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Abstract

A method for estimating the salmon escapement size using a mark-recapture methodology

after correcting for missed tags is developed.  Mark-recapture involves capturing, tagging

and releasing n1 sockeye as they return to spawn.  After spawning, the sockeye die and some

of the carcasses get washed onto the banks of the spawning area.  A random sample of n2 of

these carcasses results in observing m2  tags.  However, tags may be missed in the initial

survey.  A subsample of the n2 - m2 carcasses identified as being untagged is re-examined

for missed tags.  It is then possible to estimate the number of tags that should have been

observed in the initial sample and in turn to obtain a better estimate of the salmon

escapement.  The variance of the revised salmon escapement estimate is derived and the loss

of efficiency compared to a Petersen estimate, where no tags are overlooked, is found.

Optimal allocation of effort between the initial and second examination is considered.

Finally, a numerical example using actual data from the 1994 Fraser River sockeye season is

used to illustrate the results.



v

Acknowledgments

I express sincere appreciation to Carl Schwarz, my supervisor, for his stimulating ideas,

suggestions and invaluable guidance throughout the successful completion of this work.  I

thank the members of my committee, Richard Routledge and Randy Sitter, for their

suggestions and advice.  I would also like to acknowledge the faculty and staff in the

Department of Mathematics and Statistics who have been extremely helpful to me in

numerous ways throughout the course of my study.  Thanks to Neil Schubert, Department of

Fisheries and Oceans, for providing data on the 1994 Fraser River sockeye season.

Finally, I would like to thank my family, friends and colleagues for their support

throughout this endeavor.



vi

TABLE OF CONTENTS

Approval ii

Abstract iii

Acknowledgments iv

List of Tables vi

List of Figures vii

1. Introduction 1

2. Notation 5

3. The Sampling Experiment 6

4. The Conditional Model 10

Maximum Likelihood Estimates 11

Variance Inflation Factor 15

5. Optimal Allocation 18

6. Examples 21

Data Analysis 21

Sensitivity Analysis - Varying The Cost Ratio 28

Sensitivity Analysis - Varying The Miss Rate 30

7. Summary 32

Appendix 33

The Complete Stochastic Model 33

References 39



vii

LIST OF TABLES

6.1 Standard errors and VIF values of mark-recapture conducted on the Chilko

and Horsefly Rivers 26

6.2 Optimal allocation of repitch rates and recapture number given various cost

ratios and total costs assuming estimated values of miss rate and tagging rate

are close to actual for the Chilko and Horsefly Rivers 27

6.3 Optimal repitch rates (r) and recapture numbers (n2 )  for various miss rate (l)

and cost ratio (c2:c3) combinations, with total cost fixed at 50,000 units and a

tagging rate (p1) of 0.006 29



viii

LIST OF FIGURES

4.1 Diagram of categories that a recaptured fish can be placed in based on tag

status, accuracy of identification, and probability of repitch 11

4.2 Plot of approximate variance inflation factor (VIFapprox )  versus miss rate (l)

for various repitch rates (r) 17

5.1 Plot of optimal repitch rate (roptimal )  versus miss rate (l) at various cost ratios

(c2:c3) with a tagging rate (p1) of 0.01 20

6.1 Map of Chilko and Horsefly Rivers 25

6.2 Plot of variance estimate versus repitch rate (r) for various cost ratios (c2:c3)

at a miss rate (l) of 0.10 and tagging rate (p1) of 0.006 29

6.3 Plot of variance estimate versus repitch rate (r) for various miss rates (l) at a

cost ratio of 2:1, and tagging rate (p1) of 0.006 31

A1.1 Diagram of all categories that escapement can be placed in based on tag

status, probability of recapture, accuracy of identification, and repitch  rate 38



1

1.  Introduction

Salmon escapement surveys often use a mark-recapture method to obtain an estimate of the

returning population size.  For example, a common method used in British Columbia is to

capture n1 fish as they return to spawn, tag them with Petersen disk tags, and release them.

After spawning, the fish die and some of them get washed onto the banks of the spawning

area.  Survey teams examine n2 carcasses and m2  carcasses are observed with tags present.

The simple Petersen estimate (Seber 1982, p. 59) of the number of fish that return to spawn

(N, the escapement) is N̂ = n1n2 m2 .

One of the assumptions of all mark-recapture experiments is that all fish captured are

correctly identified as to tagging status, i.e., no tags are overlooked and no untagged fish are

erroneously classified as being tagged.  However, field conditions for the carcass recoveries

are often severe, carcasses are not in pristine condition, and so mistakes can be made.  The

most common error is that a tagged fish can be classified as being untagged.  This results in

an overestimate of N.  Mistakes of the other kind are unlikely as the tag number must be

recorded for each tagged fish observed.  To account for these misclassification errors, a

subsample of the n2 - m2  fish identified as being without tags is examined more carefully for

missed tags.  This second examination is assumed to be infallible and is used to correct the

estimate for the number of tags that have been observed in the initial sample.

Current practice is to use a simple moment estimator to estimate a revised m2  which

is then used in the usual Petersen formula.  Precision is estimated as if this revised m2  was

known exactly and does not account for the fact that m2  has been estimated.  As well, little
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examination of the optimal allocation of effort between the initial carcass recovery and the

subsequent re-examination of carcasses has been done.

The Fraser River Sockeye Public Review Board (1995) was asked to investigate

issues dealing with the 1994 sockeye salmon returns.  Among its recommendations (p. 96)

was:

The resampling program for missed tags should definitely be more structured.  A

different formula also should be developed and the uncertainty over tag loss be

incorporated into a better variance estimate.  In addition, the method for constructing

confidence limits should be revised in light of recent developments in mark-recapture and

general statistical theory.

Paulik (1961) discussed the detection of incomplete reporting of tags.  He derived a

preliminary guide to determine the number of fish that should be tagged, and the number that

should be recaptured and examined for tags, to be reasonably sure of discovering non-

reporting of a certain magnitude.  His plan to estimate “incomplete reporting should not be

confused with the plan of examining the catch for tags that the fisherman failed to remove”

(p. 828).

