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ABSTRACT 

Scientific research begins with hypothesis generation, for which cluster 

analysis (CA) can be used. Traditionally, CA involves continuous variables 

weighted equally, and the subjective choice of linkage and stopping rules. 

Variable weighting for cluster analysis (VWCA), beginning with De Soete 

(1985/6), produces weights that may be useful for hypothesis generation. De 

Soete’s VWCA optimized ultrametricity, a property of better separated clusters, 

without requiring CA. 

We developed variable-weighted ultrametric optimization for mixed-type 

data (VWUO-MD), starting with a variable-weighted, multivariate distance for 

data with any number of continuous, ordinal, nominal, binary symmetric and 

binary asymmetric (e.g., rare disease) variables. In Monte Carlo simulations we 

found that weights are consistent with a priori relationships between variables, 

under several distributions. On some relationships (e.g., single group linear), the 

method performs poorly. Compared to De Soete, VWUO-MD better penalizes for 

0-weights, and better ensures a unique solution with a strategic random restart 

procedure. The bootstrap covariance matrix is slightly conservative. For mixtures 

of at least four continuous/nominal variables, a U-statistic-based covariance 

matrix performs well. Point estimates and covariances are invariant to 

column/category/record order and affine transformations. 
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We analyzed of a subset of the Joint Canada/United States Survey of 

Health: working, mature students 50+ years old who received health services in 

the past year (n=167), split into training and testing segments. Prescreening 

within types and backwards elimination with VWUO-MD reduced the space. The 

final 14 variable weights were plotted as a scree plot. On the testing segment, a 

model was fit from the upper scree plot variables. Similar models were fit from 

the lower scree plot, prescreening and backwards elimination reject variables. 

Models were ordered on overall statistical significance and the upper model had 

the best fit, indicating that VWUO-MD had successfully mined these data for 

hypotheses. We learned that reduction in activities due to a long term health 

condition was associated with consultations with a mental health professional in 

the past year (odds ratio=12.25, 95% CI=1.67, 90.02). 

While needing additional research, in its present form VWUO-MD 

produces variable weights that may be informative for hypothesis generation on 

data with varied mixtures of data types. 

Keywords: 

Hypothesis generation, ultrametric optimization, data mining, cluster analysis 
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CHAPTER 1: INTRODUCTION 

Scientific research begins with the formulation of hypotheses. Data are 

collected and analyzed in order to test those hypotheses. Data mining, defined 

as the process of discovering patterns in data, can aid in generating hypotheses 

for testing.1 Philosophically, it is not a very big step to perform data mining 

compared to the traditional approach of coming up with hypotheses on one’s 

own. For consider what it means to come up with a hypothesis “on one’s own”. 

The research scientist must draw upon his or her personal and professional 

knowledge, or internal data set. This data set lives in the scientist’s brain and is 

the result of years of observation and study of other data sets, but fundamentally, 

it is data. What makes the traditional approach to scientific research statistically 

sound is that the data on which hypotheses are tested are not of the internal data 

set from which the ideas arose. The same principle can and should be applied to 

data mining; it is widely held that one should not test hypotheses with the same 

data that were used to formulate them.2,3,4 Doing so might be termed “data 

dredging”, rather than data mining, and p-values from such analyses would not 

be valid estimates of Type I error probability. However, as long as researchers 

abide by this basic tenet, data mining can be a powerful resource for accelerating 

the growth of knowledge. Indeed it has already been widely used for this 

purpose, in such diverse areas as epidemiology, genomics, biomedical research, 

credit card fraud detection, and many more.5,6,7,8 
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Cluster analysis (CA) is a common data mining methodology, and is 

commonly used for the purpose of hypothesis generation.2,3,4,9,10,11 For example, 

Gilman et al (1995)2 used space-time cluster analysis to generate hypotheses 

about childhood cancers in Britain, then tested those hypotheses on an 

independent segment of their data. Bredel et al (2004)9 in an article on 

genomics-based hypothesis generation stated that "... the most common 

approach to organisation of [DNA] microarray data is hierarchal clustering." 

Stegmann et al (2003)11 performed co-word clustering of existing scientific 

literature to generate new hypotheses, as well as confirm a known relationship 

between Reynaud’s disease, fish oil, migraines and magnesium. 

In CA, objects are grouped into homogeneous “clusters” with the goal of 

maximizing similarity between objects within the same cluster while minimizing 

similarity between objects in different clusters. “Similarity” (or dissimilarity) can be 

defined with a symmetric, n by n, one-way proximity matrix. In the cluster 

analysis of two-way (objects by variables) data, a one-way proximity matrix can 

be created on which to perform CA. In a representative sample (in which one did 

not go out of one’s way to collect data that appeared to be clustered), clusters 

are generally motivated by the relationship between variables in the population. 

By “representative”, we mean that every subject represents a known proportion 

of the target population, and has a sample weight that reflects that (usually based 

on the inverse probability of selection) except in the case of a simple random 

sample where no sample weight is required as such a weight would be identically 

1. If variables X and Y are normally distributed and independent of each other, a 
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two-dimensional plot of X versus Y will show one mass (bivariate normal). If X 

and Y are positively correlated, that mass will be diagonally oriented. If g is a 

latent group variable affecting X and Y by adding constants to their means 

depending on group, then (whether or not g is measured) the 2 by 2 plot of X 

versus Y will contain multiple clusters diagonally distributed. A CA that revealed 

these clusters might suggest testing some hypothesis involving X and Y. (Note 

that in such a case, X and Y would not be marginally independent, and there 

would be a hypothesis to be generated). If X and Y were the only two variables 

available, this would be a rather roundabout way of doing things; why not just 

develop a hypothesis involving X and Y to begin with? However, if there were 20 

variables in the data set and the only clear clusters were defined according to X 

and Y, then CA would have suggested the most promising hypothesis for testing. 

Perhaps two other variables, U and V, are also well separated by the optimal 

cluster solution. Then the researcher could consider the definitions of X, Y, U and 

V, and formulate an appropriate hypothesis based on the most sensible 

“dependent” variable from those, treating the others as independent variables (for 

example). For this the researcher would need to draw on his or her knowledge of 

subject matter. The point is that 16 other variables would have been eliminated 

from consideration, and the researcher would have generated a concise 

hypothesis using CA. Testing of the hypothesis would be done on a different data 

set, or an independent segment of data that was not used to generate it. 

Hypothesis generation (HG) via traditional CA as discussed above is 

useful, but has some limitations. First, in the most traditional application of CA, 
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data consist only of continuous variables, and similarity is measured by 

Euclidean distance. This definition precludes the analysis of other types of 

variables, such as binary, ordinal or nominal. A second limitation of HG via 

traditional CA is that cluster analysis is traditionally performed on unweighted 

variables, that is, all variables are treated equally in the CA procedure. Clusters 

that are well defined only on a small subset of the variables may not be easily 

recovered with the additional “noise” variables, and therefore promising 

hypotheses may not be easily generated. Third, CA solutions are non-unique in 

the sense that there are many possible solutions that an analyst could arrive at 

from the same data set, depending in part on linkage method (single, complete, 

centroid, etc.) and the number of clusters determined to be the optimal solution. 

Fourth, only the most obvious candidate variables might be made visible by a 

cursory examination of the clusters (for example with k-way plots). More 

sophisticated HG from a CA solution generally requires additional statistical 

analysis (e.g., ANOVA, or the calculation of some index of observed versus 

expected proportions in small intervals) in order to determine what variables are 

associated most strongly with the clusters. 

The first limitation of HG via CA has been addressed to a certain extent. 

Formulas for distance between objects measured on sets of binary variables 

have been suggested. For example, Johnson and Wichern (2002)12 suggest a 

variety of formulas, generally in the form of number of matches divided by 

number of mismatches. Differences between the formulas are driven for example 

by a variety of treatments for 0-0 matches versus 1-1 matches. Distance 
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formulas for binary and other variable types (ordinal and nominal) have been 

suggested for example by Dr. Stephen Kwek of the Human Genome Laboratory 

in the Department of Computer Science at the University of Texas at San 

Antonio.13 His distance measures for binary variables are consistent with those of 

Johnson and Wichern. While these formulas can be useful, a remaining limitation 

is that data sets may contain a variety of variable types; Johnson and Wichern 

suggest converting all variables into binary representations so that all the 

variables can be analyzed simultaneously using the distance measure proposed 

for binary variables. It would be preferable to retain the full information in the 

continuous, ordinal and nominal variables however. This is easily overcome. 

Kwek suggests an alternative weighted distance formula, but we will combine 

distances for different type-specific subspaces (subsets of variables 

corresponding to single variable types) using the square root of the sum of 

squared type-specific distances, similar in structure to the formula for Euclidean 

distance. 

The latter three limitations of HG via CA can be overcome with variable 

weighting for cluster analysis (VWCA) techniques that do not rely on a priori 

knowledge of the clusters. The idea of VWCA predates 1970, however early 

efforts required CA to be performed either in advance or as part of the estimation 

of weights, for example, Hogeweg (1976),14 Art et al (1982)15 and DeSarbo et al 

(1984).16 For the purposes of HG, we would prefer to retain the advantages of 

the variable weights without the disadvantages of performing CA per se (such as 

the subjectivity associated with choice of linkage and the number of clusters). 
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Among the earliest efforts in this direction were two seminal papers by Geert De 

Soete (1985, 1986).17,18 In both papers, De Soete presented an order n3 VWCA 

method upon which we shall build. (In the 1986 paper, he also added an order n4 

variant which we do not investigate due to prohibitively high computational 

requirements.) The variable weights in VWCA correspond to the variables’ 

relative importance in the object groupings in the data. For example, suppose 

variables X and Y arise from conditional distributions that depend on a latent 

group indicator g, while variable Z comes from a single homogenous distribution 

that is nearly independent of g. Then CA ought to show stronger separation of X 

and Y values into clusters (different distributions in different clusters), but a 

similar distribution of Z within all clusters. VWCA ought to assign larger weights 

to variables X and Y (correctly, since they are related through g), and a smaller 

weight to Z. For the purpose of performing CA per se, VWCA has been shown to 

reduce the influence of noisy, superfluous variables and thereby enhance the 

groupings in the data. However, we have found that this is mainly evident only in 

small, artificial data sets. Regardless, for the purpose of HG, the variable weights 

are enough; De Soete’s method (which we extend) does not require that one 

perform CA (even though the concept of CA is a motivation behind his 

approach). VWCA can overcome the second limitation of HG via CA discussed 

above directly; by down weighting the unimportant variables, those that remain 

with higher weights automatically become the focus. The third limitation is 

overcome if VWCA has a unique solution, which our extension of De Soete’s 

approach generally does. The concept of a set of solutions depending on choice 
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of linkage or stopping rules no longer applies—we will not perform CA at all. 

Finally, the fourth limitation is also overcome with VWCA. There is no secondary 

statistical analysis required in order to obtain information about ranking variables’ 

importance. This comes directly in the form of the variable weights. The variable 

weights lie on a continuum which allows the analyst to make fully informed 

decisions when formulating hypotheses, considering the distribution of the entire 

set of variables (not just the most obvious ones). 

Often for the purpose of CA, how well the groupings have been enhanced 

by VWCA is measured (somewhat subjectively) with graphical devices such as 

dendrograms,12 or more objectively with a numerical function representing for 

example the degree of ultrametricity, a desirable property naturally leading to 

better clustering as described above. We will take only a cursory look at how well 

groupings are enhanced by VWCA as measured by dendrograms. For the 

purpose of HG (our motivation), ultrametricity is an important concept that will 

drive our VWCA algorithm. In De Soete’s method (and ours), an ultrametric loss 

function (measuring the degree of departure from the desirable property of 

ultrametricity) is minimized, to arrive at the variable weights solution. 

De Soete’s approach has been cited many times, often neutrally when 

describing or performing CA on an applied problem, describing VWCA, or 

developing alternative approaches to VWCA (usually involving preliminary or 

simultaneous CA to obtain variable 

weights).19,20,24,26,27,28,29,30,31,32,33,34,36,37,38,39,41,42,43,47,48,49,50,51,53,55,5657,59,61,62,63,65,66 

At times De Soete's method has been cited positively,21,35,46,52,54,56,60,64 and at 
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other times negatively.22,23,25,40,44,45,58 His work has been expanded on by many 

of his critics. 

Among the positive citations, most of the articles citing De Soete’s method 

(positively or negatively), also cite the study by Milligan (1989),54 in which De 

Soete's method was tested and found to successfully recover the true clustering 

structure in the presence of "masking variables" (those unrelated to the object 

groupings, and which we will refer to as "noise" variables), in artificial data with a 

variety of dimensions. Milligan had presented his findings three years earlier at 

the 21st Numerical Taxonomy Conference.64 Breckenridge (2000)21 comments 

generally on the benefit of VWCA in reducing the masking effect of noise 

variables. Donoghue (1995)35 found that De Soete's VWCA yielded significantly 

higher recovery of known cluster structures than unweighted CA. Jedidi et al 

(1991)46 cite De Soete's purported success with first-order estimation (which we 

will refute to an extent) as a justification for their own use of that approach in their 

unique estimation of weights for three-way, objects by variables by discrete 

selection data. Milligan et al (1987)52 cite De Soete's VWCA as particularly useful 

after first eliminating obvious non-candidate variables from the analysis. This is 

the approach we take when applying our method to real-world data, in Chapter 6: 

An application of VWUO-MD. Milligan et al (2003)56 cited De Soete's VWCA as 

an effective means of reducing the effect of masking variables. Sokal (1986)60 

pointed out the advantage of De Soete's VWCA in its ability to differentially 

weight individual characteristics in phenetic taxonomy. 
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There were some critical reviews of both VWCA in general, and De 

Soete's method specifically. Carmone et al (1999)25 and Huang et al (2005, 

2007)44,45 pointed to the order of the algorithm as a problem with De Soete's 

method. They developed a method of variable selection involving an iterative 

process of cluster analysis. Huang et al developed variable weights as part of 

performing k-means CA. Brusco (2001, 2004)22,23 cited Gnanadesikan et al's 

(1995)40 study which found that De Soete's approach performed poorly in its 

ability to assign objects back to known clusters. Gnanadesikan et al developed 

an iterative algorithm for estimating within- and between-groups (clusters) sums 

of squares for the construction of variable weights proportional to between-

groups sums of squares and inversely proportional to the within-groups sums of 

squares. Their approach appears to be touted as a compromise between 

methods requiring a priori knowledge of the clusters, and those (like De Soete’s) 

that do not, but it does involve the subjectivity of stopping rules. Brusco 

interpreted the aforementioned study as a criticism of VWCA in general, and took 

it as lending support for his variable selection approach to clustering binary data 

sets. Schweinberger et al (2003)58 pointed out the problem of multiple local 

optima (minima), which we also notice and deal with quite effectively in a 

strategic random restart procedure.  

There are many relatively neutral citations of De Soete's method, including 

Arabie et al (1992, 1995),19,20 Leonard et al (2008),49 Chun (1995),26 and Corter 

(1996)28 who briefly cite De Soete's VWCA approach during an overview of CA. 

Bull et al (1992)24 weight their variables according to "genetic variability" over 
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"phenotypic variability" and cite De Soete's approach to VWCA only in a brief 

mention of VWCA. Debska et al (2003)29 cite De Soete's article but perform 

unweighted CA in their study of the relationship between aromatic properties and 

molecular structure. Chung et al (2006)27 analyzed De Soete's 1986 data set, 

applying three different variable weighted k-means clustering methods, but not 

De Soete's ultrametric optimization. Chung et al compared their own k-means 

approach to that of Makarenkov et al (2001)50 who had extended De Soete's 

approach in their own k-means clustering algorithm. DeSarbo et al (1988)30 

developed an expectation-maximization algorithm using normal mixture 

distributions. DeSarbo et al (1989)31 developed an approach combining 

piecewise multiple regression with CA. De Soete (1987)32 developed a method of 

VWCA with topological constraints on ultrametric (and "additive") trees imposed, 

for example a constraint whereby all the pairs in a selected subset of objects 

compared only with objects outside the subset satisfy as well as possible 

ultrametricity (as opposed to unconstrained, which we consider, where all 

ordered triples are considered equally). De Soete released software for his 1986 

algorithms in 1988.33 Donoghue (1995)34 studied a variety of CA methods (mainly 

varying linkage method) under a variety of within-cluster covariances. While 

citing De Soete, Donoghue did not report on the performance of VWCA per se. 

He reported that covariance in the same direction as the separation of clusters 

helped facilitate cluster recovery—we will actually find mixed results on that 

question in the investigation of our method. In a section on variable weighting in 

the 2001 textbook "Cluster Analysis" (fourth edition), Everitt et al36 cited De 
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Soete's 1986 paper, as well as the papers described above by Milligan and 

Gnanadesikan (among others) that investigated the approach. Fovell et al 

(1993)37 cited De Soete as a primary example of VWCA, however they were 

more interested in lower weighted variables as they represented less 

"redundancy". Fowlkes et al (1988)38 developed a variable selection method 

involving simultaneous CA. Friedman et al (2004)39 and Soffritti (2003)59 

developed an approach for identifying different variable subsets to be deemed 

important for different clusters, based on sequential joining of variables according 

to Rand indices for comparing partitions. Friedman and Soffritti's approaches, like 

most alternatives to De Soete's method, involved performing CA within the 

algorithm. Hand et al (2005)43 cited Friedman's study of differential variable 

weighting for clusters, and pointed out the lack of support for this concept as a 

limitation in De Soete's approach. We acknowledge the possibility of competing 

cluster structures, or analogously, disjoint relationships between variables. In 

such cases our method will generally compromise (with some exceptions to be 

explored later), spreading the weight between those variables that participate in 

some relationship. While this is useful, as Hand suggested, it would also be 

informative to know which variables are involved in different relationships than 

others. This can actually be accomplished with De Soete's method (and ours) 

with multiple parallel analyses using different groups of input variables. Gordon 

(1990)41 developed a method of subjective assignment of weights by an analyst 

studying the training portion of a data set. Green et al (1990)42 modified the 

method of DeSarbo et al (1984)16 to obtain weights while simultaneously 
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performing k-means CA. Jing et al (2007)47 developed a k-means CA algorithm 

that also produced different weights for different clusters. Lapointe et al (1992)48 

developed a method of comparing "additive trees" (structures with the property 

optimized in De Soete's 1986 order n4 algorithm upon which we do not build due 

to prohibitively high order). Meulman et al (1993)51 cite De Soete's method as 

having aspects similar to their stratified principal components analysis studying 

the effect of subjective point of view in forming groups of people. Milligan et al 

(1988)53 cite VWCA in passing, when looking at the related topic of variable 

standardization in CA. Milligan (1996)55 cites De Soete's approach in a brief 

section on VWCA in a general chapter on CA. Morris et al (2006)57 cite De 

Soete's VWCA papers only in passing, their focus is an applying the results of a 

CA to the task of identifying consumer "archetypes". Steinley et al (2005)61 

developed a parametric approach to randomly generating overlapping clusters 

for assessing the performance of CA methods, and cited De Soete when 

suggesting that possible future extensions of their method could include VWCA. 

Steinley (2006)62 cited De Soete among others in a brief section on VWCA in his 

paper on k-means CA. Steinley et al (2008)63 cited De Soete among others when 

mentioning VWCA before making a comparison of several (mainly parametric) 

variable selection methods for CA. Tsai et al (2008)65 developed a method of 

variable weighting incorporated within an iterative k-means CA algorithm. Finally, 

van Buuren et al (1989)66 developed an iterative k-means CA approach for 

mixed-type data that involved subjectivity on two levels, choice of both k and p, 

the latter being the dimensionality of the solution (≤ the number of variables). 
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Despite the broad coverage of this topic, it appears that little work has 

been done on methods of VWCA that do not involve actually performing some 

variant of CA, and the pitfalls that go along with that. Since "CA" are the last two 

letters in "VWCA", this might not be surprising. However, for the purposes of HG 

where at least the visual "enhancement" to the cluster solution is extremely weak 

(as we shall see is often true), the cluster solution is merely a nuisance 

parameter and an additional source of variation and subjectivity, and it is the 

variable weights that provide the most valuable information. For our purposes 

then, it seems natural to begin from De Soete's 1985/6 approach minimizing an 

ultrametric loss function, and extend and improve upon that as needed to 

accomplish our goal of HG for mixed-type data. The idea of utilizing VWCA for 

HG has not been explicitly considered within the publications we reviewed. 

However, HG is a natural byproduct of CA, and therefore the idea that HG will 

prove to be a useful application of the variable weights is promising. This is 

especially relevant considering that it has been suggested by some (e.g., 

Gnanadesikan) that De Soete's approach to VWCA provides only a lackluster 

benefit to known cluster recovery; the order of the variable weights may be more 

clearly informative, one can hope. In fact that is what we will find. The variable 

weights will be the focus in this thesis, and we intend to utilize them to generate 

hypotheses without having to perform cluster analysis at all. 

To begin with, let us consider some of the shortcomings of De Soete’s 

method: a) data must consist only of continuous variables; b) the ultrametricity 

loss function is not sufficiently penalized for variable weights estimated at 0, 
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which can lead to degenerate solutions in which one variable is assigned a 

positive weight and all other variables weights of 0 (not useful for HG), and/or 

can lead to non-unique solutions involving broad regions exactly tied with the 

minimum possible loss function; c) only first-order derivatives are used, which 

generally requires more iterations, and depending on stopping rules can lead to 

estimates that are not close to a local minimum; and d) the method is order n3, 

which is inherently slow and limits the practical application of this methodology. 

In this thesis, we will address the first three of the aforementioned 

problems. We are stuck with the fourth. First, we will develop a variable-

weighted, multivariate distance formula resembling Euclidean distance but 

designed for mixed-type data, data consisting of zero or more variables of types 

continuous (e.g., body mass index), ordinal (e.g., income quintile), nominal (e.g., 

ethnicity), binary symmetric (e.g., gender) and binary asymmetric (e.g., a rare 

disease). (Throughout this thesis, these types may be referred to respectively as 

types C, O, N, S and A.) Based on this weighted multivariate distance formula, 

we will develop an ultrametricity optimizer function—appropriately penalized for 

0-weight solutions—which, when minimized uniquely, will describe (via the 

resultant variable weights) which variables participate most strongly in the object 

groupings in the data. We will utilize second-order derivatives to ensure faster, 

more accurate estimation of the variable weights. Specifically, we will obtain 

convergence in relatively few iterations, and ensure that we have located true 

local minima, as opposed to De Soete’s method. 
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Our extension of the De Soete method is a variable-weighted ultrametric 

optimization for mixed-type data (VWUO-MD). Other improvements we will make 

will include support in VWUO-MD for object-weighted data, such as complex 

survey data in which each object (person) can represent several (not necessarily 

an integer number of) objects.67 We will develop two covariance matrix 

estimators to describe the (co)variability of the weight estimates: we will first 

describe a central limit theorem (CLT) based estimator,68 develop a U-statistic-

based covariance estimator,69,70,71 and develop a bootstrap estimator.72 We will 

investigate how well VWUO-MD performs on an artificially constructed data set 

(are the estimates consistent with a priori latent clusters and the variables 

associated with them in the random generation of the data), as well as study the 

performance of the variance estimators in Monte Carlo simulations. Since we are 

focusing on the HG potential of VWUO-MD, we will also perform Monte Carlo 

simulations to study the performance of VWUO-MD on a variety of data sets 

involving clustered as well as non-clustered (single group) linear and quadratic 

relationships. In addition, we will perform a VWUO-MD analysis of real-world, 

sample- and bootstrap-weighted, mixed-type complex survey data: a selected 

subsample of the Joint Canada/United States Survey of Health (JCUSH). We will 

investigate sets of variables consisting of all five types (C, O, N, S and A), 

ranging across subject matter from socio-demographic to disease specific 

variables, to generate new hypotheses. We will test those hypotheses on a 

separate subsample of the JCUSH data. To accommodate all of these analyses, 

we will develop a complete software package to perform VWUO-MD analyses. 
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It is our hope that in this thesis we will successfully develop a new 

hypothesis generating methodology that is suitable for analyses of mixed-type, 

multivariate data from all fields of research, including (for example) medicine, 

basic biology, genetics, population health, psychology, physics, chemistry, 

finance, economics and more. Literally any field in which mixed-type data are 

collected might benefit from hypothesis generation. As the prevalence, power 

and storage capacity of modern computers continues to grow, so too do the 

quality and quantity of data that can be analyzed with this new approach to 

hypothesis generation. 
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CHAPTER 2: THE ESTIMATOR 

2.1 Dendrograms  

While we intend to focus on HG, De Soete's VWCA method was originally 

designed as an improvement to data for the purpose of CA. Therefore we will 

briefly review a simple tool for assessing hierarchical clustering strength in data: 

the dendrogram.12,36 The dendrogram is a tree diagram in which distance 

between subsequently joined clusters is plotted against object labels. The roots 

lie at each object on the horizontal axis (0 line). Vertical lines extend upwards 

from each object to the distances at which the smallest clusters are fused. 

Horizontal lines from there join objects with their fellow cluster members. Vertical 

lines extend upwards from the center of each horizontal line to the distance at 

which those clusters are fused with the next closest clusters or members. This 

structure is repeated upwards until all objects are eventually fused into one mega 

cluster. The shape of the dendrogram can depend on a number of factors, most 

notably any natural grouping that occurs in the data. Evidence of clusters is 

found when vertical lines to the next vertices up are especially long in a common 

vertical span across all groups. This suggests a number of clusters equal to the 

number of vertical lines in that range. Other factors that can influence the graph 

include the cluster linkage method used to generate the tree. There are many 

linkage methods available in cluster analysis, some common ones being single 

linkage (nearest neighbor, where distance between clusters is the distance 
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between nearest neighbors); complete linkage (farthest neighbor); centroid 

linkage, and more. In this thesis, any time we explore the clustering strength of 

data with a dendrogram, we will use single linkage. This will not be our focus but 

an aside. For a comprehensive review of the other linkage and graphing methods 

available in cluster analysis, see Cluster Analysis by Everitt et al.36 

To demonstrate the dendrogram, an example data set with three well-

defined clusters on two variables is shown in Figure 1. Variables C1 and C2 were 

generated from a mixture distribution of multivariate normal (MVN) distributions 

with three distinct groups. The dendrogram (single linkage) fit to these data is 

shown in Figure 2. This graph clearly indicates the clustered structure of these 

data and suggests three groups. An example data set with no natural group 

structure on two variables is shown in Figure 3. Variables C1 and C2 were 

generated from independent random Uniform(0,1) distributions. The dendrogram 

(single linkage) fit to these data is shown in Figure 4. This graph does not 

suggest any grouping in these data. 
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Figure 1. Example data set with three well-defined clusters; variables C1 and C2 arise from 
a mixture distribution of MVN distributions 
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Figure 2. Dendrogram (single linkage) fit to example data set with three well-defined 
clusters 
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Figure 3. Example data set with no natural group structure; variables C1 and C2 are 
independent random Uniform(0,1) 

 

 21



 

Figure 4. Dendrogram (single linkage) fit to example data set with no natural group 
structure 

 

2.2 Ultrametricity 

The ultrametric property according to Everitt et al36 asserts that dij ≤ 

max(dik,djk) for all i, j and k, where dij is the distance between objects i and j. As 

stated by Everitt et al, “An alternative way of describing this property is that for 

any three objects, the two largest distances between them are equal.” When the 

ultrametric property is not satisfied, inversions can occur in the dendrogram, in 

which clusters joined at a later stage are fused at a distance that is closer than a 

fusion that occurred earlier. The principal aspect of the ultrametric property as far 

as VWUO-MD is concerned however is that greater ultrametricity generally 

corresponds to greater separation of clusters in the data, which, as described in 
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the introduction, may lead to a method for HG. To see intuitively how 

ultrametricity relates to separation of clusters, consider the two data sets 

depicted in Figure 5. The data set on the right exhibits a higher degree of 

ultrametricity; that is, triples of objects between clusters have a higher degree of 

(relative) equality between the two longest distances. This data set also exhibits 

a clearer separation between clusters. 

Figure 5. Ultrametricity and cluster separation; closer relative equality between the two 
longest distances of a triple of objects implies better cluster separation 

 

However, we ought to describe this more coherently, and also consider 

how ultrametricity relates to situations with more than two clusters, or only one 

group of points scattered about some shape (e.g., a linear relationship in two 

dimensions). We will explore these questions practically later on, in Chapter 5: 

Exploratory analyses of distributions for hypothesis generation. For now, let us 

consider situations with two and three clusters. With two well separated clusters, 
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a given triple of points either has two points close together and one far away from 

those, or has all three close together. In either case, the difference is small 

between the two longest sides of the triangle joining those three points. With 

three or more clusters, relative placement of the clusters affects ultrametricity. 

For example, placing the clusters at the vertices of an isosceles triangle (two 

equal angles) with the third angle ≤60 degrees is consistent with ultrametricity, 

since in any given triple of points, either: i) at least two points belong to the same 

cluster in which case ultrametricity is well satisfied as just described; or ii) the 

three points all belong to different clusters but the difference between the longest 

two sides is small due to the shape of the triangular cluster placement. On the 

other hand, placing three clusters at the vertices of an isosceles triangle with the 

third angle >60 degrees, or at the vertices of a scalene triangle, is less consistent 

with ultrametricity, since for triples with points in all three clusters, the difference 

will be larger between the two longest sides of the triangle joining the points. 

Ultrametricity lies at the heart of De Soete’s (1985/6) method, and the 

VWUO-MD method. By finding variable weights that maximize the degree of 

ultrametricity in a data set, larger weights ought to correspond to dimensions 

involved in the greatest separation of data, and therefore be useful for generating 

hypotheses from the candidate variables. 

2.3 Variable-weighted, multi-type, multivariate distance 

Before we can optimize ultrametricity with variable weights, we require an 

n by n proximity matrix that depends in some way on those weights. In order to 

obtain this from our data, we need a variable-weighted, multi-type, multivariate 
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distance formula. Our strategy for constructing this distance will be: i) to develop 

a type-specific multivariate distance for each type-specific subspace (subset of 

variables corresponding to one variable type; there will be five type-specific 

multivariate distances); and ii) to combine these type-specific distances into one 

multi-type, multivariate distance. 

For continuous variables, the type-specific (squared) distance between 

objects i and j are the (squared) weighted Euclidean distance: 
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where there are pc continuous variables, and ql is a normalizing constant for 

variable xl to facilitate a scale-free comparison between variables (this is 

explained further in the next section). It is noteworthy that the variable weights wl 

appear in the squared distance scale rather than the distance scale. This was 

done according to the method of De Soete. De Soete’s variable weights were 

constrained to sum to 1; in VWUO-MD, variable weights are constrained to sum 

to the number of variables. This approach was taken to ease interpretation of 

weights; weights below or above 1 are below or above average in the set. 

The other four type-specific distance formulas were suggested 

conceptually by Dr. Stephen Kwek of the Human Genome Laboratory in the 

Department of Computer Science at the University of Texas at San Antonio13 and 

are consistent with Johnson and Wichern (2002)'s12 treatment of binary 
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variables. We converted these formulas into differentiable algebraic expressions. 

Where applicable, both the conceptual and algebraic expressions are provided 

here. 

For ordinal variables, the type-specific (squared) distance between objects 

i and j is simply: 
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where variable zl is the rank of variable xl. 

For nominal variables, the type-specific distance between objects i and j is 

based on: 

p
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where there are m matching variables from p nominal variables. Our squared 

(squared) distance motivated by this is: 
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For binary symmetric variables, the type-specific distance between objects 

i and j is based on: 
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where there are a matching positive (=1) variables, d matching negative (=0) 

variables, and b+c mismatching variables, from a total of a+b+c+d binary 

symmetric variables. Binary symmetric variables should usually involve a 

"common" outcome (e.g., >20%). Our (squared) distance is: 
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However, for consistency, VWUO-MD treats binary symmetric variables as 

nominal, which is easily shown to be equivalent. 

For binary asymmetric variables, the type-specific distance between 

objects i and j is based on: 

cba

cb
d

Nij 


    (Kwek) 

where there are a matching positive (=1) variables, d matching negative (=0) 

variables, and b+c mismatching variables, from a total of a+b+c+d binary 

asymmetric variables. d was dropped from the denominator in the binary 

asymmetric formula under the notion that two objects matching on the basis of 

negatives (=0) is not informative. For example, two objects whom do not have a 

given rare condition are not necessarily “similar” because of that fact, but nor are 

they dissimilar. Binary asymmetric variables should usually involve an 
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"uncommon" outcome (e.g., ≤20%), but conceptual considerations should also 

be made, i.e., if an outcome is uncommon but matching 1’s is conceptually no 

different than matching 0’s, the variable should be treated as binary symmetric. 

Our (squared) distance is: 
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The derivations above are easy to follow by assuming all weights and 

normalizing constants equal 1. Importantly, for even arbitrary weights and 

normalizing constants, when all variables match perfectly between two objects, 

every type-specific distance above equals 0. 

Finally, the four type-specific distances are combined as the square root of 

the sum of squared type-specific distances, similar in structure to the formula for 

Euclidean distance: 

2222

ANOC ijijijijij ddddd   

2.4 Transformation of variable weights 

Because the variable weights wl are constrained to sum to the number of 

variables p, it is more convenient to differentiate distance functions with respect 
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to p-1 unconstrained vl related to the variable weights in the following manner 

(De Soete, 1985/6): 
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Note that De Soete did not constrain his weights to sum to p, but rather to 

1. We have chosen to constrain our weights to sum to p for easier interpretation; 

regardless of the number of variables, a weight >1 is above average in relative 

importance. Like De Soete, the VWUO-MD method will obtain the optimal set of 

vl and then transform those into constrained wl. 

