using our complicated methodology based

on the optimality criterion. We therefore compare whom Draftee 3 would have selected

had he been drafting in the position of Draftee 1. As we can see in Table 3.6 the player

selection strategies employed by Draftees 1 and 3 are not identical. The other issue

we wish to investigate is whether we need to consider all available players or only the

players with the largest θ values from each team. In both of the drafts, the players
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Table 3.6: Draftee 3 versus Draftee 1

Draftee 1 ∼ first pick

Round Draftee 3 Draftee 1

1 Robert Lang Robert Lang
2 Martin Havlat Martin Havlat
3 Henrik Zetterberg Vincent Lecavalier
4 Ray Whitney Ray Whitney
5 Alexei Zhamnov Alexei Zhamnov
6 Sergei Samsonov Sergei Samsonov
7 John Leclair Brian Leetch
8 Paul Kariya Paul Kariya
9 Marco Sturm Marco Sturm
10 Jonathan Cheechoo Jonathan Cheechoo

Draftee 1 ∼ last pick

Round Draftee 3 Draftee 1

1 Pavel Datsyuk Pavel Datsyuk
2 Brett Hull Alex Tanguay
3 Steve Yzerman Mark Recchi
4 Steve Yzerman Steve Yzerman
5 Kris Draper Glen Murrray
6 Kris Draper Kris Draper
7 Nils Ekman Nils Ekman
8 Jason Spezza Jason Spezza
9 Alexander Korolyuk Peter Bondra
10 Alexander Korolyuk Alexander Korolyuk
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Table 3.7: Draft results: Draftee 1 ∼ first pick

Draftee

Finish 1 2 3 4 5 6 7 8 9 10
1st 1113 2093 1501 244 117 1635 740 1925 11 621
2nd 2061 1072 2125 708 188 1225 1244 435 42 900
3rd 2452 873 2097 684 172 780 1438 277 99 1128
4th 2023 941 1423 735 164 839 1533 312 220 1810
5th 1111 1093 936 1003 215 1062 1723 357 321 2179
6th 625 1445 706 1590 259 945 1452 624 611 1743
7th 372 1162 561 2243 288 820 1092 721 1737 1004
8th 188 823 442 2048 555 854 615 600 3403 472
9th 54 450 180 619 2396 979 141 1878 3173 130
10th 1 48 29 126 5646 861 22 2871 383 13

E(LD) 6.54 5.60 6.40 3.99 1.12 4.92 5.49 3.41 2.17 5.35

selected in each round had the largest available θ value on their teams. This seems to

imply that we need not consider all available players; this would help to reduce the

computational time necessary for implementing the optimality criterion, but proving

this property has turned out to be somewhat problematic. More discussion on this

problem is given in the companion paper by Summers, Swartz and Lockhart (2005).

3.3 Simulation Draft Results

We ran simulations for N = 10000 iterations in order to see how the optimality cri-

terion performs against other player selection strategies. In Tables 3.7 and 3.9 we

see the frequency of finishing in first to last place for the two drafts. In addition,

from these tables we can extract E(LD), the expected number of lineups that lineup

j defeats for j = 1, . . . , 10. Tables 3.8 and 3.10 show the cumulative probabilities

associated with the drafts.

In draft one, Draftees 1 and 3 performed very well with the largest E(LD) values,
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Table 3.8: Cumulative probabilities: Draftee 1 ∼ first pick

Draftee

Finish 1 2 3 4 5 6 7 8 9 10
1st 0.111 0.209 0.150 0.024 0.012 0.164 0.074 0.192 0.001 0.062
2nd 0.317 0.316 0.363 0.095 0.030 0.286 0.198 0.236 0.005 0.152
3rd 0.563 0.404 0.572 0.164 0.048 0.364 0.342 0.264 0.015 0.265
4th 0.765 0.498 0.715 0.237 0.064 0.448 0.496 0.295 0.037 0.446
5th 0.876 0.607 0.808 0.337 0.086 0.554 0.668 0.331 0.069 0.664
6th 0.938 0.752 0.879 0.496 0.112 0.649 0.813 0.393 0.130 0.838
7th 0.976 0.868 0.935 0.721 0.140 0.731 0.922 0.465 0.304 0.939
8th 0.994 0.950 0.979 0.926 0.196 0.816 0.984 0.525 0.644 0.986
9th 1.000 0.995 0.997 0.987 0.435 0.914 0.998 0.713 0.962 0.999
10th 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6.54 and 6.40 respectively. However, Draftee 1 was fifth in term of finishing in first

place. Despite the relatively small percentage of finishing first using the optimality

criterion (11.1%), Draftee 1 is “in the money” (finishing first, second or third) 56.3%

of the time. This is a higher percentage than any of the other draftees excluding

Draftee 3. Draftee 3 is very similar finishing in the top three 57.2% of the time. Note

that the Canucks Superfan (Draftee 8) followed the “eggs in one basket” philosophy;

when the Canucks did well/poorly, his lineup did well/poorly.

