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Abstract

In guarantee valuation for a segregated fund, the simulation process can be time-consuming.

When simulation calculations are based upon weekly or monthly return models, the com-

putation can be quite lengthy for contracts that extend over decades. Simulation run time

can be reduced by decreasing the number of calculations. This is accomplished through an

aggregated return model.

We study models for the aggregated returns when the estimated model is Lognormal,

an AR(1), two-state regime switching and a Multivariate Lognormal. As an illustration of

the aggregate models, we use a conditional tail expectation for valuation of a segregated

funds guarantee.

Key words: Regime Switching Model, Multivariate Lognormal Model, Segregated Fund

Guarantees, Conditional Tail Expectation, Aggregated Returns.
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Chapter 1

Introduction

“The Office of the Superintendent of Financial Institution (OSFI) was created to contribute

to public confidence in the Canadian financial system” 1.

With such a mandate, OSFI is obviously involved in regulating and determining ade-

quate reserve levels in the insurance industry. This ensures the insured that when a claim is

made, there will (more than likely) be adequate funds available for the insurance company

to pay its financial obligations. OSFI is essentially trying to reduce the risk of insolvency of

an insurance company and hence bolster confidence in one of the many parts of Canada’s

financial system.

The area to be studied is the reserve calculation of an insurance product known as a

segregated fund with a reset option. While OSFI has created a methodology 2 for such

calculations, they do allow companies to propose their own models which, upon approval

by OSFI, may be used to determine the reserve. Initially the main intent of this project

was to use different models to describe the growth of a segregated fund and to determine

the reserve using a Conditional Tail Expectation (CTE(95))3. Even though the computer

speed has greatly increased over the last decade, there are still issues with the run time of

a simulation process. In an academic setting, simulation can be run for weeks and months

but in industry the results of the simulation may be required in days or even hours. The

1www.osfi − bsif.gc.ca/osfi/index e.aspx?DetailID = 2
2www.osfi− bsif.gc.ca/app/DocRepository/1/eng/guidelines/capital/guidelines/MCCSR 2004 e.pdf
3Definition in Section 2.3.

1



CHAPTER 1. INTRODUCTION 2

main intent of this project developed into reducing run time of simulations by reducing the

number of computations.

The general approach taken is to model the returns of the underlying mutual fund of the

segregated fund and the reset option. In modeling the returns, we start with the lognormal

model which assumes that all returns are independent and identically normally distributed.

The second model is an AR(1) which assumes that the return of the next period depends

on the current return plus some normally distributed noise. The third model is a two-state

regime switching lognormal (RSLN(2)) model which assumes that the returns during any

period are generated from one of two distributions used to represent a two-state financial

market. The last model is the multivariate lognormal, where the returns for different funds

are correlated.

Upon simulating these models to estimate the CTE(95), it became apparent that the

simulations were quite time consuming. One of the ways to reduce the run time is to

reduce the number of computations by evaluating the segregated fund less frequently. To

do this, a model for the rate of return can be constructed for aggregated returns which

describe returns for longer time periods. To estimate the parameters of these new models,

difficulties may arise if data sets are too small and aggregated returns are too few to give

quality estimates of parameters for the model. We propose building models that estimate

the aggregated return model parameters based on the original return model parameters.

These new models are referred to as aggregated return models. The original data model

and the aggregated return models are used to estimate the average of the worst 5% losses

that the insurance company would take under the specified model. This estimate of the

CTE(95) is used as a measure of the reserve. The model results are then compared for

̂CTE(95) and run times. To conclude, an assessment of the models and the interpretation

of the results will be given.

Chapter 2 presents an introduction to segregated funds which entails the product design,

modeling the guarantees and a simulation method to value the CTE(95). Chapters 3, 4,

5, and 6 introduce the Lognormal model, the AR(1) model, the RSLN(2) model, and the

Multivariate Lognormal model respectively. Within each of the chapters 3 through 6, an

associated aggregated return model is proposed for each return model. In each of these
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chapters, the results for the ̂CTE(95) and the simulation run time are also presented and

discussed for both the return model and the aggregated return model. Chapter 7 discusses

some final points about the techniques and procedures in this project.



Chapter 2

Segregated Funds

2.1 Introduction

This chapter introduces segregated funds and then introduces models for the guarantees

associated with the products in this project. An overview of the simulation method for

determining an estimate for the CTE(95) is also presented.

Segregated funds are a distinctly Canadian product which has grown in popularity since

the 90’s. The increase in their use is partly because of low interest rates in fixed income

products. Investors are looking for higher returns but are concerned about the risk of losing

part of their investments. Segregated funds are similar to American Variable Annuities and

British Unit Linked insurance.

A segregated fund is an insurance product with the growth potential of a mutual fund

tied with a set of guarantees. Insurance companies carry a variety of segregated funds

which allow investors to have different options when building their portfolio. Companies

design segregated funds which profit the company but are also considered by OSFI as good

consumer products. The following list are features that a company defines when making a

segregated fund product:

1. Term of the Contract and Time to Maturity

2. Types of Guarantees

4
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3. The Guarantee Value

4. Management Expense Ratios (MER)

5. Special Features

While a large discourse can be provided for the terms above, focus is given to a particular

product. We consider a product where the investor’s guarantee value(GV) is 100% of the

Account Value at time zero (AV0). For this product the AV0 = 100 dollars and the investor is

guaranteed this amount when the contract matures at time T . The product also guarantees

the beneficiaries of the investor 100% of (AV0) if the investor dies during the lifetime of the

contract. These two types of guarantees are called a guaranteed minimum maturity benefit

(GMMB) and a guaranteed minimum death benefit (GMDB) respectively.

At the beginning of the contract, 100 dollars are invested in an account which grows

according to an underlying mutual fund. Denote the Account Value at time t as AVt. For

this product the term of the contract is 10 years. If no death occurs or special feature is

used, the contract will mature at the end of 10 years.

The GMMB and the GMDB both pass any loss of the investor to the insurance com-

pany. The death benefit states that if the contract holder dies prior to the maturity of the

contract at time t, the beneficiaries of the contract receive max(AVt, GV ). The minimum

maturity benefit states that if the contract holder survives to the maturity of the contract,

the investor will receive max(AVT , GV ). If the underlying mutual fund performs so poorly

that the account value is below the guarantee value when the contract matures or death

occurs, the insurance company pays the difference. This implies that upon the expiration

of the contract or death of the investor, the insurance company pays the AVt to the investor

or the beneficiaries plus an additional payoff where payoff = max(GV − AVt, 0).

The Management Expense Ratio(MER) is a percentage or rate charged on the investors

account. The money gathered by the company through this charge is used to cover the

expenses associated with the fund such as fund managers, taxes, and guarantees. If the

MER charges collected from the account over the lifetime of the contract is insufficient to

cover the payoff, then there is a loss for the company. Because of the guarantees, segregated

funds charge an MER that is larger than those of a similar mutual fund.
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The product also comes with a special feature called a reset. A reset allows the investor

to change the guarantee value to the current account value with the condition that upon

resetting a new 10-year term of the contract starts. The reset option is offered for a limited

time period. We will consider a product which allows resets for 20 years after the start of

the contract.

As an example, suppose a contract is issued today and that five years from today the

investor chooses to reset. If no reset occurs in the 10 years following the reset, then the

contract will mature at time 15 years from now. Therefore, the longest lifetime of the

contract is 30 years from issue if resets occur in such a way that the contract is still in force

at year 20 and a reset is then exercised.

One final terminology to define is the time to maturity. It is the time remaining in the

term of the contract until it matures, in the absence of resets.

2.2 Modeling Product Guarantees

Having defined the segregated fund and the specific product design that we will study, this

section describes models for the GMDB and the GMMB.

2.2.1 GMMB

Whether or not a payoff is made by the insurance company is dependent upon the growth

of the underlying mutual fund. What needs to be determined is a model for the growth or

return of the account.

A return r for a period of time [t, t + 1) can be defined as,

r[t,t+1) = log(
xt+1

xt
),

where xt > 0 is a realization of a random process Xt representing the value of the fund over

time. We denote R[t,t+1) as the return random variable over one time interval.

Models considered for R[t,t+1) include,

1. Lognormal Model
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2. Autoregressive Model of order 1, AR(1)

3. Two State Regime Switching Lognormal Model, RSLN(2)

4. Multivariate Normal Distribution Model, MVN

The first three models are discussed in Hardy(2003). Each model will be discussed in detail

in the following chapters.

Suppose that an insurance company carries three kinds of segregated funds with the

product design described earlier. An assumption is made that the returns on the segregated

fund closely follow the returns of an associated investment1.

1. Fund A behaves like Vanguard Long Term Investment (VWESX)

2. Fund B behaves like S&P500 (GSPC)

3. Fund C behaves like the Nasdaq (IXIC)

Monthly fund values for each of these three funds were collected from

http://www.yahoo.finance. Using the data available, parameter estimates can be deter-

mined for each return model. The estimated models are used to describe the monthly

returns of the underlying mutual fund for each of the Funds available in the insurance firm.

2.2.2 GMDB

The future lifetimes of the investors are based upon a population life table from Statistics

Canada2. It is the 1995-1997 life table for Canadian males. Following Bowers.et.al (1997),

the future lifetime random variable of a life aged x is denoted as T (x). For t ≥ 0

tqx = Pr[T (x) ≤ t],

tpx = 1 − tqx

= Pr[T (x) > t],

1Stock Market symbols in brackets.
2http://www.statcan.ca/english/freepub/84-537-XIE/tables/pdftables/cam.pdf
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where tqx is the probability that a life aged x will die in the next t years and tpx is the

probability that the life will survive the next t years.

Furthermore denote by t |qx the probability that a life aged x will survive t years but

will die within the following year and so t |qx = tpx − t+1px , where tpx =
∏t−1

i=0 1px+i.