2.5 The ultrametric loss function 

The ultrametric loss function that is minimized with respect to the vl to 

produce optimal and informative variable weights differs in an important way 

between VWUO-MD and De Soete: 
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In LDS, Ω is the set of all triples of objects i, j and k that fail the ultrametric 

property, and dik and djk are, without loss of generality, the two longest sides of 

the triangle of distances between objects i, j and k. However, it can easily be 

seen that defining Ω as the set of all triples of objects regardless of ultrametricity 

is equivalent, because the contribution to LDS of the “difference” between two 

equal distances is 0. For LU then, Ω is defined as the set of all triples of objects 

regardless of ultrametricity. 

As reported in De Soete, “The denominator in [LDS] is necessary to 

prevent degenerate solutions where one weight is [p] and the others zero.”18 For 

the purposes of HG, it is clear that such solutions can be termed "degenerate", in 

that they certainly are not very informative. Ideally, every variable would receive 

a positive weight, so that one could rank the variables according to involvement 

in the clustering. In fact it does not appear the denominator in LDS sufficiently 

penalizes the loss function for zero weights, or even for the more extreme 

situation described by De Soete above where all but one variable is weighted 0. 

To see this, simply consider that even with all but one dimension weighted 0, the 

denominator is still a non-zero quantity. If the numerator can be made to equal 0, 

which we discover in 4.1 The improved penalty for degenerate solutions occurs 

in De Soete's own 1986 data set, then such a degenerate solution arises. 

Degenerate solutions as described by De Soete put all objects onto the same 

axis in p-space (Rp in the case of all continuous variables). De Soete obtained 

non-degenerate solutions when he tested his method on those data, however 

that may be the result of his first-order estimation (conjugate gradient) method 
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which apparently (evidenced by his results) can lead to solutions that are far from 

any local minima. This is discussed in 4.1 The improved penalty for degenerate 

solutions, along with an illustrative example. 

Despite the problems with De Soete’s penalty, it is clear that such a 

penalty is an important concept, because what use (how informative) is a solution 

of all wl=0 except for one ws=p for HG? This idea motivated the penalty placed in 

the denominator of the VWUO-MD loss function LU, the product of variable 

weights (raised to the power of 2/3). This operates in a trivial manner: if any 

weight equals 0, the loss function is infinity if the numerator is non-zero, or else it 

is undefined (0/0). In either case a solution with a weight of exactly 0 should not 

form the minimum on the loss function surface. The root was taken to increase 

the differential between small and large weights in estimated variable weight 

vectors, which in turn better enhances the differences between variables. Other 

roots were attempted including the pth root, which has the nice theoretical 

property of being in the unit (single-variable) scale. However, numerical instability 

was encountered with high-dimensional problems (≥20 dimensions) with anything 

smaller than a power of 2/3. 

2.6 Differentiability of the ultrametric loss function 

Before we proceed to develop derivatives for estimating variable weights, 

a discussion about differentiability is warranted. Differentiation of LU is not 

necessarily a straightforward matter. The concern is the order statistics in the 

numerator. As the variable weights are varied throughout the p-dimensional 

parameter space (p-1 free parameters), the order of the three distances between 
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any given triple in Ω can change many times. This raises the question about 

whether this produces a non-differentiable crease in LU at such boundaries. If so, 

one might expect to encounter difficulties in first-order estimation methods, and 

possibly even worse problems with second-order methods. We should not be 

concerned about creases where the order of the largest two distances change 

places with each other, because the squared difference doesn’t care about the 

order of the two largest distances. Our only potential concern is boundaries at 

which the identity of the smallest of three distances changes. To consider this 

potential problem, first note that the derivatives of LU are functions of the 

derivatives of the distances between triples of points. In the simplest case where 

n=3, there are only three distances (one triple), two of which are labeled the 

largest and contribute to the loss function, while the third (smallest) does not. 

For each type, we created two- and three-variable data sets with one triple 

of points (n=3) set up so that the identity of the smallest distance changed as w 

(the vector of wl) was varied through p-space. We solved and plotted LU and its 

derivative function with respect to each wl, where we define wp as p minus the 

sum of the other wl. The results showed that the first-order derivative acts as a 

step function at such creases, that is, it approaches a different value from either 

side of the crease. Since the derivative depends at such boundaries on which of 

the three distances is labeled “smallest”, yet “smallest” is not uniquely defined on 

a crease, the loss function is not (first- or second-order) differentiable on such 

creases. 

 32



 

The situation is not hopeless, however, as far as numerical estimation in 

real data is concerned where n>3. There are n choose 3 triples in Ω which gets 

big very fast (for example, 10 choose 3 is 120, and 20 choose 3 is 1140), and it 

seems extremely likely that at most one unique triple of points will hit a crease of 

equality for any given w in p-space. This leaves n choose 3 minus 1 well 

behaved triples in Ω contributing the bulk of the derivatives. We can thus hope 

that the error associated with the derivative step functions for at most one given 

triple in Ω at any w in p-space is negligible, and amounts to numeric error. To 

help answer this question when applying our methodology, the software we 

developed for VWUO-MD has (as we will describe in Chapter 3: VWUO-MD 

software: VWUO.exe) detailed reporting of current gradient vectors and Hessian 

matrices during estimation and at the final solution. Fortunately, with the data we 

analyzed during development of the software (including real and simulated data 

of sample sizes from a handful >3 to >100), practically speaking the second-

order estimation algorithm performed very well, as we will see. The only 

indication of practical shortcomings was observed in two-variable, categorical 

analyses. Fortunately, no practical application of VWUO-MD ought to involve 

only two variables. 

2.7 Derivatives for the estimation of variable weights 

As mentioned earlier, De Soete utilized a first-order conjugate gradient 

method to estimate the weights. The primary advantage of this approach is, 

according to De Soete, that “... this method requires only the first order 

derivatives...”.18 It is however possible that it was in part this method that led to 
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De Soete’s oversight about the penalty for degenerate solutions. We will explore 

this idea in 4.1 The improved penalty for degenerate solutions. In our experience 

during the development of VWUO-MD, first-order methods which purport to 

converge when the gradient becomes “sufficiently small”, may in fact “converge” 

in the middle of a gradual slope nowhere near a local minimum. It would seem 

that such methods are at least in this sense inferior to methods that utilize 

second-order derivatives for guiding how far to move against the gradient vector 

at each step. There are other important disadvantages to first order methods, for 

example, “optimization techniques that do not use the Hessian usually require 

many more iterations than techniques that do use the (approximate) Hessian, 

and so they are often slower.”73 With an order n3 algorithm, fewer iterations is an 

important consideration. Now that being said, we did not perform an exhaustive 

exploration of first-order methods. Rather, we looked at De Soete's 1986 failed 

estimation on his own data set using a conjugate gradient approach (see 4.1 The 

improved penalty for degenerate solutions), attempted some variants of steepest 

descent on VWUO-MD, then proceeded to Newton-Raphson involving the 

second-order derivatives. 

The loss function LU, and its gradient and Hessian with respect to v (the 

vector of vl), are all in the form of a sum over Ω, where (recall) Ω is defined as the 

set of all triples of objects. LU is a function of distances between objects and the 

variable weights wl. The distances between objects are (recall) functions of type-

specific distances, which are functions of the weights wl. The variable weights are 

functions of the unconstrained vl. We will perform Newton-Raphson estimation of 
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the optimal v (that which minimizes LU) by differentiating LU with respect to the vl. 

Multiple applications of the chain rule on the individual terms in Ω is the easiest 

way to approach this, and this will require first- and second-order derivatives of 

the type-specific distances between two arbitrary objects, and the variable 

weights in w, with respect to the vl. Here we present formulas in matrix form for 

type-specific distances as functions of v, as well as their gradients and Hessians 

with respect to v. 

For continuous variables (type C), these quantities are: 
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type C. vC is the pC by 1 type C sub-vector of v. q is the vector of normalizing 

constants ql. qC is the pC by 1 type C sub-vector of q. q(p-1) contains the first p-1 

elements of q. xi is the pC by 1 vector of type C variables recorded on object i. If 

the data contain variables of type O, N or A, then  is a (p-1) by 1 super-

vector of xi, with non-type C elements filled with 0s and the pth element removed. 

Otherwise  is a (p-1) by 1 sub-vector of xi with the pth element removed. 
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For ordinal variables (type O), these quantities are: 
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O1  is the (p-1) by 1 vector of indicators for whether the ith variable of the first p-

1 variables is type O. vO is the pO by 1 type O sub-vector of v. qO is the pO by 1 

type O sub-vector of q. zi is the pO by 1 vector of type O variables recorded on 

object i as ordinal ranks of the categories (e.g., <unable, very difficult, somewhat 
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difficult, a little difficult, no problem> would be coded <1, 2, 3, 4, 5>). If the data 

contain variables of type N or A, then  is a (p-1) by 1 super-vector of zi, with 

non-type O elements filled with 0s and the pth element removed. Otherwise  

is a (p-1) by 1 vector made from zi  with its last element removed, left padded 

with the number of non-type O elements filled with 0s. 
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iz

)1( p
iz

For nominal variables (type N), including binary symmetric variables, 

these quantities are: 
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)1( p
N1

)1( p
ix

 is the (p-1) by 1 vector of indicators for whether the ith variable of the first p-

1 variables is type N. vN is the pN by 1 type N sub-vector of v. qN is the pN by 1 

type N sub-vector of q. xi is the pN by 1 vector of type N variables recorded on 

object i, and  is the element-wise vector of 0/1 indicators signifying 

equality between objects i and j on the type N variables. If the data contain 

variables of type A, then  is a (p-1) by 1 super-vector of , with 

non-type N elements filled with 0s and the pth element removed. Otherwise 

 is a (p-1) by 1 vector made from 

ji xx 

)1()1(   p
j

p
i xx ji xx 

)1(  p
jx ji xx   with its last element 

removed, left padded with the number of non-type N elements filled with 0s. 

For binary asymmetric variables (type A), these quantities are: 

ijijij GFd
A
2  

   22 #1#
ijijijijij GFGGFd

A
  

     
   32

222

2##

1#1#1#

ijijijijijijij

ijijijijijijijijij

GFGGGFG

GFGGGFGFd
A





H

HH
 

where: 

    
2##

11





  

AAjiij diag
c

F vqxx  

         
2##

112 ,
1

,
2






  

AAjiAAji
A

Aij diag
c

diag
c

p
pG vq0x0xvq0x0x  

 39



 

         

     vvqxx

vqxxxxq

#
2

#
2

2##
1

2

1)1()1(1
)1(






 








AAji

AAji
p

j
p

ipij

diag
c

diagdiag
c

F
 

     

    

         

     vvq0x0x

vq0x0x0x0xq

vvq0x0x

1q0x0x

#,
2

,#,
2

#,
2

,
2

2##
1

2

1)1()1(1
)1(

1

23

)1(1
)1(

)1()1(






 



















AAji

AAji
p

j
p

ip

AAji
A

p
Ap

p
j

p
i

A
ij

diag
c

diagdiag
c

diag
c

p

diagdiag
c

p
G

 

        

         

         

    

     vvvqxx

Ivqxx

qxxvvqxx

vxxqvqxx

qxxxxqH






 






 






























#
8

#
2

#
4

#
4

2

2##
1

3

)1(

2##
1

2

1
)1(

)1()1(1

2

)1()1(1
)1(

1

2

1
)1(

)1()1()1()1(1
)1(

AAji

pAAji

p
p

j
p

iAAji

p
j

p
ipAAji

p
p

j
p

i
p

j
p

ipij

diag
c

diag
c

diagdiag
c

diagdiag
c

diagdiag
c

F

 

 40



 

    

    

    

    

        

         

         

    

     vvvq0x0x

Ivq0x0x

q0x0xvvq0x0x

v0x0xqvq0x0x

q0x0x0x0xq

vvvq0x0x

Ivq0x0x

q0x0xv

v0x0xqH






 






 




















































#,
8

#,
2

,#,
4

,#,
4

,,
2

#,
6

#,
2

,
2

,
2

2##
1

3

)1(

2##
1

2

1
)1(

)1()1(1

2

)1()1(1
)1(

1

2

1
)1(

)1()1()1()1(1
)1(

1

25

)1(
1

23

1
)1(

)1()1(
23

)1()1(1
)1(23

AAji

pAAji

p
p

j
p

iAAji

p
j

p
ipAAji

p
p

j
p

i
p

j
p

ip

AAji
A

pAAji
A

p
p

j
p

i
A

p
j

p
ip

A
ij

diag
c

diag
c

diagdiag
c

diagdiag
c

diagdiag
c

diag
c

p

diag
c

p

diag
c

p

diag
c

p
G

 

vA is the pA by 1 type A sub-vector of v. qA is the pA by 1 type A sub-vector of q. 

xi is the pA by 1 vector of type A variables recorded on object i,  is the 

element-wise vector of 0/1 indicators signifying inequality between objects i and j 

on the type A variables, and 

ji xx 

 0x0x  ji ,  is the element-wise vector of 0/1 

indicators signifying equality to 0 on both objects i and j on the type A variables. 

 and )1()1(   p
j

p
i xx  0 )1( p

jx0x  )1( ,p
i  are (p-1) by 1 vectors made from ji xx   

and  0jx0x i ,  respectively with their last elements removed, left padded with 

the number of non-type A elements filled with 0s. 
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2.8 Newton-Raphson estimation of variable weights, and use of 
sample weights 

The quantities obtained in the previous section are utilized in Newton-

Raphson to find the v that minimizes LU. Each Newton-Raphson iteration is 

updated from the derivatives obtained on the last iteration as follows: 

   tUtUtt LL vvHvv  


1
1  

The VWUO-MD loss function, gradient and Hessian (with respect to v) can be 

expressed as (possibly weighted) sums over Ω: 

  
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where: 
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with: 

 2jkikijk ddF   
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where, without loss of generality, dik and djk are the two longest distances 

between objects i, j and k. ti is the sample weight for the ith data record if the data 

have sample weights, or 1 otherwise. 

The sample weight terms ti were added to the loss function to facilitate 

variance estimation by bootstrapping. However, they can also facilitate situations 

of a simple random sample (SRS) with multiple instances of data vectors; use of 

the weight terms is computationally efficient especially with an order n3 method. 

We will discuss these topics in 2.10 Covariance estimation and  versus wŵ . 
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Newton-Raphson is performed starting with w=1, and the procedure is 

iterated until the largest change in the elements of w is smaller than a pre-

specified convergence criterion. The final solution can be denoted . ŵ

2.9 Normalizing multipliers and the calibration data set 

The normalizing constants in the previous section are first, for each 

variable, set to the range. For a continuous variable, the range is the maximum 

value minus the minimum value in the data. Conceptually, larger differences 

contributing to the ultrametric loss function LU should have less importance if the 

range of the corresponding continuous variable is also very large. Specifically, for 

continuous variables, the solution should be invariant to scale (affine 

transformations). For an ordinal or nominal variable, the range is the maximum 

integer label minus the minimum integer label. Conceptually, larger differences 

(less equality) contributing to the ultrametric loss function should have less 

importance if the corresponding ordinal or nominal variable has many categories, 

since it is generally harder to achieve equality on multinomial variables with many 

categories. Treating binary asymmetric variables in the same way, the 

normalizing constant is initially set to 1 for those variables. 

The above-described initial normalizing constants provide a fair 

comparison between variables of the same type, but do not address comparisons 

between variables of different types. For example, a type C variable might show 

very clear clustering properties with respect to a latent group structure while a 

type N variable is independent of any latent grouping in the data, yet without 

appropriate normalizing constants the type N variable might receive a higher 
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weight due to making a smaller contribution to LU solely due to the difference in 

type-specific distance formulas. We address this issue in a calibration phase, 

where normalizing multipliers are developed to apply to the initial normalizing 

constants for a fairer comparison between variables of different types. To this 

end, artificial data are constructed (the calibration data set) containing four 

variables of each type (16 in total), two that are strongly clustered according to a 

grouping variable g and two that are independent of g. In a "fair" comparison, the 

eight clustering (by g) variables’ weights (regardless of type) should all receive 

weights greater than the eight independent (of g) variables’ weights. In addition, 

the average variable weight of each type should equal 1 on this calibration data 

set (a fair comparison between types). To achieve this, the calibration data set is 

fed into the VWUO-MD procedure with normalizing multipliers initially set to 1. 

Upon convergence, the average variable weight for each type is calculated. For 

each type X (where X=C, O or N), the normalizing multiplier for type X is 

multiplied by the ratio of average type A variable weight over average type X 

variable weight. The idea is to increase the impact of under-weighted types and 

decrease the impact of over-weighted types. The normalizing multiplier for type A 

variables is always 1 (the anchor type). The variable weights are then re-

estimated using the new normalizing multipliers and the process is continued 

until the normalizing multipliers converge to within a pre-specified convergence 

criterion. This procedure can be lengthy, potentially requiring several hundred 

iterations in total, even if estimation of variable weights under each set of 

normalizing multipliers requires only a handful of iterations to converge. Upon 
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convergence of the normalizing multipliers, the four variables weights of each 

type when obtained on the calibration data set will average 1. 

2.10 Covariance estimation and  versus w ŵ

The variable weights in w  are supposed to be informative about each 

variable’s participation in the object groupings in the data, and consequently 

and/or additionally about related variables promising for HG. However, if one 

estimated variable weight is bigger than another, how can one know whether that 

represents a legitimate difference in grouping participation, or is merely due to 

chance? For this purpose, a covariance matrix for  is required. Inferential 

statistical testing using  would be for differences between the elements of w. 

Before we can consider this, it is necessary to define w. The data set on which 

 was obtained is usually a random sample from a bigger population, e.g., an 

SRS of all women aged 18 to 24 in Canada on July 1st, 2008. Further, the 

population can be seen as a random sample from the conceptual “super 

population” (SP) of all subjects that might have been given the characteristics of 

the subjects and country. This conceptual SP is a relatively stable entity that will 

not change with every new entry into or exit out of the population. Simply put, w 

is the set of minimizing weights for the SP. That is, if one were to gather the 

entire SP into a (generally infinite) data set, then w would minimize LU as 

calculated on that data set. Equivalently, w minimizes the expectation of the loss 

function for a randomly selected triple of points.  estimates w. 

ˆ

ŵ

ŵ

ŵ

ŵ
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To estimate the covariance matrix of , we will investigate three 

approaches. The first approach is an asymptotic method based on the central 

limit theorem (CLT),

ŵ

68 the second is a U-statistic-based variance estimator,69,70,71 

and finally we will develop a standard bootstrap variance estimator.72 For 

complex survey samples, bootstrap variance estimation can account for the 

complex survey design, and this can be accomplished with the sample weight 

terms in the loss function. For other asymptotic variance estimation methods that 

we consider, use of the sample weight terms must be restricted to the case of 

multiple instances of data vectors appearing in a simple random sample, where it 

is computationally more efficient to use the weights to represent multiplicity. 

Importantly, an SRS is assumed in such methods. For complex survey designs 

such as stratified or clustered designs where the sample weights represent for 

example the inverse probability of selection, the bootstrap covariance matrix 

estimator should be used. 

2.10.1 Central limit theorem-based covariance matrix estimators 

We first consider an asymptotic method based on the central limit 

theorem.68 This is most easily applied in obtaining  v̂ˆraV , after which, if we find 

that  is a good estimator, the multivariate delta method can be employed t

obtain âV  the (p-1) by (p-1) submatrix of Va eated by 

dropping the last row and column. This should be done at least during theo

development because 

 v̂ˆraV

( pr

o 

. is cr

retical 

 ŵ)1  ŵ)1( pVar   ŵr  

 ŵVar  based on all p variables will be singular since wp is 

p minus the sum of the other weights. Later, we will point out that use of the p by 
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p matrix  ŵˆraV  for estimating the variance of individual weight estimates (o

fact any contrast of weights not involving all of them at once), is asymptotically 

equivalent, more convenient, and possibly more stable than calculating the 

variance of the last variable weight using all the entries in  ŵˆ )1( praV . We 

timating equation for v̂ : 

r in 

begin 

with the es

0v  ˆ  

The primary assumption to be made about v̂  is that it is a sum of approximately 

independent and identically distributed (iid) random variables. (For VWUO-MD 

we assume that the  terms in the sum over Ω in the previous section are at 

least “sufficiently” iid.) We perform a first-order Taylor expansion about v: 

ijkU

 vv  ˆ

1M

 0Hvv   →  vvv ˆ  vH
1

Now suppose there are sequences of constants an and bn such that: 

 Hv nb  and   ,~ 0v Nan   

Then: 

   bn

 

 M0Hvv vv   ~ˆ 1 Na
b
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n

n

n   M,  
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


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
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
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b
Var  

For VWUO-MD: 

1nb  
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 1na  


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UU ijkijk
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and: 
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


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
 ˆˆˆˆˆ

2

n

n
CLT a

b
raV  

Next, the multivariate delta method68 is applied to obtain  from 

. Each entry wij in 

 ŵˆraV

 v̂ˆraV  ŵˆraV  is calculated as follows, derived from the first-

order Taylor approximation of the transformation from v to each wi: 

      vvvvv  ˆˆ www   

       vvv srsr wVarwwwCov  ˆ,   
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and where v(i) is the 0 vector except for the ith element which contains vi. Finally, 

 is the (p-1) by (p-1) submatrix of  ŵˆ )1( praV  ŵˆraV  created by dropping the last 

row and column. 

Unfortunately, it is clear that this estimator will badly underestimate the 

variance (and some practical analyses confirmed this), because the assumption 

of iid terms in  is too strongly violated. To see this, consider the 

following. Ω is the set of all triples of objects in the data, and it is not possible to 

partition Ω into any sized pieces that are iid. This can be shown by the following 

reasoning. Suppose that there were a partition of Ω into k>1 parts such that 

those parts were iid. Then the partition containing a given triple would need to 

contain at least those other triples with common elements to it. Because all 

objects are grouped together with all other objects in the three-tuples in Ω, 

applying similar reasoning to each of the additional members implies by induction 

that the entire set Ω would have to be contained in the one partition. Therefore, Ω 

cannot be split into any number of partitions k>1 such that the members are iid. 





ijkU UkjiL ttt

The CLT-based approach to variance estimation may still be useful to us, 

however, with some modifications that we will cover next. 

2.10.2 The U-statistic-based covariance matrix estimator 

Here we develop an asymptotic method based on U-statistics. U-statistics 

are a class of statistic based on adding terms involving overlapping subsets of a 

data set. As such, the terms within a U-statistic are not generally sufficiently iid 

 50



 

for usual asymptotic theory for iid samples to hold. Retaining the notation of 

Serfling (1980)69, the general form of a U-statistic is: 

 





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iin m

XXh
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U ,...,
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1

 

where  is called the kernel of the U-statistic, the subscript c represents 

"combinations", or "choices" of m objects from the sample of size n, and the 

subscript i indicates that the kernel is symmetric (invariant to the order of its m 

arguments). Our loss function is proportional to a U-statistic: 
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Importantly, the kernel should not be a function of n. Had we divided by n choose 

3, it would have been a U-statistic, but we will see that we can still apply this 

theory to our method. In our case, the arguments of the kernel are the three 

selected vectors of the p variables. 

Essentially we will apply the asymptotic approach of the previous section 

but with a corrected covariance matrix estimate for the gradient vector, and 

corrected sequences of constants as needed. First, we make use of Theorem A 

in Section 5.5.1 in Serfling: If θ=E(h(x1,...,xk)), E(h(x1,...,xk)
2)<∞ and 

1 =Var(E(h(x1,...,xk)| x1))>0 then , or .  )/,(~ 1
2 nmNU n  ),(~)( 1

22/1  mNUn n 0
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In our case, 1  is a p-1 by p-1 matrix, and since θ is the vector 0, the criterion 

E(h(x1,...,xk)
2)<∞ amounts to a finite covariance matrix for the gradient. Un is the 

U-statistic obtained on a sample of size n, in our case the gradient function. As 

mentioned above, m is the number of arguments in the kernel, for us m=3. Recall 

in the previous section that we needed a sequence of constants an such that 

. Under U-statistic theory, an=n1/2 and Σ= . So all that remains 

is to estimate 

 ,~ 0v Nan   1
2m

1 . This might present a serious challenge to solve analytically, 

thanks to a loss function involving order statistics and multi-type, multivariate 

distances, made more convoluted by differentiating to obtain the gradient. 

Instead, we will estimate 1 =Var(E(h(x1,...,xk)| x1)) numerically. The algorithm 

requires processing every triple in the data, which means for every x1 to be 

conditioned on, we must evaluate the kernel at n-1 choose 2 pairs (x2,x3). 

Averaging these vectors will provide us with an estimate of E(h(x1,...,xk)| x1) for 

every x1 in the data set. Finally, from these n estimates we can calculate the 

sample covariance matrix to estimate Var(E(h(x1,...,xk)| x1)). 

If we do not first divide the loss function by n choose 3 to turn it into a U-

statistic, we can still make use of this theory. To do so we need to consider the 

gradient to be its would-be U-statistic multiplied by n choose 3. Therefore, in 

such a case variance estimates as obtained above should be multiplied by n 

choose 3 squared. Another way to see this is to realize that the sequence of 

constants an needed to make   ,~ 0v Nan   would have to be divided by n 

choose 3 when the loss function is not first divided by n choose 3 (or else the 
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gradient blows up because it is a sum rather than an average), and  v̂ˆ CLTraV  is 

proportional to .  We will refer to the U-statistic-based covariance matrix 

estimators as  and 

2/1 na

v̂ˆ UraV   ŵˆ UraV . 

Others (e.g., Lee, 1990) have also suggested bootstrap variance 

estimation for U-statistics, and that is where we will go next.71  

2.10.3 The bootstrap covariance matrix estimator 

Next we investigate a standard bootstrap variance estimator.72 This is 

most easily applied directly to obtain  ŵˆ )1( pBSraV . 

The bootstrap variance estimator is similar to a sample covariance matrix 

of replicated , where each  in the set is obtained on the ith bootstrap 

replicate sample, except that the deviations are between each  and . If the 

original sample is an SRS, a bootstrap replicate sample can be obtained by 

randomly sampling (with replacement) n-1 subjects from the original sample of 

size n. If the original sample is a stratified sample, a bootstrap replicate sample 

can be obtained by randomly sampling (with replacement) nh-1 primary sampling 

units (PSUs) in each hth stratum of size nh in the original sample. The bootstrap 

weight for a record (≥0) is the number of times it appears in the replicate sample, 

adjusted so the weight sums to the original sample size. Other post-stratification 

steps may be performed, depending on what was done to produce the original 

weight (in a non-SRS). 

iŵ iŵ

iŵ ŵ
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Each bootstrap weight defined on all subjects represents one replicate 

sample taken with replacement from the original full sample. On each replicate 

sample, w can be estimated by minimizing the sample weighted loss function 

using the bootstrap weight that represents the given replicate sample. The 

variability of these replicate estimates of w estimates the variance of . With NB 

bootstrap replicate samples, the bootstrap covariance matrix estimator for w  is: 

ŵ

ˆ

     


wwwww ˆˆˆˆ
1
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N
raV  

and  is the (p-1) by (p-1) submatrix of  ŵˆ )1( pBSraV  ŵˆ BSraV  created by dropping 

the last row and column. 
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CHAPTER 3: VWUO-MD SOFTWARE: VWUO.EXE 

The VWUO-MD approach compares the three distances between objects 

in every triple in the data. This is necessarily an order n3 method, which is 

inherently very slow. For this reason, it was particularly important to develop fast 

software for performing VWUO-MD. The program VWUO.exe was developed in 

Microsoft C++ .NET, along with several custom object-oriented matrix classes to 

ensure fast execution. Threading priority control was added to free up computer 

resources for other uses even as lengthy analyses run (e.g., Monte Carlo 

simulations). 

 3.1 Input data set 

The input data set for VWUO.exe should be saved in a tab-delimited text 

file. The first record should list the variable names, including if applicable sample 

and replicate weights. Variable names must begin with a ‘C’, ‘O’, ‘N’, ‘A’ or ‘W’ 

and are not case-sensitive. The first four letters listed correspond to the variable 

types (e.g., a variable starting with an ‘O’ will be treated as ordinal), while 

variables beginning with a ‘W’ are treated as sample or replicate weights. 

The remaining records in the input data set are data records. Type C 

variables can contain any decimal or integer numbers, positive or negative. Type 

O and N variables must contain only nonnegative integers (0 or higher; the 

category labels or ranks). Type A variables must contain only 0s or 1s. Type W 
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variables (sample or replicate weights) must contain nonnegative (≥0) decimal or 

integer numbers. Values of 0 for a weight signify that when that weight is applied 

to an analysis, the records with 0 weight will not be utilized. This is relevant when 

a data set contains bootstrap weights, since bootstrap weights are always equal 

to 0 on one or more records. Table 1 lists the contents of an example input data 

set which contains 10 bootstrap weights plus a full sample weight. In this 

example the full sample weight is identically 1 which is appropriate for an SRS.
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3.2 VWUO.ini configuration file 

When VWUO.exe is first opened, the program looks for a file named 

VWUO.ini in the same folder in which the program was executed. This file can 

contain several options controlling various aspects of the software. If VWUO.ini is 

not found, or is found but does not contain a given option, then that option is set 

to the default for the option. Table 2 lists the available options in VWUO.ini, their 

defaults, and describes their usage. References to surface maps, graphs and 

replays of saved analyses will become clearer over the following sections. 
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Table 2. Available options in VWUO.ini 

Option Description and allowable values Default 

bCalib 

Indicates whether the current analysis is for 
the calibration of normalizing multipliers; 0 
or 1 bCalib=0 

dEqFactMultC 
(Initial, if bCalib=1) normalizing multiplier for 
type C; decimal >0 dEqFactMultC=1 

dEqFactMultO 
(Initial, if bCalib=1) normalizing multiplier for 
type O; decimal >0 dEqFactMultO=1 

dEqFactMultN 
(Initial, if bCalib=1) normalizing multiplier for 
type N; decimal >0 dEqFactMultN=1 

asInitW 
Initial w vector, with elements separated by 
spaces; set to 1 to indicate w=1 asInitW=1 

iMaxIter 

Maximum number of iterations (for each 
estimating phase if bCalib=1), or 0 to 
generate solution files at the initial vector; 
integer ≥0 iMaxIter=100 

iThreadPriority12345 

Integer from 1 to 5 controlling Windows 
thread priority, where: 
1=THREAD_PRIORITY_HIGHEST 

2=THREAD_PRIORITY_ABOVE_NORMAL 

3=THREAD_PRIORITY_NORMAL 

4=THREAD_PRIORITY_BELOW_NORMAL 

5=THREAD_PRIORITY_LOWEST iThreadPriority12345=3 

bAutoMinimize 

Indicates whether the application should 
start minimized (only applies when 
VWUO.exe is run with command line 
parameters); 0 or 1 bAutoMinimize=0 

dConvCrit 

Convergence criterion for estimating 
variable weights and calibrating the 
normalizing multipliers (a setting ≤0 will 
cause the program to run indefinitely which 
can be useful in certain diagnostic 
situations); decimal number dConvCrit=.000001 

iNumRandRestart 

The number of random restarts, each 
occurring after convergence of the current 
process (setting to 0 means no random 
restarts) iNumRandRestart=0 

dMaxRandRestartDist 

The maximum distance to w in p-space (in 
a random direction) upon restarting the 
estimation post-convergence of the current 
process dMaxRandRestartDist=0.5 

dMinValidW 

Minimum allowable weight, below which, for 
numerical stability, the procedure is not 
allowed to go during estimation; decimal ≥0 dMinValidW=0.000001 
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bDeSoeteSurface 

Indicates whether the application should 
read (if available) or create (if directed) a 
surface map based on LDS (De Soete), 
otherwise maps will be based on LU 
(VWUO-MD); 0 or 1 bDeSoeteSurface=0 

dSurfaceByW2Vars 

When 1D surface maps are created on two-
variable data sets, this controls grid 
spacing; decimal >1 dSurfaceByW2Vars=0.001 

dSurfaceByW3Vars 

When 2D surface maps are created on 
three-variable data sets, this controls grid 
spacing; decimal >1 dSurfaceByW3Vars=0.02 

dSurfaceByW4Vars 

When 3D surface maps are created on four-
variable data sets, this controls grid 
spacing; decimal >1 dSurfaceByW4Vars=0.05 

dSurfaceMinW1 

When surface maps are created, this 
controls the minimum weight for the first 
variable at which to estimate the loss 
function (useful for high resolution, localized 
maps), 0 indicates no minimum; decimal ≥0 dSurfaceMinW1=0 

dSurfaceMaxW1 

When surface maps are created, this 
controls the maximum weight for the first 
variable at which to estimate the loss 
function (useful for high resolution, localized 
maps), 0 indicates no maximum; decimal ≥0 dSurfaceMaxW1=0 

dSurfaceMinW2 

When surface maps are created, this 
controls the minimum weight for the second 
variable at which to estimate the loss 
function (useful for high resolution, localized 
maps), 0 indicates no minimum; decimal ≥0 dSurfaceMinW2=0 

dSurfaceMaxW2 

When surface maps are created, this 
controls the maximum weight for the 
second variable at which to estimate the 
loss function (useful for high resolution, 
localized maps), 0 indicates no maximum; 
decimal ≥0 dSurfaceMaxW2=0 

dSurfaceMinW3 

When surface maps are created, this 
controls the minimum weight for the third 
variable at which to estimate the loss 
function (useful for high resolution, localized 
maps), 0 indicates no minimum; decimal ≥0 dSurfaceMinW3=0 

dSurfaceMaxW3 

When surface maps are created, this 
controls the maximum weight for the third 
variable at which to estimate the loss 
function (useful for high resolution, localized 
maps), 0 indicates no maximum; decimal ≥0 dSurfaceMaxW3=0 

dMultAxes 

Controls the apparent length of the gradient 
vectors on graphs of three- or four-variable 
data sets; decimal >0 dMultAxes=1 
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dSurfacePow 

The power to which the loss function should 
be raised when a power transformation of 
the surface map is requested; decimal dSurfacePow=-1 

dPercSurfMap 

The (lower) proportion of the range of the 
plotted surface that should contribute to the 
color gradations, useful when surface maps 
contain very deep wells; decimal >0 and ≤1 dPercSurfMap=1 

iOriginX 

Controls the starting horizontal screen 
position of the graph in three- or four-
variable analyses; integer iOriginX=1150 

iOriginY 

Controls the starting vertical position of the 
graph in three- or four-variable analyses; 
integer iOriginY=-125 

d3dScale 
Controls the starting size of the 3D graph in 
four-variable analyses; integer >0 d3dScale=850 

iSleepMilli 

The number of milliseconds to pause 
between iterations during the replay of a 
saved analysis; integer ≥0 iSleepMilli=25 

bHighRes 

Set to 0 to display 2D and 3D surface maps 
in lower resolution (showing only every 25th 
grid point), or set to 1 to show all grid points bHighRes=1 

bAlwaysUpdateAll 

Set to 1 to clear the display and draw the 
output entirely every refresh (may produce 
clearer output), or to 0 to selectively erase 
and draw only what was updated (may 
produce smoother animations) bAlwaysUpdateAll=0 

 

3.3 Calibration of normalizing multipliers 

Earlier the concept of normalizing multipliers was discussed. This is the 

first step in using VWUO.exe, so that subsequent analyses will treat variables of 

different types fairly. The normalizing multipliers obtained in this section can be 

used in subsequent analyses; calibration is not required to be performed by all 

users of the software. However, later on we shall explore the idea of calibration 

under other scenarios that might depend on a specific target analysis or set of 

analyses, so this might be a step some users will choose to perform. In this 

section we illustrate the calibration procedure. 
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Our calibration data are constructed with three clearly distinct clusters 

according to a pre-assigned three-level group variable g, nine records with g=1, 

16 records with g=2 and 25 records with g=3. These proportions were chosen to 

approximately coincide with population proportions of 1/6, 2/6 and 3/6 

respectively. The clusters produced in this data set are designed to be extremely 

clear with little to no variance, so that the normalizing constants developed from it 

are virtually free of random noise. While it is true that the relative locations of the 

clusters will impact the multipliers, random noise should ideally have little effect. 