Hilborn (1988) derived a method for determining the percentage of recaptured tagged

fish that are represented by returned tags for cases when tags are examined sequentially, such

as at the time of harvesting and then at the time of processing.

Both Hilborn and Paulik discussed ways to adjust for the non-reporting of tags but

neither expanded their work to estimate the population size.

The problem of incorrectly classifying tagged fish as untagged is similar to the

problem of misclassifying objects in a quality control setting.  Here the object is to estimate
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the percentage of defective components, which is analogous to the percentage of fish

originally tagged.

Tenenbein (1970) considered using a true and fallible device to classify sampling

units into one of two categories (0, 1).  The fallible device refers to an inexpensive procedure

which tends to misclassify units; whereas, the true device is a more expensive procedure with

no misclassification error.  If only the fallible device is used on all n2 units in a sample then

a biased estimate of p, the proportion of units which belong to one of the categories, is

obtained.  A better estimate of p could be obtained if only the true classifier were used on all

n2 units, but the cost of this may be too high.  A compromise between these two methods is a

double sampling scheme where:

i) A random sample of n2 units is selected from a population of interest.

ii) Then a subsample of n3 units from the n2 units is classified by both devices.

iii) And the remaining n2 - n3 units are classified by the fallible device, only.

Tenenbein developed an estimate for p with an appropriate variance formula.  However, in

Tenenbein’s approach, a portion of fish correctly identified as having tags would be re-

examined.  This can be considered an unnecessary expense under the assumption that

untagged carcasses cannot be incorrectly classified as having tags.

Haitovsky and Rapp (1992) expanded on Tenenbein's work.  They developed a

conditional resampling scheme to improve the estimators of multinomial classification

probabilities in the presence of a fallible classifier.  Instead of employing the same

resampling rate to all categories, different sampling rates could be used on each category,

which would then make it possible to exclude a category from being resampled.  Using this

approach, it would be possible to re-examine only those fish classified as being untagged.

However, Haitovsky and Rapp only considered improving the estimate for the proportion in

each class; whereas, we are interested in improving the estimate for the escapement size.
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In this paper, a general statistical theory for this type of sampling experiment will be

developed.  The variance for the estimate of the total escapement accounting for missed tags

will be developed and the loss of efficiency compared to the simple Petersen estimate will be

found.  The optimal allocation of effort between the two samples will also be examined.

Lastly, an example is presented, using data provided by the Fraser River Sockeye Public

Review Board.

Note that other problems with the survey design, e.g., tagging and recovery occurring

over a period of time rather than a single point in time, are not examined in this paper.
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2.  Notation

Statistics

n1 Number of tags applied

n2 Number of carcasses initially examined

m2 Number of tags recovered from the n2 carcasses examined in the first survey

n3 Number of carcasses repitched from those initially classified as being without tags; a

proportion of n2 - m2

r Repitch rate, so r = n3 (n2 - m2 )

m3 Number of additional tags recovered from the n3 carcasses examined in the repitch

m̃2 Estimated number of marks in the original sample of n2 carcasses

C0 Total cost to perform recapture and repitch

c2 Cost per examination of a carcass in the first carcass survey

c3 Cost per examination of a carcass in the second survey (repitch)

Parameters

N Population size (escapement)

l Miss rate;  P(failing to observed a tag on a tagged fish)

p1 Tagging rate;  P(carcass has a tag) = n1 N

p2 Recapture rate (in the complete stochastic model)
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3.  The Sampling Experiment

As outlined by the Fraser River Sockeye Salmon Management Review Team 1994 Spawning

Escapement Estimation Working Group (1994) (FRSSMRT), the method used to tag fish,

recapture a sample and repitch a subsample is as follows.

As fish return to their spawning sites, n1 are captured using seine nets.  A Petersen

disk tag is attached and the fish is released.  If a captured fish appears to be stressed, at an

advanced stage of maturation, or physically damaged, then it is released without a tag.

Tagging starts when a significant number of fish are first observed and continues through the

period of spawning ground arrival.  The number of fish caught and tagged on a given day is

determined either by standardizing the daily application effort or by tagging in proportion to

estimated daily abundance; abundance is estimated from the previous day’s visual counts on

or below the spawning grounds.

After spawning, the fish die and the carcasses are often washed onto the banks of the

spawning area.  Survey teams walk along the banks looking for carcasses.  When a carcass is

found, it is examined for a tag.  After enumeration, all tags are cut from the carcasses, and

only those carcasses are removed from the study area by cutting them into two with a

machete and returning them to the river.  Untagged carcasses are left where found.

Recapture commences when the first dead fish is observed and continues until die-off is

complete, and is conducted over the entire spawning area.  More surveyors are deployed at

peak of carcass abundance than at tails.  A total of n2 carcasses are examined and m2  marks

are found.
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Later in the season, a second team examines some of those carcasses identified as

being without tags to check for tags missed in the initial survey.  A total of n3 carcasses are

re-examined (repitched) and m3 tags are found.

Mark-recapture techniques are based on the principle that by tagging a random

sample of individuals, permitting them to redistribute through the population, and by

obtaining a second random sample of tagged and untagged individuals, an estimate of the

population size can be calculated.  The reliability and precision of the estimate is contingent

upon how well the assumptions underlying the technique have been addressed.

Assumption 1: The population is closed; i.e., the number of individuals does not change

during the study through immigration and/or emigration.

Assumption 2: Tag status is correctly identified at recovery.

Assumption 3: Tag loss does not occur during the study.

Assumption 4: Capture and tagging does not affect subsequent catchability or survival of

a fish.

Assumption 5: Each fish has a constant and equal probability of capture and recapture

during the study.