In the document provided by Statistics Canada px is given for all ages x. For a given

life aged 55 the probability of their death at times t = 0, 1, . . . in the future can be calcu-

lated. The mortality parameter estimates determined in the Statistics Canada document

are yearly values. However, the simulation is evaluated every month based on monthly

returns simulated from the model for returns. To determine the monthly probabilities of

death based on yearly probabilities a Uniform Distribution of Death (UDD) assumption

was made. That is, for 0 < s < 1, spx = 1 − s · qx. The probability of dying in any month

of a given year is the same.

2.3 Simulation Method

This section describes the simulation methodology used to determine the estimate for the

CTE(95). The definition of the CTE is given as follows (see Hardy(2003)).

Definition 1. Let L be the continuous loss random variable, then given α between 0 and

100, the CTE is defined as the expected value of the loss given that the loss falls in the upper

(1 − α)% tail of the distribution. For quantile risk measure Qα, i.e. P (L > Qα) = α%,

CTE(100 − α) = E[L|L > Qα].

2.3.1 CTE(95)

Since it is not readily apparent how to explicitly determine the CTE(95) for a 10-year term

with a 20-year reset period, a minimum maturity and a death benefit, simulation is used

to estimate the CTE(95). The following is a general overview of the algorithm used to

determine ̂CTE(95).

1. Randomly generate monthly return r[k−1,k). Here we assume that k is a time measured

in months k = 1, . . . , T . The generation of r[k−1,k) depends on the return model being
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simulated.

2. Determine if the investor dies in month k

3. Account Value grows as follows, AVk = (1 − MER)AVk−1e
r[k−1,k)

4. If (AVk > ResetThreshold) and the investor is alive, then a reset occurs

5. If the investor dies, end the current simulation path

6. The Useable MER in period k − 1, UMERk−1 = AVk−1(MER/(1 + GST%)−ME),

is the portion of the charge to the Account (during period k − 1) used to pay the

guarantee. ME are the Maintenance Expenses associated with the segregated fund.

7. Loss = PV (max(0, GV − AVT )) −
∑T

i=1 PV (UMERi−1), where PV represents the

present value based upon a discount factor.

8. Repeat 1 - 7, N times to get a vector of losses

9. Calculate the average of the 5% worst losses. This is an estimate of the CTE(95)

Note that δ, ME, and MER must be measured per simulation period; here monthly.

Since they are usually quoted per annum, we must divide them by the periods per year to

get the equivalent values for the simulation period.

In step 2, a random uniform (0,1) number generator was used to generate a value u. If

k− 1
12

qx < u ≤ kqx, for k = 1
12 , 2

12 , 3
12 , . . . the investor dies in the interval (k − 1

12 , k]. This is

for 12 periods per year and can be adjusted for other periods per year.

Reset Threshold

The reset threshold is the value at which the investor will reset their guarantee value. For

the Lognormal, the MVN and the AR(1) model a fixed level of Reset Threshold was used.

That is, if the account value was greater than the guarantee value then a reset occurred.

We also investigate scenarios with a reset threshold where resets occur if the account value

is greater than 1.2×GV and 1.4×GV . For the RSLN(2), resets depended upon the regime

that the mutual fund returns were growing at. There was a reset threshold unique to each
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regime. Resets are assumed more frequent whenever the regime was in a high volatility state

and less frequent when in a low volatility state. The reasoning for this is that when things

are uncertain, people watch their money more carefully. The level associated with the high

volatility state is the AV > GV and for the low volatility state it is the AV > 1.2 × GV .

Time Steps

With monthly return models, it seems natural for the simulation to be evaluated monthly

during the lifetime of the contract. Initially N = 50000 and the simulation was repeated

many times to get a vector of CTE(95) estimates. From this vector, the average and

standard deviation of the CTE(95) estimates were determined. This required the program

to run for several hours. In an industry setting, a run time of several hours for one contract

on one life is not feasible as the company carries multiple contracts. It was found that

the standard deviation for estimates of the CTE(95) based upon twenty CTE(95) estimates

from 50000 losses was small enough to warrant only using 50000 losses instead of one million.

While this saves computation time, a second idea proposed is to aggregate the returns to

get quarterly and yearly returns. Building aggregated return models means evaluating the

account value four times a year or once a year which reduces the number of calculations as

well as the run time. In the following chapters, a return model and an aggregated return

model are presented. The simulation run time and ̂CTE(95) are compared for the two

return models.

Time to Maturity

Another consideration is the time to maturity. Not everyone starts their contracts at the

same point in time and over time the reserve is adjusted to accommodate for changes in

the segregated fund. The CTE(95) is calculated for contracts where 8, 3, and 0 years have

passed without a reset or equivalently time to maturity is 2, 7, and 10 years. On the

valuation date, the investor is assumed to be aged 55. For example, an individual with a

contract with two years to maturity was issued a contract at age 47. The ̂CTE(95) are

computed for Account Values of 50, 80 and 100 when time to maturity is 2 and 7 years.

For 10 years to maturity the initial account value is 100.
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MER calculation

Recall that the MER is a charge to the investor’s account which the insurance company

uses to pay expenses related to the segregated fund. The MER is determined during the

product design creation by the insurance company. For the purpose of the simulation it is

a value that must be determined and input into the CTE(95) simulation program.

The MER is split into a portion paying taxes, a portion paying maintenance expenses

(ME), and a portion paying off the guarantee (X). It is given by

MER = (X + ME)(1 + GST%).

Given ME and GST%, we would like to determine X such that the average total present

value of X is enough to pay the average present value payoff at the end of the contract.

This is denoted as the average present value (PV) of Total Useable MER (TUMER). Since

the company will pay max(GV − AVT , 0) the average present value (PV) of the payoff is

E[PV (max(GV − AVT , 0))]. This rule implies that X will be chosen such that

E[PV (TUMER)] = E[PV (max(GV − AVT , 0))].

To calculate the MER for the reset product, we first determined X satisfying the above

equation for a 10-year term contract with no reset and no death benefit. The MER for the

corresponding product with a reset is set at

MERreset = (1.5X + ME)(1 + GST%) + ProfitMargin,

where the Profit Margin is an assumed 5 basis points for Fund A and 10 basis points for

funds B and C. Since X is determined for a no reset and no death benefit product, an

arbitrary adjustment of 50% is made to X to apply it to a product with a reset and death

benefit.

Under certain assumptions E[PV (max(GV −AVT , 0))] can be calculated explicitly using

the Black Scholes Formula while E[PV (TUMER)] is estimated through simulation. Using

the bisection method, X can be determined for E[PV (TUMER)] − E[PV (max(GV −

AVT , 0))] = 0. Since E[PV (TUMER)] is simulated, the random seed for the simulation

must be fixed so that E[PV (TUMER)] can be viewed as a function and not a random value.
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This is done to have the bisection method converge to a solution. One further assumption

is that the continuous rate δ is 5 % per annum.

The calculation of E[PV (TUMER)] is done by the following steps:

1. Randomly generate return r[k−1,k) from a N(µ, σ2) where k = 1, . . . , 10 years.

2. Account Value grows as follows, AVk = (1 − MER)AVk−1e
r[k−1,k)

3. UMERk−1 = AVk−1(MER/(1 + GST%) − ME), where MER = (X + ME)(1 +

GST%)

4. PV (TUMER) =
∑T

i=1 PV (UMERi−1)

5. Repeat 1 - 4 N times to get a vector of PV(TUMER) to pay the guarantee

6. Calculate the average of PV (TUMER), this is an estimate of E[PV (TUMER)].

Now determine E[PV (max(GV −AVT , 0))] explicitly using the following idea. Assume

that the account value at maturity T , AVT , is lognormally distributed with ln
(

AVT
AV0

)
∼

N
(
(δ − MER)T − σ2T

2 , σ2T
)
. This assumption coincides with the lognormal model for

the rates of return. Making this assumption allows E[PV (max(GV − AVT , 0))] to be the

price of a put option paying a dividend equal to MER according to the Black Scholes

formula. For more about the Black Scholes formula refer to Chapter 12 of Hull(2003).

We can now apply the bisection method to find X such that

E[PV (UMER)] − E[PV (max(GV − AVT , 0))] = 0.

If X is smaller than 0.05% then X is set as 0.05% or 5 Basis Points (bp). Having determined

X, we can use MERreset = (1.5X + ME)(1 + GST%) + ProfitMargin to determine the

MER for the product with a reset feature and death benefit. The final MER is rounded

down to the nearest ten. The results are found in Table 2.1.
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Table 2.1: MER Determining Values (bp)

Annual Profit
Fund ME X Margin MERreset

A 110 5 5 130
B 125 44 10 210
C 150 100 10 330

2.4 Remarks

Having discussed models for the segregated fund, the following chapters are dedicated to

describe the return models, the aggregated return models and the ̂CTE(95) 3.

3Simulations were run on a Pentium 4, 3.20 GHz processor and all codes were written and implemented
in R.



Chapter 3

Lognormal Model

3.1 Introduction

The Lognormal Model assumes that the returns are independent and at time t the return

random variable R[t,t+1) ∼ N(µ, σ2). In Hardy(2003), given a data set of returns r1, . . . , rn,

the Maximum Likelihood (ML) estimates of parameters µ and σ are:

µ̂ =
n∑

i=1

ri

n

σ̂ =

√∑n
i=1(ri − µ̂)2

n

Because monthly return data was modeled, the estimated model is for predicting monthly

returns. The simulation runs under this model are time consuming. To reduce the run

time, a model for the aggregated returns was determined:

r[t+1,t+2) + r[t,t+1) = log
(

xt+2

xt

)
= r[t,t+2).

The parameters for this longer return or aggregated return will be modeled using non-

overlapping rates r1 + r2, r3 + r4, · · · , rN−1 + rN resulting in half as much data to estimate

the parameters of the aggregated model. For some financial data sets this could prove

troublesome since they consist of a small number of data points. Another method may be

employed to build aggregate models with parameter estimates from the monthly rate model

14
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parameter estimates. The following theorem from Hogg.et.al(2005) page 166 will be quite

useful.