Continuous variables C1 and C2 were created from (conditionally on g) 

independent normal distributions depending on g. ~  

when g=1, ~  when g=2, and  ~  

when g=3. CRand1 and CRand2 were created from truncated independent 

normal distributions independent of g. ~ , 

resampled until 25≤CRand1≤ 50 and 25≤CRand2≤75. The four continuous 

variables are plotted against each other in 
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point’s value of g. 
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Figure 6. Continuous variables in the calibration data set 
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Ordinal variables O1 and O2 were created from (conditionally on g) 

independent multinomial distributions depending on g. O1 was selected from a 

two-level multinomial distribution with probability vector <1, 0> when g=1 or g=2, 

and <0, 1> when g=3. O2 was selected from a three-level multinomial distribution 

with probability vector <1,0,0> when g=1, <0, 0, 1> when g=2, and <0, 1, 0> 

when g=3. ORand1 was created from a two-level multinomial distribution 

independent of g, with probability vector <.5, .5>. ORand2 was created from a 

three-level multinomial distribution independent of g, with probability vector 

<.333, .333, .334>. The four ordinal variables are plotted against each other in 

Figure 7, with symbols indicating each point’s value of g. Plots are randomly 

jittered for improved visualization. 
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Figure 7. Ordinal variables in the calibration data set; data are jittered 
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Nominal variables N1 and N2 were created from (conditionally on g) 

independent multinomial distributions depending on g. N1 was selected from a 

three-level multinomial distribution with probability vector <1, 0, 0> when g=1, <0, 

1, 0> when g=2, and <0, 0, 1> when g=3. N2 was selected from a two-level 

multinomial distribution (binary symmetric) with probability vector <1, 0> when 

g=1 or g=3, and <0, 1> when g=2. NRand1 was created from a three-level 

multinomial distribution independent of g, with probability vector <.333, .333, 

.334>. NRand2 was created from a two-level multinomial distribution independent 

of g, with probability vector <.667, .333>. The four nominal variables are plotted 

against each other in Figure 8, with symbols indicating each point’s value of g. 

Plots are randomly jittered for improved visualization. 
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Figure 8. Nominal variables in the calibration data set; data are jittered 
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Binary asymmetric variables A1 and A2 were created from (conditionally 

on g) independent Bernoulli distributions depending on g. A1 and A2 were 

selected from a Bernoulli distribution with P(A1=1)=1 when g=1, and P(A1=1)=0 

when g=2 or g=3. ARand1 and ARand2 were created from a Bernoulli distribution 

independent of g, with P(ARand2=1)=.167. The four binary asymmetric variables 

are plotted against each other in Figure 9, with symbols indicating each point’s 

value of g. Plots are randomly jittered for improved visualization. 
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Figure 9. Binary asymmetric variables in the calibration data set; data are jittered 
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To calibrate the normalizing multipliers, the following lines are included in 

VWUO.ini: 

bCalib=1 
dEqFactMultC=1 
dEqFactMultO=1 
dEqFactMultN=1 
iMaxIter=100000000 
 

The iMaxIter=100000000 setting is important because potentially hundreds of 

iterations will be required in order to calibrate the normalizing multipliers. 

VWUO.exe is then run, and the calibration data file, which we have named 

Mixed50_16cona_ggrr.dat, is opened. The Analyze->Newton-Raphson menu 

command is selected, and the calibration of the normalizing multipliers will run 

until complete. Figure 10 shows the results upon convergence. 
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Figure 10. Calibration of the normalizing multipliers 

 
 

Upon convergence, several output files are written to the data folder. These 

will be explained in more detail later. For now, we note that the output file named 

Mixed50_16cona_ggrr.dat.NRT.Whist.out contains, amongst other information, 

the total number of iterations, the final variable weight vector , the calculated 

average weight per variable type, and the estimated normalizing multipliers. 

ŵ

Data: D:\Local Documents\PhD_research\sas_lib0_Calib\mixed50_16cona_ggrr.dat 
Method: Newton-Raphson T 
 
Results 
  Iterations  Convergence          LUT 
336.00000000   1.00000000  23.01335583 
 
Avg.W. 
           C            O            N            A 
  1.00000035   0.99999949   1.00000009   1.00000007 
 
dOrgEqFactMult 
           C            O            N            A 
  1.00000000   1.00000000   1.00000000   1.00000000 
 
dEqFactMult 
           C            O            N            A 
  1.07621207   1.61593201   0.89980103   1.00000000 
 
v^2 
          C1           C2       CRAND1       CRAND2           O1           O2       
ORAND1       ORAND2           N1           N2       NRAND1       NRAND2           A1           
A2       ARAND1       ARAND2 
  1.43527323   1.32925745   0.77864573   0.83981818   1.52799928   1.27306892   
0.69576616   0.88615647   1.17861080   1.19226789   1.11785935   0.89425539   
1.14659254   1.14659254   1.08980826   1.00000000 

 71



 

 
W history 
          Lu           C1           C2       CRAND1       CRAND2           O1           
O2       ORAND1       ORAND2           N1           N2       NRAND1       NRAND2           
A1           A2       ARAND1       ARAND2 
 23.01335583   1.30985672   1.21310478   0.71060640   0.76643350   1.39448022   
1.16182609   0.63496899   0.80872267   1.07562187   1.08808559   1.02017899   
0.81611390   1.04640143   1.04640143   0.99457905   0.91261838 
...snip... 
 58.99562964   1.00000000   1.00000000   1.00000000   1.00000000   1.00000000   
1.00000000   1.00000000   1.00000000   1.00000000   1.00000000   1.00000000   
1.00000000   1.00000000   1.00000000   1.00000000   1.00000000 
 

The normalizing multipliers obtained from this run are saved in the 

following lines we add to VWUO.ini: 

bCalib=0 
dEqFactMultC=1.07621207 
dEqFactMultO=1.61593201 
dEqFactMultN=0.89980103 
iMaxIter=100 
 

The bCalib=0 setting is important so that subsequent runs will not try to 

recalibrate the normalizing multipliers. 

With the normalizing multipliers obtained in this step, we are now ready to 

perform VWUO-MD analyses. 

3.4 Exploratory analyses of type C clustered data with 2, 3 and 4 
variables 

In this section we will create and analyze type C clustered data sets with 

2, 3 and 4 variables respectively, in order to illustrate most of the commands, 

settings and output in VWUO.exe. Our data set has n=50 records, 15 records 

with g=1, 18 records with g=2 and 17 records with g=3. C1 and C2 were created 

from (conditionally on g) independent normal distributions depending on g. 
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truncated independent normal distributions independent of g. 
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Figure 11. Continuous variables in the type C example data set 
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3.4.1 Opening the two-variable type C example data set 

The graphical user interface (GUI) shows an empty screen when 

VWUO.exe is first loaded. The menu option File->Open or the open icon are 

used to open the data file as shown in Figure 12. 
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Figure 12. Opening the two-variable type C example data set 

 
 

The top left section of text contains the names and paths of the input file 

and any saved output files. The first line displays the data file name with the 

number of data records in parentheses. The second line displays the loss 

function surface map file name (if one has been generated for the data set), 

which contains a set of loss function values on a grid of variable weights. The 

third line displays the saved preset history file name (if one has been generated 

for the data set), which contains, for each iteration of the last VWUO-MD 

analysis, the starting vector w. Typically, unless the analyst manipulates where 

the analysis should begin, the vectors saved in this file are all equal to 1. The 

fourth line displays the saved w history file name (if one has been generated for 

the data set), which contains, for each iteration of the last VWUO-MD analysis, 

the w vector. The fifth line displays the saved v̂  history file name (if one has 

been generated for the data set), which contains, for each iteration of the last 

VWUO-MD analysis, the  vector. The sixth and seventh lines display the file 

names containing the saved U-statistic-based asymptotic covariance matrices of 

w and v respectively (if they have been generated for the data set), or 

v̂

 ŵˆ CLTraV  
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and . VWUO.exe produces these matrices via the methods described 

earlier. 

 v̂ˆ CLTraV

The bottom left section of text contains lists of each variable type, as well 

as their normalizing constants in parentheses. If VWUO-MD is currently running, 

it also displays the current iteration number and progress of that iteration. 

The upper right section of text displays several options and settings, the 

relevant ones described earlier. 

3.4.2 Preparing 1D LU and LDS loss function surface maps of the two-
variable type C example data set 

As we will see shortly, there is a graphical interface that illustrates in real 

time various estimation factors for three- and four-variable data sets, including 

(optionally) an intensity surface map of the ultrametric loss function LU, or for 

comparison with De Soete, LDS if the analyst requests it. For two-variable data 

sets, a surface map can also be plotted. Continuing with our example data set, 

here we will prepare 1D loss function surface maps based on both LU and LDS. 

We had run VWUO.exe above with the bDeSoeteSurface=0 setting, thus we will 

first create a surface map file of LU. The grid of variable weights will be spaced at 

dSurfaceByW2Vars=0.005, with no weight falling below dMinValidW=0.005 (or 

above 2.995). The surface file is created using the Analyze->Surface menu 

command. The screen shown after the process is complete is illustrated in Figure 

13. 
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Figure 13. Preparing a 1D LU surface map of the two-variable type C example data set 

 
 

The surface file is saved under the same name as the input data file, but 

with the suffix ".SuT.out" appended. 

Next we close VWUO.exe, implement the bDeSoeteSurface=1 setting, 

then rerun this process to produce a loss function surface map of LDS. This file is 

also saved under the same name as the input data file, but with the suffix 

".DSSuT.out" appended. 

3.4.3 VWUO-MD analysis of the two-variable type C example data set 

Having (optionally) created the surface map files, we are now ready to 

perform VWUO-MD analyses of the two-variable data file, containing variables 

C1 and CRand1. In this example, we use the bDeSoeteSurface=0 setting, and do 

not manipulate the starting vector, but just start at w=1 and allow the program to 

run. We use the Analyze->Newton-Raphson menu command. This is illustrated 

in Figure 14. 
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Figure 14. VWUO-MD analysis of the two-variable type C example data set 

 
 

1D surface maps are plotted as functions with the first variable weight on 

the horizontal axis and LU on the vertical axis. Note in the options shown above 

the graph that the default function mapped to the screen is the log loss function. 

This was done to reduce the following problem: it may be hard to discern the 

shape of the LU function because of the large range of the loss function obtained 

on this grid compared to the range near the minimum. To further remedy this, the 

"<" or ">" commands can be invoked to decrease or increase the proportion of 

the range that is mapped to the graph (grid points with surface values above this 

range are shown as uniformly maximum level). Another remedy to this issue is 

the "T" command, which toggles through various transformations of the loss 

function mapped on the screen. These commands do not affect the estimation, 

but serve to enhance the visualization of the surface. The plots above, and most 
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of the other 1D plots in this manuscript will map the log loss function with 100% 

of the range mapped to the vertical axis. 

In VWUO-MD analyses with two variables, the set of possible variable 

weights falls on a 1D line; the sum of the two variable weights must equal 2. The 

vector reported in gray text below the plot indicates the starting point, or w 

preset. The black dot at the bottom of the loss function, to which the solution 

converges, is the observed point of minimum loss function in the plotted surface 

map. Because the surface map was formed on a grid spaced apart by 0.001, the 

true solution does not fall exactly onto that spot. With extremely high resolution 

surface maps (shown later) we will see that the VWUO-MD solution always 

corresponds exactly with an observed local minimum to within an arbitrary 

precision. 

The text to the left of the graph includes the following results related to the 

current estimate: , , , v̂ ŵ v̂ ŵ , Hessian(v) and its eigenvalue(s), and the 

average weight of each type. Also provided for use during calibration of 

equalizing multipliers, is the original, last and current set of equalizing multipliers. 

If the bCalib=0 setting is used these sets are always the same, defined in 

VWUO.ini. The eigenvalues are provided for diagnostic purposes; a well-

behaved function at a local minimum should have a nonnegative definite Hessian 

(nonnegative eigenvalues only). 

In this example, the solution is (within the convergence criterion 0.000001) 

w=<wC1, wCRand1>=<1.433936, 0.566064>. C1 receives a bigger weight than 

CRand1, which is sensible considering the definition of the variables, i.e., that C1 

 79



 

defined clusters in the data, while CRand1 did not. (This is a function of VWUO-

MD's optimization of the ultrametric property. For HG, a solution involving a 

single large weight is probably not as useful as one involving at least two large 

weights.) The surface map shows that this is the only local minimum. At the 

solution, it was confirmed that v̂ =0 and Hessian(v) had positive eigenvalues. 

Convergence was achieved in six iterations. 

3.4.4 Output files 

On completion of the VWUO-MD analysis, several output files describing 

the analysis are written to the folder containing the data file. All have the base 

name of the data file with suffixes added. The file with suffix “.NRT.Cov.out” 

contains . The file with suffix “.NRT.CovW.out” contains . The file 

with suffix “.NRT.Dist.out” contains the n by n variable-weighted distance matrix 

utilizing the weights in w . The file with suffix “.NRT.Phist.out” contains the preset 

history. The file with suffix “.NRT.Whist.out” contains the w history. The file with 

suffix “.NRT.Ghist.out” contains the 

 v̂ˆ UraV  ŵˆ UraV

ˆ

v̂  history. 

3.4.5 Replaying the VWUO-MD analysis 

With the above output files saved, when the data file is reloaded, we will 

be able to replay the analysis if desired. We can do this with the menu option 

Analyze->Newton-Raphson Replay. This is a more informative feature when 

working with three- and four-variable data sets. 
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3.4.6 VWUO-MD analysis of the three-variable type C example data set 

Having (optionally) created the surface map files, we are now ready to 

perform VWUO-MD analyses of the three-variable data file, containing variables 

C1, C2 and CRand1. In this example, we use the bDeSoeteSurface=0 setting, 

and do not manipulate the starting vector, but just start at w=1 and allow the 

program to run. We use the Analyze->Newton-Raphson menu command. This is 

illustrated in Figure 15. 

Figure 15. VWUO-MD analysis of the three-variable type C example data set 
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2D surface maps are plotted as intensity maps with the first variable 

weight on the horizontal axis and the second variable weight on the vertical axis. 

LU determines the intensity of each grid point. Lighter regions in the intensity 

surface map correspond to lower values of LU. Note in the options shown to the 

right of the graph that the default function intensity mapped to the screen is the 

log loss function. This was done for the same reasons as before. The plots 

above, and most of the other 2D plots in this manuscript will map the log loss 

function with the bottom 10% of the range mapped to the grayscale spectrum. 

In VWUO-MD analyses with three variables, the set of possible variable 

weights falls within a 2D triangle; the sum of the first two variable weights cannot 

exceed 3, and the third variable weight (not plotted) equals 3 minus the sum of 

the other two. The gray dot centered in the above plots indicates the starting 

point, or w preset (also listed below the graph). The black dot within the light 

region, to which the solution converges, is the observed point of minimum loss 

function in the plotted surface map. Because the surface map was formed on a 

grid spaced apart by 0.02, the true solution does not fall exactly onto that spot. 

The dotted arrow is the  vector, while the solid arrow is the  vector. The 

former is shown because that is the vector that is directly used for estimation; the 

latter is shown because it matches the scale of the surface map (w). The length 

of the plotted arrows is proportional to the length of the vectors when they get 

short enough, providing visual clues about the current proximity to the solution. 

v̂ ŵ

In this example, the solution is (within the convergence criterion 0.000001) 

w=<wC1, wC2, wCRand1>=<1.120833, 1.347367, 0.531800>. C1 and C2 receive 

 83



 

bigger weights than CRand1, which is sensible and informative considering the 

definition of the variables, i.e., that C1 and C2 together defined clusters in the 

data, while CRand1 did not. For HG, this solution is more clearly useful than the 

one obtained in the two-variable example. The surface map graphs in the 

following section will shows that this is the only local minimum. At the solution, it 

was confirmed that =0 and Hessian(v) had positive eigenvalues. 

Convergence was achieved in eight iterations. 

v̂

3.4.7 Exploring the LU surface of the three-variable type C example data set 

Rerunning the analysis with dConvCrit≤0, or (less conveniently) running 

with dConvCrit>0 and continually resetting the vector before the solution can 

converge, allows us to explore the 2D surface more interactively. Holding down 

the right mouse button and moving the pointer around the surface or left clicking 

on the surface allows us to check that the gradient is pointing in the expected 

direction relative to the lighter (lower) region of the surface (the gradient should 

always point uphill). This is illustrated in Figure 16. 

Figure 16. Exploring the LU surface of the three-variable type C example data set 
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We can use the left or right arrows to toggle through various other views of 

the surface, useful for exploring the surface. One additional available view is 

slices in any of three directions that can be moved across the triangle. This is 

illustrated in Figure 17. We will see that this is actually much more important for 

visualizing 3D surface maps. 

Figure 17. Slices of the 2D surface map of the three-variable type C example data set in 
three directions 
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Another available view is a restricted uniform intensity surface map in 

which only log loss function values at or close to (within 1% of the log loss 

function range) a specified value are plotted, and that specified value can be 

changed. This allows one to view the surface map as a series of concentric 

shells. This is illustrated in Figure 18. Again, while useful for 2D maps, we will 

see that this is more important for visualizing 3D surface maps. 

Figure 18. Restricted uniform intensity 2D surface maps of the three-variable type C 
example data set 
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3.4.8 VWUO-MD analysis of the four-variable type C example data set 

Having (optionally) created the surface map files, we are now ready to 

perform VWUO-MD analyses of the four-variable data file, containing variables 

C1, C2, CRand1 and CRand2. In this example, we use the bDeSoeteSurface=0 

setting, and do not manipulate the starting vector, but just start at w=1 and allow 

the program to run. We use the Analyze->Newton-Raphson menu command. 

This is illustrated in Figure 19. 

 87



 

Figure 19. VWUO-MD analysis of the four-variable type C example data set 

 
 

 
 

 88



 

 
 

3D surface maps are plotted as intensity maps with the first variable 

weight on the near axis (labeled at the bottom center of the screen), the second 

variable weight on the other horizontal axis (labeled on the right of the screen), 

and the third variable weight on the vertical axis. LU determines the intensity of 

each grid point. Lighter regions in the intensity surface map correspond to lower 

values of LU. Note in the options shown to the right of the graph that the default 

function intensity mapped to the screen is the log loss function. This was done for 

the same reasons as before. The plots above map the log loss function with 

100% of the range mapped to the grayscale spectrum. 

In 3D plots, the plotting symbols optionally depend on the points' near axis 

values (the axis labeled at the bottom center of the screen), to improve the 

visualization of complex surface maps, especially when the depth of the points 
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varies widely within the mass. Plotting symbols of points within 1, 2, 3 and 4 units 

of the origin on the near axis are displayed as '+', '^', '-' and '.' respectively. The 

idea is to give the impression of the heaviest objects being on the back side of 

the mass with successively lighter objects closer to the foreground. We will see 

that this is especially effective when viewing a surface as a 3D contour map, but 

when viewing slices of a 3D map, visualization is better without symbol coding. 

In this example, the solution is (within the convergence criterion 0.000001) 

w=<wC1, wC2, wCRand1, wCRand2>=<1.219176, 1.459937, 0.638227, 0.682661>. C1 

and C2 receive bigger weights than CRand1 and CRand2, which is sensible and 

informative considering the definition of the variables, i.e., that C1 and C2 

together defined clusters in the data, while CRand1 and CRand2 did not. This is 

an informative result for HG, since C1 and C2 are related (through g). The 

surface map graphs in the following section will shows that this is the only local 

minimum. At the solution, it was confirmed that v̂ =0 and Hessian(v) had 

positive eigenvalues. Convergence was achieved in nine iterations. 

3.4.9 Exploring the LU surface of the four-variable type C example data set 

As with the 2D graphs, rerunning the analysis with the dConvCrit≤0 setting 

allows us to explore the surface more interactively and confirm that the gradient 

points "uphill" (away from the central region of smallest LU). This is illustrated on 

the four-variable type C example data set in Figure 20. The points in this figure 

are restricted to those falling within +/- 0.2% of 20% of the log loss function 

range. This type of graph is best viewed as shown, with the symbol coding 

described earlier. 
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Figure 20. Exploring the LU surface of the four-variable type C example data set 

    
 

      
 

As with the 2D graphs, we can use the left or right arrows to toggle 

through various other views of the surface. One additional available view for 3D 

graphs is slices in any of four planes that can be moved through the region. This 

is illustrated in Figure 21. Here we prefer to turn off symbol coding, since the 

points fall predictably on a plane and hence the different symbols add no 

additional information, and may detract from the intensity mapping by LU. 

Depending on the viewpoint, thinner or thicker slices may be more revealing of 

the surface. In the first three graphs the slices are 0.2% of the variable's range 

thick. In the last graph, the slice is 1% of the variable's range thick. 
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Figure 21. Slices of the 3D surface map of the four-variable type C example data set in four 
planes 

    
 

      
 

As with the 2D graphs, another available view is a restricted uniform 

intensity surface map in which only log loss function values at or close to a 

specified value are plotted, and that specified value can be changed. This allows 

one to view the surface map as a series of concentric shells. This is illustrated on 

the 3D graphs in Figure 22. For optimal visualization, the first three plots are 

restricted to their smaller specified values +/- 0.2% while the fourth is restricted to 

a larger specified value +/- 0.5%, in order to provide a heavier mass of points to 

better fill in the larger space. 
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Figure 22. Restricted uniform intensity 3D surface maps of the four-variable type C 
example data set 
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CHAPTER 4: ADDITIONAL EXPLORATORY ANALYSES 
OF ARTIFICIAL, CLUSTERED DATA 

With our theoretical framework and software in place, we can perform 

some additional exploratory analyses of the VWUO-MD method. In this chapter 

we will compare the ultrametric loss function surfaces based on VWUO-MD (LU) 

versus De Soete (LDS), and illustrate how the penalty for degenerate solutions 

has been improved in VWUO-MD. We will examine the LU surfaces in 2, 3 and 4 

variables of each type, as well as mixed-type data. In so doing, we will analyze 

several artificial, clustered data sets with a variety of clustering patterns, as well 

as an artificial type C data set that De Soete analyzed in his 1986 paper.18 

Finally, we will perform a Monte Carlo simulation to assess the performance of 

the U-statistic-based and bootstrap covariance matrix estimators. 

4.1 The improved penalty for degenerate solutions 

Recall the difference between LU and LDS: 
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Recall that according to De Soete, “The denominator in [LDS] is necessary 

to prevent degenerate solutions where one weight is [p] and the others zero.”18 

We explained earlier why this does not work, and how the denominator in LU 

better accomplishes this goal. Here we will demonstrate this. Table 3 contains 

the example data set analyzed by De Soete. We have reversed the order of the 

columns for reasons that will be made clear momentarily. 

Table 3. De Soete's example type C data set with column order reversed 

C4 C3 C2 C1 
-0.0188 0.0564 0.0000 0.4082
0.8879 0.7104 0.0000 0.4082
0.4931 -0.5435 0.0000 0.4082

-0.6123 -0.0227 0.0000 0.4082
0.9475 0.6128 0.3536 -0.2041

-0.7604 -0.7937 0.3536 -0.2041
-0.0368 -0.2072 0.3536 -0.2041
0.1197 0.3818 0.3536 -0.2041
0.3362 0.9152 -0.3536 -0.2041

-0.9367 -0.6031 -0.3536 -0.2041
0.2143 0.4861 -0.3536 -0.2041

-0.0060 -0.3770 -0.3536 -0.2041
 

Recall that w is not estimated directly, but rather v is, with: 
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This transformation actually precludes a 0 weight in the last column, because: 
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This can also be seen by noting that wp=0 requires that the sum of the vl is 

infinity, since: 
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That is why we reversed the order of the columns in the De Soete data set, 

because it will be shown that contrary to De Soete’s findings, the true solution 

minimizing LDS on these data in fact contains as many as three 0s. To see this, 

recall that Ω is the set of all triples of objects, and that dik and djk are, without loss 

of generality, the two longest sides of the triangle of distances between objects i, 

j and k. On any data set perfectly satisfying the ultrametric inequality, the 

numerator in both LDS and LU is 0, because by the definition of ultrametricity, dik 

and djk are equal in all triples and so their difference is always 0. This renders 

both VWUO-MD and the method of De Soete useless in the sense that there are 

no variable weights that can improve ultrametricity when it is already perfectly 

satisfied in unweighted data. However, what about situations where ultrametricity 

is perfectly satisfied only on a subspace of one or more variables in a wider data 

set? In such cases—which it turns out includes De Soete’s 1986 data—the true 

minimum LDS is 0 which occurs with any solution that only weights ultrametric 

subspaces of one or more variables with non-zero weights, in such a way as to 

preserve the ultrametricity of those variables. (Very extreme weights for the 
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variables in an ultrametric subspace may actually upset that property). VWUO-

MD would not produce such a solution however, because while the numerator in 

LU would equal 0, so would the denominator. 

In the De Soete data, variables C1 and C2 form an ultrametric subspace, 

as does C1 alone. Ultrametricity is satisfied on a single continuous variable if and 

only if there are one or two distinct values in the data. This can be seen by 

realizing that on a 1-dimensional line, for the two longest distances between any 

triple of points to be equal, at least two of the points must be the same. This only 

happens for all possible triples of points if there are at most two distinct values in 

the data on that dimension. The penalty in the denominator of LDS does preclude 

degenerate solutions that assign positive weight to any lone dimension that has 

only one value because of division of 0 by 0. But ironically, in the De Soete data, 

C1 happens to have exactly two distinct values, and so one solution minimizing 

LDS is the degenerate solution assigning positive weight to C1 only. We 

calculated LDS on the De Soete data set for all combinations of weights between 

0 and 4 by 0.25 (with the last column C1 receiving a positive weight only), and all 

the records that received 0 weights for both C3 and C4 are listed in Table 4. It 

happens that all the records producing LDS=0 are found in this table, along with a 

few others that received 0 weights for C3 and C4 but were weighted too 

extremely in C1 and C2 to preserve the ultrametricity of the <C1, C2> subspace 

(LDS>0 on those records). We can see in this table that the degenerate solution 

with wC1=4 and all other weights 0 is amongst those that produce LDS=0. Other 

solutions that should be considered degenerate for HG (for reasons we 
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discussed earlier; with one or more variables weighted 0) also produce LDS=0. In 

addition, there is no unique solution producing LDS=0. 

Table 4. Variable weight vectors with wC3=0 and wC4=0 on De Soete's example type C data 
set with column order reversed 

LDS wC4 wC3 wC2 wC1 
0.46825420 0 0 3.75 0.25
0.31201140 0 0 3.50 0.50
0.19172449 0 0 3.25 0.75
0.10303034 0 0 3.00 1.00
0.04283995 0 0 2.75 1.25
0.00902386 0 0 2.50 1.50
0.00000000 0 0 2.25 1.75
0.00000000 0 0 2.00 2.00
0.00000000 0 0 1.75 2.25
0.00000000 0 0 1.50 2.50
0.00000000 0 0 1.25 2.75
0.00000000 0 0 1.00 3.00
0.00000000 0 0 0.75 3.25
0.00000000 0 0 0.50 3.50
0.00000000 0 0 0.25 3.75
0.00000000 0 0 0.00 4.00

 

De Soete did not identify this problem for two reasons. First, having the 

columns ordered as he did (C1, C2, C3, C4) precluded solutions with wC4=0 

because of the transformation from v to w. Secondly, he was using a conjugate 

gradient method of estimation, which we have found (and he has shown us) can 

stop on a gradual slope not near a local minimum, if that slope becomes shallow 

enough and the norm of the gradient becomes small. The solution De Soete 

found on his data (in the sum-to-p scale, p=4) was wC1=2.2300, wC2=1.7576, 

wC3=0.0008 and wC4=0.0116. This produced a De Soete loss function of 

LDS=0.00007505. The LDS surface map is shown in Figure 23, displayed without 

the log transform due to the presence of 0s. The first three graphs fill the 
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parameter space on a grid spaced at 0.05. They illustrate that the surface tilts 

downhill all the way to the edges where the degenerate solutions are located and 

the loss function equals 0. Although there are numbers in Table 4 above that 

confirm the degenerate solutions, we also confirm by zooming in the surface 

maps (the fourth graph) near De Soete’s solution. The latter graph was created 

on a grid with C3 and C4 ranging from 0 to 0.001 by 0.00001, and C2 fixed at 

1.75. The fourth graph confirms the degenerate solutions. 

Figure 23. LDS surface map of De Soete's example type C data set with column order 
reversed 

    
 

      
 

On the other hand, VWUO-MD’s penalty in the denominator of LU, the 

product of variable weights raised to the power of 2/3, does not allow exactly 0 
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weights because that would either cause the loss function LU to be infinity if the 

numerator were >0, or else render it undefined. To illustrate, we analyze the De 

Soete data with VWUO-MD. The solution is shown in Figure 24. The VWUO-MD 

solution is wC1=1.926682, wC2=1.950106, wC3=0.068019 and wC4= 0.055194. The 

VWUO-MD solution is unique, and captures the relative importance of the 

variables without resorting to a degenerate solution. At the solution, it was 

confirmed that =0 and Hessian(v) had positive eigenvalues. v̂

Figure 24. VWUO-MD solution on De Soete's example type C data set with column order 
reversed 

 
 

The surface map in the above graph was generated on a 3D grid spaced 

at 0.05. The observed minimum grid coordinates were wC1=1.95, wC2=1.95, 

wC3=0.05 and wC4=0.05, consistent with the solution. The LU surface map of the 
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De Soete data is shown in Figure 25 as a series of four concentric shells and four 

slices. As with the De Soete graphs previously, the last slice was zoomed in 

around the solution, this time to confirm that the true minimum does not occur at 

a degenerate solution. The last graph was created on a grid with C3 and C4 

ranging from 0.01 to 0.2 by 0.002, and C2 fixed at 1.95. These graphs illustrate 

that the surface tilts downhill away from the edges where the degenerate 

solutions are located, to bottom out at the unique solution. 

Figure 25. LU surface map of De Soete's example type C data set with column order 
reversed 
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The VWUO-MD solution is informative for the purposes of HG, since 

variables all related to the clustering are also related to each other. However, do 

the optimal variable weights also help to enhance the clustering? To find out, we 

generate dendrograms (single linkage) based on unweighted and variable-

weighted distance matrices. These are shown in Figure 26, both graphs showing 

percentage of maximum distance on the vertical axis, for a scale-free 

comparison. The three clusters defined by variables C1 and C2 have been 

dramatically enhanced by down-weighting the random noise variables. Later we 

will see that this is a much more dramatic result than can be obtained on data 

with appreciable dispersion about the clustering variables; in De Soete’s example 

type C data set, conditional dispersion about these variables is 0. 
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Figure 26. Dendrograms (single linkage) on distance matrices from De Soete's example 
type C data set both unweighted (left) and VWUO-MD variable weighted (right) 

     
 

4.2 Mixed-type artificial, clustered data 

Next we create an artificial clustered data set for purposes of studying the 

shape of the LU surface on subspaces of each type, and mixed type. The data 

were constructed with three clearly distinct clusters according to a pre-assigned 

three-level group variable g. The data set has n=50 records, 15 records with g=1, 

18 records with g=2 and 17 records with g=3. 

The four type C variables in these data were described in the previous 

chapter on VWUO.exe. 

Ordinal variables O1 and O2 were created from (conditionally on g) 

independent multinomial distributions depending on g. O1 was selected from a 

four-level multinomial distribution with probability vector <.9, .1, 0, 0> when g=1 

and <.05, .05, .05, .85> when g=2 or g=3. O2 was selected from a three-level 

multinomial distribution with probability vector <.9, .1, 0> when g=1 and <.05, .05, 

.9> when g=2 or g=3. ORand1 was created from a three-level multinomial 

distribution independent of g, with probability vector <.33, .34, .33>. ORand2 was 
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created from a four-level multinomial distribution independent of g, with 

probability vector <.1, .1, .1, .7>. The four ordinal variables are plotted against 

each other in Figure 27, with symbols indicating each point’s value of g. Plots are 

randomly jittered for improved visualization. 