Assumption 6: The repitch sample is a random sample of those fish initially classified as

untagged.
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Assumptions 1 is satisfied by restricting studies to terminal spawning sites, by having

tagging sites close to the spawning ground and whenever possible, at the only entrance to the

spawning ground.  If a tagged fish could leave the spawning site prior to spawning, then this

would result in a reduction in the number of tags available for recapture and an overestimate

of the escapement size.  The capture, holding and tagging of fish is a stressful process.  If the

stress is particularly severe, some individuals may die immediately, or within a few days of

release and drift downstream outside the study area, prior to spawning.  By choosing tagging

sites near spawning grounds it is possible to reduce stress induced mortality (Assumption 4)

and permit the mixing of tagged and untagged fish throughout the population.  This would

not be a problem if marked and unmarked fish were to behave the same.

The possibility of a tagged fish losing its tag prior to recapture has been ignored in

this analysis (Assumption 3).

The assumption of equal probability of capture (Assumption 5) and simple random

sampling is violated in virtually all mark-recapture studies and is generally considered to be

an unattainable ideal.  If possible, stratification (i.e., by gender) can be employed to reduce

the effects of heterogeneity on the estimates.  During the tagging period, fish are caught in

seine nets, and it is assumed that all fish that pass the tagging site have an equally likely

chance of being caught.  Capture and tagging is not a twenty-four hour process, so those fish

that pass the tagging site when the nets are not in place will be able to pass freely.  After

spawning, the fish die and the carcasses are often washed onto the banks.  Since a carcass has

no control as to whether or not it gets washed ashore, the probability of this happening can be

assumed to be the same for all carcasses.

The failure to correctly identify the tag status of a carcass during the recovery period

(initial examination) is common in mark-recapture studies (Assumption 2).  This is usually

the result of surveyor inexperience and from assigning higher priority to the speed of carcass
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processing than to the thoroughness of the examination.  If left uncorrected, the proportion of

tags in the population is underestimated and the escapement is overestimated.  One way to

correct this problem is to carefully re-examine, for missed tags, a random sample of carcasses

classified as untagged.  It is assumed that no tags are missed in this re-examination.
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4.  The Conditional Model

Because the initial tagging effort, the recovery effort, and the repitch effort are controlled by

the experimenter, a conditional model for this experiment will be developed.  In this

conditional model, n1, n2 and r are treated as fixed quantities, dependent only on the

allocation of resources.  The remaining random variables are m2  and m3.  A model that

treats n1 and n2 as random variables has been derived in Appendix 1.  Results are similar in

both models.

Each of the n2 recaptured fish can end up in one of the four categories, as shown in

Figure 4.1.  Under the assumptions made earlier, and given that n1 is typically small relative

to N, the number of fish in these four categories has an approximate multinomial distribution

with probability

f x,q( ) =
n2

m2,   m3,   n3 - m3,   n2 - m2 - n3  
Ê
ËÁ

ˆ
¯̃
¥ (4.1)

p1(1- l)[ ]m 2 p1lr[ ]m3 (1- p1)r[ ] n3 -m3( ) 1- p1(1- l)( )(1- r)[ ] n 2 -m 2 -n3( )

where

x = m2,   m3,   n3 - m3,   n2 - m2 - n3[ ]
q = p1 1- l( ),   p1lr,   1- p1( )r,   1- p1(1- l)( )(1- r)[ ]
p1 =

n1
N
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xi
i=1

4

Â = n2 qi
i=1

4

Â = 1 .

In this distribution, N and l  are the unknown parameters.

Maximum Likelihood Estimates

Estimates of N and l  are found by maximizing the log-likelihood function

  l x,q( ) = ln L(x,q)[ ] = ln f(x,q)[ ] (4.2)

= ln
n2

m2,   m3,   n3 - m3,   n2 - m2 - n3

Ê
ËÁ

ˆ
¯̃

+ m2 + m3[ ]ln p1( ) + n3 - m3[ ]ln 1- p1( ) + n2 - m2 - n3[ ]ln 1- p1(1- l)( )
+ m2[ ]ln 1- l( ) + m3[ ]ln l( ) + n3[ ]ln r( ) + n2 - m2 - n3[ ]ln 1- r( ) .

n2 fish in first

carcass sample

m2 fish where tag is

observed with

probability

p1(1- l)

m3 fish where tag is

missed but found

in repitch with

probability

p1lr

n3 - m3 fish in the

repitch with no

tag and with

probability

(1- p1)r

n2 - m2 - n3 fish where

tag is missed or

no tag was found

and not repitched

with probability

1- p1(1- l)[ ](1- r)

Figure 4.1:  Diagram of categories that a recaptured fish can be placed in based on tag

status, accuracy of identification, and probability of repitch
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After substituting n1 N  for p1 and simplifying, the above equation reduces to

  
l x,q( ) = ln

n2

m2,   m3,   n3 - m3,   n2 - m2 - n3

Ê
ËÁ

ˆ
¯̃

(4.3)

+ m2 + m3[ ]ln n1( ) - n2[ ]ln N( ) + n3 - m3[ ]ln N - n1( )
+ n2 - m2 - n3[ ]ln N - n1(1- l)( ) + m2[ ]ln 1- l( )
+ m3[ ]ln l( ) + n3[ ]ln r( ) + n2 - m2 - n3[ ]ln 1- r( ) .

The score function is found by finding the first derivatives of l x,q( ) with respect to N

and l :

U b( ) =
∂l
∂N

∂l
∂l

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

n2 - m2 - n3

N - n1(1- l)
+

n3 - m3( )
N - n1

- n2

N

n1 n2 - m2 - n3( )
N - n1(1- l)

- m2

(1- l)
+ m3

l

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

(4.4)

where b = N,   l[ ].  The maximum likelihood estimates for N and l  are obtained by solving

U b( ) = 0, and are:

N̂ = n1n2

m2n3 + (n2 - m2 )m3[ ] n3

(4.5)

l̂ = (n2 - m2 )
m2n3 + (n2 - m2 )m3[ ] m3

 . (4.6)

If we let
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m̃2 =
m2n3 + (n2 - m2 )m3

n3

= m2 +
(n2 - m2 )m3

n3

= m2 +
m3

r
(4.7)

= estimated number of tags in the original sample of n2 fish,

found by taking the original number of tags

+ the estimated number of tags missed

then

ˆ
˜

N
n n
m

= 1 2

2

(4.8)

and

l̂ = (n2 - m2 )m3

m̃2n3

= m3 r
m̃2

(4.9)

= estimated number of tags missed
estimated number of tags in the original sample

 .