Theorem 1. Let Y1, . . . , Yn be independent random variables such that, for i = 1, . . . , n, Yi

has a N(µi, σ
2
i ) distribution. Let Y =

∑n
i=1 aiYi, where a1, . . . , an are constants. Then

Y ∼ N(
∑n

i=1 aiµi,
∑n

i=1 a2
i σ

2
i ).

3.2 Aggregated Model

Since R[i,i+1) are independent identically distributed for i = 1, . . . , n and by Theorem 1,

(R[i+1,i+2)+R[i,i+1)) ∼ N(2µ, 2σ2). Using this idea, models for the return of a longer period

[t, t + n + 1) are based on R[t,t+n+1) =
∑t+n

i=t R[i,i+1) ∼ N((n + 1)µ, (n + 1)σ2).

3.3 Results

The results of the parameter estimation under the lognormal model are used to determine

the MER charged for the corresponding fund. The parameters’ estimates are,

Table 3.1: Lognormal Model Parameter Estimates based on Monthly Data

Observation Maximum Likelihood
Fund Period Estimates

A Nov87–May06 µ̂ = 0.0070 σ̂ = 0.0206
B Jan56–Dec01 µ̂ = 0.0059 σ̂ = 0.0422
C Feb71–May06 µ̂ = 0.0074 σ̂ = 0.0642

These estimates were used to determine ̂CTE(95).
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3.4 Discussion

Tables 3.2 - 3.4 contain the results of the simulation runs. A record is made for the run time,

̂CTE(95), number of 50000 losses that had no reset, and the number of GMDB payments.

In Tables 3.2, 3.3, and 3.4, it appears that the aggregated return model produces ̂CTE(95)

results that are close (within 2 dollars) to those obtained under the monthly return model

for

1. a low volatility fund, e.g. fund A,

2. a short Time to Maturity,

3. a current Account Value less than 100,

4. few Resets, either from a

(a) high reset threshold, or

(b) small Account Value and short time to maturity making resets unlikely to occur.

It is also apparent that the calculation time for the aggregated model is 10 times faster

than the monthly models computation time. This is a significant reduction in run time.

A question that arises from Tables 3.2-3.4 is why there is a difference for the CTE(95)

estimates under the two models. To assess what the differences are, a batch of simulations

were run with a reset threshold set high enough so that no reset occurred. The results in

Table 3.5 show that the CTE(95) estimate from the two models are quite similar. The reset

activities seem to be the significant factor in the difference of the two CTE(95) estimates.

While the aggregate model appears to capture the growth of the account value very well,

it does not appear to capture the reset behavior of the monthly return model. As expected

under the UDD assumption, the mortality experience is estimated quite closely between

the two simulations. There are a few simulations in which the number of deaths are quite

different between the models. It is unclear why this occurred, perhaps because the resets

extended the duration of the contract and allowed for more deaths to be observed.

A question remaining is what to do with parameter sets which do not give close CTE(95)

estimates between the models. One possibility is to introduce a correction coefficient of 1.2
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times the aggregate CTE(95) for time to maturity of 10 to estimate the monthly CTE(95).

The coefficient was chosen based on the observed values of the ratio
̂CTE(95)monthly

̂CTE(95)yearly

for a

time to maturity of 10. Another possibility is to use aggregated returns to model quarterly

returns.

We note that in Table 3.5 there are negative values for the ̂CTE(95). This is a possibility

if enough of the 5% worse scenarios have more MER revenues than the amount needed to

pay the payoff at the maturity of the contract. This case means that there is a very small

chance that the company will take a loss.
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Table 3.2: Fund A: Run Time and ̂CTE(95), Lognormal Model

Current Period Time Reset Run Number Number
Account Per to Threshold Time ̂CTE(95) No Reset of
Value Year Maturity (s) Paths Deaths

50 1 2 1 7.5 48.076 50000 784
50 12 2 1 54.43 48.197 50000 707
50 1 2 1.2 7.53 48.049 50000 740
50 12 2 1.2 54.48 48.233 50000 712
50 1 2 1.4 7.46 48.153 50000 728
50 12 2 1.4 54.56 48.190 50000 665
80 1 2 1 14.69 22.520 39627 5078
80 12 2 1 153.61 22.604 37669 5354
80 1 2 1.2 7.67 22.593 49780 853
80 12 2 1.2 56.92 22.586 49735 816
80 1 2 1.4 7.51 22.487 49999 730
80 12 2 1.4 54.52 22.674 50000 690
100 1 2 1 39.83 6.705 3057 19825
100 12 2 1 448.55 7.519 705 19139
100 1 2 1.2 18.81 6.014 32664 7080
100 12 2 1.2 204.34 6.044 30020 7407
100 1 2 1.4 8.35 5.496 48707 1192
100 12 2 1.4 67.7 5.646 48475 1190
50 1 7 1 22.45 36.128 43016 7492
50 12 7 1 238 37.004 41971 7547
50 1 7 1.2 18.56 35.938 48970 3991
50 12 7 1.2 189.27 36.699 48796 3699
50 1 7 1.4 18.06 35.859 49899 3576
50 12 7 1.4 180.87 36.937 49862 3259
80 1 7 1 47.59 11.040 4441 28531
80 12 7 1 513.95 12.531 3462 27443
80 1 7 1.2 37.31 10.605 16739 20357
80 12 7 1.2 417.89 11.509 14753 19859
80 1 7 1.4 27.91 10.154 32243 11734
80 12 7 1.4 307.17 11.399 30503 11634
100 1 7 1 48.28 5.478 515 30235
100 12 7 1 529.97 9.342 100 28343
100 1 7 1.2 44.75 2.585 3059 26711
100 12 7 1.2 498.77 3.880 2224 25177
100 1 7 1.4 39.5 1.431 10739 21298
100 12 7 1.4 443 2.043 9163 20546
100 1 10 1 51.37 6.685 490 35920
100 12 10 1 568.78 10.919 98 34230
100 1 10 1.2 48.51 3.287 1745 32870
100 12 10 1.2 544.5 4.554 1223 31274
100 1 10 1.4 46.03 1.912 4428 29531
100 12 10 1.4 517.69 2.431 3611 28016



CHAPTER 3. LOGNORMAL MODEL 19

Table 3.3: Fund B: Run Time and ̂CTE(95), Lognormal Model

Current Period Time Reset Run Number Number
Account Per to Threshold Time ̂CTE(95) No Reset of
Value Year Maturity (s) Paths Deaths

50 1 2 1 7.66 57.148 49898 822
50 12 2 1 55.92 57.170 49873 761
50 1 2 1.2 7.56 56.901 49993 821
50 12 2 1.2 54.92 57.222 49993 684
50 1 2 1.4 7.48 57.164 50000 743
50 12 2 1.4 54.53 57.165 50000 667
80 1 2 1 16.96 37.895 35104 5943
80 12 2 1 196.75 38.942 30592 6807
80 1 2 1.2 9.63 37.290 46475 1819
80 12 2 1.2 87.58 37.618 45179 2067
80 1 2 1.4 7.9 37.012 49352 970
80 12 2 1.4 60.95 37.373 49132 908
100 1 2 1 31.92 33.394 11707 13841
100 12 2 1 392.58 39.155 3172 15448
100 1 2 1.2 18.44 29.662 31200 6294
100 12 2 1.2 219.74 32.225 25590 7336
100 1 2 1.4 11.54 26.461 43409 2551
100 12 2 1.4 110.26 26.869 41403 2874
50 1 7 1 23.86 47.383 39733 8326
50 12 7 1 257.01 47.970 37898 8547
50 1 7 1.2 20.39 47.415 45280 5427
50 12 7 1.2 215.46 47.756 44221 5407
50 1 7 1.4 19.03 47.524 47965 4222
50 12 7 1.4 195.87 47.734 47384 4022
80 1 7 1 37.89 35.733 13891 19770
80 12 7 1 426.93 38.802 10570 19554
80 1 7 1.2 30.85 34.617 25300 13186
80 12 7 1.2 366.37 35.451 21678 13487
80 1 7 1.4 25.72 33.803 33768 9338
80 12 7 1.4 286.07 34.311 31020 9474
100 1 7 1 42.45 36.671 3818 23404
100 12 7 1 473.59 44.519 967 22623
100 1 7 1.2 36.31 34.566 11711 17654
100 12 7 1.2 410.94 37.809 8758 17308
100 1 7 1.4 31.43 31.192 20694 13198
100 12 7 1.4 354.07 32.811 17291 13369
100 1 10 1 45.9 38.762 2687 27871
100 12 10 1 501.94 46.782 702 26754
100 1 10 1.2 40.75 35.622 8125 22221
100 12 10 1.2 457.05 38.935 5695 21580
100 1 10 1.4 37.63 32.200 14726 18167
100 12 10 1.4 421.75 33.985 11932 17983



CHAPTER 3. LOGNORMAL MODEL 20

Table 3.4: Fund C: Run Time and ̂CTE(95), Lognormal Model

Current Period Time Reset Run Number Number
Account Per to Threshold Time ̂CTE(95) No Reset of
Value Year Maturity (s) Paths Deaths