Figure 27. Ordinal variables in the mixed-type artificial data set; data are jittered 

    

    

    

 104



 

    

      
 

Nominal variables N1 and N2 were created from (conditionally on g) 

independent multinomial distributions depending on g. N1 was selected from a 

four-level multinomial distribution with probability vector <.9, .1, 0, 0> when g=1 

and <.05, .05, .05, .85> when g=2 or g=3. N2 was selected from a three-level 

multinomial distribution with probability vector <.9, .1, 0> when g=1 and <.05, .05, 

.9> when g=2 or g=3. NRand1 was created from a three-level multinomial 

distribution independent of g, with probability vector <.33, .34, .33>. NRand2 was 

created from a four-level multinomial distribution independent of g, with 

probability vector <.1, .1, .1, .7>. The four nominal variables are plotted against 

each other in Figure 28, with symbols indicating each point’s value of g. Plots are 

randomly jittered for improved visualization. 
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Figure 28. Nominal variables in the mixed-type artificial data set; data are jittered 
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Binary asymmetric variables A1 and A2 were created from (conditionally 

on g) independent Bernoulli distributions depending on g. A1 was selected from a 

Bernoulli distribution with P(A1=1)=.1 when g=1, and P(A1=1)=.8 when g=2 or 

g=3. A2 was selected from a Bernoulli distribution with P(A2=1)=.1 when g=1, 

and P(A2=1)=.8 when g=2 or g=3. ARand1 was created from a Bernoulli 

distribution independent of g, with P(ARand1=1)=.5. ARand2 was created from a 

Bernoulli distribution independent of g, with P(ARand2=1)=.5. The four binary 

asymmetric variables are plotted against each other in Figure 29, with symbols 

indicating each point’s value of g. Plots are randomly jittered for improved 

visualization. 
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Figure 29. Binary asymmetric variables in the mixed-type artificial data set; data are 
jittered 
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We create LU surface maps, and are ready to analyze these data. 

4.3 Point estimation 

4.3.1 Analysis of type C variables 

We analyzed the type C subspaces in the previous chapter on 

VWUO.exe. There we found solutions that weighted C1 and C2 more heavily 

than CRand1 or CRand2, which was sensible and informative considering how 

the artificial data were constructed, i.e., that C1 and C2 together defined clusters 

in the data, while CRand1 and CRand2 did not. The 1D, 2D and 3D surface 

maps showed that there was only one local minimum per map (the grand 

minimum). 
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The relative weights are informative about the clustering present in the 

data. That alone is useful for HG, our primary focus for VWUO-MD. However, do 

they also help to enhance the clustering? To find out, we create dendrograms 

(single linkage) on two-, three- and four-variable distance matrices both 

unweighted and variable weighted with the solutions obtained earlier. Figure 30 

contains all six dendrograms. Possibly because at least half the variables in each 

analysis are related to the clusters, the unweighted dendrograms actually show 

three clusters fairly clearly in the three- and four-variable examples, and two 

clusters in the two-variable example (C1 versus CRand1). In addition, we can 

note that compared to De Soete’s data, the clusters are less clearly defined—in 

the case of De Soete's data, cluster-specific values on variables C1 and C2 had 

zero dispersion about their conditional means. In our case, the variable weighted 

dendrograms do appear to enhance the structure somewhat, showing slightly 

stronger evidence of three clusters as seen in the longer vertical lines in the main 

vertical span of each graph. It is certainly not as dramatic as we saw with De 

Soete's data, however. 
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Figure 30. Dendrograms (single linkage) on two- (top row), three- (middle row) and four-
variable (bottom row) type C distance matrices both unweighted (left) and 
variable weighted (right) with the VWUO-MD solutions obtained earlier 

    

    

     
 

4.3.2 Analysis of type O variables 

Next we will perform VWUO-MD analyses of the type O variables. We will 

analyze the two-variable subspace <O1, ORand1> first. The default solution 

starting from w=1 is shown overtop the LU surface map in Figure 31. The default 
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solution is w=<1.350079, 0.649921> (at which LU=147.89680269), which is 

sensible (and informative for HG) considering how the artificial data were 

constructed, i.e., that O1 and O2 together defined clusters in the data, while 

ORand1 and ORand2 did not. However this does not correspond with the 

reported grand minimum on the surface map. We will address this issue later. 

The surface map was plotted restricting the range to the bottom 1% of the log(LU) 

range so that both local minima were visible. To confirm the existence of the 

second local minimum numerically, we also restarted from w=<1.5, 0.5>, and the 

procedure converged on the grand minimum from the right. The solution is 

w=<1.429902, 0.570098> (at which LU=147.65785688). At the solutions, it was 

confirmed that =0 and Hessian(v) had positive eigenvalues. v̂
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Figure 31. Default VWUO-MD solution to two-variable type O subspace in the mixed-type 
artificial data set, overtop the LU surface map 

 
 

Next we analyze the three-variable subspace w=<O1, O2, ORand1>. The 

default solution starting from w=1 is shown overtop the LU surface map in Figure 

32. The default solution is w=<1.403273, 0.926614, 0.670113>. This does not 

correspond with the reported grand minimum, and there is an indication of 

multiple local minima on the surface map. We tried different starting vectors near 

different apparent depressions on the surface, and thus found four additional 

local minima. The five solutions are listed in Table 5. There may be more that 

were not found. All solutions are sensible (and informative for HG) considering 

how the artificial data were constructed, i.e., that O1 and O2 together defined 

clusters in the data, while ORand1 and ORand2 did not. Unfortunately, the 

default solution ranked only fourth out of five ordered by LU. We will address this 
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issue later. At the solutions, it was confirmed that v̂ =0 and Hessian(v) had 

positive eigenvalues. 

Figure 32. Default VWUO-MD solution to three-variable type O subspace in the mixed-type 
artificial data set, overtop the LU surface map 

 
 

Table 5. Four VWUO-MD solutions to three-variable type O subspace in the mixed-type 
artificial data set, sorted by LU; the default solution is in italics 

LU wO1 wO2 wORand1 
114.93699389 1.441463 0.903499 0.655038
114.93756410 1.462117 0.902288 0.635595
114.93769390 1.539052 0.859347 0.601601
114.98629001 1.403273 0.926614 0.670113
118.88242933 1.012039 1.335304 0.652657

 

Next we analyze the four-variable subspace w=<O1, O2, ORand1, 

ORand2>. The default solution starting from w=1 is shown overtop the LU surface 
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map in Figure 33. The default solution is w=<1.277328, 1.106676, 0.757507, 

0.858489>. Investigation with higher resolution surface maps around the first 

solution (the bottom two graphs) reveals that this does not correspond with the 

grand minimum. Starting at a variety of locations in this vicinity produces two 

other local minimum. The three solutions are listed in Table 6. There may be 

more that were not found. All solutions are sensible (and informative for HG) 

considering how the artificial data were constructed, i.e., that O1 and O2 together 

defined clusters in the data, while ORand1 and ORand2 did not. Unfortunately, 

the default solution ranked last out of the three ordered by LU. We will address 

this issue later. At the solutions, it was confirmed that v̂ =0 and Hessian(v) had 

positive eigenvalues. 
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Figure 33. Selected VWUO-MD solutions to four-variable type O subspace in the mixed-
type artificial data set, overtop the LU surface map 

 
 

     
 

Table 6. Three VWUO-MD solutions to four-variable type O subspace in the mixed-type 
artificial data set, sorted by LU; the default solution is in italics 

LU wO1 wO2 wORand1 wORand2 
100.90897452 1.299101 1.083801 0.757414 0.859685
100.90924067 1.300458 1.087894 0.754530 0.857118
100.91482800 1.277328 1.106676 0.757507 0.858489
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The relative weights in the grand minimum solutions are informative about 

the clustering present in the data. That is useful for HG. However, do they also 

help to enhance the clustering? To find out, we create dendrograms (single 

linkage) on two-, three- and four-variable distance matrices both unweighted and 

variable weighted with the grand minimum solutions obtained earlier. Figure 34 

contains all six dendrograms. None appear to be very informative. It seems that 

in situations with a small number of ordinal variables, the variable weights may 

form the most informative part of the solution—they reflect the variables that are 

related to each other through the clustering that we know exists in the data, and 

can help to generate hypotheses for additional analyses. 
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Figure 34. Dendrograms (single linkage) on two- (top row), three- (middle row) and four-
variable (bottom row) type O distance matrices both unweighted (left) and 
variable weighted (right) with the VWUO-MD grand minimum solutions 

    

    

     
 

4.3.3 Analysis of type N variables 

Next we will perform VWUO-MD analyses of the type N variables. We will 

analyze the two-variable subspace <N1, NRand1> first. The solution, from the 

default starting vector w=1, is shown overtop the LU surface map in Figure 35. 
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The solution is w=<1.999999, 0.000001>, a boundary case that only "converged" 

because of the minimum weight setting of dMinValidW=0.000001. It is clear from 

the surface map that this function has no local minimum. This indicates a 

problem with VWUO-MD that can occur when it is used to analyze a set of only 

two discrete variables (we note however that this did not happen in the analysis 

of the two-variable type O subspace). We have discovered from this example 

that it is possible in some (trivial) situations for the numerator in LU to approach 0 

faster than the denominator does, as one or the other variable weight 

approaches 0. Thus while no variable weight can equal 0 per se, in this case 

there is no local minimum to call the solution. While the penalty function in LU is 

an improvement over that in LDS, it is apparently not a panacea. Fortunately, no 

practical application of VWUO-MD ought to involve only two variables. 
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Figure 35. VWUO-MD solution to two-variable type N subspace in the mixed-type artificial 
data set, overtop the LU surface map 

 
 

Next we analyze the three-variable subspace w=<N1, N2, NRand1>. The 

default solution starting from w=1 is shown overtop the LU surface map in Figure 

36. The default solution is w=<1.086066, 1.341284, 0.572650>. This does not 

correspond with the reported grand minimum, and there are multiple local minima 

visible on the surface map. Trying different starting vectors within the different 

depressions on the surface produces four additional local minima. The five 

solutions are listed in Table 7. There may be more that were not found; indeed 

the graph suggests one or two more, but the algorithm would not converge within 

the additional apparent depressions. The best four out of five solutions (those 

with lowest LU) are sensible (and informative for HG) considering how the 

artificial data were constructed, i.e., that N1 and N2 together defined clusters in 
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the data, while NRand1 and NRand2 did not. Unfortunately, the default solution 

ranked only third out of five ordered by LU. We will address this issue later. At the 

solutions, it was confirmed that v̂ =0 and Hessian(v) had positive eigenvalues. 

Figure 36. Default VWUO-MD solution to three-variable type N subspace in the mixed-type 
artificial data set, overtop the LU surface map 

 
 

Table 7. Five VWUO-MD solutions to three-variable type N subspace in the mixed-type 
artificial data set, sorted by LU; the default solution is in italics 

LU wN1 wN2 wNRand1 
67.67156137 1.307467 1.278827 0.413706
67.95910829 0.778682 2.000000 0.221318
68.58603635 1.086066 1.341284 0.572650
69.89258585 0.676807 2.000000 0.323193

103.57204369 0.613498 0.386502 2.000000
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Next we analyze the four-variable subspace w=<N1, N2, NRand1, 

NRand2>. The default solution starting from w=1 is shown overtop the LU surface 

map in Figure 37. The default solution is w=<1.163089, 1.169380, 0.658715, 

1.008816>. This corresponds with the grand minimum, and investigation with 

higher resolution surface maps around the first solution confirms that this is the 

only local minimum. The solution is sensible (and informative for HG) considering 

how the artificial data were constructed, i.e., that N1 and N2 together defined 

clusters in the data, while NRand1 and NRand2 did not. At the solution, it was 

confirmed that =0 and Hessian(v) had positive eigenvalues. v̂

Figure 37. VWUO-MD solution to four-variable type N subspace in the mixed-type artificial 
data set, overtop the LU surface map 
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The relative weights in the grand minimum solutions are informative about 

the clustering present in the data. That is useful for HG. However, do they also 

help to enhance the clustering? To find out, we create dendrograms (single 

linkage) on three- and four-variable distance matrices both unweighted and 

variable weighted with the grand minimum solutions obtained earlier. Figure 38 

contains all four dendrograms. None appear to be very informative. It seems that 

in situations with a small number of nominal variables, the variable weights may 

form the most informative part of the solution—they reflect the clustering that we 

know exists in the data, and can help to generate hypotheses for additional 

analyses. 
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Figure 38. Dendrograms (single linkage) on three- (top row) and four-variable (bottom row) 
type N distance matrices both unweighted (left) and variable weighted (right) 
with the VWUO-MD grand minimum solutions 

    

     
 

4.3.4 Analysis of type A variables 

Next we will perform VWUO-MD analyses of the type A variables. We will 

analyze the two-variable subspace <A1, ARand1> first. The solution, from the 

default starting vector w=1, is shown overtop the LU surface map in Figure 39. 

The solution is w=<1.999999, 0.000001>, a boundary case that only "converged" 

because of the minimum weight setting of dMinValidW=0.000001. It is clear from 

the surface map that this function has no local minimum, and in this case the two 

minima on the surface function have equal LU and are at either boundary case. 

As with the type N subspace, this indicates a shortcoming of the improved 
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penalty function in LU that can occur when VWUO-MD is used to analyze a set of 

only two discrete variables. Fortunately, no practical application of VWUO-MD 

ought to involve only two variables. 

Figure 39. VWUO-MD solution to two-variable type A subspace in the mixed-type artificial 
data set, overtop the LU surface map 

 
 

We will analyze the three-variable subspace <A1, A2, ARand1> next. The 

solution, from the default starting vector w=1, is shown overtop the LU surface 

map in Figure 40. The solution is w=<1.210174, 1.235687, 0.554139>. This is 

sensible (and informative for HG) considering how the artificial data were 

constructed, i.e., that A1 and A2 together defined clusters in the data, while 

ARand1 and ARand2 did not. 
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The 2D surface map reveals that there are at least two local minima, one 

of which is the grand minimum. Unfortunately, the solution attained from the 

default w=1 does not equal the grand minimum in this case. To better reveal the 

additional local minimum, we created a high resolution surface map on a smaller 

area encompassing the first solution, and restarted VWUO-MD from a point 

within the depression containing the grand minimum. The second solution and 

grand minimum is w=<1.294313, 1.156153, 0.549534>, which is similar to the 

other local minimum. At the solutions, it was confirmed that v̂ =0 and Hessian(v) 

had positive eigenvalues. 

Figure 40. Default VWUO-MD solution to three-variable type A subspace in the mixed-type 
artificial data set, overtop the LU surface map 
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Next we will analyze the four-variable subspace <A1, A2, ARand1, 

ARand2>. The solution, from the default starting vector w=1, is shown overtop 

the LU surface map in Figure 41. The solution is w=<1.151529, 1.173861, 

0.799681, 0.874929>. This is sensible (and informative for HG) considering how 

the artificial data were constructed, i.e., that A1 and A2 together defined clusters 

in the data, while ARand1 and ARand2 did not. 

The observed minimum on the 3D surface map does not correspond with 

the default solution. This suggests the existence of multiple local minima, like we 

saw in the 2D surface map. To reveal the additional local minima, we created a 

high resolution surface map on a smaller area encompassing the grand minimum 

from the first output, and other solutions were found by restarting the procedure 

from the depressions (lighter spots) on different slices of the surface. In a similar 

manner, restarting the procedure from lighter regions on slices in different planes 

as well as on slices moved through the subspace, six other local minima were 

found. At the solutions, it was confirmed that v̂ =0 and Hessian(v) had positive 

eigenvalues. There are probably other local minima that we did not find. The 

seven local minima found are listed in Table 8, sorted by LU. This table shows 

that the default solution was only sixth out of seven by LU. All seven solutions 

(that we found) were sensible (and informative for HG). 

 127



 

Figure 41. Default VWUO-MD solution to four-variable type A subspace in the mixed-type 
artificial data set, overtop the LU surface map 

 
 

Table 8. Seven VWUO-MD solutions to four-variable type A subspace in the mixed-type 
artificial data set, sorted by LU; the default solution is in italics 

LU wA1 wA2 wARand1 wARand2 
176.06052889 1.145728 1.186654 0.882716 0.784902
176.09511691 1.173545 1.158007 0.886358 0.782090
176.09602147 1.167399 1.162998 0.890344 0.779259
176.20251582 1.139568 1.187356 0.790741 0.882335
176.20314154 1.139683 1.182622 0.794989 0.882706
176.21561506 1.151529 1.173861 0.799681 0.874929
176.22770954 1.163140 1.162324 0.799603 0.874933

 

The relative weights in the grand minimum solutions are informative about 

the clustering present in the data. That is useful for HG. However, do they also 

help to enhance the clustering? To find out, we create dendrograms (single 

linkage) on three- and four-variable distance matrices both unweighted and 
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variable weighted with the grand minimum solutions obtained earlier. Figure 42 

contains all four dendrograms. None appear to be very informative. It seems that 

in situations with a small number of binary asymmetric variables, the variable 

weights may form the most informative part of the solution—they reflect the 

clustering that we know exists in the data, and can help to generate hypotheses 

for additional analyses. 

Figure 42. Dendrograms (single linkage) on three- (top row) and four-variable (bottom row) 
type A distance matrices both unweighted (left) and variable weighted (right) 
with the VWUO-MD grand minimum solutions 
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4.3.5 Analysis of mixed-type subspaces 

Next we will perform VWUO-MD analyses of mixed-type data. We first 

analyze the six pairs of three-variable subspaces of different types. Table 9 

contains the solutions from the default w=1. The solutions are all sensible (and 

informative for HG) within each type considering how the artificial data were 

constructed, i.e., that variables X1 and X2 (where X=C, O, N or A) defined 

clusters in the data, while XRand1 did not. Recall that the purpose of the 

equalizing multipliers was to provide a fair comparison between variables of 

different types. This means ideally that besides solutions being sensible (and 

informative for HG) within each type, wXRand1≤wY1 and wXRand1≤wY2 for both X and 

Y. This was true here in four out of six combinations. The exceptions involve 

wNRand1 in the types O and N subspace, and wNRand1 in the types N and A 

subspace. 

Table 9. Default VWUO-MD solutions to six-variable type-pair artificial data 

TypeX TypeY wX1 wX2 wXRand1 wY1 wY2 wYRand1 
C O 1.240916 1.362759 0.738439 0.942469 0.954587 0.760830
C N 1.020536 1.168084 0.549186 1.194739 1.092688 0.974768
C A 1.309662 1.454200 0.812625 0.897290 0.905580 0.620642
O N 0.905459 1.005123 0.645914 1.231117 1.162951 1.049436
O A 1.177644 1.222795 0.895828 1.001425 0.922055 0.780253
N A 1.264981 1.249465 1.138873 0.960755 0.850283 0.535642

 

Next we analyze the four triples of three-variable subspaces of different 

types. Table 10 contains the solutions from the default w=1. The solutions are all 

sensible (and informative for HG) within each type considering how the artificial 

data were constructed, i.e., that variables X1 and X2 (where X=C, O, N or A) 

defined clusters in the data, while XRand1 did not. However, on all four 
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combinations, wXRand1>wY1 or wXRand1>wY2 for some X and Y. The equalizing 

multipliers were less effective on these data than they were on the six-variable 

subspaces above. However, presumably solutions on average will be fairer than 

they would be had we not calibrated the equalizing multipliers. 
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Finally, we analyze the 12-variable subspace containing three variables of 

each type, two clustering variables and one independent of the clusters. The 

solution from the default w=1 is <wC1, wC2, wCRand1, wO1, wO2, wORand1, wN1, wN2, 

wNRand1, wA1, wA2, wARand1>=<1.170928, 1.211323, 0.863377, 0.964366, 

1.038497, 0.888572, 1.129983, 1.114780, 1.097046, 0.890474, 0.874921, 

0.755734>. This is sensible (and informative for HG) within each type considering 

how the artificial data were constructed, i.e., that variables X1 and X2 (where 

X=C, O, N or A) defined clusters in the data, while XRand1 did not. However, 

wXRand1>wY1 or wXRand1>wY2 for some X and Y. 

4.4 Strategic random restarts or surface maps for overcoming 
multiple local minima 

The existence of multiple local minima in many of the subspaces we 

analyzed presents a problem. The local minima with lower LU appear to be more 

informative in general, but how can you be reasonably sure you have found one 

of the lowest, if not the absolute lowest local minimum? One possibility is to 

restart the analysis multiple times from random locations, as others (e.g., De 

Soete and Makarenkov) have counseled for continuous variables when using the 

De Soete method.18,50 This is a good idea and one adopted in VWUO-MD, but 

the method of random restarts in VWUO-MD differs from that used by De Soete 

in two important ways. First, the random restart is not just at any point in the 

parameter space, but rather at a random point within a (p-1)-dimensional 

hypersphere surrounding the last best solution (the point of lowest LU to which 

the algorithm has so far converged). The p-1 dimensions include all but one 
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(randomly selected) variable weight, which is set to p minus the sum of the other 

weights. The second way that random restarts in VWUO-MD differ from those 

used by De Soete is that in VWUO-MD, the final solution is taken to be the point 

of convergence with the smallest LU, by definition the best solution the algorithm 

could find. In De Soete’s approach, the average w vector is taken regardless of 

how large LDS might have been at some of the local minima. 

The theoretical reasoning for restricting the random restarts within a 

hypersphere about the last best solution is for the algorithm to work its way 

towards the lowest local minimum, and not stray too far away towards regions of 

higher local minima. The assumption is that the lowest depressions occur in 

close proximity. That this was the case in the subspaces analyzed above can 

most easily be seen by noting that the local minima with the lowest few LU all 

occurred at “sensible” locations. The radius of the hypersphere is set by the 

analyst in VWUO-MD, and must be chosen carefully. If the radius is too small, 

the algorithm will always restart within the last best local depression and arrive at 

the same solution with every restart. If the radius is too large, the algorithm will 

not retain the advantage of staying close to the lowest depression yet found. The 

default value of 0.5 was chosen after experimentation on several of the data sets 

analyzed above and elsewhere. 

To demonstrate the effectiveness of the approach, we will reanalyze the 

three-variable type N subspace. Figure 43 contains the output from an analysis 

started from w=1 with 10 random restarts within hyperspheres of radius 0.5. The 

grand minimum was found on the 7th random restart, indicated in the output by 
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"Random restart: 10 of 10 (best=7)". The analysis was repeated nine more times, 

and the list of 10 solutions is contained in Table 11. The grand minimum solution 

was found seven out of 10 times, with the remaining three solutions being the 

second smallest local minimum. All ten solutions are sensible (and informative for 

HG). 

Figure 43. A successful application of random restarts for finding the grand minimum in 
three-variable type N subspace with multiple local minima; the grand minimum 
was found on the 7th random restart 

 
 

Table 11. Ten VWUO-MD solutions to three-variable type N subspace in the mixed-type 
artificial data set; sorted by LU and K=required number of random restarts 
(maximum 10) to find each solution 

K LU wS1 wS2 wSRand1 
1 67.67156137 1.307467 1.278827 0.413706
2 67.67156137 1.307467 1.278827 0.413706
2 67.67156137 1.307467 1.278827 0.413706
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2 67.67156137 1.307467 1.278827 0.413706
4 67.67156137 1.307467 1.278827 0.413706
7 67.67156137 1.307467 1.278827 0.413706
8 67.67156137 1.307467 1.278827 0.413706
1 67.95910829 0.778683 2.000000 0.221318
1 67.95910829 0.778683 2.000000 0.221318
6 67.95910829 0.778683 2.000000 0.221318

 

For lower-dimensional data sets, an alternative solution to the problem of 

multiple local minima could be surface mapping, by serving as a preprocessing 

step to obtain the approximate location of the grand minimum. This would be 

followed up with Newton-Raphson to refine the estimate. Combinatorics is the 

enemy at higher dimensions however, rendering the minimum feasible grid 

spacing prohibitively wide. For example, four grid lines on each of 10 variables 

requires LU to be calculated at >1M points, and considering how close together 

some of the local minima can be, four grid lines will never be close to sufficient to 

identify the grand minimum with any confidence. To demonstrate the feasibility of 

this approach at least conceptually however, consider the three-variable type N 

subspace: when the estimation is started from within the depression containing 

the grand minimum reported on the surface map, VWUO-MD converges on the 

grand minimum every time; the key is to know approximately where to look. 

4.5 Invariance of point estimates and covariance matrix 
estimators to category order, column order, record order and 
affine transformations 

The VWUO-MD solution on a type C subspace is invariant to record order 

and 1-variable affine transformations. These properties are evident in the sums 

over Ω in LU and the type C distance formulas. Estimates are invariant to record 
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order because the order of the Ω terms in the sum LU does not affect the total. 

Estimates are invariant to changes in range because in the type C distance 

formula, the squared normalizing constant lives in the denominator below the 

squared difference measured on that variable, and the former being a multiple of 

the range, range cancels out. Estimates are invariant to changes in the origin 

because the difference is being taken. The latter two properties applied in series 

suggest invariance for 1-variable affine transformations. We would expect by the 

weighted type C distance formula that estimates are invariant to column 

(variable) order also, since no weight is treated differently than any others in the 

formula. However, while we find that the solution is invariant to column order 

excluding the last column, it is found to be only nearly invariant to permutations 

of column order that change the last column. To demonstrate the first three 

properties on the four-variable type C artificial data, we scramble the order of the 

first three columns, randomly rearrange the data records, and apply an affine 

transformation to each variable as follows: C1=(C1-2)*0.5; C2=(C2-1)*1; 

CRand1=(CRand1+1)*1.5; and CRand2=(CRand2+2)*2. VWUO-MD analysis of 

the transformed data produced exactly the same solution as before, iteration by 

iteration, with the exact same LU evaluated at the solution. By “exact”, we mean 

within 0.00000001 (two digits beyond the convergence criterion and all that are 

recorded in the output files). The solution is, within the convergence criterion, 

w=<wC1, wC2, wCRand1, wCRand2>=<1.219176, 1.459937, 0.638227, 0.682661>. 

The near invariance to column permutations that switch the last column with 

another is shown by changing the last column with another in the transformed 
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data and reanalyzing. This time, the variable weights differed by as much as 

0.0001, w=<wC1, wC2, wCRand1, wCRand2>=<1.219051, 1.459977, 0.638302, 

0.682670>. Conceptually, the transformation from v to w should not affect the 

solution regardless of which is the last column, so the lack of invariance to 

column order involving the last column is probably due to numerical instability 

combined with the transformation from v to w, in which the pth variable weight 

has a slightly different formula than the other p-1 columns. In any case, the effect 

does not appear to be big enough to substantively affect results. 

The VWUO-MD solution on a type O subspace is invariant to record order 

and column order including permutations of column order that change the last 

column. Type O estimates are not completely invariant to category order since 

that could change the ranks, except when categories are only completely 

reversed on a variable if permuted at all. Estimates are invariant to record order 

because the order of the Ω terms in the sum LU does not affect the total. 

Estimates are invariant to column (variable) order since no weight is treated 

differently than any others in the type O distance formula. Estimates are invariant 

to complete reversals of ordinal variable labels because that can be 

accomplished with an affine transformation of the variable ranks, and the type O 

distance formula, having the same structure as the type C distance formula, is 

invariant to 1-variable affine transformations. To demonstrate invariance on the 

four-variable type O artificial data, we scramble the order of the columns 

ensuring that the last column is changed, reverse the category labels of two 

variables, and randomly rearrange the data records. VWUO-MD analysis of the 
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transformed data produced the same solution as before to within the 

convergence criterion, with the same LU evaluated at the solution. Estimates are 

not invariant to the range of category scores for the same reason that type C 

variables are invariant to variable scale: each normalizing constant is a multiple 

of the variable’s “range”. (Recall that this was to penalize differences between 

objects on a discrete variable less harshly when there are more categories.) 

The VWUO-MD solution on a type N subspace is invariant to record order 

and column order including permutations of column order that change the last 

column. Type N estimates are invariant to category order. Estimates are invariant 

to record order because the order of the Ω terms in the sum LU does not affect 

the total. Estimates are invariant to column (variable) order since no weight is 

treated differently than any others in the type N distance formula. Estimates are 

invariant to category order because the type N distance formula only considers 

equality between objects, not ranks. To demonstrate these properties on the 

four-variable type N artificial data, we scramble the order of the columns ensuring 

that the last column is changed, scramble the category label order of all the 

variables, and randomly rearrange the data records. VWUO-MD analysis of the 

transformed data produced the same solution as before to within the 

convergence criterion, with the same LU evaluated at the solution. 

The VWUO-MD solution on a type A subspace is invariant to record order 

and column order including permutations of column order that change the last 

column. Estimates are invariant to record order because the order of the Ω terms 

in the sum LU does not affect the total. Estimates are invariant to column 
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(variable) order since no weight is treated differently than any others in the type A 

distance formula. To demonstrate these properties on the four-variable type A 

artificial data, we scramble the order of the columns ensuring that the last column 

is changed, and randomly rearrange the data records sorting by a uniform 

random variable. This time VWUO-MD analysis of the transformed data 

produced a different default solution, which was equal to the best solution found 

previously (the top row in Table 8) to within the convergence criterion, with the 

same LU evaluated at the solution. Type A variables are not invariant to category 

labels, since by design equality between objects at value 1 is treated more 

importantly than equality at value 0. 

Finally, we will check the above invariance properties on the 12-variable 

subspace containing three variables of each type, two clustering variables and 

one independent of the clusters. Records, columns and labels were randomly 

rearranged according to the descriptions above for each type. (VWUO.exe 

requires pre-ordering column types according to C, O, N and A, however we can 

reorder the columns within each type.) VWUO-MD analysis of the transformed 

data set produced the same solution as before to within the convergence 

criterion, with the same LU evaluated at the solution. 

The invariance of the covariance matrix estimators to the above conditions 

follows from their derivations. With identical point estimates and replicate 

estimates, the bootstrap covariance matrix estimator must also be invariant to the 

above conditions. With identical solutions, gradients and Hessians, the U-
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statistic-based covariance matrix estimator must also be invariant to the above 

conditions. This was confirmed practically in a number of test data sets. 

VWUO-MD is a reasonably robust procedure, invariant to most 

transformations that one should consider inconsequential, such as the arbitrary 

labels attached to nominal variables, or the scaling of a continuous variable. That 

all three discrete types as well as the mixed-type data set were invariant to 

column permutations that switched the last column with another offers support to 

the idea that the slight lack of invariance seen in this regard on type C data was 

due to numerical instability. 

4.6 Monte Carlo simulations comparing bootstrap and U-
statistic-based covariance matrix estimators 

Earlier we developed covariance matrix estimators for w based on U-

statistics and the bootstrap approach. In this section, we will perform Monte Carlo 

simulations to assess the performance of these estimators. 

One hundred replicates of four three- and four-variable type-specific data 

sets and a 12-variable combined-types data set were randomly generated based 

on the clustered super population behind the artificial, clustered data set 

developed earlier. Specifically, the same probability distributions described 

earlier were drawn from, 100 times for each of the five data sets. Recall the 

importance of the super population: the absolute minimizing weight vector w  that 

would be obtained on the entire SP comprises “true” w, or equivalently, w 

minimizes the expectation of the loss function for a randomly selected triple of 

points. As part of the SP definition above, conditional distributions of variables 

ˆ

 141



 

were described that depended on a latent group variable g. Proportions of the SP 

at different levels of g were described. Since in this SRS example g is latent 

(unmeasured), it would not be realistic to suppose one could selectively sample 

from each group. Therefore, different replicates have different sample 

distributions of g based on its probability distribution, besides the other variables. 

It has been found that for simple to complex regression models, use of at least 

200 to 400 bootstrap samples is sufficient for stability of p-values from bootstrap-

based hypothesis testing.75 We generated 500 bootstrap weights for each 

replicate data set in the manner described earlier appropriate for an SRS. 

The type N subspace was analyzed in two scenarios, one without random 

restarts, and one with five random restarts within hyperspheres of radius 0.5. The 

latter scenario was added to determine how each covariance matrix estimator 

could handle the additional variation introduced by multiple local minima and 

random restarts. Type N was chosen for this purpose because it was one of the 

most demanding data types: its three-variable subspace was tied on the highest 

number of local minima, with a default solution that ranked third out of five very 

widespread local minima in the example data set analyzed earlier. Five random 

restarts were used instead of 10 because five restarts would inflate the additional 

variance more than 10 restarts. (Recall that with 10 random restarts, most 

solutions ended up at the grand minimum in our type N analysis, which is of 

course a good thing.) All scenarios were analyzed starting from the default vector 

w=1. VWUO-MD was executed 501 times (once on the full sample and once on 

each bootstrap sample) on all 100 replicates of all six scenarios. The sample 
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covariance matrix of w was calculated for each scenario based on the 100 full 

sample replicates. The bootstrap and U-statistic-based covariance matrices were 

calculated on each replicate data set, providing a sample of 100 bootstrap or U-

statistic-based estimates for comparison with each sample covariance matrix. 

Finally, means, 5th percentiles and 95th percentiles of each element in the 

bootstrap and U-statistic-based covariance matrices were compared to the 

sample covariance matrices. 

In the following tables, the results on the three- and 12-variable data sets 

are explored in detail. At the end of the section, the performance of the U-

statistic-based covariance matrix estimator on the four-variable data sets is 

described, compared to the results on the smaller and larger data sets, and 

implications are discussed. 
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Table 12 lists, for type C data, the 5th percentiles, means and 95th 

percentiles of the entries in  ŵˆ UraV  across the 100 replicates, and the sample 

covariance matrix  for comparison. The variance entries in the mean 

 are underestimated by factors of 0.8, 2.3 and 3.2 (compared to the 

sample covariance matrix of the 100 full sample replicates). Cov(wC1,wC2) is not 

as well estimated, but the other two covariances are well approximated. 