Notice that the maximum likelihood estimate for N is similar in format to that of the Petersen

estimate and is the same as the moment estimator currently in use.

The information matrix is found as

I b̂( ) = E - ∂2l

∂bi∂b j

È

Î
Í
Í

˘

˚
˙
˙
=

I11 I12

I21 I22

È
ÎÍ

˘
˚̇

with

I
N

n n N r n

N N n N n11

2

2

1 2 1

2
1 1

1 1 1

1
= - =

- -( ) - -[ ]
-( ) - -[ ]

∂
∂

l l
l

l ( ) ( )

( )
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I I

N
n n r

N N n N n12 21

2
1 2

1 1

1
1

= = - = -
-( ) - -[ ]

∂
∂ ∂l l

l ( )
( )

  
I

n n N r r n r

N N n22

2

2

1 2 1

1

1 1

1 1
= - =

+ -( ) - -[ ]
-( ) - -[ ]

∂
∂l

l l
l l l

l ( ) ( )

( )
 .

And the variance-covariance matrix for the estimates is found to be

VarCov b̂( ) = I-1 b̂( ) = V(N̂) C(N̂, l̂)

C(N̂, l̂) V(l̂)

È

Î
Í

˘

˚
˙

with the following variances and covariance:

V N̂( ) = N2 N - n1( ) Nl + (N - n1)(1- l)r[ ]
n1n2r N - n1(1- l)[ ] (4.10)

V l̂( ) = N 1- l( ) Nlr + (N - n1)(1- l)[ ]
n1n2r N - n1(1- l)[ ] (4.11)

C N̂, l̂( ) = -N2l N - n1( ) 1- l( ) 1- r( )
n1n2r N - n1(1- l)[ ]  . (4.12)

Estimates of these variances and covariance are obtained by replacing parameters with their

maximum likelihood estimates:

V̂ N̂( ) = n1
2n2 n2 - m2( ) n3 - m3( ) n2m3(n2 - m2 ) + n3m2 (n3 - m3)[ ]

m̃2
4n3

3 (4.13)
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V̂ l̂( ) = m2m3 n2 - m2( ) n2n3m3 + m2 (n2 - m2 )(n3 - m3)[ ]
m̃2

4n3
3 (4.14)

Ĉ N̂, l̂( ) = -n1n2m2m3 n2 - m2( )(n3 - m3)(n2 - m2 - n3)

m̃2
4n3

3  . (4.15)

Variance Inflation Factor

If all carcasses were correctly classified when initially examined, the variance for the

Petersen estimate (assuming that exactly m̃2  tags were present) could be written as (Ricker

1975, p. 78)

V N̂Petersen( ) = N2 N - n1( )
n1n2

(4.16)

after replacing random variables with their expected values.  The increase in variance caused

by misclassification and subsequent repitching is

VIF =
V N̂( )

V N̂Petersen( ) =
Nl + N - n1( ) 1- l( )r

N - n1(1- l)[ ]r = 1+ Nl 1- r( )
N - n1(1- l)[ ]r (4.17)

or

V N̂( ) = 1+ Nl 1- r( )
N - n1(1- l)[ ]r

È

Î
Í

˘

˚
˙V N̂Petersen( )  .

Equality between the two variances occurs when no tags are missed in the recapture (l  = 0)

or all carcasses identified as being without tags are repitched (r = 100%); in these two cases,
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VIF = 1.  Also for a fixed values of l  (π  0), if the repitch rate increases, VIF monotonically

approaches 1 and V(N̂Petersen )  approaches V(N̂).  Similarly, for a fixed value of r ( π  100%),

if the miss rate decreases, VIF monotonically approaches 1 and V(N̂Petersen )  approaches

V(N̂).

For large N, if the following approximation is assumed

N - n1(1- l) ª N

then equation (4.17) can be written as:

VIFapprox = 1+ l(1- r)
r

(4.18)

a function only of the miss rate (l ) and the repitch rate (r).  Figure 4.2 is a plot of VIFapprox

for various combinations of miss rate and repitch rate.



17

Figure 4.2:  Plot of approximate variance inflation factor (VIFapprox )  versus miss rate (l)

for various repitch rates (r)
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5.  Optimal Allocation

There is a cost associated with catching and examining carcasses at the initial examination

and a cost associated with re-examining a portion of the carcasses identified as being without

tags for missed tags.  If there is a fixed allocation of funds then how many carcasses should

be recaptured and re-examined so that the variance of the escapement, V(N̂), is minimized?

In other words, for a fixed cost, what optimal values of n2 and r result in minimizing V(N̂)?