In the second draft, Draftee 1 was the last to pick. Unfortunately, Draftee 1 does

not have the largest E(LD) as in the first draft. However, the same two draftees (1

and 3) have the largest E(LD) values, 6.16 and 6.70 respectively. Draftee 1’s number

of first place finishes is slightly larger than in the first draft (1291 versus 1113), but

Draftees 2, 3, 6 and 8 still have a greater number of first place finishes. The increase

in Draftee 1’s number of first place finishes may be attributed to the fact that only

10 players have been eliminated before Draftee 1 makes his second choice whereas in

the first draft 19 players have been eliminated before Draftee 1’s second choice.
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Table 3.9: Draft results: Draftee 1 ∼ last pick

Draftee

Finish 2 3 4 5 6 7 8 9 10 1
1st 1321 1826 237 125 2168 715 1829 15 473 1291
2nd 1199 2742 556 138 1006 1148 447 44 931 1789
3rd 1122 1809 712 187 734 1533 411 79 1457 1956
4th 1408 1161 876 182 735 1488 322 196 1965 1667
5th 1566 820 1171 225 732 1466 422 370 2063 1165
6th 1636 653 1545 302 801 1357 577 741 1599 789
7th 1152 472 2095 330 852 1068 641 1838 930 622
8th 413 353 2086 516 998 914 621 3209 444 446
9th 174 147 599 2420 1029 278 1864 3162 128 199
10th 9 17 123 5575 945 33 2866 346 10 76

E(LD) 5.66 6.70 3.99 1.14 4.96 5.33 3.43 2.21 5.42 6.16

Despite the increase in the number of first place finishes we can see that the

probability of finishing “in the money” is only 50.4%. Also, note that we are never

able to overcome Draftee 3. This seems to indicate that the selection order is quite

important in determining the end result.
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Table 3.10: Cumulative probabilities: Draftee 1 ∼ last pick

Draftee

Finish 2 3 4 5 6 7 8 9 10 1
1st 0.132 0.183 0.024 0.012 0.217 0.072 0.183 0.002 0.047 0.129
2nd 0.252 0.457 0.079 0.026 0.317 0.186 0.228 0.006 0.140 0.308
3rd 0.364 0.638 0.150 0.045 0.391 0.340 0.269 0.014 0.286 0.504
4th 0.505 0.754 0.238 0.063 0.464 0.488 0.301 0.033 0.483 0.670
5th 0.662 0.836 0.355 0.086 0.538 0.635 0.343 0.070 0.689 0.787
6th 0.825 0.901 0.510 0.116 0.618 0.771 0.401 0.144 0.849 0.866
7th 0.940 0.948 0.719 0.149 0.703 0.878 0.465 0.328 0.942 0.928
8th 0.982 0.984 0.928 0.200 0.803 0.969 0.527 0.649 0.986 0.972
9th 0.999 0.998 0.988 0.442 0.906 0.997 0.713 0.965 0.999 0.992
10th 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



Chapter 4

Conclusion

The goal of this project was to create a real time optimal drafting strategy for hockey

playoff pools. First, we explored the theoretical background including the distri-

butions of points scored and games. Next, we described the Stanley Cup Playoff

simulation employing a transitivity assumption to complete the probability matrix.

The optimality criterion

P ∗ =
1

K − 1
[P (Tj > T1) + · · ·+ P (Tj > TK)]

where T1, . . . , TK correspond to the current lineups in round m was developed in

Section 2.4. P ∗ is interpretted as the average probability that lineup j accumulates

more points than one of the other lineups. Using the approximation

Tj − Tk ∼ N(µjk, σjk
2)

where µjk = E(Tj) − E(Tk), and σjk
2 = V ar(Tj) + V ar(Tk) − 2Cov(Tj, Tk) we

approximate P ∗ by

1

K − 1
[Φ(

µj1

σj1

) + · · · + Φ(
µjK

σjK

)]

38
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where Φ is the cumulative distribution function of the standard normal distribution.

We choose the available hockey player that maximizes P ∗.

The optimality criterion was evaluated using a program written in S-Plus. We were

able to select players for our lineup in real time, but as the lineups became larger and

larger the program began to lag, taking between five to seven minutes to finish. Al-

though this is not excessive in terms of our simulated drafts, taking five minutes to

choose the player in a real draft may be frowned upon by the other draftees. One

way to help alleviate this problem would be to try a different programming language

(e.g. C++) that handles loops more efficiently. Another suggestion is to reduce the

number of players under consideration. As suggested in Section 3.2 we may only want

to consider the available player with the top θ value from each team. A retrospective

analysis of our player drafts revealed that this strategy would have worked in our

drafts. However, we spent a fair amount of time trying to prove this property in

general, only to come up empty handed.

The results from the simulated drafts given in Section 3.3 suggest that the op-

timality criterion is an effective drafting strategy. In the “first pick” draft, we did

not finish in first place as often as we had hoped. If the pool only has a single prize

then the best strategies involve loading up on players from one team or alternatively

choosing players from the top seeded teams in the Eastern and Western conferences.

The success of picking players based on the expected number of points in the playoffs

depends upon how closely your model matches reality. However, if the pool has mul-

tiple prizes then the optimality criterion does very well, quite often finishing in the

money (first, second or third place).

In the “last pick” draft, the number of first place finishes is somewhat larger.
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However, the cumulative probability of finishing in first, second or third was not as

impressive as in the first draft. We still finish in the top three quite regularly, but we

are unable to overcome our nemesis Draftee 3, who picks second in the draft. Based on

the observed results, it appears that a draftee’s position influences the final outcome

of the draft.

One thing that is usually known before the draft begins is the prizes; one should

consider the prize distribution before settling on a particular selection strategy. If

there is only one prize you may want to use a more aggressive strategy or if there

are multiple prizes you may want to use a strategy that increases your probability of

winning a prize.

The final test for our optimality criterion will be an authentic office playoff pool.

With the National Hockey League Players Association (NHLPA) and team owners

having reached an agreement to end the lockout we eagerly anticipate the 2006 NHL

Stanley Cup playoffs.
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