 ŵˆraV

 ŵˆ UraV

Table 12. The performance of  ŵˆ UraV  on type C data 

 ŵˆraV  
w wC1 wC2 wCRand1 

wC1 0.004681 -0.003434 -0.001247 
wC2 -0.003434 0.004962 -0.001529 
wCRand1 -0.001247 -0.001529 0.002775 

 
P5   ŵˆ UraV

w wC1 wC2 wCRand1 

wC1 0.000916 -0.000758 -0.002506 
wC2 -0.000758 0.001216 -0.003491 
wCRand1 -0.002506 -0.003491 0.001893 

 
Mean   ŵˆ UraV

w wC1 wC2 wCRand1 

wC1 0.001479 -0.000004 -0.001475 
wC2 -0.000004 0.002128 -0.002124 
wCRand1 -0.001475 -0.002124 0.003599 

 
P95   ŵˆ UraV

w wC1 wC2 wCRand1 

wC1 0.002308 0.000776 -0.000717 
wC2 0.000776 0.003503 -0.000952 
wCRand1 -0.000717 -0.000952 0.005635 
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Next we assess the performance of  ŵˆ BSraV . Table 13 lists the 5th 

percentiles, means and 95th percentiles of the entries in  across the 100 

replicates, and the sample covariance matrix 

 ŵˆ BSraV

 ŵˆraV  for comparison. The mean 

 overestimates the entries in  ŵˆ BSraV  ŵˆraV  by factors of 1.4 to 1.6, 

conservative estimates but with the right order of magnitude. The 5th percentiles 

of  are slightly liberal. This is a reasonable estimator, and better than the 

U-statistic-based estimator. 

ˆ BSraV ŵ

Table 13. The performance of  ŵˆ BSraV  on type C data 

 ŵˆraV  
w wC1 wC2 wCRand1 

wC1 0.004681 -0.003434 -0.001247 
wC2 -0.003434 0.004962 -0.001529 
wCRand1 -0.001247 -0.001529 0.002775 

 
P5   ŵˆ BSraV

w wC1 wC2 wCRand1 

wC1 0.002513 -0.018757 -0.003956 
wC2 -0.018757 0.003152 -0.004285 
wCRand1 -0.003956 -0.004285 0.002277 

 
Mean   ŵˆ BSraV

w wC1 wC2 wCRand1 

wC1 0.007473 -0.005461 -0.002013 
wC2 -0.005461 0.007639 -0.002179 
wCRand1 -0.002013 -0.002179 0.004191 

 
P95   ŵˆ BSraV

w wC1 wC2 wCRand1 

wC1 0.020897 -0.000932 -0.000800 
wC2 -0.000932 0.019987 -0.000563 
wCRand1 -0.000800 -0.000563 0.007058 
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Table 14 lists, for type O data, the 5th percentiles, means and 95th 

percentiles of the entries in  v̂ˆ UraV  across the 100 replicates, and the sample 

covariance matrix  for comparison. The mean  v̂ˆraV  v̂ˆ UraV  underestimates the 

variance entries in  by factors of 3.4 to 6.2. While Cov(wO1,wORand1) is out 

by a bigger factor, the comparison is close to 0 and the absolute difference is 

small. 

v̂Var 

Table 14. The performance of  v̂ˆ UraV  on type O data 

 ŵˆraV  
w wO1 wO2 wORand1 

wO1 0.122552 -0.130348 0.007796 
wO2 -0.130348 0.160223 -0.029875 
wORand1 0.007796 -0.029875 0.022079 

 
P5   ŵˆ UraV

w wO1 wO2 wORand1 

wO1 0.005948 -0.052603 -0.013822 
wO2 -0.052603 0.006033 -0.030343 
wORand1 -0.013822 -0.030343 0.002577 

 
Mean   ŵˆ UraV

w wO1 wO2 wORand1 

wO1 0.020500 -0.020048 -0.000452 
wO2 -0.020048 0.026036 -0.005988 
wORand1 -0.000452 -0.005988 0.006440 

 
P95   ŵˆ UraV

w wO1 wO2 wORand1 

wO1 0.044132 -0.004576 0.015496 
wO2 -0.004576 0.078155 0.005808 
wORand1 0.015496 0.005808 0.014297 

 

 146



 

Next we assess the performance of  ŵˆ BSraV . Table 15 lists the 5th 

percentiles, means and 95th percentiles of the entries in  across the 100 

replicates, and the sample covariance matrix 

 ŵˆ BSraV

 ŵˆraV  for comparison. The mean 

 overestimates most of the entries in  ŵˆ BSraV  ŵˆraV  by a factor of 1.2, with the 

remaining covariance entry off by a factor of 0.8, generally conservative 

estimates but with the right order of magnitude and very close to optimal values. 

This is a reasonable estimator, and better than the U-statistic-based estimator. 

Table 15. The performance of  ŵˆ BSraV  on type O data 

 ŵˆraV  
w wO1 wO2 wORand1 

wO1 0.122552 -0.130348 0.007796 
wO2 -0.130348 0.160223 -0.029875 
wORand1 0.007796 -0.029875 0.022079 

 
P5   ŵˆ BSraV

w wO1 wO2 wORand1 

wO1 0.038030 -0.378112 -0.054228 
wO2 -0.378112 0.035798 -0.126523 
wORand1 -0.054228 -0.126523 0.009040 

 
Mean   ŵˆ BSraV

w wO1 wO2 wORand1 

wO1 0.152720 -0.159030 0.006310 
wO2 -0.159030 0.192625 -0.033595 
wORand1 0.006310 -0.033595 0.027285 

 
P95   ŵˆ BSraV

w wO1 wO2 wORand1 

wO1 0.423632 -0.034654 0.073939 
wO2 -0.034654 0.486865 0.025438 
wORand1 0.073939 0.025438 0.058949 
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Table 16 lists, for type N data analyzed without random restarts, the 5th 

percentiles, means and 95th percentiles of the entries in  across the 100 

replicates, and the sample covariance matrix 

 ŵˆ UraV

 ŵˆraV  for comparison. The mean 

 underestimates the variance entries in  ŵˆ UraV  ŵˆ UraV  by factors of 2.8 to 6.8. 

The covariance entries are off by factors of 0.8 to 11.0. 

Table 16. The performance of  v̂ˆ UraV  on type N data analyzed without random restarts 

 ŵˆraV  
w wN1 wN2 wNRand1 

wN1 0.027997 -0.026712 -0.001284 
wN2 -0.026712 0.043258 -0.016546 
wNRand1 -0.001284 -0.016546 0.017830 

 
P5   ŵˆ UraV

w wN1 wN2 wNRand1 

wN1 0.001840 -0.005614 -0.003214 
wN2 -0.005614 0.000000 -0.008146 
wNRand1 -0.003214 -0.008146 0.001883 

 
Mean   ŵˆ UraV

w wN1 wN2 wNRand1 

wN1 0.004086 -0.002439 -0.001647 
wN2 -0.002439 0.007219 -0.004780 
wNRand1 -0.001647 -0.004780 0.006426 

 
P95   ŵˆ UraV

w wN1 wN2 wNRand1 

wN1 0.007089 0.000000 -0.000225 
wN2 0.000000  0.012638 0.000000 
wNRand1 -0.000225 0.000000 0.009075 
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Next we assess the performance of  ŵˆ BSraV . Table 17 lists the 5th 

percentiles, means and 95th percentiles of the entries in  across the 100 

replicates, and the sample covariance matrix 

 ŵˆ BSraV

 ŵˆraV  for comparison. The mean 

 overestimates most of the entries in  ŵˆ BSraV  ŵˆraV  by factors of 1.6 to 2.1, 

conservative estimates but with the right order of magnitude. The remaining 

covariance entry is out by a bigger factor and the sign has changed, but the 

comparison is very close to 0 and the absolute difference is small. This is a 

reasonable estimator, and better than the U-statistic-based estimator. 

Table 17. The performance of  ŵˆ BSraV  on type N data analyzed without random restarts 

 ŵˆraV  
w wN1 wN2 wNRand1 

wN1 0.027997 -0.026712 -0.001284 
wN2 -0.026712 0.043258 -0.016546 
wNRand1 -0.001284 -0.016546 0.017830 

 
P5   ŵˆ BSraV

w wN1 wN2 wNRand1 

wN1 0.014927 -0.111620 -0.018532 
wN2 -0.111620 0.029280 -0.058048 
wNRand1 -0.018532 -0.058048 0.009718 

 
Mean   ŵˆ BSraV

w wN1 wN2 wNRand1 

wN1 0.056365 -0.056711 0.000346 
wN2 -0.056711 0.085173 -0.028462 
wNRand1 0.000346 -0.028462 0.028117 

 
P95   ŵˆ BSraV

w wN1 wN2 wNRand1 

wN1 0.101132 -0.009735 0.020615 
wN2 -0.009735 0.150390 -0.010790 
wNRand1 0.020615 -0.010790 0.059074 
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Table 18 lists, for type N data analyzed with random restarts, the 5th 

percentiles, means and 95th percentiles of the entries in  across the 100 

replicates, and the sample covariance matrix 

 ŵˆ UraV

 ŵˆraV  for comparison. The mean 

 underestimates the variance entries in  ŵˆ UraV  ŵˆraV  by factors of 3.5 to 35.1. 

Covariances are out by bigger factors and some of the signs have changed, and 

here not all the absolute differences are small. 

Table 18. The performance of  v̂ˆ UraV  on type N data analyzed with 10 random restarts 

 ŵˆraV  
w wN1 wN2 wNRand1 

wN1 0.046062 -0.061213 0.015151 
wN2 -0.061213 0.088908 -0.027695 
wNRand1 0.015151 -0.027695 0.012543 

 
P5   ŵˆ UraV

w wN1 wN2 wNRand1 

wN1 0.001326 -0.004344 -0.002581 
wN2 -0.004344 0.000000 -0.007382 
wNRand1 -0.002581 -0.007382 0.001326 

 
Mean   ŵˆ UraV

w wN1 wN2 wNRand1 

wN1 0.002680 -0.000836 -0.001844 
wN2 -0.000836 0.002534 -0.001698 
wNRand1 -0.001844 -0.001698 0.003542 

 
P95   ŵˆ UraV

w wN1 wN2 wNRand1 

wN1 0.005808 0.000000 -0.000602 
wN2 0.000000  0.011887 0.000000 
wNRand1 -0.000602 0.000000 0.008502 

 

 150



 

Next we assess the performance of  ŵˆ BSraV . Table 19 lists the 5th 

percentiles, means and 95th percentiles of the entries in  across the 100 

replicates, and the sample covariance matrix 

 ŵˆ BSraV

 ŵˆraV  for comparison. The mean 

 overestimates the entries in  ŵˆ BSraV  ŵˆraV  by factors of 1.6 to 1.9, 

conservative estimates but with the right order of magnitude. The additional 

variation introduced by multiple local minima and random restarts has been 

adequately captured by the bootstrap approach. This is a reasonable estimator, 

and better than the U-statistic-based estimator. 

Table 19. The performance of  ŵˆ BSraV  on type N data analyzed with 10 random restarts 

 ŵˆraV  
w wN1 wN2 wNRand1 

wN1 0.046062 -0.061213 0.015151 
wN2 -0.061213 0.088908 -0.027695 
wNRand1 0.015151 -0.027695 0.012543 

 
P5   ŵˆ BSraV

w wN1 wN2 wNRand1 

wN1 0.022946 -0.202358 -0.000606 
wN2 -0.202358 0.032524 -0.099485 
wNRand1 -0.000606 -0.099485 0.003264 

 
Mean   ŵˆ BSraV

w wN1 wN2 wNRand1 

wN1 0.087636 -0.111891 0.024255 
wN2 -0.111891 0.159943 -0.048052 
wNRand1 0.024255 -0.048052 0.023797 

 
P95   ŵˆ BSraV

w wN1 wN2 wNRand1 

wN1 0.168038 -0.025774 0.051969 
wN2 -0.025774 0.280333 -0.006950 
wNRand1 0.051969 -0.006950 0.067387 
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Table 20 lists, for type A data, the 5th percentiles, means and 95th 

percentiles of the entries in  ŵˆ UraV  across the 100 replicates, and the sample 

covariance matrix  for comparison. The mean  v̂ˆraV  ŵˆ UraV  underestimates 

most of the entries in  by factors of 4.6 to 7.6. The remaining covariance 

entry is out by a bigger factor but the comparison value is close to 0 and the 

absolute difference is small. 

ŵˆraV

Table 20. The performance of  v̂ˆ UraV  on type A data 

 ŵˆraV  
w wA1 wA2 wARand1 

wA1 0.012608 -0.000022 -0.012587 
wA2 -0.000022 0.015757 -0.015735 
wARand1 -0.012587 -0.015735 0.028322 

 
P5   ŵˆ UraV

w wA1 wA2 wARand1 

wA1 0.000817 -0.002722 -0.004245 
wA2 -0.002722 0.000998 -0.004119 
wARand1 -0.004245 -0.004119 0.002213 

 
Mean   ŵˆ UraV

w wA1 wA2 wARand1 

wA1 0.002732 -0.000679 -0.002053 
wA2 -0.000679 0.002746 -0.002067 
wARand1 -0.002053 -0.002067 0.004120 

 
P95   ŵˆ UraV

w wA1 wA2 wARand1 

wA1 0.005461 0.000706 -0.000782 
wA2 0.000706 0.005674 -0.000622 
wARand1 -0.000782 -0.000622 0.006402 
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Next we assess the performance of  ŵˆ BSraV . Table 21 lists the 5th 

percentiles, means and 95th percentiles of the entries in  across the 100 

replicates, and the sample covariance matrix 

 ŵˆ BSraV

 ŵˆraV  for comparison. The mean 

 overestimates most of the entries in  ŵˆ BSraV  ŵˆraV  by factors of 0.9 to 2.0, 

generally conservative estimates but with the right order of magnitude. The 

remaining covariance entry is out by a bigger factor, but the comparison value is 

close to 0 and the absolute difference is small. This is a reasonable estimator, 

and better than the U-statistic-based estimator. 

Table 21. The performance of  ŵˆ BSraV  on type A data 

 ŵˆraV  
w wA1 wA2 wARand1 

wA1 0.012608 -0.000022 -0.012587 
wA2 -0.000022 0.015757 -0.015735 
wARand1 -0.012587 -0.015735 0.028322 

 
P5   ŵˆ BSraV

w wA1 wA2 wARand1 

wA1 0.011106 -0.030974 -0.031331 
wA2 -0.030974 0.011977 -0.037138 
wARand1 -0.031331 -0.037138 0.012327 

 
Mean   ŵˆ BSraV

w wA1 wA2 wARand1 

wA1 0.025107 -0.009943 -0.015164 
wA2 -0.009943 0.024351 -0.014408 
wARand1 -0.015164 -0.014408 0.029572 

 
P95   ŵˆ BSraV

w wA1 wA2 wARand1 

wA1 0.046766 0.000719 -0.004422 
wA2 0.000719 0.053755 -0.002940 
wARand1 -0.004422 -0.002940 0.058401 
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Table 22 lists, for mixed-type data, the 5th percentiles, means and 95th 

percentiles of the entries in  ŵˆ UraV  across the 100 replicates, and the sample 

covariance matrix  for comparison. The mean  ŵˆraV  ŵˆ UraV  differ from the 

variance entries in  by factors of 0.7 to 1.8, which are much better than we 

saw in smaller subspaces. However, most of the diagonal entries remain liberal. 

Thirty-eight of the 66 covariance entries are out by factors >0.2 and <5, and with 

the correct sign retained. The remaining entries have comparison values 

relatively close to 0 and the absolute differences are small.

ŵˆraV 
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Next we assess the performance of  ŵˆ BSraV . Table 23 lists the 5th 

percentiles, means and 95th percentiles of the entries in  across the 100 

replicates, and the sample covariance matrix 

 ŵˆ BSraV

 ŵˆraV  for comparison. The mean 

 overestimates the variance entries in  ŵˆ BSraV  ŵˆraV  by factors of 0.9 to 2.3, 

mostly conservative estimates but with the right order of magnitude. Forty-seven 

of the 66 covariance entries are out by factors >0.2 and <5, and with the correct 

sign retained. The remaining entries have comparison values relatively close to 0 

and the absolute differences are small. This is a reasonable estimator, and better 

than the U-statistic-based estimator considering lack of liberal variance entries.
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ŵ
ˆ

B
S

ra
V

w
 

w
C

1 
w

C
2 

w
w

w
w

w
w

w
C

R
an

d1
 

O
1 

w
O

2 
O

R
an

d1
 

N
1 

w
N

2 
N

R
an

d1
 

A
1 

w
A

2 
A

R
an

d1
 

w
C

1 
4.

49
 

-4
.7

8 
-1

.8
4 

-3
.3

4 
-3

.6
2 

-1
.0

4 
-0

.2
8 

-0
.6

8 
-0

.4
9 

-1
.3

7 
-1

.4
2 

-0
.8

9 
w

C
2 

-4
.7

8 
3.

85
 

-1
.8

3 
-2

.8
3 

-2
.7

7 
-1

.5
1 

-0
.2

8 
-0

.5
4 

-0
.5

3 
-1

.5
0 

-1
.5

8 
-1

.5
2 

w
C

R
an

d1
 

-1
.8

4 
-1

.8
3 

2.
92

 
-2

.6
8 

-2
.6

7 
-0

.7
3 

-0
.2

1 
-0

.4
5 

-0
.3

0 
-1

.2
3 

-1
.2

9 
-0

.5
2 

w
O

1 
-3

.3
4 

-2
.8

3 
-2

.6
8 

3.
05

 
-3

.1
0 

-2
.1

0 
-0

.3
3 

-0
.4

0 
-0

.7
2 

-1
.5

7 
-1

.8
1 

-1
.9

3 
w

O
2 

-3
.6

2 
-2

.7
7 

-2
.6

7 
-3

.1
0 

3.
43

 
-2

.1
3 

-0
.4

3 
-0

.6
8 

-0
.8

9 
-2

.4
8 

-1
.7

7 
-2

.0
7 

w
O

R
an

d1
 

-1
.0

4 
-1

.5
1 

-0
.7

3 
-2

.1
0 

-2
.1

3 
1.

59
 

-0
.1

4 
-0

.2
9 

-0
.2

2 
-0

.8
1 

-0
.7

7 
-0

.1
3 

w
N

1 
-0

.2
8 

-0
.2

8 
-0

.2
1 

-0
.3

3 
-0

.4
3 

-0
.1

4 
0.

07
 

0.
05

 
0.

06
 

-0
.1

5 
-0

.2
0 

-0
.1

1 
w

N
2 

-0
.6

8 
-0

.5
4 

-0
.4

5 
-0

.4
0 

-0
.6

8 
-0

.2
9 

0.
05

 
0.

11
 

0.
09

 
-0

.2
6 

-0
.4

8 
-0

.2
7 

w
N

R
an

d1
 

-0
.4

9 
-0

.5
3 

-0
.3

0 
-0

.7
2 

-0
.8

9 
-0

.2
2 

0.
06

 
0.

09
 

0.
30

 
-0

.3
3 

-0
.3

2 
-0

.0
2 

w
A

1 
-1

.3
7 

-1
.5

0 
-1

.2
3 

-1
.5

7 
-2

.4
8 

-0
.8

1 
-0

.1
5 

-0
.2

6 
-0

.3
3 

1.
32

 
-0

.3
0 

-0
.3

9 
w

A
2 

-1
.4

2 
-1

.5
8 

-1
.2

9 
-1

.8
1 

-1
.7

7 
-0

.7
7 

-0
.2

0 
-0

.4
8 

-0
.3

2 
-0

.3
0 

1.
26

 
-0

.3
4 

w
A

R
an

d1
 

-0
.8

9 
-1

.5
2 

-0
.5

2 
-1

.9
3 

-2
.0

7 
-0

.1
3 

-0
.1

1 
-0

.2
7 

-0
.0

2 
-0

.3
9 

-0
.3

4 
0.

98
 

 M
ea

n 
*1

03  



ŵ
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While we do not present additional tables, we also ran simulations to 

assess the performance of the U-statistic-based covariance matrix estimator on 

four-variable type-specific data. The performance of  ŵˆ UraV  was substantially 

improved, assessed as before by similarity to the sample covariance matrix of 

the 100 replicate variable weight vectors. On four-variable type C data, the 

diagonal entries were off by factors of 0.5 to 1.2, substantially better than the 

three-variable results and no longer a clearly liberal estimator. On four-variable 

type O data, the diagonal entries were overestimates by factors of 2.6 to 6.1, 

better than the three-variable results but still a liberal estimate. Additional 

simulations showed that even with as many as nine type O variables, estimates 

are liberal, as well as in the 12-variable mixed data tabulated above. On four-

variable type N data without random restarts, the diagonal entries were off by 

factors of 0.4 to 1.6, substantially better than the three-variable results and no 

longer a clearly liberal estimator. On four-variable type A data, the diagonal 

entries were overestimates by factors of 2.4 to 3.2, better than the three-variable 

results but still a liberal estimate. Additional simulations showed that even with as 

many as nine type A variables, estimates are liberal, as well as in the 12-variable 

mixed data tabulated above. In the above results, when the variance entries were 

in line, the covariance (off-diagonal) entries were generally a mixture of estimates 

to either side of the corresponding sample covariance entries. 

The fact that type C and N estimates were improved by adding a variable 

helps to affirm that one does not need mixed-type data to obtain good results 

from the U-statistic-based covariance matrix estimator, but that the estimator 
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does not do well (remains clearly liberal) with low-dimensional type C and N data, 

and with type O and A data of any dimension. On mixtures only involving types C 

and N, four-variable data is high dimensional enough, while for mixtures involving 

the other types, estimates remain liberal even with many variables. 

In low-dimensional type C and N data, and type O and A data of any 

dimension,  outperformed  ŵˆ BSraV  v̂ˆ UraV  for estimating . The bootstrap 

estimator was consistently conservative, overestimating by factors in the low 

single digits whether the VWUO-MD analysis involved a single type of variable, 

or mixed-type data. The bootstrap estimator has the added advantage of 

facilitating variance estimation for VWUO-MD estimates obtained on complex 

survey data for which bootstrap weights have been developed. However, for SRS 

data with at least four variables involving only types C and N (or perhaps other 

SRS data on which approximate, liberal estimates are sufficient), the U-statistic-

based estimator can save substantial computing time (several hundred to a 

thousand times—the number of potential bootstrap weights). 

 ŵVar

To use either covariance matrix estimator, we will require some 

knowledge about the asymptotic distribution of  to enable hypothesis testing of 

contrasts between the elements of w. 

ŵ

4.7 The distribution of  )(ˆ 1pw 

4.7.1 Non-multivariate normality 

For testing with  ŵˆraV  (whichever estimator we use), it would be 

convenient if the asymptotic distribution of  were multivariate normal. To )(ˆ 1pw 

 163



 

test this assumption, we performed the Henze-Zirkler T-test for multivariate 

normality74 on each set of 100 full sample replicate estimates for , which is 

based on comparing the distribution of squared Mahalanobis distances to a chi-

square distribution on p-1 degrees of freedom. 

)( 1pw 

Table 24 lists the results. 

Multivariate normality of the type C replicates is not rejected. However, tests in all 

other scenarios are statistically significant and we must reject multivariate 

normality. The least significant of these is the mixed-type scenario, with p-

value=0.024, but the other tests are highly significant with p-value<0.001. Chi-

square (on p-1 degrees of freedom) quantile-quantile plots of the squared 

Mahalanobis distances are shown in Figure 44. Under multivariate normality, 

these should be approximately straight lines. Single-type scenarios involving 

types O and N without random restarts show step function distributions of 

distances which may be a result of multiple local minima. We might have 

considered the discrete sample space for these variable types as a potential 

culprit here, but the type A and mixed-type plots actually look pretty straight 

(although the Henze-Zirkler test is still significant). The type N scenario with five 

random restarts has an improved Q-Q plot compared to type N without random 

restarts. Taking that farther, we tested another type N scenario with 15 random 

restarts, nearly guaranteeing that the absolute minimum would be found on any 

given run. The Q-Q plot was not noticeably improved, and the Henze-Zirkler test 

remained highly significant. It is possible that the lowest local minimum changes 

position in different replicates relative to the other local minima, which might 

explain this result. 
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Considering the possibility that analyzing more variables would improve 

normality (as was possibly indicated on the mixed-type plot), we ran 100 full 

sample replicates of each single type subspace using four variables instead of 

three (both the clustering variables and both independent variables), without 

random restarts and starting from w=1. The Q-Q plots were visibly improved 

(Figure 45), however the Henze-Zirkler test remained highly significant (except 

for type C). 

Finally, all these tests were rerun using log transformations of weights, as 

well as taking contrasts of weights, but the conclusions and plots did not improve. 

Table 24. Henze-Zirkler T-test for multivariate normality on each set of 100 full sample 
replicate estimates under each three-variable scenario and the mixed-type 
scenario 

Scenario Henze-
Zirkler 

p-value 

Type C without random restarts 0.948 

Type O without random restarts <0.001 

Type N without random restarts <0.001 

Type N with five random restarts <0.001 

Type N with 15 random restarts <0.001 

Type A without random restarts <0.001 

Mixed-type without random restarts 0.024 
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Figure 44. Chi-square quantile-quantile plots of squared Mahalanobis distances in 100 full 
sample replicates under each three-variable scenario and the mixed-type 
scenario 
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Figure 45. Chi-square quantile-quantile plots of squared Mahalanobis distances in 100 full 
sample replicates under each four-variable scenario 

    

     
 

4.7.2 Bootstrap percentile confidence intervals 

We found that  ŵˆ BSraV  provides a reasonable estimate of  under 

all scenarios tested, and that 

 ŵVar

 ŵˆ UraV  is a good estimator for scenarios with more 

variables of mixed type. Conveniently, for cases with many variables of mixed 

type, the estimates are also nearly MVN, according to the chi-square quantile-

quantile plot of the squared Mahalanobis distances, as are single-type analyses 

(approximately) in at least four dimensions. While the Henze-Zirkler T-test was 

statistically significant for the mixed-type and four-variable analyses, the quantile-

quantile plots were quite straight, and in fact we will see later that normal-based 
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intervals perform very well in such scenarios (i.e., the Henze-Zirkler test may be 

overly sensitive in higher dimensions). 

Unfortunately, the finding that the distribution of  is not MVN in low-

dimensional situations (≤3 variables) means that testing contrasts in w using 

 may not be straightforward. Therefore, on such data we will r

utilizing bootstrap replicate samples to calculate confidence intervals (CIs) of 

contrasts and other statistics directly, rather than imposing distributional 

assumptions. First we must calculate the statistic of interest  on each 

bootstrap replicate sample b. It has been shown that if  is an asymptotically 

unbiased estimate of 

)(ˆ 1pw 



̂

 ŵˆ BSraV ecommend 

b̂

 , then the  and th  th1   quantiles of the distribution of 

bootstrap replicate statistics , called a bootstrap percentile confidence interval, 

is an asymptotic confidence interval for 

b̂

 .76  
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CHAPTER 5: EXPLORATORY ANALYSES OF 
DISTRIBUTIONS FOR HYPOTHESIS GENERATION 

In the previous two chapters, we analyzed an artificial, clustered data set 

with VWUO-MD. We found that while the strength of the clustering was generally 

not improved (as assessed with dendrograms), the variable weights themselves 

were informative about which variables were related to the clusters in the data, 

and therefore to each other. Those data were constructed with MVN mixtures for 

type C variables and mixtures of multinomial distributions for the other types. 

Multidimensional clustering was achieved with an "unknown" latent group 

variable. In this chapter, we will perform Monte Carlo simulations to assess the 

performance of VWUO-MD on a series of artificial data sets constructed a little 

differently, and geared more directly towards the purpose of HG. We will assess 

each data type on its own. Every type T data set (where T=C, O, N, S or A) will 

have a known group variable g plus three variables, Tx, Ty and Tr. Tx and Ty will 

be related to each other according to a specific relationship (e.g., a quadratic), as 

well as possibly to group assignment g, while Tr will be unrelated to the other two 

variables and to g. Latent group g will be split into 1, 2, 3 or 4 levels according to 

prespecified (approximately equal) proportions, similar to a situation of stratified 

random sampling with g known. In the last example in each section, a situation of 

two disjoint relationships will be explored, with two pairs of related variables and 

one noise variable. 
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Each data set will be replicated 100 times, drawing from the prescribed 

distribution within each level of g. VWUO-MD will be performed on every 

replicated data set, and summary statistics for each set of variable weights 

obtained will be calculated and compared. Differences in performance between 

different shapes of data will be discussed. 

There are a lot of examples considered in this chapter, but most of the 

discussions below the examples are presented as succinct comparisons with 

previous examples. While every example except the last one in each section 

contains four graphs, the most important of these is the first one (or the first and 

the eighth in the last example of each section), plotting the two related variables 

against each other. Therefore one should not need to spend too much time on 

any one example. The goal of this chapter is to develop an overall idea of where 

VWUO-MD performs well, and where it falls short.  

5.1 Type C data 

We generated 40 type C data sets, replicated 100 times. Figure 46 to 

Figure 85 show the multivariate distributions of g, Cx, Cy and Cr in these data 

sets, as well as Cu and Cv in the last example. The captions describe the 

distributions. The number of groups is the number of levels of g. "Linear" 

describes a linear relationship between Cx and Cy. "Quadratic" describes a full 

parabolic relationship between Cx and Cy. "Half-quadratic" describes a half-

parabolic relationship between Cx and Cy. "Correlated with" means the direction 

of each Cx versus Cy cluster plotted in two dimensions runs in the parallel 

direction as the placement of clusters. "Correlated against" means the direction 
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of each Cx versus Cy cluster plotted in two dimensions runs in the perpendicular 

direction to the placement of clusters. "Extra wide" means the group means have 

been moved farther apart relative to the data scale. "Small error" versus "large 

error" describe relative standard deviations in the normal error term for Cy. 