The total cost of the experiment can be approximated by a linear cost function

because carcasses are spread throughout the watershed and the number of carcasses

examined is roughly proportional to the total effort expended.  Assuming that the number of

tags applied ( n1) is fixed, the total cost of the experiment can be written as

C = c2n2 + c3 n2 - m2( )r £ C0 (5.1)

and can be solved for r to give

r = C0 - c2n2

c3 n2 - m2( )  . (5.2)

If this is then substituted for r, m2  replaced by its expected value, E(m2 ) = n2p1(1- l) , and

n1 replaced by Np1, then equation (4.10) can be written as



19

V N̂( ) =
N2c3 1- p1( ) l +

1- p1( ) 1- l( ) C0 - c2n2( )
c3n2 1- p1(1- l)( )

È

Î
Í

˘

˚
˙

p1 C0 - c2n2( ) (5.3)

which is now a function of n2.  An optimal value for n2 can be obtained by solving the

following equation

∂V N̂( )
∂n2

= 0

for n2.  This then results in the following optimal values for n2 and r:

n2,optimal =
C0

c2

Ê
ËÁ

ˆ
¯̃

1

1+ c3

c2

Ê
ËÁ

ˆ
¯̃

l
1- l
Ê
Ë

ˆ
¯

1- p1(1- l)
1- p1

È

Î
Í

˘

˚
˙

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

(5.4)

roptimal =
c2

c3

Ê
ËÁ

ˆ
¯̃

l
1- l
Ê
Ë

ˆ
¯

1
(1- p1) 1- p1(1- l)( )
È

Î
Í

˘

˚
˙  . (5.5)

The optimal quantities depend on the cost ratio ( c2 c3 ), the miss rate ( l ) and the initial

tagging rate ( p1).  If p1 is small then roptimal can be approximated by

roptimal,  approx =
c2

c3

Ê
ËÁ

ˆ
¯̃

l
1- l
Ê
Ë

ˆ
¯  .
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If no tags are missed, (l = 0), then the optimal strategy is to recapture the maximum possible

( n2,optimal = Co c2 ) and repitch nothing ( roptimal = 0).  For a fixed cost ratio and tagging rate, if

the miss rate increases then we should decrease the number of fish recaptured and increase

the proportion repitched.  For a fixed total cost, miss rate and tagging rate, if the cost ratio

increases then the repitch rate can be increased (because it is cheaper to repitch); and

surprisingly, the recapture number can also be increased (because resources saved in the

repitch can be diverted to the recapture).  Lastly, for fixed values of cost ratio and miss rate,

optimal values of recapture number and repitch rate appear to be insensitive to changes in the

initial tagging rate when p1 is small.  Figure 5.1 is a plot of the effect of various miss rates

and cost ratios on the optimal repitch rates for a typical tagging  rate ( p1) of 0.01.

Figure 5.1:  Plot of optimal repitch rate (roptimal )  versus miss rate (l) at various cost ratios

(c2:c3) with a tagging rate (p1) of 0.01
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6.  Examples

Using actual data generously provided by Neil Schubert, Department of Fisheries and

Oceans, the equations derived in the previous sections are used to estimate escapement size

and standard error values.  These standard error values are then compared to those of the

Petersen estimate by comparing the ratio of the standard errors to VIFapprox .  Also, optimal

recapture number and repitch rate values are compared to those actually used.

In addition, two scenarios are examined for their effect on the variance of the

escapement at various levels of cost ratio ( c2 c3 ) and miss rate (l ).

Data Analysis

The following information was provided by sex for sockeye on the Chilko River and the

Horsefly River for the 1994 escapement:  the number of tags applied ( n1), carcasses

recaptured ( n2), tags observed in the recapture ( m2 ), carcasses repitched ( n3), and tags

observed in the repitch ( m3).

As described by the FRSSMRT (p. 2), the Chilko River (Figure 6.1) is part of the

Chilkotin River system, which drains a large portion of the west-central Fraser River

watershed.  Spawning occurs immediately downstream from the lake in a spawning channel

on the upper Chilko River, and on the shores along the north and south ends of Chilko Lake.

Sockeye first arrive in August with peak spawning in late September; die-off is complete by
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late October.  The tagging site is located near Lingfield Creek, 5 kilometres below the

spawning grounds.  Recovery surveys were conducted every two to three days in the river

and north lake, and every week in the south lake.  Boat access to the south lake was restricted

by weather and the fact that fish in this area spawn in a remote area which is logistically

difficult to sample.

The Horsefly River (Figure 6.1), a tributary of the main section of Quesnel Lake, is

part of the Quesnel River system which drains a large portion of the east-central Fraser River

watershed.  Sockeye start arriving in August with a peak in early to mid September; die-off is

complete by mid October.  The tagging site is located in the lower river approximately 2

kilometres above the lake.  Recovery surveys were conducted in the lower and upper river

every four to six days.

From the information provided, the following values have been calculated:  repitch

rate (r), miss rate (l ), estimated number of tags in the original sample ( m̃2 ), Petersen and

Conditional model escapement estimates and standard errors, and ratio of standard errors for

these two estimates.  These values are listed in Table 6.1.

For the four data sets, repitch rates range from approximately 19% (Chilko River,

male sockeye) to 38% (Horsefly River, female sockeye).  Estimated miss rates range from

approximately 9% (Chilko River, female sockeye) to 22% (Horsefly River, male sockeye).

The estimated values for escapement size, N̂ , are the same for the Petersen and the

Conditional model estimates since we are assuming for the Petersen estimate that carcasses

were correctly classified when initially examined; i.e., N̂ = n1n2 m̃2 .

Given the repitch and miss rates, an increase of between 12% and 23% is observed in

the standard error between the Conditional model and Petersen estimates.  For this data set,

the correct standard error is about 20% larger than that for the Petersen estimate.  Hence,

previous estimates of precision found by treating m̃2  as a know quantity were too small, and
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a nominal 95% confidence interval for the total escapement had serious undercoverage.  The

values obtained for the change in standard error between the two models,

ŜE(N̂Conditional ) ŜE(N̂Petersen ), is observed to be close in value to that of VIFapprox , for all four

data sets because p1 = n1 N  is small in equation (4.10).

For arbitrary cost ratios ( c2:c3), it is possible to calculate the amount of effort

required to obtain the given data values by using the cost equation (equation 5.1).  From the

cost ratios, the optimal repitch rates can be found since these are not dependent on the total

cost but are dependent on cost ratio, miss rate and tagging rate.  Then given the total cost

required for each data set and the optimal repitch rates, the number of sockeye that should be

recaptured is compared to the number that were recaptured ( n2).  Finally the standard error

estimates of the escapement under optimal allocation have been compared to the observed

standard error.  Results are summarized in Table 6.2 for various cost ratios.