50 1 2 1 8.63 62.770 48406 1270
50 12 2 1 70.93 63.113 47776 1346
50 1 2 1.2 7.77 62.753 49610 892
50 12 2 1.2 58.4 63.024 49517 813
50 1 2 1.4 7.61 62.576 49912 785
50 12 2 1.4 55.59 62.667 49887 796
80 1 2 1 19.94 54.087 29667 7485
80 12 2 1 241.45 61.474 23547 8535
80 1 2 1.2 12.88 51.098 40787 3425
80 12 2 1.2 152.06 54.141 37573 4128
80 1 2 1.4 9.75 48.114 46011 1850
80 12 2 1.4 90.5 49.424 44598 2102
100 1 2 1 29.72 59.492 13510 12702
100 12 2 1 377.59 76.490 3817 13985
100 1 2 1.2 20.91 55.388 26612 7386
100 12 2 1.2 255.3 63.667 19839 8755
100 1 2 1.4 15 47.380 37001 4191
100 12 2 1.4 165.88 52.738 32750 5043
50 1 7 1 27.73 56.963 32498 11080
50 12 7 1 311.79 61.192 29432 11346
50 1 7 1.2 23.99 55.811 38274 7965
50 12 7 1.2 262.14 57.684 36137 8290
50 1 7 1.4 21.68 54.194 42365 6261
50 12 7 1.4 234.6 55.417 40497 6420
80 1 7 1 37.16 62.608 12812 18694
80 12 7 1 418.34 79.743 9216 18573
80 1 7 1.2 32.02 59.811 20793 13980
80 12 7 1.2 363.53 67.663 16973 14259
80 1 7 1.4 28.59 55.943 27392 11066
80 12 7 1.4 321.43 59.725 23791 11421
100 1 7 1 43.21 77.492 5275 20934
100 12 7 1 450.42 99.514 1433 20331
100 1 7 1.2 35.41 73.147 11557 16767
100 12 7 1.2 402.48 84.637 7723 16615
100 1 7 1.4 32.22 64.920 17751 13730
100 12 7 1.4 362.91 73.054 14139 13841
100 1 10 1 43.86 85.850 3914 24890
100 12 10 1 477.36 112.379 1055 23738
100 1 10 1.2 39.75 78.871 8332 20684
100 12 10 1.2 445.34 97.553 5479 20183
100 1 10 1.4 37.46 73.592 13253 18063
100 12 10 1.4 418.37 81.369 10254 17490
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Table 3.5: All Funds: ̂CTE(95), Lognormal Model-No Reset Feature

Current Period Time Reset Run Number Number

Fund Account Per to Thres- Time ̂CTE(95) No Reset of
Value Year Maturity -hold (s) Paths Deaths

A 50 1 7 ∞ 17.81 35.931 50000 3441
A 50 12 7 ∞ 178.88 36.986 50000 3244

A 80 1 7 ∞ 17.81 10.168 50000 3451
A 80 12 7 ∞ 179.47 10.976 50000 3103

A 100 1 7 ∞ 17.83 0.085 50000 3436
A 100 12 7 ∞ 178.35 0.162 50000 3069

A 100 1 10 ∞ 23.64 -0.124 50000 5678
A 100 12 10 ∞ 248.77 -0.096 50000 5236

B 50 1 7 ∞ 17.82 47.434 50000 3502
B 50 12 7 ∞ 178.72 47.557 50000 3044

B 80 1 7 ∞ 17.92 31.533 50000 3457
B 80 12 7 ∞ 180.8 31.816 50000 3086

B 100 1 7 ∞ 17.79 21.554 50000 3452
B 100 12 7 ∞ 178.53 21.629 50000 3168

B 100 1 10 ∞ 23.64 17.484 50000 5836
B 100 12 10 ∞ 249.93 17.087 50000 5231

C 50 1 7 ∞ 17.87 52.081 50000 3431
C 50 12 7 ∞ 178.55 52.464 50000 3219

C 80 1 7 ∞ 17.84 40.288 50000 3395
C 80 12 7 ∞ 178.2 40.510 50000 3165

C 100 1 7 ∞ 17.84 31.945 50000 3476
C 100 12 7 ∞ 178.36 32.737 50000 3151

C 100 1 10 ∞ 23.81 27.044 50000 5755
C 100 12 10 ∞ 249.5 27.434 50000 5273



Chapter 4

AR(1) Model

4.1 Introduction

The AR(1) Model assumes that the return R[t,t+1), has some dependence upon R[t−1,t), in

the form of

R[t,t+1) − µ = φ(R[t−1,t) − µ) + εt,

where εt ∼ N(0, σ2) are independent error terms. The parameter φ represents the measure

of dependence between successive returns and the parameter µ is the long-term mean of the

process. The ML estimates of the parameters φ, µ, and σ are found in Hardy(2003). The

estimates of the parameters based on the monthly return data of the funds are in Table 4.1.

Table 4.1: AR(1) Model Parameter Estimates based on Monthly Data

Fund Estimates

A µ̂ = 0.0070 σ̂ = 0.0205 φ̂ = 0.0621
B µ̂ = 0.0059 σ̂ = 0.04221 φ̂ = 0.0264
C µ̂ = 0.0074 σ̂ = 0.06374 φ̂ = 0.1233

22
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4.2 Aggregated Model

Assume that the AR(1) is an appropriate model for the monthly data. Let Rt = R[t,t+1)−µ1

be centered about zero and given r0 and r1, the aggregate return model is as follows,

Rt + Rt−1 = φ(Rt−1 + Rt−2) + εt + εt−1

= φ2(Rt−2 + Rt−3) + (εt + εt−1) + φ(εt−1 + εt−2)

= . . .

= φt−1(r1 + r0) +
t−2∑
j=0

φj (εt−j + εt−j−1) , t ≥ 2.

While this is not an AR(1), it is not apparent what sort of model this is. In an effort to

make it familiar, we use an idea similar to that found in Telser(1967). Let εt and εt−1 be

uncorrelated and identically distributed as N(0, σ2
o). Let ρt,i =

∑i
j=0 Rt−j and build an

AR(1) relating two successive sums of non overlapping returns ρt,1 and ρt−2,1 as

Rt + Rt−1 = φ2(Rt−2 + Rt−3) + (εt + εt−1) + φ(εt−1 + εt−2)

= ρt,1

≈ ψρt−2,1 + ε∗t .

Here we approximate the process as an AR(1) with parameter ψ and independent noise

terms ε∗t ∼ N(0, σ2). Based on the above formulation, the estimate of the parameter σ2 for

the aggregated return process is σ̂2 = (1 + (1 + φ̂)2 + φ̂2)σ̂o
2, where σ̂o is the estimate of

σo. An estimate of the µ associated with the aggregated process is 2µ̂1.

The estimate of the dependence parameter ψ is

ψ̂ =
Cov(ρt,1, ρt−2,1|ρ1,1)√

V ar(ρt,1|ρ1,1)V ar(ρt−2,1|ρ1,1)

where for t ≥ 2,

Cov(ρt,1, ρt−2,1|ρ1,1) = Cov(Rt + Rt−1, Rt−2 + Rt−3 |r1 + r0)

= Cov

 t−2∑
j=0

φj(εt−j + εt−j−1),
t−4∑
k=0

φk(εt−k−2 + εt−k−3)


with

lim
t→∞

Cov(ρt,1, ρt−2,1|ρ1,1) =
(φ + 2φ2 + φ3)σ2

o

1 − φ2
,
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and

Cov(ρt,1, ρt,1|ρ1,1) = Cov(Rt + Rt−1, Rt + Rt−1 |r1 + r0)

= Cov

 t−2∑
j=0

φj(εt−j + εt−j−1),
t−2∑
k=0

φk(εt−k + εt−k−1)


with

lim
t→∞

Cov(ρt,1, ρt,1|ρ1,1) =
2(1 + φ)σ2

o

1 − φ2
.

Since the process is assumed to be stationary, Cov(ρt,1, ρt,1|ρ1,1) = Cov(ρt−2,1, ρt−2,1 |ρ1,1) .

The estimate of the dependence parameter in terms of φ is ψ̂ = φ̂+φ̂2

2 for the aggregated

AR(1).

Note that the above aggregation technique can be generalized to any number of aggre-

gated returns. For aggregating n (n > 2) returns, we have

Rt + . . . + Rt−(n−1) = φn(Rt−n + . . . + Rt−2n+1) +
n−1∑
l=0

φl(εt−l + . . . + εt−(n−1)−l)

= ρt,n−1

≈ ψρt−n,n−1 + ε∗t , t ≥ n,

in which

Cov(ρt,n−1, ρt−n,n−1|ρn−1,n−1) = Cov

n−1∑
j=0

Rt−j ,

n−1∑
j=0

Rt−j−n|rn−1 + . . . + r0


= Cov

t−n∑
j=0

φj
n−1∑
i=0

εt−j−i,

t−2n∑
k=0

φk
n−1∑
i=0

εt−k−n−i


with

lim
t→∞

Cov(ρt,n−1, ρt−n,n−1|ρn−1,n−1) =

(∑n
i=1 iφi +

∑n−1
i=1 (n − i)φn+i

)
σ2

o

1 − φ2
,

and

Cov(ρt,n−1, ρt,n−1|ρn−1,n−1) = Cov

n−1∑
j=0

Rt−j ,
n−1∑
j=0

Rt−j |rn−1 + . . . + r0


= Cov

t−n∑
j=0

φj
n−1∑
i=0

εt−j−i,

t−n∑
k=0

φk
n−1∑
i=0

εt−k−i


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with

lim
t→∞

Cov(ρt,n−1, ρt,n−1|ρn−1,n−1) =

(
n +

∑n−1
i=1 2(n − i)φi

)
σ2

o

1 − φ2
,

which gives the estimate of the dependence parameter

ψ̂ =
∑n

i=1 iφ̂i +
∑n−1

i=1 (n − i)φ̂n+i

n +
∑n−1

i=1 2(n − i)φ̂i
.

A similar generalization can be written for the σ estimates. For aggregating n (n > 2)

returns,

σ̂2 =

n−1∑
j=0

(
j∑

i=0

φ̂i

)2

+
n−1∑
j=1

(
j∑

i=1

φ̂n−i

)2
 σ̂o

2.

The estimates of the µ for aggregating n (n > 2) returns is nµ̂1. Aggregating 3 and 12

returns or 4 and 1 periods per year (PPY) respectively, the AR(1) parameter estimates are

given in Table 4.2.