Details about each distribution are given in the footnote below its figure, then a 

very brief discussion of VWUO-MD's performance on that data set is made. 
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Figure 46. Type C, linear, 1 group, small error 

    

     
Cx = a random Uniform(0,10) 
Cy = 2*Cx + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 25. Results for type C, linear, 1 group, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.924 (0.917, 0.931) 0.963 (0.955, 0.971) 1.113 (1.101, 1.125) 
P5, P50, P95 0.866, 0.926, 0.947 0.904, 0.960, 0.990 1.014, 1.113, 1.152 
1 Confidence intervals are normal-based 

VWUO-MD performs poorly for HG on linearly related variables with one 

group (no clusters). wCr is the highest weight assigned, which is the opposite of 

what should be desired. Even its 5th percentile is >1. In 1% of the replicates, wCr 

< wCx and wCy. 
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Figure 47. Type C, linear, 1 group, large error 

    

     
Cx = a random Uniform(0,10) 
Cy = 2*Cx + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 26. Results for type C, linear, 1 group, large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.917 (0.909, 0.925) 1.009 (0.999, 1.019) 1.074 (1.062, 1.086) 
P5, P50, P95 0.848, 0.918, 0.950 0.931, 1.004, 1.041 0.984, 1.069, 1.121 
1 Confidence intervals are normal-based 

VWUO-MD performs poorly, but less so when the error term is increased, 

which is sensible since it weakens the linear relationship that was problematic in 

the previous example. In 4% of the replicates, wCr < wCx and wCy. 
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Figure 48. Type C, linear, 2 groups (correlated with), small error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,8) + 12*I(G2) 
Cy = 2*Cx + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 27. Results for type C, linear, 2 groups (correlated with), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.975 (0.967, 0.983) 0.989 (0.981, 0.997) 1.036 (1.021, 1.050) 
P5, P50, P95 0.907, 0.974, 0.999 0.925, 0.988, 1.012 0.919, 1.039, 1.090 
1 Confidence intervals are normal-based 

VWUO-MD performs poorly, but less so than the previous two examples 

(at least considering the magnitude of wCr), when the related variables are 

linearly related and correlated parallel to the placement of the two clusters. In 

27% of the replicates, wCr < wCx and wCy. 
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Figure 49. Type C, linear, 2 groups (correlated with), large error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,8) + 12*I(G2) 
Cy = 2*Cx + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 28. Results for type C, linear, 2 groups (correlated with), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.973 (0.964, 0.982) 1.003 (0.995, 1.012) 1.024 (1.010, 1.038) 
P5, P50, P95 0.905, 0.973, 1.001 0.926, 1.001, 1.038 0.918, 1.033, 1.077 
1 Confidence intervals are normal-based 

Once again VWUO-MD sensibly performs less poorly when the error is 

increased. In 30% of the replicates, wCr < wCx and wCy. 
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Figure 50. Type C, linear, 2 groups (correlated with), extra wide, small error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,5) + 10*I(G2) 
Cy = 2*Cx + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 29. Results for type C, linear, 2 groups (correlated with), extra wide, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.068 (1.059, 1.077) 1.065 (1.057, 1.074) 0.867 (0.852, 0.881) 
P5, P50, P95 0.992, 1.069, 1.096 0.994, 1.065, 1.092 0.747, 0.878, 0.918 
1 Confidence intervals are normal-based 

VWUO-MD performs well, once the two clusters are separated enough. In 

94% of the replicates, wCr < wCx and wCy. The noise variable receives the lowest 

average weight, and even the 95th percentile of wCr is <1. This might indicate that 

correlation within clusters is the problem, since wider spread effectively reduces 

the relative strength of the intracluster correlation via compression of the clusters. 
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Figure 51. Type C, linear, 3 groups (correlated with), small error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,5) + 7.5*I(G2) + 15*I(G3) 
Cy = 2*Cx + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 30. Results for type C, linear, 3 groups (correlated with), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.884 (0.879, 0.890) 0.907 (0.901, 0.913) 1.209 (1.198, 1.220) 
P5, P50, P95 0.841, 0.885, 0.899 0.863, 0.906, 0.931 1.127, 1.212, 1.248 
1 Confidence intervals are normal-based 

VWUO-MD performs poorly, when three clusters are closely placed, each 

correlated parallel to cluster placement. In 0% of the replicates, wCr < wCx and 

wCy. 
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Figure 52. Type C, linear, 3 groups (correlated with), large error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,5) + 7.5*I(G2) + 15*I(G3) 
Cy = 2*Cx + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 31. Results for type C, linear, 3 groups (correlated with), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.876 (0.870, 0.882) 0.937 (0.929, 0.945) 1.187 (1.176, 1.198) 
P5, P50, P95 0.827, 0.877, 0.892 0.881, 0.939, 0.964 1.093, 1.188, 1.225 
1 Confidence intervals are normal-based 

As before, VWUO-MD performs less poorly (considering the magnitude of 

average weights) when the error term is increased. In 0% of the replicates, wCr < 

wCx and wCy. 
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Figure 53. Type C, linear, 3 groups (correlated with), extra wide, small error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,3) + 8.5*I(G2) + 17*I(G3) 
Cy = 2*Cx + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 32. Results for type C, linear, 3 groups (correlated with), extra wide, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.829 (0.824, 0.835) 0.863 (0.857, 0.870) 1.307 (1.296, 1.319) 
P5, P50, P95 0.783, 0.829, 0.849 0.805, 0.861, 0.889 1.216, 1.312, 1.348 
1 Confidence intervals are normal-based 

VWUO-MD performs extremely poorly with three clusters linearly placed in 

the related variables plane. That the performance is worse this time (looking at 

magnitude) with wider spread may indicate that the correlation is not the culprit 

with three clusters (as it may have been with two clusters), but rather, the cluster 

placement itself. In 0% of the replicates, wCr < wCx and wCy. 
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Figure 54. Type C, linear, 4 groups (correlated with), small error 

    

     
Groups: nG1=13, nG2=12, nG3=12, nG4=13 
Cx = a random Uniform(0,1.5) + 2.83*I(G2) + 5.66*I(G3) + 8.49*I(G4) 
Cy = 2*Cx + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 33. Results for type C, linear, 4 groups (correlated with), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.871 (0.866, 0.877) 0.938 (0.930, 0.946) 1.191 (1.179, 1.202) 
P5, P50, P95 0.825, 0.870, 0.891 0.873, 0.934, 0.965 1.088, 1.194, 1.232 
1 Confidence intervals are normal-based 

VWUO-MD continues its poor performance when four clusters are linearly 

placed in the related variables plane. In 0% of the replicates, wCr < wCx and wCy. 
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Figure 55. Type C, linear, 4 groups (correlated with), large error 

    

     
Groups: nG1=13, nG2=12, nG3=12, nG4=13 
Cx = a random Uniform(0,1.5) + 2.83*I(G2) + 5.66*I(G3) + 8.49*I(G4) 
Cy = 2*Cx + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 34. Results for type C, linear, 4 groups (correlated with), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.856 (0.850, 0.862) 1.001 (0.991, 1.012) 1.142 (1.131, 1.154) 
P5, P50, P95 0.802, 0.857, 0.877 0.918, 1.000, 1.040 1.041, 1.149, 1.191 
1 Confidence intervals are normal-based 

As before, VWUO-MD performs less poorly (looking at magnitude) when 

the error term is increased. In 0% of the replicates, wCr < wCx and wCy. 
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Figure 56. Type C, linear, 4 groups (correlated with), extra wide, small error 

    

     
Groups: nG1=13, nG2=12, nG3=12, nG4=13 
Cx = a random Uniform(0,1) + 3*I(G2) + 6*I(G3) + 9*I(G4) 
Cy = 2*Cx + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 35. Results for type C, linear, 4 groups (correlated with), extra wide, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.847 (0.842, 0.852) 0.932 (0.924, 0.939) 1.221 (1.210, 1.231) 
P5, P50, P95 0.803, 0.847, 0.868 0.871, 0.932, 0.957 1.125, 1.222, 1.260 
1 Confidence intervals are normal-based 

Increasing the cluster spread has only exacerbated (looking at magnitude) 

the problems VWUO-MD is having with this shape of data. In 0% of the 

replicates, wCr < wCx and wCy. 
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Figure 57. Type C, linear, 2 groups (correlated against), small error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,8) + 12*I(G2) 
Cy = -2*Cx + a random N(0,1) error + 48*I(G2) 
Cr = a random Uniform(0,1) 

Table 36. Results for type C, linear, 2 groups (correlated against), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.311 (1.301, 1.321) 1.345 (1.336, 1.354) 0.344 (0.337, 0.351) 
P5, P50, P95 1.234, 1.306, 1.345 1.275, 1.344, 1.371 0.282, 0.344, 0.361 
1 Confidence intervals are normal-based 

Correlating the two clusters perpendicular to the cluster placement has 

dramatically improved VWUO-MD's ability to detect a relationship between Cx 

and Cy. Unfortunately, this particular sort of relationship may not be very common 

in nature. In 100% of the replicates, wCr < wCx and wCy. 
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Figure 58. Type C, linear, 2 groups (correlated against), large error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,8) + 12*I(G2) 
Cy = -2*Cx + a random N(0,2) error + 48*I(G2) 
Cr = a random Uniform(0,1) 

Table 37. Results for type C, linear, 2 groups (correlated against), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.273 (1.262, 1.285) 1.342 (1.330, 1.353) 0.385 (0.378, 0.393) 
P5, P50, P95 1.180, 1.270, 1.311 1.241, 1.342, 1.388 0.322, 0.385, 0.406 
1 Confidence intervals are normal-based 

In this case the bigger error term has hardly diminished (looking at 

magnitude) VWUO-MD's ability to detect the relationship between Cx and Cy. In 

100% of the replicates, wCr < wCx and wCy. 
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Figure 59. Type C, linear, 2 groups (correlated against), extra wide, small error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,5) + 10*I(G2) 
Cy = -2*Cx + a random N(0,1) error + 48*I(G2) 
Cr = a random Uniform(0,1) 

Table 38. Results for type C, linear, 2 groups (correlated against), extra wide, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.254 (1.246, 1.262) 1.488 (1.480, 1.496) 0.258 (0.253, 0.263) 
P5, P50, P95 1.188, 1.249, 1.280 1.421, 1.488, 1.515 0.215, 0.258, 0.273 
1 Confidence intervals are normal-based 

Here we have an intuitive result, the wider spread of the clusters has 

further increased (looking at magnitude) VWUO-MD's ability to detect the 

relationship. In 100% of the replicates, wCr < wCx and wCy. 
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Figure 60. Type C, linear, 3 groups (correlated against), small error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,5) + 7.5*I(G2) + 15*I(G3) 
Cy = -2*Cx + a random N(0,1) error + 30*I(G2) + 60*I(G3) 
Cr = a random Uniform(0,1) 

Table 39. Results for type C, linear, 3 groups (correlated against), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.883 (0.875, 0.891) 0.905 (0.897, 0.914) 1.211 (1.200, 1.223) 
P5, P50, P95 0.817, 0.885, 0.910 0.839, 0.903, 0.937 1.113, 1.205, 1.249 
1 Confidence intervals are normal-based 

This appears to affirm our earlier suspicion that with three clusters, cluster 

placement in a linear fashion is tripping up VWUO-MD's ability to detect the real 

relationship. In 0% of the replicates, wCr < wCx and wCy. 
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Figure 61. Type C, linear, 3 groups (correlated against), large error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,5) + 7.5*I(G2) + 15*I(G3) 
Cy = -2*Cx + a random N(0,2) error + 30*I(G2) + 60*I(G3) 
Cr = a random Uniform(0,1) 

Table 40. Results for type C, linear, 3 groups (correlated against), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.874 (0.867, 0.882) 0.944 (0.934, 0.953) 1.182 (1.170, 1.193) 
P5, P50, P95 0.806, 0.873, 0.901 0.870, 0.943, 0.978 1.081, 1.176, 1.222 
1 Confidence intervals are normal-based 

As before, VWUO-MD performs less poorly (looking at magnitude) when 

the error term is increased. In 0% of the replicates, wCr < wCx and wCy. 
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Figure 62. Type C, linear, 3 groups (correlated against), extra wide, small error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,3) + 8.5*I(G2) + 17*I(G3) 
Cy = -2*Cx + a random N(0,1) error + 34*I(G2) + 68*I(G3) 
Cr = a random Uniform(0,1) 

Table 41. Results for type C, linear, 3 groups (correlated against), extra wide, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.821 (0.815, 0.827) 0.855 (0.848, 0.862) 1.324 (1.313, 1.335) 
P5, P50, P95 0.766, 0.821, 0.842 0.800, 0.853, 0.878 1.229, 1.321, 1.362 
1 Confidence intervals are normal-based 

The wider spread of clusters only further exacerbates (looking at 

magnitude) the problem for VWUO-MD, by now an expected result for this shape 

of data. In 0% of the replicates, wCr < wCx and wCy. 
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Figure 63. Type C, quadratic, 1 group, small error 

    

     
Cx = a random Uniform(0,8) 
Cy = (Cx - 4)2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 42. Results for type C, quadratic, 1 group, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.053 (1.042, 1.063) 1.152 (1.138, 1.166) 0.795 (0.783, 0.806) 
P5, P50, P95 0.955, 1.054, 1.094 1.029, 1.144, 1.193 0.698, 0.793, 0.831 
1 Confidence intervals are normal-based 

This result is quite interesting. With no distinct clusters, and a quadratic 

relationship (full parabola) between Cx and Cy, VWUO-MD successfully detects 

this relationship and downweights the noise variable Cr. In 100% of the 

replicates, wCr < wCx and wCy. 
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Figure 64. Type C, quadratic, 1 group, large error 

    

     
Cx = a random Uniform(0,8) 
Cy = (Cx - 4)2 + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 43. Results for type C, quadratic, 1 group, large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.003 (0.992, 1.015) 1.189 (1.174, 1.204) 0.808 (0.796, 0.819) 
P5, P50, P95 0.895, 0.993, 1.042 1.072, 1.187, 1.242 0.715, 0.803, 0.845 
1 Confidence intervals are normal-based 

Increasing the error term has only slightly decreased the strength (looking 

at magnitude) of the result. In 99% of the replicates, wCr < wCx and wCy. 
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Figure 65. Type C, quadratic, 2 groups (correlated with), small error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,3) + 5*I(G2) 
Cy = (Cx - 4)2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 44. Results for type C, quadratic, 2 groups (correlated with), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.035 (1.024, 1.045) 1.120 (1.107, 1.133) 0.846 (0.834, 0.857) 
P5, P50, P95 0.950, 1.041, 1.071 1.002, 1.122, 1.158 0.766, 0.841, 0.893 
1 Confidence intervals are normal-based 

With two clusters formed from parts of the previous quadratic shape, 

VWUO-MD continues to detect the relationship with about the same result. In 

97% of the replicates, wCr < wCx and wCy. 
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Figure 66. Type C, quadratic, 2 groups (correlated with), large error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,3) + 5*I(G2) 
Cy = (Cx - 4)2 + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 45. Results for type C, quadratic, 2 groups (correlated with), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.002 (0.990, 1.014) 1.161 (1.146, 1.176) 0.837 (0.826, 0.849) 
P5, P50, P95 0.905, 1.000, 1.044 1.028, 1.169, 1.213 0.753, 0.838, 0.883 
1 Confidence intervals are normal-based 

This time the increase in error term has no discernable effect, at least in 

these 100 replicates. In 97% of the replicates, wCr < wCx and wCy. 
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Figure 67. Type C, quadratic, 2 groups (correlated with), extra wide, small error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,2) + 6*I(G2) 
Cy = (Cx - 4)2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 46. Results for type C, quadratic, 2 groups (correlated with), extra wide, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.317 (1.298, 1.337) 0.929 (0.915, 0.943) 0.754 (0.739, 0.768) 
P5, P50, P95 1.164, 1.323, 1.391 0.802, 0.935, 0.980 0.628, 0.760, 0.798 
1 Confidence intervals are normal-based 

Increasing cluster spread improves VWUO-MD's ability to detect the 

relationship (looking at magnitude). This seems to indicates that the previous 

result was an anomaly, and of course it is clear that increasing error must 

eventually catch up with any estimator. In 95% of the replicates, wCr < wCx and 

wCy. 
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Figure 68. Type C, quadratic, 3 groups (correlated with), small error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,2) + 3*I(G2) + 6*I(G3) 
Cy = (Cx - 4)2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 47. Results for type C, quadratic, 3 groups (correlated with), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.106 (1.097, 1.116) 1.102 (1.090, 1.113) 0.792 (0.781, 0.803) 
P5, P50, P95 1.017, 1.112, 1.139 1.001, 1.104, 1.141 0.707, 0.790, 0.833 
1 Confidence intervals are normal-based 

Having three clusters in a quadratic spread does not diminish VWUO-

MD's ability to detect the relationship, and seems to strengthen it  when 

compared to the example with two clusters (non-widened spread). In 100% of the 

replicates, wCr < wCx and wCy. 
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Figure 69. Type C, quadratic, 3 groups (correlated with), large error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,2) + 3*I(G2) + 6*I(G3) 
Cy = (Cx - 4)2 + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 48. Results for type C, quadratic, 3 groups (correlated with), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.024 (1.013, 1.036) 1.175 (1.160, 1.190) 0.801 (0.790, 0.811) 
P5, P50, P95 0.922, 1.027, 1.064 1.061, 1.173, 1.220 0.721, 0.799, 0.844 
1 Confidence intervals are normal-based 

Larger error diminishes the strength of the estimates (looking at 

magnitude), as expected. However, in 100% of the replicates, wCr < wCx and wCy. 
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Figure 70. Type C, quadratic, 3 groups (correlated with), extra wide, small error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,1) + 3.5*I(G2) + 7*I(G3) 
Cy = (Cx - 4)2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 49. Results for type C, quadratic, 3 groups (correlated with), extra wide, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.238 (1.228, 1.249) 1.227 (1.216, 1.239) 0.534 (0.524, 0.545) 
P5, P50, P95 1.139, 1.242, 1.275 1.140, 1.220, 1.273 0.453, 0.529, 0.568 
1 Confidence intervals are normal-based 

Conversely, widening the gap between clusters increases the strength of 

the estimates (looking at magnitude), again as expected. In 100% of the 

replicates, wCr < wCx and wCy. 
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Figure 71. Type C, quadratic, 4 groups (correlated with), small error 

    

     
Groups: nG1=13, nG2=12, nG3=12, nG4=13 
Cx = a random Uniform(0,1) + 2.33*I(G2) + 4.66*I(G3) + 6.99*I(G4) 
Cy = (Cx - 4)2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 50. Results for type C, quadratic, 4 groups (correlated with), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.107 (1.098, 1.116) 1.216 (1.205, 1.226) 0.678 (0.667, 0.689) 
P5, P50, P95 1.036, 1.112, 1.137 1.136, 1.215, 1.254 0.586, 0.679, 0.719 
1 Confidence intervals are normal-based 

Having four clusters in a quadratic spread further strengthens the 

estimates (looking at magnitude) compared to the examples with fewer clusters 

(non-widened spread). In 100% of the replicates, wCr < wCx and wCy. 
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Figure 72. Type C, quadratic, 4 groups (correlated with), large error 

    

     
Groups: nG1=13, nG2=12, nG3=12, nG4=13 
Cx = a random Uniform(0,1) + 2.33*I(G2) + 4.66*I(G3) + 6.99*I(G4) 
Cy = (Cx - 4)2 + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 51. Results for type C, quadratic, 4 groups (correlated with), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.007 (0.997, 1.017) 1.230 (1.217, 1.243) 0.763 (0.752, 0.774) 
P5, P50, P95 0.932, 1.007, 1.039 1.132, 1.229, 1.289 0.656, 0.766, 0.803 
1 Confidence intervals are normal-based 

Larger error diminishes the strength of the estimates (looking at 

magnitude), as expected. However, in 100% of the replicates, wCr < wCx and wCy. 
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Figure 73. Type C, quadratic, 4 groups (correlated with), extra wide, small error 

    

     
Groups: nG1=13, nG2=12, nG3=12, nG4=13 
Cx = a random Uniform(0,.5) + 2.5*I(G2) + 5*I(G3) + 7.5*I(G4) 
Cy = (Cx - 4)2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 52. Results for type C, quadratic, 4 groups (correlated with), extra wide, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.153 (1.144, 1.162) 1.272 (1.262, 1.281) 0.575 (0.566, 0.585) 
P5, P50, P95 1.077, 1.156, 1.180 1.197, 1.270, 1.311 0.499, 0.577, 0.610 
1 Confidence intervals are normal-based 

Conversely, widening the gap between clusters increases the strength of 

the estimates (looking at magnitude), again as expected. In 100% of the 

replicates, wCr < wCx and wCy. 
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Figure 74. Type C, half-quadratic, 1 group, small error 

    

     
Cx = a random Uniform(0,8) 
Cy = Cx

2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 53. Results for type C, half-quadratic, 1 group, small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.922 (0.915, 0.929) 0.963 (0.953, 0.973) 1.115 (1.103, 1.127) 
P5, P50, P95 0.857, 0.923, 0.947 0.891, 0.957, 0.995 1.014, 1.115, 1.157 
1 Confidence intervals are normal-based 

VWUO-MD is having difficulties detecting the half-quadratic shape with no 

distinct clusters, as it did with the linearly related data. This is not a big surprise, 

considering how much closer to linear the above shape is, compared to the full 

parabolic quadratic that worked so well. In 0% of the replicates, wCr < wCx and 

wCy. 
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Figure 75. Type C, half-quadratic, 1 group, large error 

    

     
Cx = a random Uniform(0,8) 
Cy = Cx

2 + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 54. Results for type C, half-quadratic, 1 group, large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.918 (0.910, 0.925) 0.979 (0.969, 0.989) 1.103 (1.092, 1.115) 
P5, P50, P95 0.853, 0.918, 0.945 0.905, 0.974, 1.011 1.005, 1.103, 1.143 
1 Confidence intervals are normal-based 

Larger error diminishes the strength of the (in this case misleading) 

estimates, as expected. In 1% of the replicates, wCr < wCx and wCy. 
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Figure 76. Type C, half-quadratic, 2 groups (correlated with), small error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,3) + 5*I(G2) 
Cy = Cx

2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 55. Results for type C, half-quadratic, 2 groups (correlated with), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.033 (1.023, 1.042) 0.952 (0.943, 0.961) 1.015 (1.000, 1.031) 
P5, P50, P95 0.959, 1.034, 1.066 0.880, 0.951, 0.976 0.897, 1.016, 1.079 
1 Confidence intervals are normal-based 

While the estimates are still not great, separation into two clusters has 

improved matters. However, recall from our earlier results that two clusters ought 

not to be correlated in the direction parallel with cluster placement, for optimal 

performance. Sure enough, the average wCr remains >1. In 29% of the replicates, 

wCr < wCx and wCy. 
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Figure 77. Type C, half-quadratic, 2 groups (correlated with), large error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,3) + 5*I(G2) 
Cy = Cx

2 + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 56. Results for type C, half-quadratic, 2 groups (correlated with), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.027 (1.017, 1.037) 0.970 (0.961, 0.979) 1.003 (0.988, 1.019) 
P5, P50, P95 0.952, 1.029, 1.062 0.887, 0.969, 0.998 0.884, 1.006, 1.060 
1 Confidence intervals are normal-based 

Again larger error diminishes the strength of the misleading estimates. In 

39% of the replicates, wCr < wCx and wCy. 
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Figure 78. Type C, half-quadratic, 2 groups (correlated with), extra wide, small error 

    

     
Groups: nG1=25, nG2=25 
Cx = a random Uniform(0,2) + 6*I(G2) 
Cy = Cx

2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 57. Results for type C, half-quadratic, 2 groups (correlated with), extra wide, small 
error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 1.264 (1.256, 1.273) 1.022 (1.012, 1.032) 0.714 (0.702, 0.725) 
P5, P50, P95 1.191, 1.268, 1.294 0.943, 1.022, 1.046 0.608, 0.716, 0.755 
1 Confidence intervals are normal-based 

Now, with better separation between clusters and therefore a reduction in 

correlation relative to scale, the VWUO-MD estimates are successfully detecting 

the relationship between Cx and Cy. In 100% of the replicates, wCr < wCx and wCy. 
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Figure 79. Type C, half-quadratic, 3 groups (correlated with), small error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,2) + 3*I(G2) + 6*I(G3) 
Cy = Cx

2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 58. Results for type C, half-quadratic, 3 groups (correlated with), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.858 (0.852, 0.864) 0.991 (0.983, 1.000) 1.151 (1.139, 1.162) 
P5, P50, P95 0.807, 0.861, 0.879 0.919, 0.987, 1.024 1.048, 1.147, 1.188 
1 Confidence intervals are normal-based 

With three clusters in a half-quadratic placement, as with the three-cluster 

linear placement before, VWUO-MD weights the noise variable the highest. In 

0% of the replicates, wCr < wCx and wCy. 
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Figure 80. Type C, half-quadratic, 3 groups (correlated with), large error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,2) + 3*I(G2) + 6*I(G3) 
Cy = Cx

2 + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 59. Results for type C, half-quadratic, 3 groups (correlated with), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.853 (0.847, 0.860) 1.007 (0.998, 1.017) 1.139 (1.128, 1.151) 
P5, P50, P95 0.800, 0.857, 0.875 0.916, 1.008, 1.040 1.034, 1.139, 1.178 
1 Confidence intervals are normal-based 

With larger error, the strength of the misleading estimates is diminished 

(looking at magnitude). In 0% of the replicates, wCr < wCx and wCy. 
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Figure 81. Type C, half-quadratic, 3 groups (correlated with), extra wide, small error 

    

     
Groups: nG1=17, nG2=17, nG3=16 
Cx = a random Uniform(0,1) + 3.5*I(G2) + 7*I(G3) 
Cy = Cx

2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 60. Results for type C, half-quadratic, 3 groups (correlated with), extra wide, small 
error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.740 (0.735, 0.746) 1.105 (1.093, 1.117) 1.155 (1.142, 1.168) 
P5, P50, P95 0.700, 0.742, 0.760 1.006, 1.113, 1.146 1.049, 1.153, 1.199 
1 Confidence intervals are normal-based 

With wider spread between clusters, the strength of the misleading effect 

is increased (looking at magnitude), and we begin to see that the placement of 

the clusters is really rather close to linear. We are experiencing the same 

problems as we did with those data. In 0% of the replicates, wCr < wCx and wCy. 
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Figure 82. Type C, half-quadratic, 4 groups (correlated with), small error 

    

     
Groups: nG1=13, nG2=12, nG3=12, nG4=13 
Cx = a random Uniform(0,1) + 2.33*I(G2) + 4.66*I(G3) + 6.99*I(G4) 
Cy = Cx

2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 61. Results for type C, half-quadratic, 4 groups (correlated with), small error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.863 (0.856, 0.870) 0.913 (0.908, 0.919) 1.224 (1.213, 1.234) 
P5, P50, P95 0.811, 0.860, 0.884 0.864, 0.913, 0.933 1.119, 1.231, 1.260 
1 Confidence intervals are normal-based 

With four clusters in the half-quadratic (nearly linear) placement, the 

strength of the misleading effect is again increased (looking at magnitude). In 0% 

of the replicates, wCr < wCx and wCy. 
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Figure 83. Type C, half-quadratic, 4 groups (correlated with), large error 

    

     
Groups: nG1=13, nG2=12, nG3=12, nG4=13 
Cx = a random Uniform(0,1) + 2.33*I(G2) + 4.66*I(G3) + 6.99*I(G4) 
Cy = Cx

2 + a random N(0,2) error 
Cr = a random Uniform(0,1) 

Table 62. Results for type C, half-quadratic, 4 groups (correlated with), large error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.856 (0.849, 0.862) 0.936 (0.930, 0.943) 1.208 (1.197, 1.219) 
P5, P50, P95 0.807, 0.852, 0.876 0.881, 0.935, 0.960 1.098, 1.217, 1.242 
1 Confidence intervals are normal-based 

With larger error, the strength of the misleading estimates is diminished 

(looking at magnitude). In 0% of the replicates, wCr < wCx and wCy.  
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Figure 84. Type C, half-quadratic, 4 groups (correlated with), extra wide, small error 

    

     
Groups: nG1=13, nG2=12, nG3=12, nG4=13 
Cx = a random Uniform(0,.5) + 2.5*I(G2) + 5*I(G3) + 7.5*I(G4) 
Cy = Cx

2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 63. Results for type C, half-quadratic, 4 groups (correlated with), extra wide, small 
error 

Summary statistics wCx wCy wCr 
1Mean (95% CI) 0.840 (0.833, 0.846) 0.887 (0.881, 0.893) 1.273 (1.263, 1.284) 
P5, P50, P95 0.789, 0.837, 0.858 0.839, 0.887, 0.905 1.165, 1.274, 1.309 
1 Confidence intervals are normal-based 

With widely spaced clusters, the problem is amplified (looking at 

magnitude), as we saw before. In 0% of the replicates, wCr < wCx and wCy. 
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Figure 85. Disjoint relationships: both type C, quadratic, 1 group, small error 

        

        

        

        

         
 
Cx = a random Uniform(0,8) 
Cy = (Cx - 4)2 + a random N(0,1) error 
Cu = a random Uniform(0,8) 
Cv = (Cu - 4)2 + a random N(0,1) error 
Cr = a random Uniform(0,1) 

Table 64. Results for disjoint relationships: both type C, quadratic, 1 group, small error 

Summary statistics wCx wCy wCu wCv wCr 
1Mean (95% CI) 

1.001 
(0.991, 1.011) 

1.054 
(1.043, 1.065) 

1.004 
(0.994, 1.013) 

1.060 
(1.047, 1.072) 

0.882 
(0.872, 0.892) 

P5, P50, P95 0.924, 0.998, 1.037 0.964, 1.056, 1.088 0.925, 1.012, 1.032 0.951, 1.065, 1.093 0.791, 0.887, 0.918 
1 Confidence intervals are normal-based 

With disjoint relationships, wCr is still the smallest weight on average. The 

remaining weight has been spread across the variables involved in different 

groupings fairly evenly. In 90% of the replicates, wCr < wCx, wCy, wCu and wCv. 
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5.2 Type O data 

We should not be surprised to see similar results between type C and type 

O experiments, considering that the distance formulas are virtually identical (the 

type O formula using ranks instead of raw data). However, we ran a small subset 

of the previous experiments, generating 10 type O data sets, replicated 100 

times. Figure 86 to Figure 95 show the multivariate distributions of Ox, Oy and Or 

in these data sets, as well as Ou and Ov in the last example. Plots are randomly 

jittered for improved visualization. The captions describe the distributions. 

"Linear" describes a linear relationship between Ox and Oy. "Quadratic" describes 

a full parabolic relationship between Ox and Oy. "Half-quadratic" describes a half-

parabolic relationship between Ox and Oy. "Small error" versus "large error" 

describe the relative probabilities of deviating from the prescribed relationship 

between Ox and Oy. Details of each distribution are given in the footnote below its 

figure, then a very brief discussion of VWUO-MD's performance on that data set 

is made. 
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Figure 86. Type O, linear, 3 levels, small error 

    

     
Ox = Multinomial(.333,.333,.334) 
Oy = Multinomial(.8,.1,.1)*I(Ox=1) + Multinomial(.1,.8,.1)*I(Ox=2) + Multinomial(.1,.1,.8)*I(Ox=3) 
Or = Multinomial(.333,.333,.334) 

Table 65. Results for type O, linear, 3 levels, small error 

Summary statistics wOx wOy wOr 
1Mean (95% CI) 0.936 (0.926, 0.947) 0.950 (0.939, 0.962) 1.113 (1.104, 1.122) 
P5, P50, P95 0.861, 0.929, 0.985 0.865, 0.973, 0.991 1.013, 1.113, 1.142 
1 Confidence intervals are normal-based 

As with type C data, linear relationships between type O variables also 

appear to present a problem for VWUO-MD. Once again, wOr is the biggest 

weight on average, the opposite of what would be desired. In 1% of the 

replicates, wOr < wOx and wOy. 
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Figure 87. Type O, linear, 3 levels, large error 

    

       
Ox = Multinomial(.333,.333,.334) 
Oy = Multinomial(.6,.2,.2)*I(Ox=1) + Multinomial(.2,.6,.2)*I(Ox=2) + Multinomial(.2,.2,.6)*I(Ox=3) 
Or = Multinomial(.333,.333,.334) 

Table 66. Results for type O, linear, 3 levels, large error 

Summary statistics wOx wOy wOr 
1Mean (95% CI) 0.944 (0.930, 0.959) 0.962 (0.944, 0.979) 1.094 (1.080, 1.108) 
P5, P50, P95 0.840, 0.929, 0.996 0.840, 0.978, 1.003 0.970, 1.107, 1.149 
1 Confidence intervals are normal-based 

With larger error, the strength of the misleading estimates is diminished. In 

3% of the replicates, wOr < wOx and wOy. 
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Figure 88. Type O, linear, 4 levels, small error 

    

     
Ox = Multinomial(.25,.25,.25,.25) 
Oy = Multinomial(.7,.15,.15,.15)*I(Ox=1) + Multinomial(.15,.7,.15,.15)*I(Ox=2) + 
Multinomial(.15,.15,.7,.15)*I(Ox=3) + Multinomial(.15,.15,.15,.7)*I(Ox=4) 
Or = Multinomial(.25,.25,.25,.25) 

Table 67. Results for type O, linear, 4 levels, small error 

Summary statistics wOx wOy wOr 
1Mean (95% CI) 0.949 (0.940, 0.958) 0.961 (0.952, 0.971) 1.089 (1.082, 1.096) 
P5, P50, P95 0.881, 0.939, 0.981 0.874, 0.972, 0.997 1.039, 1.085, 1.111 
1 Confidence intervals are normal-based 

Not surprisingly (thinking back to the clustered type C results), the 

problem is not alleviated with a greater number of ordinal levels. In 0% of the 

replicates, wOr < wOx and wOy. 
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Figure 89. Type O, quadratic, 3 levels, small error 

    

     
Ox = Multinomial(.333,.333,.334) 
Oy = Multinomial(.1,.1,.8)*I(Ox=1) + Multinomial(.8,.1,.1)*I(Ox=2) + Multinomial(.1,.1,.8)*I(Ox=3) 
Or = Multinomial(.333,.333,.334) 

Table 68. Results for type O, quadratic, 3 levels, small error 

Summary statistics wOx wOy wOr 
1Mean (95% CI) 1.152 (1.118, 1.185) 1.172 (1.139, 1.205) 0.677 (0.655, 0.699) 
P5, P50, P95 0.891, 1.183, 1.289 0.969, 1.140, 1.247 0.469, 0.682, 0.760 
1 Confidence intervals are normal-based 

In keeping with the results on the type C data, VWUO-MD has an easier 

time correctly identifying quadratic relationships. In 98% of the replicates, wOr < 

wOx and wOy. 
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Figure 90. Type O, quadratic, 3 levels, large error 

    

     
Ox = Multinomial(.333,.333,.334) 
Oy = Multinomial(.2,.2,.6)*I(Ox=1) + Multinomial(.6,.2,.2)*I(Ox=2) + Multinomial(.2,.2,.6)*I(Ox=3) 
Or = Multinomial(.333,.333,.334) 

Table 69. Results for type O, quadratic, 3 levels, large error 

Summary statistics wOx wOy wOr 
1Mean (95% CI) 1.049 (1.027, 1.071) 1.061 (1.036, 1.087) 0.889 (0.869, 0.909) 
P5, P50, P95 0.837, 1.026, 1.149 0.843, 1.036, 1.176 0.751, 0.860, 0.957 
1 Confidence intervals are normal-based 

With larger error, the strength of the estimates is diminished. In 68% of the 

replicates, wOr < wOx and wOy. 
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Figure 91. Type O, quadratic, 4 levels, small error 

    

   
Ox = Multinomial(.25,.25,.25,.25) 
Oy = Multinomial(.15,.15,.15,.7)*I(Ox=1) + Multinomial(.7,.15,.15,.15)*I(Ox=2) + 
Multinomial(.7,.15,.15,.15)*I(Ox=3) + Multinomial(.15,.15,.15,.7)*I(Ox=4) 
Or = Multinomial(.25,.25,.25,.25) 

Table 70. Results for type O, quadratic, 4 levels, small error 

Summary statistics wOx wOy wOr 
1Mean (95% CI) 1.099 (1.080, 1.117) 1.055 (1.033, 1.078) 0.846 (0.830, 0.863) 
P5, P50, P95 0.922, 1.110, 1.174 0.882, 1.038, 1.115 0.708, 0.840, 0.906 
1 Confidence intervals are normal-based 

With four levels, the relationship is still effectively detected by VWUO-MD. 