For example, consider a cost ratio of 4 to 1 (4:1, 4 times as much to recapture than

repitch).  For the male sockeye on the Horsefly River, a total of 46,772.25# units of effort

was required.  Approximately 30% of those carcasses identified as being without tags were

repitched, whereas the optimal would have been to repitch 100%, given a miss rate of 0.22;

the highest miss rate for the four data sets.  From the total cost and optimal repitch rate, a

total of 37,056 carcasses should have been recaptured, compared to 43,557 that were.  By

using these optimal values, the standard error of the estimate of the escapement size would

have reduced by 14%.  For a 1 to 1 cost ratio (1:1, equal cost for recapture and repitch) a total

of 56,418 units was incurred to recapture 43,557 sockeye and repitch 30%.  Optimal values

would have been to recapture 37,009 sockeye and repitch 53%; which would still have given

the same total cost of 56,418 units.  This would have reduced the standard error by 4%.  In

general, the optimal repitch rates for all cost ratios are much greater than those observed and

                                                
#  46,772.25 = 43,557 + (0.25)12,861
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decrease as cost ratio decreases.  Given total cost and optimal repitch rates, the number of

sockeye that should have been recaptured are slightly less than the number actually

recaptured.  Also, as the cost ratio decreases, the reduction in standard error, under optimal

allocation, decreases.
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Figure 6.1:  Map of Chilko and Horsefly Rivers
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Chilko River Horsefly River
Males Females Males Females

n1
1,510 2,074 2,140 2,669

n2
45,595 63,752 43,557 49,382

m2
279 467 355 424

n3
8,462 12,708 12,861 18,363

m3
6 9 29 28

r  (%) 19% 20% 30% 38%

l̂ 0.10 0.09 0.22 0.15

m̃2
311 512 452 499

Petersen

 N̂ 221,284 258,337 206,032 264,314

 V̂(N̂Petersen ) 156,419,577 129,438,020 93,063,107 138,898,743

 ŜE(N̂Petersen ) 12,507 11,377 9,647 11,786

Conditional model

 N̂ 221,284 258,337 206,032 264,314

 V̂(N̂Conditional )
227,045,606 174,758,535 140,408,269 173,579,155

 ŜE(N̂Conditional )
15,068 13,220 11,849 13,175

ŜE(N̂Conditional )

ŜE(N̂Petersen )
1.21 1.16 1.23 1.12

VIF approx
1.20 1.16 1.23 1.12

Table 6.1:  Standard errors and VIF values of mark-recapture conducted on the Chilko and

Horsefly Rivers
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1  Formula gave 106%.

Chilko River Horsefly River
Males Females Males Females

p1
0.006 0.008 0.010 0.010

r  (%) 19% 20% 30% 38%
l 0.10 0.09 0.22 0.15
c2 :  c3

4 : 1 4 : 1 4 : 1 4 : 1
 Cost (C) 47,710.50 66,929.00 46,772.25 53,972.75
 roptimal  (%) 68% 62% 100%1 85%

 n2 (given roptimal) 40,787 57,950 37,056 44,607

 SE(N̂)optimal
13,533 12,241 10,385 12,559

 Improvement in SE from
using optimal design 1.11 1.08 1.14 1.05
c2 :  c3

2 : 1 2 : 1 2 : 1 2 : 1
 Cost (C) 49,826.00 70,106.00 49,987.50 58,563.50
 roptimal  (%) 48% 44% 75% 60%

 n2 (given roptimal) 40,181 57,505 36,465 45,156

 SE(N̂)optimal
14,039 12,625 10,910 12,923

 Improvement in SE ... 1.07 1.05 1.08 1.02
c2 :  c3

1.33 : 1 1.33 : 1 1.33 : 1 1.33 : 1
 Cost (C) 51,941.50 73,283.00 53,202.75 63,154.25
 roptimal  (%) 40% 36% 61% 49%

 n2 (given roptimal) 40,140 57,777 36,586 46,312

 SE(N̂)optimal
14,348 12,848 11,218 13,085

 Improvement in SE ... 1.05 1.03 1.06 1.00
c2 :  c3

1 : 1 1 : 1 1 : 1 1 : 1
 Cost (C) 54,057.00 76,460.00 56,418.00 67,745.00
 roptimal  (%) 34% 31% 53% 42%

 n2 (given roptimal) 40,357 58,371 37,009 47,710

 SE(N̂)optimal
14,559 12,990 11,420 13,155

 Improvement in SE ... 1.03 1.02 1.04 1.00

Table 6.2:  Optimal allocation of repitch rates and recapture number given various cost

ratios and total costs assuming estimated values of miss rate and tagging rate are

close to actual for the Chilko and Horsefly Rivers
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Sensitivity Analysis - Varying The Cost Ratio

First, consider the case where for a fixed total cost and miss rate, the cost ratio may vary.

Suppose the tagging rate, p1, is set at 0.006, the estimated tagging rate for male

sockeye on the Chilko River.  Using a fixed total cost of 50,000 units and a miss rate of l  =

0.10, the repitch rate and recapture number as well as the variance estimate for the

escapement at the following cost ratios were computed, using equations derived in section 5:

c2 :  c3 = {4:1, 2:1, 1.33:1, 1:1}.

Figure 6.2 is a plot of the variance estimate versus repitch rate for each of the four cost ratios.