Table 4.2: AR(1) Aggregate Return Model Parameter Estimates

Fund PPY Estimates

A 1 µ̂ = 0.084 σ̂ = 0.0755 ψ̂ = 0.0052
A 4 µ̂ = 0.028 σ̂ = 0.0371 ψ̂ = 0.0217
B 1 µ̂ = 0.0708 σ̂ = 0.1498 ψ̂ = 0.0022
B 4 µ̂ = 0.0236 σ̂ = 0.0744 ψ̂ = 0.0090
C 1 µ̂ = 0.0888 σ̂ = 0.2493 ψ̂ = 0.0107
C 4 µ̂ = 0.0296 σ̂ = 0.1206 ψ̂ = 0.0454

To test the estimates of the parameters for the aggregated AR(1), a simulation was

conducted.

1. A large data set (r0, . . . , rN ) is simulated from an AR(1) with φ ∈ [0, 1) and σ = 0.01.

2. Estimates of φ and σ are obtained.

3. A new data set is created ~ρ = (ρ0, . . . , ρN/2) = (r0 + r1, r2 + r3 . . . , rN−1 + rN ).

4. An AR(1) is fit to ~ρ, estimating a φρ and σρ.

5. The parameter estimates of the AR(1) for ~ρ and the theoretical parameter estimates

of the AR(1) given above are shown in the set of graphs in Figure 4.1.
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The x-axis of the graphs are the φ used to simulate the AR(1). On the left hand side of

Figure 4.1, the plots are the φ on the x-axis and theoretical and estimated ψ̂ = φ̂ρ on the

y-axis for various aggregated returns. The plots on the right hand side are φ on the x-axis

and the estimated and theoretical σ̂2
ρ on the y-axis.

The simulation is repeated for sums of three consecutive returns and 12 consecutive

returns. The graphs seems to indicate that the theoretical parameter estimates and the

simulated parameter estimates are quite close. This means that the monthly AR(1) pa-

rameter estimates can be used to estimate the corresponding AR(1) for the aggregated

returns.
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Figure 4.1: Aggregated Returns and associated AR(1) Parameter Estimates
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4.3 Results

In tables 4.3-4.5, we set the reset threshold at 1 when simulating the ̂CTE(95). A second

consideration was to simulate an AR(1) so that the process started when the initial value of

the simulation was no longer influencing the current return. Since the dependence parameter

is close to zero for the funds, it was felt that the initial value would have no influence after

about 50 simulated AR(1) returns. For each CTE(95) loss simulation path, 50 AR(1)

simulated values were discarded before beginning the simulation of the loss.

Table 4.3: Fund A: Run Time and ̂CTE(95), AR(1)

Market Period Time Run Number Number
Value Per to Time ̂CTE(95) No Reset of

Year Maturity (s) Paths Deaths
50 1 2 46.56 48.492 50000 750
50 4 2 63.06 48.693 50000 774
50 12 2 83.06 48.717 50000 721
80 1 2 57.17 23.223 38797 5206
80 4 2 100.36 23.453 37711 5370
80 12 2 189.25 23.396 37028 5537
100 1 2 83.24 8.159 3634 19540
100 4 2 223.15 8.373 1541 19043
100 12 2 476.22 8.798 817 19200
50 1 7 64.25 36.630 42220 7885
50 4 7 137.77 37.176 41448 7735
50 12 7 276.95 37.675 41138 7906
80 1 7 90.73 12.297 4891 28185
80 4 7 247.89 13.069 4034 27289
80 12 7 541.93 13.589 3883 27240
100 1 7 93.73 7.103 533 30058
100 4 7 260.01 9.607 203 28815
100 12 7 562 10.873 103 28390
100 1 10 97.52 8.030 508 35636
100 4 10 279.25 11.342 141 34505
100 12 10 599.92 12.439 94 34128
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Table 4.4: Fund B: Run Time and ̂CTE(95), AR(1)

Market Period Time Run Number Number
Value Per to Time CTE(95) No Reset of

Year Maturity (s) Paths Deaths
50 1 2 47.05 57.432 49885 804
50 4 2 62.4 57.530 49838 770
50 12 2 85.93 57.522 49833 779
80 1 2 59 38.825 34761 5956
80 4 2 114.06 39.640 32086 6537
80 12 2 228.11 39.683 30320 6881
100 1 2 73.28 35.510 11829 13781
100 4 2 196.17 39.183 5748 14803
100 12 2 423.11 41.381 3216 15421
50 1 7 64.26 47.936 39255 8439
50 4 7 144.49 48.445 37990 8615
50 12 7 293.58 48.554 37279 8724
80 1 7 80.78 37.167 13968 19646
80 4 7 211.14 39.425 11777 19333
80 12 7 462.11 40.561 10729 19517
100 1 7 86.41 39.395 3943 23038
100 4 7 233.42 45.111 1787 22516
100 12 7 541.19 46.885 979 22364
100 1 10 90.28 41.700 2772 27788
100 4 10 247.42 46.933 1271 26573
100 12 10 536.43 50.607 733 26381



CHAPTER 4. AR(1) MODEL 30

Table 4.5: Fund C: Run Time and ̂CTE(95), AR(1)

Market Period Time Run Number Number
Value Per to Time ̂CTE(95) No Reset of

Year Maturity (s) Paths Deaths
50 1 2 48.71 65.953 47446 1661
50 4 2 68.56 66.459 47014 1725
50 12 2 108.83 66.611 46571 1683
80 1 2 61.39 67.585 28554 7696
80 4 2 133.9 76.788 24457 8104
80 12 2 276.42 80.522 22707 8529
100 1 2 74.44 82.990 14140 12147
100 4 2 183.36 98.633 7238 13157
100 12 2 402.07 105.498 4152 13652
50 1 7 69.11 67.031 30820 11651
50 4 7 167.05 74.811 28424 11724
50 12 7 348.06 76.968 27669 11838
80 1 7 80.07 90.898 12988 18182
80 4 7 212.75 108.833 10252 17757
80 12 7 444.66 119.293 9291 18006
100 1 7 84.18 110.207 5769 20348
100 4 7 219.89 138.133 2808 19625
100 12 7 481 150.903 1548 19720
100 1 10 89.06 134.128 4437 24190
100 4 10 237.35 164.341 2172 23022
100 12 10 503.26 176.403 1174 22915

4.4 Discussion

The findings for modeling the returns using the AR(1) are quite similar to the Lognormal

Model. In Table 4.6, the aggregated models appear to estimate the CTE(95) as well as

the monthly model for a no reset product. So the aggregated models seem to capture the

growth of the account value just as well as the original model.

When the reset feature is introduced, in Tables 4.3-4.5, for certain cases it appears that

the aggregated return models give a close estimate of the CTE(95) under the monthly return

model. The cases for which this happens are simulations with less resets and cases similar

to those listed in Chapter 3 for the Lognormal Model. The quarterly return model appears

to give a very good estimate of the CTE(95) under the monthly return model and it runs

twice as fast.
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Table 4.6: All Funds: ̂CTE(95), AR(1)-No Reset Feature

Current Period Time Reset Run Number Number

Fund Account Per to Thres- Time ̂CTE(95) No Reset of
Value Year Maturity -hold (s) Paths Deaths

A 50 1 7 ∞ 59.99 36.419 50000 3413
A 50 4 7 ∞ 110.5 37.134 50000 3218
A 50 12 7 ∞ 209.25 37.479 50000 3172

A 80 1 7 ∞ 59.92 11.279 50000 3440
A 80 4 7 ∞ 111.55 11.936 50000 3201
A 80 12 7 ∞ 208.45 11.995 50000 3218

A 100 1 7 ∞ 60.33 0.423 50000 3456
A 100 4 7 ∞ 110.29 0.443 50000 3327
A 100 12 7 ∞ 208.21 0.514 50000 3231

A 100 1 10 ∞ 65.89 -0.016 50000 5657
A 100 4 10 ∞ 145.68 0.012 50000 5284
A 100 12 10 ∞ 280.14 0.001 50000 5212

B 50 1 7 ∞ 60.39 47.558 50000 3456
B 50 4 7 ∞ 111.3 47.692 50000 3198
B 50 12 7 ∞ 208.89 48.121 50000 3138

B 80 1 7 ∞ 59.87 32.150 50000 3474
B 80 4 7 ∞ 110.65 32.339 50000 3266
B 80 12 7 ∞ 208.64 32.507 50000 3166

B 100 1 7 ∞ 60.15 22.455 50000 3465
B 100 4 7 ∞ 110.47 22.550 50000 3361
B 100 12 7 ∞ 208.64 22.552 50000 3229

B 100 1 10 ∞ 66.34 18.626 50000 5841
B 100 4 10 ∞ 140.36 18.565 50000 5313
B 100 12 10 ∞ 279.86 18.320 50000 5327

C 50 1 7 ∞ 60.39 54.515 50000 3421
C 50 4 7 ∞ 110.91 54.533 50000 3195
C 50 12 7 ∞ 209.66 54.486 50000 3170

C 80 1 7 ∞ 59.82 43.686 50000 3359
C 80 4 7 ∞ 110.45 43.921 50000 3207
C 80 12 7 ∞ 208.95 43.890 50000 3176

C 100 1 7 ∞ 60.68 37.125 50000 3473
C 100 4 7 ∞ 110.92 37.256 50000 3259
C 100 12 7 ∞ 209.21 37.245 50000 3208

C 100 1 10 ∞ 66.51 31.054 50000 5705
C 100 4 10 ∞ 139.87 32.038 50000 5541
C 100 12 10 ∞ 280.37 31.636 50000 5217



Chapter 5

RSLN(2) Model

5.1 Introduction

The Two-State Regime Switching Lognormal Model assumes that the returns for an invest-

ment are distributed according to a normal distribution with state dependent parameters

µSt and σSt , where St is the state at time t, and

R[t,t+1)

∣∣St ∼ N(µSt , σ
2
St

).

At the end of each time unit, switching between the states is determined by a Markovian

process. This means that the determination of the current state only depends upon the

previous state and no further history. A major issue is that St is a latent variable. In

estimating the ML estimates for the parameters of the model, there is a special consideration

for these latent variables. Denote the transition probabilities between St and St+1 as p1,1 =

Pr[St+1 = 1 |St = 1] and p2,2 = Pr[St+1 = 2 |St = 2]. This yields a transition Matrix P ,

given by

P =

p1,1 p1,2

p2,1 p2,2

 .