In 83% of the replicates, wOr < wOx and wOy. 
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Figure 92. Type O, half-quadratic, 3 levels, small error 

    

     
Ox = Multinomial(.333,.333,.334) 
Oy = Multinomial(.8,.1,.1)*I(Ox=1) + Multinomial(.8,.1,.1)*I(Ox=2) + Multinomial(.1,.1,.8)*I(Ox=3) 
Or = Multinomial(.333,.333,.334) 

Table 71. Results for type O, half-quadratic, 3 levels, small error 

Summary statistics wOx wOy wOr 
1Mean (95% CI) 0.898 (0.881, 0.914) 1.351 (1.322, 1.380) 0.752 (0.730, 0.773) 
P5, P50, P95 0.740, 0.912, 0.952 1.157, 1.317, 1.444 0.563, 0.763, 0.819 
1 Confidence intervals are normal-based 

This result is a welcome departure from the type C results seen earlier. On 

type O data, a half-quadratic relationship (common in nature) is successfully 

detected by VWUO-MD. wOr is the lowest variable weight on average. In 85% of 

the replicates, wOr < wOx and wOy. 
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Figure 93. Type O, half-quadratic, 3 levels, large error 

    

     
Ox = Multinomial(.333,.333,.334) 
Oy = Multinomial(.6,.2,.2)*I(Ox=1) + Multinomial(.6,.2,.2)*I(Ox=2) + Multinomial(.2,.2,.6)*I(Ox=3) 
Or = Multinomial(.333,.333,.334) 

Table 72. Results for type O, half-quadratic, 3 levels, large error 

Summary statistics wOx wOy wOr 
1Mean (95% CI) 0.955 (0.938, 0.973) 1.122 (1.096, 1.148) 0.922 (0.901, 0.944) 
P5, P50, P95 0.815, 0.962, 1.009 0.885, 1.143, 1.231 0.757, 0.911, 0.998 
1 Confidence intervals are normal-based 

With larger error, the strength of the estimates is diminished. In 51% of the 

replicates, wOr < wOx and wOy. 
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Figure 94. Type O, half-quadratic, 4 levels, small error 

    

     
Ox = Multinomial(.25,.25,.25,.25) 
Oy = Multinomial(.7,.15,.15,.15)*I(Ox=1) + Multinomial(.7,.15,.15,.15)*I(Ox=2) + 
Multinomial(.15,.7,.15,.15)*I(Ox=3) + Multinomial(.15,.15,.15,.7)*I(Ox=4) 
Or = Multinomial(.25,.25,.25,.25) 

Table 73. Results for type O, half-quadratic, 4 levels, small error 

Summary statistics wOx wOy wOr 
1Mean (95% CI) 0.956 (0.943, 0.970) 0.990 (0.972, 1.008) 1.053 (1.040, 1.067) 
P5, P50, P95 0.878, 0.936, 1.010 0.870, 0.992, 1.069 0.920, 1.067, 1.092 
1 Confidence intervals are normal-based 

With four-level variables, the half-quadratic relationship is not as easily 

detected by VWUO-MD. The quantiles all cover both sides of 1 in this case. In 

10% of the replicates, wOr < wOx and wOy. 
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Figure 95. Disjoint relationships: both are type O, quadratic, 3 levels, small error 

        

        

        

        

         
Ox = Multinomial(.333,.333,.334) 
Oy = Multinomial(.1,.1,.8)*I(Ox=1) + Multinomial(.8,.1,.1)*I(Ox=2) + Multinomial(.1,.1,.8)*I(Ox=3) 
Ou = Multinomial(.333,.333,.334) 
Ov = Multinomial(.1,.1,.8)*I(Ou=1) + Multinomial(.8,.1,.1)*I(Ou=2) + Multinomial(.1,.1,.8)*I(Ou=3) 
Or = Multinomial(.333,.333,.334) 

Table 74. Results for disjoint relationships: both are type O, quadratic, 3 levels, small error 

Summary statistics wOx wOy wOu wOv wOr 
1Mean (95% CI) 

1.072 
(1.039, 1.104) 

1.008 
(0.972, 1.043) 

1.053 
(1.025, 1.082) 

0.977 
(0.941, 1.012) 

0.891 
(0.875, 0.906) 

P5, P50, P95 0.857, 1.018, 1.175 0.734, 1.003, 1.137 0.851, 1.030, 1.122 0.651, 0.988, 1.106 0.741, 0.889, 0.951 
1 Confidence intervals are normal-based 

With disjoint relationships, wOr is still the smallest weight on average. The 

remaining weight has been spread across the variables involved in different 
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groupings fairly evenly. Unfortunately, variability has increased. In only 29% of 

the replicates, wOr < wOx, wOy, wOu and wOv. 

5.3 Type N data 

We generated four type N data sets, replicated 100 times. Figure 96 to 

Figure 99 show the multivariate distributions of Nx, Ny and Nr in these data sets, 

as well as Nu and Nv in the last example. Plots are randomly jittered for improved 

visualization. The captions describe the distributions. The descriptors "linear", 

"quadratic" and "half-quadratic" that were previously used do not apply with type 

N data since order is arbitrary. "Small error" versus "large error" describe the 

relative probabilities of deviating from the prescribed relationship between Nx and 

Ny. Details of each distribution are given in the footnote below its figure, then a 

very brief discussion of VWUO-MD's performance on that data set is made. 
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Figure 96. Type N, 3 levels, small error 

    

     
Nx = Multinomial(.333,.333,.334) 
Ny = Multinomial(.8,.1,.1)*I(Nx=1) + Multinomial(.1,.8,.1)*I(Nx=2) + Multinomial(.1,.1,.8)*I(Nx=3) 
Nr = Multinomial(.333,.333,.334) 

Table 75. Results for type N, 3 levels, small error 

Summary statistics wNx wNy wNr 
1Mean (95% CI) 1.253 (1.201, 1.306) 1.287 (1.234, 1.339) 0.460 (0.444, 0.476) 
P5, P50, P95 0.926, 1.076, 1.536 0.944, 1.458, 1.536 0.328, 0.457, 0.520 
1 Confidence intervals are normal-based 

With three-level type N variables, the relationship is easily detected by 

VWUO-MD. In this case the 95th percentile of wNr is far below the 5th percentile of 

the two competing variable weights. Note that the linear shape on the graph is an 

arbitrary choice, since we recall that any reordering of type N (nominal) variable 

levels produces the same results. In 100% of the replicates, wNr < wNx and wNy. 
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Figure 97. Type N, 3 levels, large error 

    

     
Nx = Multinomial(.333,.333,.334) 
Ny = Multinomial(.6,.2,.2)*I(Nx=1) + Multinomial(.2,.6,.2)*I(Nx=2) + Multinomial(.2,.2,.6)*I(Nx=3) 
Nr = Multinomial(.333,.333,.334) 

Table 76. Results for type N, 3 levels, large error 

Summary statistics wNx wNy wNr 
1Mean (95% CI) 1.196 (1.143, 1.249) 1.163 (1.112, 1.214) 0.640 (0.626, 0.655) 
P5, P50, P95 0.885, 1.383, 1.453 0.883, 0.972, 1.431 0.538, 0.635, 0.669 
1 Confidence intervals are normal-based 

With larger error terms, the estimated weights for Nx and Ny are 

diminished, but remain very strong. In 95% of the replicates, wNr < wNx and wNy. 
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Figure 98. Type N, 4 levels, small error 

    

     
Nx = Multinomial(.25,.25,.25,.25) 
Ny = Multinomial(.7,.15,.15,.15)*I(Nx=1) + Multinomial(.15,.7,.15,.15)*I(Nx=2) + 
Multinomial(.15,.15,.7,.15)*I(Nx=3) + Multinomial(.15,.15,.15,.7)*I(Nx=4) 
Nr = Multinomial(.25,.25,.25,.25) 

Table 77. Results for type N, 4 levels, small error 

Summary statistics wNx wNy wNr 
1Mean (95% CI) 1.255 (1.194, 1.317) 1.263 (1.200, 1.326) 0.482 (0.471, 0.493) 
P5, P50, P95 0.898, 1.262, 1.564 0.903, 1.246, 1.581 0.389, 0.484, 0.528 
1 Confidence intervals are normal-based 

Adding another variable level does not have a big effect on the estimates 

(looking at magnitude), compared to the three-level example above (non-

widened data). VWUO-MD continues to perform well in detecting type N 

relationships. In 100% of the replicates, wNr < wNx and wNy. 
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Figure 99. Disjoint relationships: both are type N, 3 levels, small error 

        

        

        

        

         
Nx = Multinomial(.333,.333,.334) 
Ny = Multinomial(.8,.1,.1)*I(Nx=1) + Multinomial(.1,.8,.1)*I(Nx=2) + Multinomial(.1,.1,.8)*I(Nx=3) 
Nu = Multinomial(.333,.333,.334) 
Nv = Multinomial(.8,.1,.1)*I(Nu=1) + Multinomial(.1,.8,.1)*I(Nu=2) + Multinomial(.1,.1,.8)*I(Nu=3) 
Nr = Multinomial(.333,.333,.334) 

Table 78. Results for disjoint relationships: both are type N, 3 levels, small error 

Summary statistics wNx wNy wNu wNv wNr 
1Mean (95% CI) 

1.019 
(0.990, 1.047) 

1.019 
(0.991, 1.047) 

0.997 
(0.969, 1.025) 

0.997 
(0.969, 1.024) 

0.969 
(0.963, 0.974) 

P5, P50, P95 0.844, 1.102, 1.162 0.842, 1.099, 1.152 0.837, 0.914, 1.147 0.838, 0.914, 1.147 0.922, 0.972, 0.984 
1 Confidence intervals are normal-based 

With disjoint relationships, wNr is still the smallest weight on average. The 

remaining weight has been spread across the variables involved in different 

 228



 

groupings fairly evenly. Unfortunately, variability has increased. This time in only 

2% of the replicates, wNr < wNx, wNy, wNu and wNv. 

5.4 Type S data 

We generated five type S data sets, replicated 100 times. Figure 100 to 

Figure 104 show the multivariate distributions of Sx, Sy and Sr in these data sets, 

as well as Su and Sv in the last example. Plots are randomly jittered for improved 

visualization. The captions describe the distributions. The descriptors "linear", 

"quadratic" and "half-quadratic" that were previously used do not apply with type 

S data since order is arbitrary and there are only two levels. "Small error" versus 

"large error" describe the relative probabilities of deviating from the prescribed 

relationship between Sx and Sy. Details of each distribution are given in the 

footnote below its figure, then a very brief discussion of VWUO-MD's 

performance on that data set is made. 
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Figure 100. Type S, equal probability levels in Sx, small error 

    

     
Sx = Bernoulli(.5) 
Sy = Bernoulli(.1)*I(Sx=0) + Bernoulli(.9)*I(Sx=1) 
Sr = Bernoulli(.5) 

Table 79. Results for type S, equal probability levels in Sx, small error 

Summary statistics wSx wSy wSr 
1Mean (95% CI) 1.292 (1.249, 1.336) 1.271 (1.223, 1.318) 0.437 (0.411, 0.463) 
P5, P50, P95 0.996, 1.378, 1.493 0.970, 1.183, 1.501 0.156, 0.448, 0.523 
1 Confidence intervals are normal-based 

VWUO-MD effectively detects the relationship between Sx and Sy. The 

VWUO-MD estimates are very convincing (looking at magnitude). In 100% of the 

replicates, wSr < wSx and wSy. 
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Figure 101. Type S, equal probability levels in Sx, large error 

    

     
Sx = Bernoulli(.5) 
Sy = Bernoulli(.2)*I(Sx=0) + Bernoulli(.8)*I(Sx=1) 
Sr = Bernoulli(.5) 

Table 80. Results for type S, equal probability levels in Sx, large error 

Summary statistics wSx wSy wSr 
1Mean (95% CI) 1.187 (1.146, 1.228) 1.199 (1.154, 1.243) 0.614 (0.597, 0.632) 
P5, P50, P95 0.951, 1.083, 1.397 0.919, 1.332, 1.407 0.454, 0.615, 0.666 
1 Confidence intervals are normal-based 

With larger error terms, the estimated weights for Sx and Sy are 

diminished, but remain very strong compared to Sr, whose average variable 

weight is well below 1. In 99% of the replicates, wSr < wSx and wSy. 
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Figure 102. Type S, higher probability of level 1 vs. 0 in Sx, small error 

    

     
Sx = Bernoulli(.9) 
Sy = Bernoulli(.1)*I(Sx=0) + Bernoulli(.9)*I(Sx=1) 
Sr = Bernoulli(.5) 

Table 81. Results for type S, higher probability of level 1 vs. 0 in Sx, small error 

Summary statistics wSx wSy wSr 
1Mean (95% CI) 1.418 (1.369, 1.467) 1.281 (1.228, 1.333) 0.302 (0.281, 0.323) 
P5, P50, P95 1.037, 1.517, 1.602 1.032, 1.154, 1.552 0.145, 0.308, 0.363 
1 Confidence intervals are normal-based 

With unequal probability levels for Sx, but equal probability levels for Sr, 

VWUO-MD detects the relationship between Sx and Sy extremely convincingly, 

with an average weight for Sr barely above 0.3 and the remaining weight spread 

evenly between Sx and Sy. In 99% of the replicates, wSr < wSx and wSy. 
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Figure 103. Type S, higher probability of level 1 vs. 0 in Sx and Sr, small error 

    

     
Sx = Bernoulli(.9) 
Sy = Bernoulli(.1)*I(Sx=0) + Bernoulli(.9)*I(Sx=1) 
Sr = Bernoulli(.9) 

Table 82. Results for type S, higher probability of level 1 vs. 0 in Sx and Sr, small error 

Summary statistics wSx wSy wSr 
1Mean (95% CI) 1.567 (1.493, 1.642) 0.798 (0.696, 0.901) 0.634 (0.581, 0.687) 
P5, P50, P95 0.637, 1.696, 1.782 0.329, 0.551, 0.916 0.262, 0.684, 0.892 
1 Confidence intervals are normal-based 

When unequal probability is assigned to the levels of both Sx and Sr, 

VWUO-MD still detects the relationship between Sx and Sy (looking at 

magnitude), with wSr being the lowest weight on average, although admittedly wSy 

has also become rather low. Unfortunately, in only 47% of the replicates, wSr < 

wSx and wSy. 
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Figure 104. Disjoint relationships: both are type S, equal probability levels in Sx, small 
error 

        

        

        

        

         
Sx = Bernoulli(.5) 
Sy = Bernoulli(.1)*I(Sx=0) + Bernoulli(.9)*I(Sx=1) 
Su = Bernoulli(.5) 
Sv = Bernoulli(.1)*I(Su=0) + Bernoulli(.9)*I(Su=1) 
Sr = Bernoulli(.5) 

Table 83. Results for disjoint relationships: both are type S, equal probability levels in Sx, 
small error 

Summary statistics wSx wSy wSu wSv wSr 
1Mean (95% CI) 

0.995 
(0.969, 1.020) 

0.992 
(0.966, 1.018) 

1.000 
(0.974, 1.026) 

1.004 
(0.977, 1.031) 

1.010 
(1.002, 1.017) 

P5, P50, P95 0.836, 0.915, 1.126 0.838, 0.911, 1.124 0.829, 1.072, 1.131 0.836, 1.081, 1.135 0.949, 1.013, 1.035 
1 Confidence intervals are normal-based 

With disjoint relationships, wSr is no longer the smallest weight on 

average. VWUO-MD is having trouble with disjoint type S definitions. In only 1% 

of the replicates, wSr < wSx, wSy, wSu and wSv. 
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5.5 Type A data 

Finally, we generated six type A data sets, replicated 100 times. Figure 

105 to Figure 110 show the multivariate distributions of Ax, Ay and Ar in these 

data sets, as well as Au and Av in the last example. Plots are randomly jittered for 

improved visualization. The captions describe the distributions. The descriptors 

"linear", "quadratic" and "half-quadratic" that were previously used do not apply 

with type A data since there are only two levels. "Small error" versus "large error" 

describe the relative probabilities of deviating from the prescribed relationship 

between Ax and Ay. Details of each distribution are given in the footnote below its 

figure, then a very brief discussion of VWUO-MD's performance on that data set 

is made. 
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Figure 105. Type A, equal probability levels in Ax, small error 

    

     
Ax = Bernoulli(.5) 
Ay = Bernoulli(.1)*I(Ax=0) + Bernoulli(.9)*I(Ax=1) 
Ar = Bernoulli(.5) 

Table 84. Results for type A, equal probability levels in Ax, small error 

Summary statistics wAx wAy wAr 
1Mean (95% CI) 1.370 (1.311, 1.429) 1.258 (1.202, 1.313) 0.372 (0.344, 0.401) 
P5, P50, P95 1.018, 1.310, 1.507 0.821, 1.201, 1.455 0.079, 0.373, 0.454 
1 Confidence intervals are normal-based 

VWUO-MD very effectively detects the relationship between Ax and Ay. In 

100% of the replicates, wAr < wAx and wAy. 
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Figure 106. Type A, equal probability levels in Ax, large error 

    

     
Ax = Bernoulli(.5) 
Ay = Bernoulli(.2)*I(Ax=0) + Bernoulli(.8)*I(Ax=1) 
Ar = Bernoulli(.5) 

Table 85. Results for type A, equal probability levels in Ax, large error 

Summary statistics wAx wAy wAr 
1Mean (95% CI) 1.224 (1.181, 1.267) 1.190 (1.147, 1.234) 0.586 (0.554, 0.617) 
P5, P50, P95 0.973, 1.190, 1.283 0.815, 1.169, 1.292 0.359, 0.553, 0.735 
1 Confidence intervals are normal-based 

With larger error terms, the estimated weights for Ax and Ay are 

diminished, but remain very strong compared to Ar, whose average variable 

weight is well below 1. In 99% of the replicates, wAr < wAx and wAy. 
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Figure 107. Type A, higher probability of level 1 vs. 0 in Ax, small error 

    

     
Ax = Bernoulli(.9) 
Ay = Bernoulli(.1)*I(Ax=0) + Bernoulli(.9)*I(Ax=1) 
Ar = Bernoulli(.5) 

Table 86. Results for type A, higher probability of level 1 vs. 0 in Ax, small error 

Summary statistics wAx wAy wAr 
1Mean (95% CI) 1.798 (1.745, 1.852) 0.999 (0.958, 1.040) 0.203 (0.182, 0.224) 
P5, P50, P95 1.305, 1.960, 1.988 0.797, 0.925, 1.114 0.066, 0.167, 0.292 
1 Confidence intervals are normal-based 

Increasing the probability of Ax=1 has dramatically increased VWUO-MD's 

ability to detect the relationship (looking at magnitude), when the noise variable is 

left evenly distributed between levels 0 and 1. In 100% of the replicates, wAr < 

wAx and wAy. 
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Figure 108. Type A, lower probability of level 1 vs. 0 in Ax, small error 

    

     
Ax = Bernoulli(.1) 
Ay = Bernoulli(.1)*I(Ax=0) + Bernoulli(.9)*I(Ax=1) 
Ar = Bernoulli(.5) 

Table 87. Results for type A, lower probability of level 1 vs. 0 in Ax, small error 

Summary statistics wAx wAy wAr 
1Mean (95% CI) 0.984 (0.919, 1.049) 1.487 (1.347, 1.627) 0.529 (0.418, 0.641) 
P5, P50, P95 0.651, 0.874, 1.100 0.348, 1.717, 2.150 0.073, 0.233, 0.942 
1 Confidence intervals are normal-based 

On the other hand, decreasing the probability of Ax=1 decreases VWUO-

MD's ability to detect the relationship (when the noise variable is left evenly 

distributed between levels 0 and 1). In 69% of the replicates, wAr < wAx and wAy. 
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Figure 109. Type A, lower probability of level 1 vs. 0 in Ax and Ar, small error 

    

     
Ax = Bernoulli(.1) 
Ay = Bernoulli(.1)*I(Ax=0) + Bernoulli(.9)*I(Ax=1) 
Ar = Bernoulli(.1) 

Table 88. Results for type A, lower probability of level 1 vs. 0 in Ax and Ar, small error 

Summary statistics wAx wAy wAr 
1Mean (95% CI) 0.578 (0.509, 0.646) 1.995 (1.914, 2.075) 0.428 (0.381, 0.474) 
P5, P50, P95 0.223, 0.521, 0.596 0.851, 2.147, 2.203 0.185, 0.362, 0.525 
1 Confidence intervals are normal-based 

Finally, decreasing the probability of Ax=1 and Ar=1 further diminishes 

VWUO-MD's ability to detect the relationship. Now, Ar and Ax are both weighted 

low compared to Ay. However, Ar is still weighted below Ax, which is correct. In 

65% of the replicates, wAr < wAx and wAy. 
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Figure 110. Disjoint relationships: both are type A, equal probability levels in Ax, small 
error 

        

        

        

        

         
Ax = Bernoulli(.5) 
Ay = Bernoulli(.1)*I(Ax=0) + Bernoulli(.9)*I(Ax=1) 
Au = Bernoulli(.5) 
Av = Bernoulli(.1)*I(Au=0) + Bernoulli(.9)*I(Au=1) 
Ar = Bernoulli(.5) 

Table 89. Results for disjoint relationships: both are type A, equal probability levels in Ax, 
small error 

Summary statistics wAx wAy wAu wAv wAr 
1Mean (95% CI) 

1.006 
(0.992, 1.020) 

1.006 
(0.992, 1.020) 

1.009 
(0.995, 1.023) 

1.011 
(0.997, 1.025) 

0.968 
(0.961, 0.976) 

P5, P50, P95 0.906, 0.991, 1.075 0.912, 1.001, 1.072 0.907, 1.043, 1.071 0.910, 1.053, 1.074 0.898, 0.973, 0.996 
1 Confidence intervals are normal-based 

With disjoint relationships, wAr is still the smallest weight on average. 

However, in only 28% of the replicates, wAr < wAx, wAy, wAu and wAv. 
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5.6 Summary of performance on a variety of data shapes 

In this chapter, we discovered some of the strengths and limitations of 

VWUO-MD as a hypothesis generating methodology when applied to data of a 

variety of types and shapes, with or without the involvement of clustering. There 

are some data types (notably types N, S and A) that VWUO-MD seems to be 

able to handle in a variety of scenarios. However, there are certain scenarios 

under other types that give VWUO-MD trouble. For example, a simple linear 

relationship between unclustered variables, or k>2 linearly placed clusters in a 

two-dimensional plane cause VWUO-MD to perform badly. On the other hand, 

quadratic relationships between type C or type O variables (as well as half-

quadratic relationships between type O variables) are discovered easily by 

VWUO-MD, with or without clustering. When type S variables all have low 

probabilities (e.g., 10%), VWUO-MD experiences some trouble detecting known 

relationships. Fortunately, binary variables with low probabilities should be 

treated as type A (since matching 0s generally means less than matching 1s in 

such cases), and when type A variables all have low probabilities, VWUO-MD 

performs somewhat better. We also looked the effect of disjoint relationships on 

performance. Type C estimates held up well, both considering average variable 

weights, and the percentage of replicates for which the noise variable was 

weighted the lowest. Types O, N and A estimates also held up well considering 

average magnitude of the weights, but suffered from a reduced percentage of 

replicates for which the noise variable was weighted the lowest. Type S 
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estimates did not hold up well on either metric. Disjoint relationships between 

type S variables seems to be a real problem for VWUO-MD. 
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CHAPTER 6: AN APPLICATION OF VWUO-MD 

6.1 The Joint Canada/United States Survey of Health 

In this chapter we will perform a VWUO-MD analysis of the Joint 

Canada/United States Survey of Health (JCUSH), a collaborative project 

undertaken in 2004 by the Health Statistics Division of Statistics Canada and the 

National Center for Health Statistics (NCHS) of the United States Centers for 

Disease Control and Prevention.77 With a total sample size of 8688, the JCUSH 

collected information from many categories, including: 

 Health status 

 Limitation of activities 

 Asthma, arthritis, heart disease, diabetes, and depression 

 Contact with mental health professionals 

 Smoking 

 Height and weight 

 Health care utilization 

 Dental visits 

 Insurance, including single service plans 

 Patient satisfaction 
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 Physical activities 

6.2 Strategy for analysis 

We have intended VWUO-MD to be a hypothesis generating method, but 

being order n3 the method is practically restricted to small data sets. Therefore, in 

general VWUO-MD should either be used to mine information in a selected 

segment of the population where data are not plentiful, or be performed on many 

smaller sub-samples while looking for consistency of results. In this analysis, we 

will use VWUO-MD to mine information in a selected segment of the population. 

We will try to develop new hypotheses and tease out the relationships between 

variables that define this group, from the plethora of variables available on the 

JCUSH. 

In addition to being sensitive to n, the speed of VWUO-MD is also 

sensitive to p, the number of variables, due to the large matrices involved in 

estimation. In this analysis we will reduce the dimensionality to ≤20 variables on 

any given run. This can be accomplished by splitting the set of variables into 

smaller subspaces and performing VWUO-MD analyses of each smaller 

subspace as a preprocessing step. The least important variables will be dropped 

from each subspace, and the remaining variables will be combined into the final 

stage subspace for analysis. This procedure is potentially sensitive to the choice 

of initial subspaces, since the clustering on one set of variables is not necessarily 

the same as on another set of variables.39,43,47,59 Our choice will be guided by a 

result we obtained earlier. Recall that with multi-type subspaces involving more 

types, the normalizing constants did not perform as well. This makes type-
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specific subspaces a natural choice for preprocessing. After reducing the 

dimensionality to p=19 in preprocessing, we will use backwards elimination to 

reduce the dimensionality by an additional five variables. 

While the U-statistic-based covariance matrix estimator was shown to be 

good in data with at least four variables involving only types C and N, it does not 

work as well on types O or A, but furthermore we are reminded that on complex 

survey data (like JCUSH) for which bootstrap weights are developed, the 

bootstrap estimator should always be used, because the U-statistic-based 

estimator assumes that the data were collected in an SRS. Our final bootstrap 

analysis will be performed on the reduced subspace with p=14 variables. 

Earlier we quoted a study finding that for complex regression models, at 

least 400 bootstrap weights is required for stability of p-values.75 However, no 

such study can cover all possible techniques under all possible scenarios. 

Therefore, if 1000 bootstrap weights are available on a data set (which is true on 

many large, complex sample surveys today), then all 1000 should be used. Being 

from a complex survey design, the JCUSH data include a full sample weight as 

well as 1000 bootstrap weights, and we will use all 1001 sample weights in our 

analyses. For numerical stability, every sample weight will be rescaled to sum to 

the sample size before analysis; this should not affect the estimates except to 

better ensure numerical stability. 

We will study the segment of the population characterized as working, 

mature students 50 years or older who received health care services in the past 

12 months (from the interview date). This is an unusual group, and may present 
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unusual characteristics with respect to demographics, physical and mental 

health, health care utilization and satisfaction, and habits such as smoking. In 

additional, any of these characteristics or the relationships between them may be 

affected by country (Canada versus the United States). 

To begin with, we will select a representative set of variables from each 

area of subject matter with which to develop hypotheses. We will randomly split 

our data into two halves, developing hypotheses on the training half, and testing 

them on the testing half. This is important for avoiding spurious statistical 

significance. Statistical comparisons between variable weights in the final, mixed-

type analysis will be made with bootstrap percentile confidence intervals, 

Bonferroni-adjusted for multiple comparisons. 

6.3 Description of the data 

Twenty-five variables were extracted from JCUSH, covering all the subject 

categories listed earlier. Table 90 lists the variables included in the analysis data 

set. 
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Table 90. JCUSH variables included in the analysis, ordered by types C, O, N and A and 
then alphabetical order 

VWUO-MD variable (based 
on JCUSH variable) 

Concept (units and range, or categories) 

cAge (DHJ1GAGE) Age (years; 50 to 81) 

cBMI (HWJ1DBMI) Body mass index (kg/m2; 17.3 to 59.0) 

oCarequal (SAJ1_11A) Quality of health care services received in the past 12 
months (1=Excellent; 2=Good; 3=Fair/poor) 

oDentist (DEJ1_2) Last time visited dentist (1=Less than 1 year ago; 2=1 
year to less than 2 years ago; 3=2+ years ago) 

oEduc (SDJ1GHED) Highest level of post-secondary education attained 
(1=Less than high school; 2=High school degree or 
equivalent (GED); 3=Trades certificate, vocational school, 
community college; 4=University or college including 
below Bachelor’s degree) 

oGenhealth (GHJ1DHDI) Health description index (1=Poor/fair; 2=Good; 3=Very 
good; 4=Excellent) 

oHhldsz (DHJ1GNHH) Number of persons in household (1=1 person; 2=2 
persons; 3=3 persons; 4=4+ persons) 

oIncome (IWJ1DTHI) Total household income from all sources (1=0-$19,999; 
2=$20,000-$39,999; 3=$40,000-$59,999; 4=$60,000-
$79,999; 5=$80,000+) 

oPhysact (PAJ1DIND) Physical activity index (1=Active; 2=Moderate; 3=Inactive) 

oUsualact (PAJ1_6) Level of physical activity for usual day (1=Usually sit; 
2=Stand or walk quite a lot; 3=Usually lift or carry light 
loads/Do heavy work or carry very heavy loads) 

nArthritis (CHJ1_3) Has arthritis excluding fibromyalgia (0=No; 1=Yes) 

nCanadian (SPJ1_TYP) Sample type (0=United States sample; 1=Canada sample)

nEthnic (SDJ1DRC & 
SDJ1DRUS) 

Racial origin (0=White only; 1=Other race or a multiple 
race) 

nHypertens (CHJ1_5) Has high blood pressure (0=No; 1=Yes) 

nMale (DHJ1_SEX) Sex (0=Female; 1=Male) 

nMarital (SDJ1GMS) Marital status (1=Married/common-law/partner; 
2=Widowed; 3=Separated/divorced; 4=Single, never 
married) 

nNoinsurdt (ISJ1_2) No insurance - dental expenses (0=Has dental insurance; 
1=Does not have dental insurance) 

nSmoker (SMJ1_4) Type of smoker (0=Not at all; 1=Some days/Every day) 

aDepressed (DPJ1DPP) Depression Scale - predicted probability (0=Less than 
50%; 1=50+%) 
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aDiabetes (CHJ1_7A & 
CHJ1_7B) 

Diagnosed with diabetes other than during pregnancy 
(0=No; 1=Yes) 

aJogging (PAJ1_1J) Activity in last 3 months - jogging or running (0=No; 
1=Yes) 

aRedacthm (RAJ1_2A) Frequency - reduction in activities at home due to a long-
term physical condition or mental condition or health 
problem (0=Never; 1=Sometimes/often) 

aRedactsc (RAJ1_2B1) Frequency - reduction in activities at school due to a long-
term physical condition or mental condition or health 
problem (0=Never; 1=Sometimes/often) 

aRedactwk (RAJ1_2B2) Frequency - reduction in activities at work due to a long-
term physical condition or mental condition or health 
problem (0=Never; 1=Sometimes/often) 

aServment (CMJ1_01K) Mental health - has consulted with a health professional in 
the past 12 months (0=No; 1=Yes) 

 

The data set characterized as working, mature students 50 years or older 

who received health care services in the past 12 months had 167 records with no 

missing variables among the 25 in our analysis. Every sample weight in the full 

sample was rescaled to sum to the sample size. Next we randomly split the data 

set into two parts, the first (training segment) with 83 records and the second 

(testing segment) with 84 records. With the exception of nCanadian, two-level 

discrete variables were treated as type A if the weighted prevalence in the full 

sample was ≤20%, otherwise they were treated as type N. For obvious reasons, 

nCanadian had a weighted prevalence of 10.3% Canadian, but was treated as 

type N under the conceptual considerations discussed earlier with the type A 

distance formula, namely that two Canadian citizens are conceptually no more 

similar than two US citizens. For numerical stability, categorical variables were 

collapsed where feasible to ensure at least 10 records per level in the full data, 

so that in most cases we would have at least five records per level in each half of 
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the data. The exceptions in the full data were oEduc with nine persons having 

less than high school, and aDepressed with nine persons being probably 

depressed. Exceptions in the halved data were oEduc, nMarital and aDepressed 

with four records in their smallest groups. 

6.4 Preprocessing and backwards elimination to reduce 
dimensionality 

The next step was to reduce dimensionality by performing VWUO-MD 

analyses of each type-specific subspace in the training data set. Since the first 

stage of reduction is a pre-processing step only, variables should be removed 

conservatively. It was decided to keep both type C variables at this stage, and 

utilize preprocessing to drop the least important two variables of each of the 

other three types. 

Each type-specific subspace in the training data set was analyzed with 

VWUO-MD starting from w=1 and utilizing 10 random restarts. The full sample 

weight was used. Bootstrapping was not performed in this preprocessing stage, 

because the number of variables to be retained from each type was decided in 

advance and would not depend on statistical significance. Although 

preprocessing was performed by design using the training data set, as a 

consistency check (that would not influence methodology) the same analyses 

were performed on the testing data set as well. 

Table 91 lists the solution vectors from each subspace on both data sets. 