Given the cost ratios mentioned and miss rates ranging from 0.05 to 0.20, Table 6.3 is a

summary of the optimal repitch rates and recapture numbers that minimize the variance

estimates; i.e., the lowest point on the plot in Figure 6.2 for each cost ratio.  Values were not

assigned to the vertical axis in Figure 6.2 because the value of the repitch rate that is

associated with the lowest point on the line for each cost ratio is of interest and not what the

variance estimate is at that point.  Also, recall that the optimal repitch rate is not dependent

on the total cost; whereas, the variance estimate is dependent on the total cost which has been

chosen arbitrarily.  Notice that as the cost ratio decreases, the variance estimate increases,

and the repitch rate as well as the recapture number decrease; this was observed for various

miss rates.  This implies that for a fixed miss rate, if the cost per repitch approaches the cost

per recapture then it is best to decrease both the number recaptured and proportion repitched.

Also, for a cost ratio of 4 to 1 ( c2 c3 = 4), the optimal repitch rate is 67%, for a miss rate of

0.10, but a greater repitch rate would not substantially increase the variance estimate.
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Figure 6.2:  Plot of variance estimate versus repitch rate (r) for various cost ratios (c2:c3) at

a miss rate (l) of 0.10 and tagging rate (p1) of 0.006

cost ratio   (c2 :  c3)
miss rate  (l) 1 : 1 1.33 : 1 2 : 1 4 : 1

0.05   r 23% 27% 33% 46%
  n2

40,650 41,700 43,050 44,850
0.10   r 34% 39% 47% 67%

  n2
37,500 38,800 40,500 42,900

0.15   r 42% 49% 60% 85%
  n2

35,250 36,600 38,550 41,250
0.20   r 50% 58% 71% 100%

  n2
33,300 34,950 36,900 40,050

Table 6.3:  Optimal repitch rates (r) and recapture numbers (n2 )  for various miss rate (l)

and cost ratio (c2:c3) combinations, with total cost fixed at 50,000 units and a

tagging rate (p1) of 0.006
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Sensitivity Analysis - Varying The Miss Rate

Consider now, the case of fixing the cost ratio and the total cost and observing the effect of

differing miss rates on the number of carcasses recaptured and the repitch rate; as well, as its

effect on the variance estimate for the escapement size.

Suppose, once again, that the tagging rate is set at 0.006 and total cost is fixed at

50,000 units.  Consider a cost ratio of 2 to 1 and vary the miss rate from 0.05 to 0.20.  Table

6.3 shows the effect of varying the miss rate on the optimal repitch rate and recapture

number.  Figure 6.3 is a plot of the variance estimate versus repitch rate for each value of

miss rate considered; again, values have not been assigned to the vertical axis.  It is evident

that as the miss rate increases, the repitch rate increases as does the variance estimate

(observed in plot), and the recapture number decreases.  This implies that for high values of

miss rate, it is best to decrease the number of sockeye recaptured and increase the proportion

re-examined.
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Figure 6.3:  Plot of variance estimate versus repitch rate (r) for various miss rates (l) at a

cost ratio of 2:1, and tagging rate (p1) of 0.006
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7.  Summary

The estimate of salmon escapement size using mark-recapture methodology can be improved

by carefully re-examining a portion of the carcasses identified as not having tags for missed

tags.  This re-examination provides a better estimate of the number of tags in the recaptured

sample.  Using this estimate in a simple Petersen estimate results in a better estimate of the

escapement size but a biased estimate of its standard error.  This estimate of the standard

error is approximately 1+ l(1- r) r  = VIFapprox  times smaller than the correct estimate of

standard error that treats the number of tags found as an estimated value of the total number

of tags in the recapture.  Confidence intervals using the biased standard error can have severe

undercoverage.

Given values for total cost, the cost per examination of a carcass in the initial survey

and in the repitch ( c2 and c3), it has been shown that optimal values for the number of

carcass recaptured ( n2) and the repitch rate (r) are dependent on the cost ratio ( c2:c3), the

miss rate (l ) and the tagging rate ( p1); in addition, the optimal recapture number is

dependent on the total cost.  If no tags are missed (l=0), the optimal strategy is to recapture

the maximum possible ( n2 = Co c2 ) and repitch nothing (r=0).  For a fixed cost ratio and

tagging rate, if the miss rate increases then it is advisable to decrease the number of carcasses

recaptured and increase the proportion repitched.  And for a fixed miss rate and tagging rate,

if the cost ratio increases then both the number of carcasses recaptured and the repitch rate

should be increased.  Optimal values of recapture number and repitch rate appear to be

insensitive to changes in the tagging rate when p1 is small.
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Appendix

The Complete Stochastic Model

This model does not condition upon n1 and n2, but treats them as random variables.  Figure

A1.1 is a diagram of the five categories that sockeye can be placed in based on tag status,

probability of recapture, tag identification and repitch rate.

From Figure A1.1, we see that n1 sockeye are captured, tagged and released back into

the population, with tagging rate p1.  After spawning, the fish die and some get washed onto

the banks of the spawning area.  From these carcasses, n2 are examined for tags;  N - n2  are

not examined or did not get washed onto the banks.  Tags are observed on m2  carcasses and

the remaining n2 - m2 carcasses either do not have a tag or the tag has not been observed.  A

portion, n3, of the n2 - m2 carcasses are re-examined and m3 additional tags are recorded.

As in the conditional model, n1 and n2 are typically small relative to N.  Here, the

likelihood can be approximated by the product of a binomial and multinomial distribution.

The binomial distribution refers to the tagging portion and the multinomial model contains

all events that occur after the recapture period.

f x,q( ) =
N

n1

Ê
ËÁ

ˆ
¯̃

p1[ ]n1 1- p1[ ]N-n1 ¥ (A1.1)

N

m2,   m3,   n3 - m3,   n2 - m2 - n3,   N - n2

Ê
ËÁ

ˆ
¯̃
¥

p1p2 (1- l)[ ]m 2 p1p2lr[ ]m3 (1- p1)p2r[ ] n3 -m3( ) ¥
1- p1(1- l)( )p2 (1- r)[ ] n 2 -m 2 -n3( )

1- p2[ ]N-n 2
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where

x = m2,   m3,   n3 - m3,   n2 - m2 - n3,   N - n2[ ]
q = p1p2 1- l( ),   p1p2lr,   1- p1( )p2r,   1- p1(1- l)( )p2 (1- r),   1- p2[ ]

xi
i=1

5

Â = n2 qi
i=1

5

Â = 1 .