It should be noted that p1,1 + p1,2 = 1, p2,1 + p2,2 = 1. The Markovian property im-

plies that Pr[St+1 |St, St−1, . . . , S1] = Pr[St+1 |St] . The parameter space for the model is

Θ = {µ1, µ2, σ1, σ2, p1,1, p2,2}. The methodology to determine the ML estimates of the pa-

rameters is described in Hardy(2003). The estimates of parameters for monthly returns are

32
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given in Table 5.1.

Table 5.1: Parameter Estimates based on Monthly Data

Fund Estimates RSLN(2)
A µ̂1 = 0.0034 σ̂1 = 0.0227 p̂1,1 = 0.7968

µ̂2 = 0.0158 σ̂2 = 0.0096 p̂2,2 = 0.4956
B µ̂1 = 0.0097 σ̂1 = 0.0351 p̂1,1 = 0.9476

µ̂2 = −0.0183 σ̂2 = 0.0685 p̂2,2 = 0.6542
C µ̂1 = 0.0142 σ̂1 = 0.0432 p̂1,1 = 0.9701

µ̂2 = −0.0178 σ̂2 = 0.1081 p̂2,2 = 0.8932

5.2 Aggregated Model

By an application of Theorem 1, we get

(
R[t+1,t+2) + R[t,t+1)|St+1, St

)
∼ N(µSt+1 + µSt , σ

2
St+1

+ σ2
St

). (5.1)

While the parameters from the two-state model may be used to model this, it is a lit-

tle unclear how to estimate the transition probabilities, perhaps as a three-state regime

switching model. In a three-state regime switching model the parameter set is Θ =

{µ1, µ2, µ3, σ1, σ2, σ3, p1,2, p1,3, p2,1, p2,3, p3,1, p3,2}. Relative to the RSLN(2), the RSLN(3)

has more parameters to compute. Since the return data is aggregated there is less data

to estimate the 6 extra parameters. For small data sets this may be a problem. To avoid

this an alternate model is presented below to model the aggregate returns based on the

RSLN(2).

As an alternative suppose that the RSLN(2) is the best model for the original data

then build a Markov Chain whose state transition occurs at time t − 1 and the next state

transition occurs at time t+1. Given St−1 and St+1 and a visit to state 1 at time t determines

St−1, St, St+1. For example if we know St−1 = 1, St+1 = 1 and there are no visits to state

1 in the time between then (St−1, St, St+1) = (1, 2, 1). The probability associated with
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travelling this path is given by:

Pr(St+1 = 1, St = 2|St−1 = 1) = Pr(St+1 = 1|St = 2, St−1 = 1)Pr(St = 2|St−1 = 1)

= Pr(St+1 = 1|St = 2)Pr(St = 2 |St−1 = 1)

= p2,1p1,2.

The aggregated return corresponding to this path has the following distribution:

(
R[t+1,t+2) + R[t,t+1)|St+1 = 1, St = 2

)
∼ N(µ1 + µ2, σ

2
1 + σ2

2).

The idea is that knowing where one starts and where one ends plus information about the

number of times one visits state 1 in the time between can determine the probability and

distribution of returns associated with a state having that path.

To formalize this, build a state space where each state consists of a 2-tuple (a, b) where

a is the current state and b is the number of times state 1 was visited in the previous time

steps, for this example only one previous time step must be considered. In this manner the

transition matrix in Table 5.2 was constructed, where for simplicity, p1,1 = p and p2,2 = q.

Table 5.2: Markov Chain Transition Probabilities for Two Aggregated Returns

Next State
Current State St+1 = (1, 0) St+1 = (1, 1) St+1 = (2, 0) St+1 = (2, 1)
St−1 = (1, 0) (1 − p)(1 − q) p2 (1 − p)q p(1 − q)
St−1 = (1, 1) (1 − p)(1 − q) p2 (1 − p)q p(1 − q)
St−1 = (2, 0) q(1 − p) (1 − q)p q2 (1 − q)(1 − p)
St−1 = (2, 1) q(1 − p) (1 − q)p q2 (1 − q)(1 − p)

The state space of this new Markov chain is {(1, 0), (1, 1), (2, 0), (2, 1)}. This means

that a transition from state (1, 0) to state (1, 0) is equivalent to traveling along the path

(St−1, St, St+1) = (1, 2, 1) and the probability associated with this path is p1,2p2,1 = (1 −

p)(1 − q).

It is apparent that transitions from state (1, 0) to (1, 0) and (1, 1) to (1, 0) have the same

probability since St−2 has no impact on the probability calculation. In this Markov chain

the rows of the transition matrix (1, 0) and (1, 1) have the same transition probabilities.

Similarly rows (2, 0) and (2, 1) have the same transition probabilities.
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Noting that there are now 4 states at time t + 1, by (5.1) we have that

State (1, 0) has a return with distribution N(µ2 + µ1, σ
2
1 + σ2

2),

State (1, 1) has a return with distribution N(2µ1, 2σ2
1),

State (2, 0) has a return with distribution N(2µ2, 2σ2
2),

State (2, 1) has a return with distribution N(µ1 + µ2, σ
2
1 + σ2

2).

Now based on the estimates of the RSLN(2) it is possible to build a Markov chain to

approximate the aggregated returns. This process can be extended to larger sums and

results for the sum of 4 and 12 log returns are presented in the Appendix. To formalize the

idea a second derivation for the sum of 3 log returns is presented below.

Build a Markov chain whose state transitions occur at time t − 1 and the next state

occurs at time t + 2. Given St−1 and St+2 and the number of visits to state 1 in the

time between, the path St−1, St, St+1, St+2 has an associated probability and distribution

of returns. It should be noted that some paths share the same probability and distribution

of returns. For the distribution of returns, apply Theorem 1,

(
R[t+2,t+3) + R[t+1,t+2) + R[t,t+1)|St+2, St+1, St

)
∼ N(µSt+2+µSt+1+µSt , σ

2
St+2

+σ2
St+1

+σ2
St

).

Note that there are now 6 states where

State (1, 0) has a return with distribution N(µ1 + 2µ2, σ
2
1 + 2σ2

2),

State (1, 1) has a return with distribution N(2µ1 + µ2, 2σ2
1 + σ2

2),

State (1, 2) has a return with distribution N(3µ1, 3σ2
1),

State (2, 0) has a return with distribution N(3µ2, 3σ2
2),

State (2, 1) has a return with distribution N(µ1 + 2µ2, σ
2
1 + 2σ2

2),

State (2, 2) has a return with distribution N(2µ1 + µ2, 2σ2
1 + σ2

2).

Table 5.3 gives the associated transition matrix for the above state process. As an

example of the calculation of the transition matrix, we look at the transition from (1, 0) to

(2, 1). This transition is equivalent to (St−1, St, St+1, St+2) = (1, St, St+1, 2) where either St

or St+1 is equal to 1 but not both. The transition probability associated with this is
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Table 5.3: Markov Chain Transition Probabilities for Three Aggregated Returns

Next Current State
State (1,0) (2,0)
(1,0) (1 − p)q(1 − q) q2(1 − q)
(1,1) 2p(1 − p)(1 − q) pq(1 − q) + (1 − p)(1 − q)2

(1,2) p3 p2(1 − q)
(2,0) (1 − p)q2 q3

(2,1) p(1 − p)q + (1 − p)2(1 − q) 2(1 − p)q(1 − q)
(2,2) p2(1 − p) p(1 − p)(1 − q)

Pr(St+2 = 2, St+1 = 1, St = 2|St−1 = 1) + Pr(St+2 = 2, St+1 = 2, St = 1|St−1 = 1)

= Pr(St+2 = 2|St+1 = 1, St = 2, St−1 = 1)

× Pr(St+1 = 1|St = 2, St−1 = 1)Pr(St = 2|St−1 = 1)

+ Pr(St+2 = 2|St+1 = 2, St = 1, St−1 = 1)

× Pr(St+1 = 2|St = 1, St−1 = 1)Pr(St = 1|St−1 = 1)

= Pr(St+2 = 2|St+1 = 1)Pr(St+1 = 1|St = 2)Pr(St = 2|St−1 = 1)

+ Pr(St+2 = 2|St+1 = 2)Pr(St+1 = 2|St = 1)Pr(St = 1|St−1 = 1)

= p1,2p2,1p1,2 + p2,2p1,2p1,1

= (1 − p)2(1 − q) + q(1 − p)p

From lines 2 to 5 we use the Markov property from the underlying log return model. Using

this technique the transition matrix can be calculated. After all these calculations, there

is a Markov chain which uses the underlying RSLN(2) model for data of time step 1 to

make a model for log returns of time step 2, 3, 4 and 12. See Appendix B for the transition

matrices for time steps 4 and 12.

5.3 Results

In running the simulations to determine the CTE(95), for the monthly return model the

reset threshold for state 1 (rt1) was 1.2 and the reset threshold for state 2 (rt2) was 1. As
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discussed earlier, state 2 represents a higher volatility state and investors are assumed to

reset to a higher guarantee whenever they get the chance because the markets are more

volatile. For p periods per year return models, the reset threshold was the average of the

path reset thresholds. For example if there is only 1 period per year and the aggregate

model is in a state with 2 visits to state 1 and 10 visits to state 2 in the year, then the reset

threshold for the year is 2×rt1+10×rt2
12 . A second consideration was to start the simulation

as if the model was stationary. The results are given in Tables 5.4-5.6.