Based on the results in the training data, we will drop oPhysact, oUsualact, 

nMale, nHypertens, aDiabetes and aJogging. Type C results are not consistent 
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between the training and testing data sets. However, there only being two type C 

variables, we are not dropping either one in preprocessing based on these 

results, and so far we have not performed bootstrapping and so do not yet have 

any idea about statistical significance. Type O, type N and type A results are 

consistent between the training and testing data sets at least as far as the set of 

two smallest variable weights in each type. The order of the more important 

variables differs somewhat. 
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Table 91. VWUO-MD solutions on each type-specific subspace of the training and testing 
JCUSH data sets; analyses were weighted with the full sample weight, started 
at w=1, with 10 random restarts 

Subspace 
type 

Variable X wX on training data wX on testing data 

cAge 1.157038 0.779702 C 

cBMI 0.842962 1.220298 

oCarequal 0.975506 1.031765 

oDentist 1.029953 1.060696 

oEduc 1.140456 1.056183 

oGenhealth 1.022388 1.016197 

oHhldsz 1.011677 0.993640 

oIncome 1.058515 0.983269 

oPhysact (D0) 0.811077  0.903510 

O 

oUsualact (D0) 0.950428 0.954741 

nArthritis 0.958692 1.005879 

nCanadian 1.131308 1.093556 

nEthnic 0.911462 0.975950 

nHypertens (D0) 0.890249 0.921929 

nMale (D0) 0.885718 0.867019 

nMarital 1.183638 1.174143 

nNoinsurdt 1.041005 0.992037 

N 

nSmoker 0.997928 0.969487 

aDepressed 1.122616 1.098128 

aDiabetes (D0) 0.500541 0.949799 

aJogging (D0) 0.695837 0.748518 

aRedacthm 1.205922 1.050566 

aRedactsc 1.196060 0.995158 

aRedactwk 1.187510 1.094812 

A 

aServment 1.016551 0.984988 

(D0)=Dropped in preprocessing 
 

The second stage of reduction is to combine the remaining variables that 

passed the prescreening into a mixed-type data set, and perform backwards 
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elimination to reduce the dimensionality by another five variables. The backwards 

elimination analyses were run on the training data set with the full sample weight, 

started at w=1, with 10 random restarts. Table 92 lists the six solution vectors 

starting with the p=19 subspace obtained above and ending in the final p=14 

subspace on which our bootstrap analyses will be performed. The five variables 

removed at this stage, in order, were oCarequal, oHhldsz, oGenhealth, cBMI and 

oDentist. 
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Table 92. VWUO-MD solutions during backwards elimination of the JCUSH training data 
set from p=19 to p=14; analyses were weighted with the full sample weight, 
started at w=1, with 10 random restarts 

Variable X Step 0 wX Step 1 wX Step 2 wX Step 3 wX Step 4 wX Step 5 wX 

cAge 0.959703 0.954556 0.948325 0.929032 0.912336 0.901920 

cBMI 0.945643 0.917335 0.902211 0.860729 (D4) (D4) 

oCarequal 0.860661 (D1) (D1) (D1) (D1) (D1) 

oDentist 0.927313 0.908147 0.891889 0.886171 0.855580 (D5) 

oEduc 1.013775 0.999294 0.955457 0.938581 0.932663 0.954633 

oGenhealth 0.922035 0.919052 0.883479 (D3) (D3) (D3) 

oHhldsz 0.873220 0.849418 (D2) (D2) (D2) (D2) 

oIncome 0.982626 0.947424 0.908006 0.904055 0.877777 0.831205 

oPhysact (D0) (D0) (D0) (D0) (D0) (D0) 

oUsualact (D0) (D0) (D0) (D0) (D0) (D0) 

nArthritis 1.009608 0.994064 0.981263 0.962177 0.940500 0.912388 

nCanadian 1.026119 1.026586 1.031201 1.029416 1.021583 1.014939 

nEthnic 0.990893 0.973630 0.963638 0.937799 0.918241 0.872531 

nHypertens (D0) (D0) (D0) (D0) (D0) (D0) 

nMale (D0) (D0) (D0) (D0) (D0) (D0) 

nMarital 1.066463 1.065914 1.075728 1.072797 1.080908 1.083232 

nNoinsurdt 1.003048 0.998386 0.995184 0.971607 0.957677 0.948078 

nSmoker 0.990825 0.988890 0.982326 0.976380 0.952456 0.897468 

aDepressed 1.085118 1.088844 1.094072 1.100919 1.105403 1.107812 

aDiabetes (D0) (D0) (D0) (D0) (D0) (D0) 

aJogging (D0) (D0) (D0) (D0) (D0) (D0) 

aRedacthm 1.091594 1.098514 1.106215 1.115883 1.122547 1.135694 

aRedactsc 1.091293 1.098269 1.105731 1.115121 1.122122 1.133663 

aRedactwk 1.088843 1.095146 1.103461 1.112057 1.117690 1.128702 

aServment 1.071220 1.076530 1.071814 1.087276 1.082518 1.077734 

(Di)=Dropped after i steps of backwards elimination (i=0 if dropped in preprocessing) 
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6.5 VWUO-MD analysis of the reduced JCUSH data set 

The dendrograms (single linkage) based on the unweighted versus 

variable-weighted (with the reduced variable weights solution obtained above) 

distance matrices are shown in Figure 111. There is no discernable difference, 

which we have come to expect. 

Figure 111. Dendrograms (single linkage) based on unweighted (left) versus variable-
weighted (right) distance matrices from reduced JCUSH data set 

     
 

During backwards elimination, all six analyses found their best local 

minima at the first (default) solution, and found no other local minima at any step 

in 10 random restarts. For this reason, we will perform bootstrap analyses of the 

final reduced subspace without random restarts, to improve efficiency. VWUO-

MD was thus run on the reduced JCUSH data set using the 1000 bootstrap 

weights. The bootstrap correlation matrix calculated from  is shown in  ŵˆ BSraV

 ŵ)1( pTable 93. This is not based on exactly the estimator  developed 

earlier, since  includes the pth variable and is therefore a singular matrix. 

However, for estimating the variance of individual weight estimates (or in fact any 

ˆ BSraV

 ŵˆ BSraV
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contrast of weights not involving all of them at once), use of the full matrix is 

asymptotically equivalent, more convenient, and possibly more stable than 

calculating the variance of the last variable weight using all the entries in 

. The asymptotic equivalence can be seen by an examination of the 

bootstrap covariance matrix estimator, the fact that the last variable weight is p 

minus the sum of the other weights, and the near invariance to changes in 

variable order that involve the last variable. The bootstrap correlation matrix 

shows us that the biggest correlation is between the variable weights for 

aRedacthm and aRedactsc, ρ=0.949. Considering the meaning of these 

variables, this is not surprising, and will affect our analysis below.

 ŵˆ )1( pBSraV
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We generated unadjusted and Bonferroni-adjusted simultaneous 

confidence intervals for individual variable weights based first on bootstrap 

percentile confidence intervals, and then for comparison, the same intervals 

based on univariate normal distributions and the bootstrap standard error 

estimates. These are listed in Table 94. The bootstrap percentile confidence 

intervals are extremely close to the normal-based intervals with bootstrap 

standard errors, different by only about 1%. This is not altogether surprising, 

considering our earlier observation that more and mixed-type variables produced 

straighter Q-Q plots and less significant Henze-Zirkler T-tests for multivariate 

normality of . This observation offers support to the idea of using the U-

statistic-based variance estimator in high-dimensional scenarios that are 

sampled in an SRS, at a sizable savings in computational resources. 

)(ˆ 1pw 
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Table 94. Unadjusted and Bonferroni-adjusted simultaneous 95% confidence intervals for 
individual variable weights from reduced JCUSH data set 

Bootstrap percentile 95% CI for wX Normal-based (with bootstrap SE) 
95% CI for wX 

Variable X 

Unadjusted 
Bonferroni-

adjusted Unadjusted 
Bonferroni-

adjusted 

cAge (0.687427, 
1.027463) 

(0.603144, 
1.074519) 

(0.711609, 
1.092230) 

(0.619000, 
1.184839) 

oEduc (0.850708, 
1.061456) 

(0.667105, 
1.099406) 

(0.840146, 
1.069121) 

(0.784433, 
1.124833) 

oIncome (0.722102, 
0.941596) 

(0.649583, 
1.014692) 

(0.719531, 
0.942879) 

(0.665189, 
0.997222) 

nArthritis (0.838832, 
1.002171) 

(0.810996, 
1.051303) 

(0.829631, 
0.995146) 

(0.789360, 
1.035417) 

nCanadian (0.965803, 
1.057615) 

(0.941369, 
1.075240) 

(0.968172, 
1.061707) 

(0.945413, 
1.084466) 

nEthnic (0.798378, 
0.965081) 

(0.753100, 
1.016674) 

(0.786887, 
0.958174) 

(0.745212, 
0.999850) 

nMarital (1.055552, 
1.108524) 

(1.043143, 
1.135498) 

(1.054480, 
1.111984) 

(1.040489, 
1.125975) 

nNoinsurdt (0.892650, 
1.018919) 

(0.848811, 
1.052219) 

(0.884400, 
1.011757) 

(0.853413, 
1.042744) 

nSmoker (0.814952, 
1.007351) 

(0.761916, 
1.057962) 

(0.798307, 
0.996629) 

(0.750054, 
1.044883) 

aDepressed (1.053082, 
1.141697) 

(0.986039, 
1.164237) 

(1.064759, 
1.150865) 

(1.043808, 
1.171815) 

aRedacthm (1.120952, 
1.156084) 

(1.115901, 
1.167558) 

(1.117771, 
1.153617) 

(1.109049, 
1.162339) 

aRedactsc (1.115135, 
1.156366) 

(1.108674, 
1.169804) 

(1.113526, 
1.153800) 

(1.103727, 
1.163599) 

aRedactwk (1.099529, 
1.154131) 

(1.065904, 
1.172619) 

(1.102746, 
1.154659) 

(1.090115, 
1.167290) 

aServment (1.001860, 
1.131790) 

(0.954111, 
1.147754) 

(1.011531, 
1.143936) 

(0.979316, 
1.176152) 

 

The Bonferroni-adjusted bootstrap percentile confidence intervals are 

plotted in Figure 112, arranged in order of increasing variable weight. We do not 

know in advance how many variables we are looking for, but the graph can guide 

us in this, similar to the way a scree plot helps one decide on the appropriate 

number of factors during exploratory factor analysis.12 The scree plot of VWUO-
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MD weights illustrates a potential problem. All the type A variable weights are 

quite large. This could indicate a need to revisit the calibration of the normalizing 

multipliers, however we may also recall that excluding the two lowest variables in 

the initial type A subspace analysis, the remaining weights in that subspace were 

relatively large. This might indicate a strong grouping amongst the remaining 

type A variables, which would lend credibility to the relatively large type A 

weights observed in the final, multi-type solution. 

As VWUO-MD is a hypothesis generating methodology, we are afforded 

some flexibility in selecting a set of variables for analysis. One might select the 

best k variables for some number k, all variables whose weights are >t for some 

threshold t, or some subset of the variables that are both not weighted too low 

and interesting to the analyst. As long as one selects from those variables whose 

weights are not obviously low, one should have an improved chance of finding 

associations in the data, which is the entire point. In our example, the variable 

weights plotted in Figure 112 could be split into two groups: the bottom seven 

weights whose 95% CIs clearly cover values <0.9, and the top seven weights 

whose 95% CIs lie entirely above 0.9. 
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Figure 112. Scree plot of VWUO-MD weights from reduced JCUSH data set, with 
Bonferroni-adjusted 95% bootstrap percentile CIs 
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In a pure data mining analysis of these data without any additional 

exploration of the VWUO-MD method itself, we might retain only the upper scree 

plot group of variables for further study regardless of balance between groups. In 

our case, having an equal number of variables in the lower and upper scree plot 

groups will be helpful for investigating additional properties of the VWUO-MD 

method by this practical example. However, when models were fit to the upper 

set of variables, near colinearity was revealed between aRedacthm, aRedactsc 

and aRedactwk. This is not surprising considering the high bootstrap correlation 

we calculated between these variables’ VWUO-MD weights, and it almost 

certainly contributed to these variables’ high weights since near colinearity is in a 

way equivalent to strong clustering. This raises the idea that it might be a viable 
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option to eliminate such relationships in the data before one performs VWUO-MD 

analysis. However, that would be counter to the theme of VWUO-MD, which is to 

find such relationships and generate hypotheses with minimal intervention. The 

solution in our case is to combine the top three variables into one named 

aRedact, which is equal to 1 if any of the three variables are 1, or else 0. Since 

for this example we want to compare models between lower and upper scree plot 

groups, we will then even out the number of variables between groups by moving 

oEduc into the upper scree plot group model, for purposes of a more even 

comparison between groups. 

Consideration of the upper scree plot group could suggest various 

hypotheses or models for further investigation. One logical choice is to fit a model 

predicting the variable (derived from those) with the highest weight, aRedact, 

from the remaining five variables in the upper scree plot group. For this analysis, 

we will use the testing data set in order to avoid spurious findings. With the 

training and testing data sets randomly selected from the full sample 

independently and without replacement, a random association in the training data 

set that may have led to a given set of variable weights is unlikely to also appear 

in the testing data set. Without taking this measure or an equivalent adjustment, 

p-values from statistical analyses based on hypotheses generated by VWUO-MD 

would not be valid estimates of Type I error probability. 

The upper scree plot group logistic regression model predicts the logit 

transformed expectation of the probability of aRedact=1 from the regressors. The 

results, expressed as odds ratios and 95% CIs, are presented in Table 95. For 
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comparison, we fit three additional binary logistic regression models: 1) the lower 

scree plot group model predicting its highest weighted variable, nNoinsurdt, from 

the remaining five variables in that group; 2) the model predicting a function of 

the highest weighted variable in that group, oDentist=1+ years ago, from the 

other four variables dropped during backwards elimination; and 3) the model 

predicting the second highest weighted variable of those dropped in 

prescreening, nHypertens, from the other five variables dropped in prescreening. 

(The outcome variables in these models were chosen for optimal comparison 

between models; all models would be binary logistic models predicting the 

highest or second highest weighted variable in that group.) The lower scree plot 

group model is presented in Table 96. Note that age had to be categorized into 

the ordinal variable oAge in this model due to extremely poor fit (p-value<0.001 

on the Hosmer-Lemeshow goodness of fit (GoF) test for logistic models78) when 

cAge (with or without an additional quadratic term) was included instead. The 

final model only just fails the fit test (p-value=0.027), and as that test is not 

bootstrap adjusted, we are comfortable with this result. In addition, fit will actually 

be one of the criteria of comparison. The backwards elimination rejects group 

model is presented in Table 97. We retained cBMI2 as it was borderline 

statistically significant. This model barely fails the fit test (p-value=0.047), and as 

that test is not bootstrap adjusted, we are comfortable with this result. The 

prescreening rejects group model is presented in Table 98. All four models were 

fit using the Estimating Equations Bootstrap (EEB), a method of bootstrap 

variance estimation for logistic regression developed at Statistics Canada by 
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Roberts et al.79 The EEB method calculates the bootstrap covariance matrix of a 

kernel within the logistic regression estimating equation rather than on the model 

coefficients directly. As such, there is “no problem with ill-conditioned matrices, 

provided that an ill-conditioned matrix is not encountered when fitting the model 

with the full sample; this a particular advantage with small samples.”79 

Table 95. Odds ratios and 95% CIs from the upper scree plot group logistic regression 
model; aRedact (derived from the three highest weighted variables) is 
predicted 

Predictor variable P-value Odds Ratio (95% CI) 

aDepressed 0.889 0.76 (0.02, 36.39) 

aServment 0.014 12.25 (1.67, 90.02) 

nCanadian 0.388 1.86 (0.46, 7.55) 
1nMarital 

 1=Married/common-law/partner 

 2=Widowed 

 3=Separated/divorced 

 4=Single, never married)  

 

- 

0.545 

0.094 

0.188 

 

1.00 

2.37 (0.15, 38.81) 

3.60 (0.80, 16.12) 

0.19 (0.02, 2.26) 
1,2oEduc 

 1/2=Less than high school/High school degree or GED 

 3=Trades certificate, vocational school, community college 

 4=University or college including below Bachelor’s degree 

 

0.499 

0.744 

- 

 

1.75 (0.34, 8.93) 

0.74 (0.12, 4.66) 

1.00 
1 Reference categories were selected based on largest cell size 
2 Categories were collapsed for numerical stability 
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Table 96. Odds ratios and 95% CIs from the lower scree plot group logistic regression 
model; nNoinsurdt is predicted 

Predictor variable P-value Odds Ratio (95% CI) 

nArthritis 0.962 1.04 (0.19, 5.61) 

nEthnic 0.638 0.65 (0.11, 3.83) 

nSmoker 0.059 0.13 (0.02, 1.08) 
1oAge 

 1=50-54 years 

 2=55-59 years 

 3=60-64 years 

 4=65+ years 

 

- 

0.113 

0.373 

0.023 

 

1.00 

4.53 (0.70, 29.46) 

2.51 (0.33, 19.10) 

8.31 (1.33, 51.78) 
1,2oIncome 

 1/2=0-$19,999/$20,000-$39,999 

 3=$40,000-$59,999 

 4=$60,000-$79,999 

 5=$80,000+ 

 

0.093 

0.523 

0.693 

- 

 

5.33 (0.76, 37.49) 

1.77 (0.31, 10.28) 

1.51 (0.20, 11.63) 

1.00 
1 Reference categories were selected based on largest cell size 
2 Categories were collapsed for numerical stability 

Table 97. Odds ratios and 95% CIs from the backwards elimination rejects group logistic 
regression model; oDentist=1+ years ago is predicted 

Predictor variable P-value Odds Ratio (95% CI) 

cBMI 0.080 6.32 (0.8, 49.84) 

cBMI2 0.070 0.96 (0.93, 1.00) 
1,2oCarequal 

 1=Excellent 

 2/3=Good/Fair/poor 

 

- 

0.433 

 

1.00 

1.69 (0.45, 6.31) 
1,2oGenheath 

 1/2=Poor/fair/Good 

 3=Very good 

 4=Excellent 

 

0.450 

- 

0.506 

 

2.15 (0.29, 15.65) 

1.00 

1.78 (0.32, 9.81) 
1oHhldsz 

 1=1 person 

 2=2 persons 

 3=3 persons 

 4=4+ persons 

 

0.531 

- 

0.320 

0.374 

 

0.61 (0.13, 2.90) 

1.00 

3.70 (0.28, 48.81) 

0.36 (0.04, 3.39) 
1 Reference categories were selected based on largest cell size 
2 Categories were collapsed for numerical stability 
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Table 98. Odds ratios and 95% CIs from the prescreening rejects group logistic regression 
model; nHypertens is predicted 

Predictor variable P-value Odds Ratio (95% CI) 

aDiabetes 0.468 2.10 (0.28, 15.61) 

aJogging 0.251 0.31 (0.04, 2.31) 

nMale 0.259 2.06 (0.59, 7.26) 
1oPhysact 

 1=Active 

 2=Moderate 

 3=Inactive 

 

0.709 

0.841 

- 

 

0.72 (0.13, 3.94) 

0.86 (0.19, 3.83) 

1.00 
1oUsualact 

 1=Usually sit 

 2=Stand or walk quite a lot 

 3=Usually lift or carry light loads/Do heavy work or carry 
very heavy loads) 

 

0.857 

- 

0.275 

 

0.87 (0.19, 3.9) 

1.00 

2.25 (0.52, 9.69) 

1 Reference categories were selected based on largest cell size 
 

If the VWUO-MD weights helped to generate viable hypotheses, the upper 

scree plot group model ought to produce more or stronger associations than the 

lower scree plot group model, which in turn ought to produce more or stronger 

associations than the backwards elimination rejects group model, followed by the 

prescreening rejects group model. In this example, we find that this hierarchy is 

approximately satisfied according to a number of metrics (although not all 

monotonic). These are summarized in Table 99. Much, but not all the gains of 

VWUO-MD were attained in the prescreening and backwards elimination stages, 

after which the number of significant variables increased from 0 to 1. While the 

number of significant variables did not increase further between the lower scree 

plot group model and the upper scree plot group model, the overall statistical 

significance of the model (assessed with a likelihood ratio test (LRT) of global 

0 ) was increased. Overall statistical significance increased from a p-value of 

0.377 in the prescreening rejects group model to 0.027 in the backwards 
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elimination rejects group model, then stayed about constant at 0.029 in the lower 

scree plot group model (bear in mind that there was an extra independent 

variable in this model), and finally increased to 0.004 in the upper scree plot 

group model. In addition, model fit was improved between the lower scree plot 

group model and the upper scree plot group model, with the Hosmer-Lemeshow 

GoF test p-value for rejection increasing from 0.027 to 0.747. (The lower scree 

plot group model also had to be optimized by use of oAge instead of cAge, recall, 

before which the GoF p-value was <0.001). These results show a general 

increase in statistical significance as well as improved fit, as the VWUO-MD 

variable weights of those variables included in the model increase. This general 

pattern suggests that in this example, VWUO-MD has served as a useful tool for 

mining the JCUSH data set and producing viable, testable hypotheses. 

Table 99. Comparing logistic regression models built on three different groups defined by 
VWUO-MD variable weights; all models have 5 independent variables 

Metric Upper scree 
plot group 

model 

Lower scree 
plot group 

model 

Backwards 
elimination 

rejects 
group model 

Pre-
screening 

rejects 
group model 

No. of variables with p-value≤0.05 1 1 0 0 

1LRT test of global 0  (p-

value) 

0.015 0.029 0.027 0.377 

1Hosmer-Lemeshow GoF test (p-
value) 

0.747 0.027 0.047 0.551 

1 LRT test of overall statistical significance and Hosmer-Lemeshow GoF test are not bootstrap-
adjusted 

6.6 Summary 

The analyses performed in this chapter may have revealed aspects of 

VWUO-MD that need additional study, such as the calibration of normalizing 
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multipliers. However, even in its present form, VWUO-MD produced viable 

hypotheses for future research from the JCUSH data. In this example, we 

discovered something new about the reduction in activities due to a long term 

health condition amongst working, mature students 50 years or older who 

received health care services in the past 12 months. Specifically, we learned that 

such limitations are strongly positively associated with consultations with a 

mental health professional in the past 12 months (odds ratio=12.25, 95% 

CI=1.67, 90.02). Our model was adjusted for the previously mentioned three 

variables, as well as country of residence (Canada vs. USA) and depression. 

Inclusion of other potentially confounding variables that could alter statistical 

significance is probably warranted (e.g., many models ought to be adjusted for 

age and gender). We did not perform that additional step in this example, in order 

to more clearly perform an analysis of the VWUO-MD method via a comparison 

of models built out of groups of variables differently ranked by their VWUO-MD 

variable weights. In actual practice, additional adjustment of models would 

usually need to be done. Eventually, the information obtained in an adjusted 

upper scree plot group model on a testing data set could either be published as-

is, and/or be used to direct more specific research with other, larger data sets by 

interested researchers. 
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CHAPTER 7: DISCUSSION 

In this thesis, we developed a data mining methodology for generating 

hypotheses based on the variable-weighted ultrametric optimization of mixed-

type data. VWUO-MD supports the analysis of any mixture of continuous, ordinal, 

nominal (including binary symmetric) and binary asymmetric variables. The 

variable weights that are produced by VWUO-MD have been shown to be 

informative about which variables participate most strongly in the clustering 

within the data, as well as otherwise related variables. 

We developed two covariance matrix estimators for the variable weight 

estimates, a bootstrap estimator, and one based on U-statistics. The bootstrap 

covariance matrix was consistently found to be a slightly conservative estimator 

under a broad variety of scenarios. Unfortunately, bootstrap replication increases 

the run time by a big factor, but at worst it is only a linear increase, and in reality 

the factor is not as high as the number of weights. This is because every 

bootstrap replicate sample contains many zero-weighted records, and those are 

dropped before analysis, so the replicate estimates are obtained much faster 

("thanks" to the order n3 algorithm) than the point estimates. Additionally, the 

VWUO.exe software easily allows one to perform replication on several 

computers or several processors within one computer simultaneously, further 

decreasing the burden of bootstrap replication. There is an advantage to the 

bootstrap approach: we can estimate variance even on complex survey samples 
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for which bootstrap weights have been produced. If the data are from an SRS 

with only variables of types C and N, the U-statistic-based estimator performs 

well with at least four variables. However, in low-dimensional data or mixtures of 

type O or A variables, it underestimates variance by factors in the low to mid 

single digits. For such situations, as well as any analyses of complex survey 

data, the bootstrap estimator should be used. Bootstrap percentile confidence 

intervals ought to be used over normal-based intervals at least in low-

dimensional problems. Besides simple random sample data with at least four 

variables involving only types C and N, where the U-statistic-based estimator and 

normal-based confidence intervals ought to produce results that are extremely 

close to comparable percentile-based intervals, the U-statistic-based estimator 

may also be useful for preliminary analyses of other types of SRS data on which 

approximate, somewhat liberal variance estimates are sufficient. The U-statistic-

based estimator can dramatically save computing time, by a factor on the order 

of several hundred to a thousand—the typical number of bootstrap weights. 

The method developed in this thesis ought to be compared at least 

generally to other methods that do related things, for example, cluster analysis. 

VWUO-MD is not a cluster analysis method, however, it is built from an 

optimization that was originally intended for enhancement of clusters in data, with 

hierarchical clustering being a specific focus. As such, here we will briefly review 

some alternative cluster analysis methods and discuss their relevance to VWUO-

MD. Model-based CA is a modern, statistical approach to CA involving 

maximizing a likelihood typically comprised of a product of MVN densities. This is 
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described in Fraley et al (2002).80 Estimation of the mixture models is typically 

done with expectation-maximization, combined with a Bayesian prior imposed on 

the likelihood to help determine the number of clusters (via the Bayesian 

Information Criterion). There are limitations of model-based CA, which include 

situations with non-Gaussian data. However, Fraley describes how such data 

may be well approximated by multiple MVN clusters. For example, a linear 

relationship could be represented by several Gaussian clusters in series. Another 

limitation as described by Fraley is that large data sets are not easily handled in 

the expectation-maximization algorithm they describe, being order n2 (although 

we note that this is a full order lower than VWUO-MD). They offer a solution 

involving cluster analyzing an initial random subsample followed by discriminant 

analysis to relate the classifications to the remaining sample. Model-based CA 

involves maximizing a (typically Gaussian) likelihood on continuous data. 

However, it is not difficult to envision adding multiplicands to the likelihood 

function with multinomial probability mass functions to accommodate mixed-type 

data. Besides the addition of multinomial probability mass functions, modification 

of model-based CA for the purpose of HG would probably involve variable 

weights. It is not immediately clear how a function of the likelihood could be 

designed so that the weights corresponded to relationships in the data as they 

purport to in VWUO-MD, but this would need to designed as well. Other CA 

methods are less promising for variable weights due to the subjectivity described 

in the introduction associated with linkage and stopping rules. For example, in k-

means CA, some number of clusters k is decided on a priori, centroids (means) 
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are assigned for each cluster, and objects are assigned to the nearest centroid. 

In subsequent steps, centroids are recalculated and objects are reassigned, and 

the process continues until convergence. Several variable weighting methods 

have already been developed for use with this method, also described in the 

introduction. However, k-means CA has the subjectivity issues described in the 

introduction. 

Besides CA, VWUO-MD could be compared to other machine learning 

techniques. Such methods include principal components and exploratory factor 

analysis.12 These methods are designed to extract information from the sample 

correlation matrix as opposed to the raw data, and this is a double-edged sword. 

On the one hand, being designed to operate on correlation matrices ensures that 

linear relationships in continuous variables (one of the biggest existing holes in 

VWUO-MD) are easily detected. On the other hand, it also means that quadratic 

relationships, especially non-lopsided parabolas such as those analyzed in 

Chapter 4: Additional exploratory analyses of artificial, clustered data, are not 

easily detectable. There is a useful connection with VWUO-MD that we can draw 

from these ideas. Until VWUO-MD is “fixed” such that it can detect plain linear 

relationships in type C data, a VWUO-MD analysis could (and probably should) 

be augmented with a complementary, parallel analysis by something like 

principal components or exploratory factor analysis. The strengths of each 

approach would help to offset the other’s weaknesses. 

Another data mining method is multidimensional scaling (MDS).81 The 

goal in MDS is to represent in as few dimensions as possible the distances 
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between N items, such that the approximate distances match the unscaled 

distances as closely as possible. With Euclidean distance, the goal is similar to 

principal components analysis. The method involves finding a q-dimensional 

configuration of the data such that the order and magnitude of the pairwise 

distances is preserved as closely as possible. Closeness is assessed with a 

stress function that is a scaled sum of squared deviations of two distances (or 

squared distances): one is assessed on the actual transformation, and the other 

are reference numbers designed to reflect the desired monotonicity. The stress 

function is minimized with respect to the q-dimensional distances. This is done 

for each value of q, and the stress function is plotted against q on a scree plot. 

From this the optimal value of q can be determined. MDS may reduce the effect 

of noisy variables, and cluster recovery, while comparable between unscaled and 

scaled data, is found to be several times faster in low-dimensional scaled data. 

The reduction of noise in MDS is a similar goal to that of De Soete, but less so 

with VWUO-MD, where we focus on the variable weights. Nevertheless, there 

may be a way in which MDS could serve as a preprocessing step for VWUO-MD. 

Generation of variable weights that are proportional to the dependence between 

variables in the data would require additional analyses, however, and there is 

also unfortunate subjectivity associated with selection of the monotonicity 

function in MDS. 

Another technique relevant to data mining is bootstrap aggregating (also 

called "bagging").82 Bagging is based on the combination of models fit to 

bootstrap samples taken from the training segment of the data set. In bagging, 
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the goal is reduce the error in prediction and classification models. The algorithm 

is performed in each bootstrap sample, and the result is taken to equal the mean 

in regression problems, or by majority in classification problems. There are two 

ways we might relate this approach to VWUO-MD. The most direct idea is that 

actual bagging could theoretically be applied to the variable weights. However, 

we ought to mention that the variance of the variable weights is proportional to 

the variance of the gradient (which is essentially a U-statistic), and previous 

research has suggested that bagging is not generally beneficial in reducing the 

error of U-statistics.82,83 It still may be worth investigating, however. A less direct 

analogy to bagging that would be useful for VWUO-MD is the idea of splitting a 

training segment into several smaller pieces and aggregating the results from 

analyzing those. With the order n3 algorithm, this could produce an important 

time savings, allow larger training segments to be analyzed, and therefore 

improve precision. There are other machine learning methods, and some are 

"master methods", in that they are algorithms for utilizing other algorithms. For 

example, "boosting" involves incrementally applying machine learning algorithms 

to a data set, each step weighting most heavily previously misclassified objects. 

This method assumes that the training data set contains "true" classifications on 

which to judge misclassification.84 Another master model is "stacking", which 

involves a decision based on the results from a set of other machine learning 

algorithms.85 Like boosting, this approach also assumes that the training data set 

contains "true" classifications on which to judge misclassification. For this reason, 
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these master models are not useful in the context of problems for which VWUO-

MD would be applied. 

There are many aspects of VWUO-MD that could benefit from additional 

research: 

1. The improved penalty in the denominator of LU was meant to preclude the 

possibility of 0 weights. However, while a variable weight solution of exactly 0 is 

not possible, in this thesis we have not considered the possibility of solutions 

diverging towards 0 (i.e., the numerator going towards 0 faster than the 

denominator). Unfortunately, we have encountered some trivial situations (e.g., 

the two-variable type N and type S examples in Chapter 4: Additional exploratory 

analyses of artificial, clustered data) where this happened. Fortunately, no 

practical application of VWUO-MD ought to involve only two variables, but 

nevertheless, this topic deserves more research. 

2. The normalizing multipliers were obtained on a calibration data set, with 

the intention that they would provide a fair comparison between variables of 

different types. However, the analysis of the JCUSH data revealed the possibility 

that type A variables are too highly weighted on average, all else being equal. 

The “all else being equal” clause is actually hard to test because of the very 

different forms the distance formulas assume depending on variable type. Our 

approach was to construct a calibration data set with two grouping variables and 

two noise variables of each type (16 variables in total) and adjust the normalizing 

multipliers in an iterative procedure until each type’s four variables had an 

average weight of exactly 1. This approach is sensitive to the definition of the 
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variables in the calibration data set, and developing a true one-size-fits-all 

calibration data set is probably a complicated matter, if it is even possible. A 

potential solution that is available to the VWUO-MD analyst is to calibrate their 

own normalizing multipliers on artificial data that mimic the extraneous 

characteristics of their target data set, e.g., the number of categories of type O 

and type N variables, and the probability distributions of the grouping (if any) and 

noise variables. The danger with that approach is that it may become a self-

fulfilling prophecy if one creates "too good" a representation of the target data, 

and where to draw the line at "extraneous" would not be a simple matter. For 

now, even using the normalizing multipliers developed in this thesis, VWUO-MD 

appears to be entirely informative within types, and mostly informative across 

types in various multi-type (particularly two-type) scenarios. 

3. VWUO-MD could benefit from additional research on algorithm speed. 

VWUO-MD compares the three distances between objects in every triple in the 

data, an order n3 method. This limits the size of the training data set that one 

may analyze with VWUO-MD to realistically not much more than n=100. The 

number of variables also places a burden on the software, due to the memory 

requirements of the matrix calculations performed in the estimation of . It may 

not be logically possible to decrease the order from n3 without fundamentally 

changing the approach. However, additional optimization of the software may be 

beneficial. In addition, an algorithm similar to bagging as discussed above could 

be used to aggregate results obtained on smaller pieces of a larger training 

ŵ
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segment, both improving run time and precision simultaneously. Such algorithms 

should be explored. 

4. Solutions to shortcomings (such as VWUO-MD's difficulty with simple 

linear relationships in type C data) should be sought. Until such time as the 

problem with linear relationships in type C data is solved, VWUO-MD ought to be 

used in parallel with a complementary method that is well suited to finding linear 

relationships in type C data, e.g., principal components or factor analysis. 

VWUO-MD could complement either approach. 

5. Finally, how the relationships between variables, as well as the number, 

shape and placement of clusters within the data affect  should be more fully 

explored. In 

ŵ

Chapter 5: Exploratory analyses of distributions for hypothesis 

generation, we also considered examples with disjoint relationships that depend 

on which subset of variables one focuses on, and found that for types C, O, N 

and A, VWUO-MD compromises, spreading the weight between those variables 

that participate in some clustering. Type C estimates held up very well, while 

types O, N and A had a little more trouble, considering the percentage of 

replicates for which the noise variable was not weighted the lowest. Type S 

estimates were quite adversely affected by disjoint relationships however, in the 

example we considered, and the noise variable was weighted the highest on 

average. One area for improvement in VWUO-MD would be its ability to handle 

such scenarios, particularly with type S data. Going beyond this, it has been 

suggested by some that it would also be informative to know which variables are 

involved in different groupings than others.39,43,47,59 This can be accomplished 
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with multiple parallel analyses of VWUO-MD using different groups of input 

variables, and the results of the type S example illustrate that this is not a bad 

idea. 

There are probably other aspects of VWUO-MD that require additional 

research. But even so, VWUO-MD has already shown promise as a data mining 

tool for generating new hypotheses that potentially involve varied mixtures of 

data types. Should more researchers choose to use this approach and/or 

improve upon it, it will be exciting to witness all the new and previously 

unthought-of hypotheses defined on subspaces of mixed-type variables, 

wherever that may lead us. 
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