In this distribution, N, l , p1, and p2 are the unknown parameters.  And n1 and n2, are

treated as random variables, in addition to m2  and m3.

Maximum Likelihood Estimates

Estimates of N, l , p1, and p2 are found by maximizing the log-likelihood function

l x,q( ) = ln L(x,q)[ ] = ln f(x,q)[ ] (A1.2)

= ln
N

n1

Ê
ËÁ

ˆ
¯̃
+ ln

N

m2,   m3,   n3 - m3,   n2 - m2 - n3,   N - n2

Ê
ËÁ

ˆ
¯̃

+ n1 + m2 + m3[ ]ln p1( ) + N - n1 + n3 - m3[ ]ln 1- p1( )
+ n2 - m2 - n3[ ]ln 1- p1(1- l)( ) + n2[ ]ln p2( ) + N - n2[ ]ln 1- p2( )
+ m2[ ]ln 1- l( ) + m3[ ]ln l( ) + n3[ ]ln r( ) + n2 - m2 - n3[ ]ln 1- r( ) .

First derivatives (first difference for N) of l x,q( ), with respect to

b = N,   l,   p1,   p2[ ], are found to give the score function, U b( ).  Solving U b( ) = 0 gives the

following maximum likelihood estimates:
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N̂ = n1n2

m2n3 + n2 - m2( )m3[ ] / n3

= n1n2

m̃2

(A1.3)

l̂ =
n2 - m2( )

m2n3 + n2 - m2( )m3[ ] / m3

=
n2 - m2( )m3

m̃2n3

= m3 r
m̃2

(A1.4)

p̂1 =
n1

N
(A1.5)

p̂2 =
n2

N
 . (A1.6)

The maximum likelihood estimates for N and l  are the same as those obtained in the

conditional model.  Also, notice that the maximum likelihood estimate of p1 is equal to the

tagging rate and the estimate of p2 is equal to the number of carcasses recaptured divided by

the escapement size.

The variance-covariance matrix is then found by inverting the information matrix to

obtain

VarCov b̂( ) = I-1 b̂( ) =
V(N̂) C(N̂, l̂) C(N̂, p̂1) C(N̂, p̂2 )

C(l̂, N̂) V(l̂) C(l̂, p̂1) C(l̂, p̂2 )

C(p̂1, N̂) C(p̂1, l̂) V(p̂1) C(p̂1, p̂2 )

C(p̂2 , N̂) C(p̂2 , l̂) C(p̂2 , p̂1) V(p̂2 )

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

with the following variances and covariances

V N̂( ) = N N - n1( ) N2l + N2 - n1(N + n2 )( )(1- l) + Nn2( )r[ ]
n1n2r N - n1(1- l)[ ] (A1.7)
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V l̂( ) = Nl 1- l( ) Nlr + N - n1( ) 1- l( )[ ]
n1n2r N - n1(1- l)[ ] (A1.8)

V p̂1( ) = n1 N - n1( ) Nl + N - n1( ) 1- l( )r[ ]
N2n2r N - n1(1- l)[ ]

V p̂2( ) = n1n2 2n1n2 (1- l)r + N(2N + n2 )lr - N(N + 3n2 )r - N2l[ ]
N3n1r N - n1(1- l)[ ]

+ n2l(1- r)
n1r N - n1(1- l)[ ] +

(N + n2 )r
Nn1r N - n1(1- l)[ ]

C N̂, l̂( ) = -N2l N - n1( ) 1- l( ) 1- r( )
n1n2r N - n1(1- l)[ ] (A1.9)

C N̂, p̂1( ) = - N - n1( ) Nl + (N - n1)(1- l)r[ ]
n2r N - n1(1- l)[ ]

C N̂, p̂2( ) = - N - n1( ) N2l + N2 - (N + n2 )n1( )(1- l) + Nn2[ ]r[ ]
Nn1r N - n1(1- l)[ ]

C l̂, p̂1( ) = N - n1( ) 1- r( )(1- l)l
n2r N - n1(1- l)[ ]

C l̂, p̂2( ) = N - n1( ) 1- r( )(1- l)l
n1r N - n1(1- l)[ ]

C p̂1, p̂2( ) = N - n1( ) Nl + (N - n1)(1- l)r[ ]
N2r N - n1(1- l)[ ]  .

The variance for l̂  and the covariance term of N and l̂  are the same as those obtained under

the conditional model.  However, the variance for N̂  is not the same as that derived under the



37

conditional model because n1 and n2 are treated as random variables in the full model.  By

applying the following substitutions for large N:

N + n2 ª N

N - n1 ª N

it can be shown that:

V(N̂Full ) ª 1+ p2

r
r + l(1- r)

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙V(N̂Conditional )

where V(N̂Full ) refers to equation (A1.7) and V(N̂Conditional )   refers to equation (4.10).  If p2,

l  and r are small, the variance of the full model is very close to that of the conditional

model.  Results on optimal allocation are also expected to be similar to those of the

conditional model.
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Population size

N

n3  fish repitched

N - n1   untagged sockeye

n1          tagged sockeye

N - n2 fish not recaptured

with probability

1- p2

m2 fish where tag is

observed with probability

p1p2 (1- l)

m3 fish where tag is

observed in repitch

with probability

p1p2lr

n3 - m3 fish in the repitch

with no tag and with

 probability

(1- p1)p2r

n2 - m2 fish where

tag is missed or no tag

 was found

n2 fish recaptured

n2 - m2 - n3 fish where 

tag is missed or no tag 

was found and not 

repitched with probability 

1- p1(1- l)[ ]p2 (1- r)

Figure A1.1:  Diagram of all categories that escapement can be placed in based on tag

status, probability of recapture, accuracy of identification, and repitch rate
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