Table 5.4: Fund A: Run Time and ̂CTE(95),RSLN(2)

Market Period Time Run Number Number
Value Per to Time ̂CTE(95) No Reset of

Year Maturity (s) Paths Deaths
50 1 2 11.42 48.602 50000 731
50 4 2 32.89 48.723 50000 702
50 12 2 69.24 48.780 50000 728
80 1 2 13.1 23.221 48575 1282
80 4 2 48.94 23.423 46472 1935
80 12 2 163.04 23.456 40895 4146
100 1 2 43.72 7.352 21535 11386
100 4 2 200.25 7.810 11747 14398
100 12 2 547.96 8.093 2180 18450
50 1 7 31.8 36.599 47700 4601
50 4 7 119.31 37.329 46039 5244
50 12 7 293.67 37.516 43180 6791
80 1 7 67.97 11.657 12003 23010
80 4 7 273.16 12.347 7687 24423
80 12 7 642.25 13.087 4476 26527
100 1 7 77.56 4.760 1955 28054
100 4 7 295.14 6.536 893 27281
100 12 7 672.56 8.983 259 28171
100 1 10 82.45 5.484 1291 33509
100 4 10 313.05 7.721 630 32852
100 12 10 723.7 10.459 201 34082
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Table 5.5: Fund B: Run Time and ̂CTE(95),RSLN(2)

Market Period Time Run Number Number
Value Per to Time ̂CTE(95) No Reset of

Year Maturity (s) Paths Deaths
50 1 2 11.66 59.470 49991 756
50 4 2 32.9 59.395 49997 746
50 12 2 69.98 59.399 49978 744
80 1 2 16.75 41.483 45677 2076
80 4 2 57.25 42.029 43863 2548
80 12 2 153.6 42.355 40777 3501
100 1 2 33.8 38.150 27981 7458
100 4 2 142.89 39.892 22041 8704
100 12 2 391.67 42.570 14181 11331
50 1 7 34.56 49.368 44281 5916
50 4 7 129.09 49.658 42808 6181
50 12 7 306.36 49.817 40843 7127
80 1 7 53.03 41.188 22786 14416
80 4 7 206.61 41.942 18989 15243
80 12 7 502.61 43.386 14965 17020
100 1 7 62.9 43.469 10274 18449
100 4 7 240.14 46.205 6813 18732
100 12 7 591.52 49.111 3530 20558
100 1 10 69.19 45.892 6999 22859
100 4 10 265.07 50.112 4560 23245
100 12 10 618.01 52.328 2517 24217
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Table 5.6: Fund C: Run Time and ̂CTE(95),RSLN(2)

Market Period Time Run Number Number
Value Per to Time ̂CTE(95) No Reset of

Year Maturity (s) Paths Deaths
50 1 2 12.11 69.793 49631 897
50 4 2 35.41 70.017 49404 877
50 12 2 76.6 70.163 49270 873
80 1 2 23.38 70.284 38813 4229
80 4 2 90.61 76.266 35028 4955
80 12 2 227.68 81.266 32011 5796
100 1 2 39.98 89.953 21763 9300
100 4 2 165.35 101.965 15544 10487
100 12 2 407.75 110.304 10788 11808
50 1 7 43.15 70.506 35039 9654
50 4 7 163.45 75.059 32181 10098
50 12 7 382.51 78.747 30028 10810
80 1 7 57.39 99.150 17118 15990
80 4 7 220.07 108.684 13228 16294
80 12 7 519.55 121.788 10849 16995
100 1 7 63.56 125.527 8953 17942
100 4 7 240.79 142.406 5430 18340
100 12 7 553.03 157.482 3276 18816
100 1 10 67.86 139.785 7033 21565
100 4 10 262.38 171.729 4071 21590
100 12 10 588.63 187.241 2525 21783

5.4 Discussion

The findings for modeling the returns using the RSLN(2) are quite similar to the Lognormal

Model. In Table 5.7, the aggregated models appear to estimate the CTE(95) as well as the

monthly model for a no reset product. The aggregated model appears to capture the growth

of the account value as well as the RSLN(2).

In Tables 5.4-5.6, it appears that the aggregated return model give a close estimate of

the CTE(95) under the monthly return model for all the same cases as those in the AR(1)

model. Again the quarterly return model appears to produce ̂CTE(95) that are quite close

to the monthly return model in half the computing time.
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Table 5.7: All Funds: ̂CTE(95) for RSLN(2)-No Reset Feature

Current Period Time Reset Run Number Number

Fund Account Per to Thres- Time ̂CTE(95) No Reset of
Value Year Maturity -hold (s) Paths Deaths

A 50 1 7 ∞ 28.99 36.522 50000 3486
A 50 4 7 ∞ 102.69 37.014 50000 3166
A 50 12 7 ∞ 228.31 36.778 50000 3008

A 80 1 7 ∞ 29.62 10.950 50000 3396
A 80 4 7 ∞ 101.09 11.517 50000 3275
A 80 12 7 ∞ 226.77 11.650 50000 3144

A 100 1 7 ∞ 28.97 0.396 50000 3484
A 100 4 7 ∞ 102.12 0.363 50000 3116
A 100 12 7 ∞ 227.01 0.494 50000 3099

A 100 1 10 ∞ 38.9 -0.0287 50000 5647
A 100 4 10 ∞ 141.47 0.029 50000 5520
A 100 12 10 ∞ 316.34 0.008 50000 5186

B 50 1 7 ∞ 28.96 49.147 50000 3398
B 50 4 7 ∞ 103.11 49.373 50000 3320
B 50 12 7 ∞ 228.83 49.435 50000 3157

B 80 1 7 ∞ 28.87 35.016 50000 3472
B 80 4 7 ∞ 101.87 34.962 50000 3189
B 80 12 7 ∞ 227.65 34.935 50000 3130

B 100 1 7 ∞ 28.86 25.944 50000 3432
B 100 4 7 ∞ 101.58 25.688 50000 3202
B 100 12 7 ∞ 226.48 26.177 50000 3280

B 100 1 10 ∞ 39.2 21.630 50000 5675
B 100 4 10 ∞ 142.36 21.431 50000 5318
B 100 12 10 ∞ 318.42 21.435 50000 5413

C 50 1 7 ∞ 32.57 58.377 50000 3424
C 50 4 7 ∞ 101.05 58.597 50000 3299
C 50 12 7 ∞ 226.75 58.722 50000 3261

C 80 1 7 ∞ 29.29 50.254 50000 3444
C 80 4 7 ∞ 102.17 50.536 50000 3226
C 80 12 7 ∞ 227.75 50.633 50000 3183

C 100 1 7 ∞ 28.96 45.053 50000 3430
C 100 4 7 ∞ 101.54 45.355 50000 3164
C 100 12 7 ∞ 226.17 46.045 50000 3158

C 100 1 10 ∞ 39.17 39.238 50000 5713
C 100 4 10 ∞ 142.31 39.097 50000 5434
C 100 12 10 ∞ 319.58 39.316 50000 5259



Chapter 6

Multivariate Normal Model

6.1 Introduction

Thus far each fund has been studied independently without considering the dependence

in the returns of the funds. In this chapter, the returns are studied with the assumption

that there is some correlation between them. The three fund returns are modeled using a

Multivariate Normal (MVN), for i = 1, . . . , n and returns (R)

Ri =


RA,[i,i+1)

RB,[i,i+1)

RC,[i,i+1)

 ∼ N3

µ =


µ1

µ2

µ3

 , Σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 .

where RY,[i,i+1) represents the returns for fund Y and period [i, i + 1), µ = (µ1, µ2, µ3)t and

Σ is the variance covariance matrix.

Under the MVN model a single life builds a portfolio with three different segregated

funds. Three accounts are established for the funds and returns for each account come from

the MVN. Simulating this requires the mortality experience of a single loss simulation path

to be the same for each segregated fund.

From page 171 of Johnson(2002) ML estimates for the MVN model parameters based

41
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upon observed values r1, r2, . . . , rn are simply the sample mean and sample variance - co-

variance matrix, given by

µ̂j = r̄j =
n∑

i=1

ri,j

n
,

σ̂jk =
∑n

i=1(ri,j − r̄j)(ri,k − r̄k)
n

.

To estimate µ̂ and Σ̂ the same length of data is used from November 1987 to May 2006.

The estimates of the parameters are

µ̂ = (0.00698, 0.00766, 0.00904)t,

Σ̂ =


0.000425 0.000162 0.000122

0.000162 0.001622 0.002247

0.000122 0.002247 0.004771

 ,

and the correlation matrix is

ρ̂ =


1.0000 0.1954 0.0854

0.1954 1.0000 0.8077

0.0854 0.8077 1.0000

 .

From the correlation matrix, note that Fund B and C have highly correlated returns. The

MVN estimated here is based upon monthly returns and again the run time for ̂CTE(95)

is significant. We propose using an aggregate return model to reduce the computations and

hence the run time.

6.2 Aggregated Model

The following theorem from page 165 Johnson(2002) is used in aggregating the MVN model

for returns.

Theorem 2. Let X1, . . . , Xn be mutually independent with Xj distributed as Np(µj ,Σ).

Then V = c1X1 + . . . + cnXn is distributed as Np(
∑n

j=1 cjµj ,
(∑n

j=1 c2
j

)
Σ).

This implies that assuming R1, . . . , Rn are independent identically distributed random

variables with distribution N3(µ,Σ) then R =
∑n

i=1 Ri ∼ N3(nµ, nΣ) is the aggregated

return model.
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6.3 Results

For a portfolio of 3 funds, an individual invests 100 at time 0 into each fund account. The

investor is allowed to reset a segregated fund without resetting the other segregated funds

in the investor’s portfolio. For each fund in the portfolio, a reset threshold of one and

a guarantee value of 100 was assumed. The returns were simulated using the same time

step for each fund. The ̂CTE(95) is computed for a covariance matrix with zeros in the

off-diagonals as well as for the estimated variance-covariance above. From this, we are able

to determine if the correlation of the fund returns affects the CTE(95) estimates.

A single run time is determined for each portfolio and the results are given in Table 6.1.

Table 6.1: Run Time and ̂CTE(95):MVN model

Covariance Period Time Run Number Number
Included Fund Per to Time ̂CTE(95) No Reset of

Year Maturity (s) Paths Deaths
1 A 1 10 272.98 6.510 476 35895
1 B 1 10 - 32.051 1345 32065
1 C 1 10 - 124.980 2951 27177
1 A 4 10 989.71 9.682 166 34479
1 B 4 10 - 37.762 528 30692
1 C 4 10 - 148.279 1325 25898
1 A 12 10 3208.61 10.513 86 34083
1 B 12 10 - 41.367 314 30402
1 C 12 10 - 171.124 759 25707
0 A 1 10 277.55 6.536 483 35841
0 B 1 10 - 31.923 1314 32011
0 C 1 10 - 125.222 2984 27203
0 A 4 10 1060.34 9.722 159 34594
0 B 4 10 - 38.360 524 30822
0 C 4 10 - 154.609 1366 26092
0 A 12 10 3290.26 10.937 81 34179
0 B 12 10 - 41.964 308 30429
0 C 12 10 - 167.643 779 25758

6.4 Discussion

In Table 6.1, there appears to be no difference between CTE(95) estimates using a zero and

non-zero covariance for Funds A and B. For Fund C there appears to be a slight increase
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in the estimate of the CTE(95) for the non-zero covariance model. Again, the quarterly

return model gives a similar estimate of the CTE(95) under the monthly model.

Further, Table 6.2 shows that when the covariance is zero and each fund is treated

individually, estimates are similar to the zero covariance CTE(95) estimates but run signif-

icantly faster. For one period per year the CTE(95) for all three funds treated individually

runs in 145.03 seconds while the zero covariance model runs in 277.55 seconds. It appears

that the estimates are quite similar for the funds as well.

Table 6.2: Run Time and ̂CTE(95):Lognormal Model

Period Time Run Number Number
Fund Per to Time ̂CTE(95) No Reset of

Year Maturity (s) Paths Deaths
A 1 10 51.37 6.685 490 35920
B 1 10 48.29 32.000 1334 32405
C 1 10 45.37 120.905 2981 27332
A 12 10 568.78 10.919 98 34230
B 12 10 539.39 41.023 281 30188
C 12 10 502.97 178.292 745 25658



Chapter 7

Conclusion

Having studied several models for the rate of return of the account value, it appears that

the aggregated return model captures the growth of the account but the reset behavior is

not completely captured. This leads to smaller CTE(95) estimates than those given by the

monthly return model. It appears that the quarterly return model is sufficient to capture

the reset behavior. The computation time is at least twice as fast as the monthly model.

It is quite interesting to see that all the models for returns give a similar value for the

CTE(95). The AR(1) and RSLN(2) are quite similar in magnitude for their estimates of

the CTE(95). The MVN and Lognormal are very similar as well.

The new ideas presented in this project include the aggregated AR(1), the aggregated

return Markov Chain for the RSLN(2), and associating different investor behavior with each

state of the RSLN(2). The aggregated models reduce the computation time of the ̂CTE(95)

for a segregated fund with a reset feature. However the models did not capture the reset

behavior as well as it captured the growth of the account value. This suggests that these

techniques can be applied to other problems where computational time can be reduced for

modeling the growth rate of a financial instrument.

Based on the values of ̂CTE(95) for fund C, a company may question offering a reset

feature on the highly volatile fund as the reserve is quite large.
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7.1 Further Work

Further work in this area include deriving aggregated models for higher order AR processes

and an ARCH or GARCH model. Another possibility is to use a health index, developed in

Health Economics to assess an individual’s self evaluation of her or his health status. This

information can be quite useful to insurance companies who are faced with the adverse

selection problem. It may also allow hypotheses about reset behavior of investors. One

final possibility is to use a stochastic model for the interest rate.



Appendix A

Maximum Likelihood Estimation

Both MLE estimation methods are described in Hardy(2003).

A.1 MLE estimate for AR(1)

The basic result is that Yt depends on Yt−1 plus some noise. Specifically,

Yt − µ = φ(Yt−1 − µ) + σεt,

where εt ∼ N(0, 1) are independent error terms. The parameter set for this model is

Θ = {µ, σ, φ} and conditionally we have

Yt|Yt−1 ∼ N(µ(1 − φ) + φYt−1, σ
2), t = 2, 3, . . . , n

and furthermore,

Yt ∼ N(µ,
σ2

1 − φ2
).

The likelihood function is,

L(Θ|y) = f(y1; Θ)
n∏

t=2

(f(yt; Θ |yt−1))

Finally the following function is maximized for the parameter set:

l(Θ) =
n

2
log(2π) +

log(1 − φ2)
2

− n log(σ)

− 1
2

{(
(y1 − µ)2(1 − φ2)

σ2

)
+

n∑
t=2

(
(yt − (1 − φ)µ − φyt−1)2

σ2

)}
.

47
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A.2 MLE estimate for RSLN(2)

Let St denote the state in the time interval [t, t + 1). It is assumed that the log returns Yt

depend upon some underlying two state Markov process. In each state or regime the log

returns are normally distributed with parameters specific to that state, that is,

Yt|St ∼ N(µSt , σ
2
St

), St = 1, 2.

There are 6 parameters to estimate, µ1, µ2, σ1, σ2, p1,2, p2,1, where p1,2, p2,1 are the tran-

sition probabilities from state 1 to 2 and 2 to 1, respectively. We want f(yt|yt−1, . . . , y1, Θ)

which we get from the following:

f(St = j, St−1 = i, yt|yt−1, . . . , y1) = Pr(St−1 = i|yt−1, . . . , y1)Pr(St = j|St−1 = i)f(yt|St),

where Pr(St = j|St−1 = i) = pi,j and i,j=1,2 and

Pr(St−1 = i|yt−1, . . . , y1) =
2∑

St−2=1

f(St−1 = i, St−2, yt−1|yt−2, . . . , y1)
f(yt−1|yt−2, . . . , y1)

, i = 1, 2.

Now

f(yt|yt−1, . . . , y1, Θ) =
2∑

St=1

2∑
St−1=1

f(St, St−1, yt|yt−1, . . . , y1).

To start this recursion, we need to determine Pr(S0) which can be found from the stationary

distribution π = (π1, π2) of the regime switching Markov chain. Under the stationary

distribution π and the transition matrix P , we know that πP = π. Note that

P =

p1,1 p1,2

p2,1 p2,2

 ,

then πP = π gives the following equations:

π1p1,1 + π2p2,1 = π1

π1p1,2 + π2p2,2 = π2

Since p1,1 + p1,2 = 1, we get

π1 =
p2,1

p1,2 + p2,1

Based on this, the recursion can be computed and the likelihood and parameter estimates

are obtained.



Appendix B

Aggregated Returns for the

RSLN(2)

B.1 Sum of four returns

When aggregating four returns, we build a Markov chain whose states occur at time t − 1

and the next state occurs at time t + 3. In this manner, the state path can be created for

the interval [t − 1, t + 3] if a visit to state 1 at time t, t + 1, and t + 2 is also noted. The

idea is that if it is known where one starts and where one ends plus information about the

number of times one visits state 1 in the time between, then all possible paths from time

t − 1 to t + 3 can be determined. In this manner applying Theorem 1 yields,

t+3∑
i=t

Yi

∣∣∣∣∣St+3, . . . , St ∼ N(
t+3∑
i=t

µSi ,
t+3∑
i=t

σ2
Si

)

It is noted that there are now 8 states and for g = {0, 1, 2, 3}:

State (1, g) has an associated return from the distribution

N((1 + g)µ1 + (3 − g)µ2, (1 + g)σ2
1 + (3 − g)σ2

2),

State (2, g) has an associated return from the distribution

N(gµ1 + (4 − g)µ2, gσ2
1 + (4 − g)σ2

2).

49
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The transition probabilities for a transition from current state (1, g) to any state one period

ahead are the same for all g. Similarly the transition probability for a transition from

current state (2, g) to any state one period ahead are the same for all g.

Table B.1: Markov Chain Transition Probabilities for Four Aggregated Returns

Next Current State
State (1,g) (2,g)
(1,0) (1 − p)q2(1 − q) q3(1 − q)
(1,1) 2p(1 − p)q(1 − q) + (1 − p)2(1 − q)2 2(1 − p)q(1 − q)2 + pq2(1 − q)
(1,2) 3p2(1 − p)(1 − q) 2p(1 − p)(1 − q)2 + p2q(1 − q)
(1,3) p4 p3(1 − q)
(2,0) (1 − p)q3 q4

(2,1) 2(1 − p)2q(1 − q) + p(1 − p)q2 3(1 − p)q2(1 − q)
(2,2) 2p(1 − p)2(1 − q) + p2(1 − p)q 2p(1 − p)q(1 − q) + (1 − p)2(1 − q)2

(2,3) p3(1 − p) p2(1 − p)(1 − q)
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B.2 Sum of 12 log returns

When aggregating twelve returns, we build a Markov Chain whose states occur at time t−1

and the next state occurs at time t + 11. In this manner, the state path can be created for

the interval [t− 1, t + 11] if a visit to state 1 at time t, . . . , t + 11, is also noted. The idea is

that if it is known where one starts and where one ends plus information about the number

of times one visits state 1 in the time between, then all possible paths from time t − 1 to

t + 11 can be determined. In this manner applying Theorem 1 yields,

t+11∑
i=t

Yi

∣∣∣∣∣St+11, . . . , St ∼ N(
t+11∑
i=t

µSi ,
t+11∑
i=t

σ2
Si

)

It is noted that there are now 24 states and for h = {0, . . . , 11}:

State (1, h) has an associated return from the distribution

N((1 + h)µ1 + (11 − h)µ2, (1 + h)σ2
1 + (11 − h)σ2

2),

State (2, h) has an associated return from the distribution

N(hµ1 + (12 − h)µ2, hσ2
1 + (12 − h)σ2

2).

The transition probabilities for a transition from current state (1, h) to any state one period

ahead are the same for all h. Similarly the transition probability for a transition from

current state (2, h) to any state one period ahead are the same for all h.
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