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Abstract

There has been a recent increase in the use of network models for representing in-

teractions and structure in many complex systems. In this thesis we introduce the

use of spatial process models for the statistical analysis of networks, emphasizing

applications to social networks.

The first methodology we propose is the latent socio-spatial process model. In the

spirit of a random effects model, pairwise connections are assumed to be conditionally

independent given a latent spatial process evaluated at observed points in a covariate

space. This smooths the relationship between connections and covariates in a sam-

ple network using relatively few parameters, so the probabilities of connection for a

population can be inferred. The second model that is proposed is the meta-distance

model. Here, a random function is used to represent the logistic relationship between

covariates and binary relations. A spatial covariance structure is assumed for the

random function, where the points in space are distances between attribute pairs. A

Bayesian framework is used for estimation and prediction.

While spatial process models can be very flexible and provide reasonable fit and

predictions in many contexts, interpretation of these models can be complicated. To

aid in the identification of important covariates, we propose a reference distribution

variable selection procedure. An inert variable is appended to the data for analysis,

and the posterior distribution of an “activity” parameter associated with the covariate

is used as a reference distribution against which the true variables can be assessed.

The approach is Bayesian, but the variable selection has a frequentist flavor.

Finally, we illustrate one important application of the proposed methodology. Lo-

cal network topology can have a significant impact on contact-based processes, such
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as epidemics. This is demonstrated by looking at susceptible-infected-susceptible and

susceptible-infected-removed epidemic models. We explore how using a predictive

network model, such as the latent socio-spatial process model, can help in predicting

how a disease might spread in a population.
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Chapter 1

Introduction

There has been a recent increase in the use of network models for representing struc-

ture in many complex systems. Of particular interest is modelling interactions and

relations amongst a number of “units.” Units can vary widely in terms of composi-

tion and function; they may be people, countries, computers, or proteins, to name a

few. There is an equally diverse set of possible relations between units: international

trade conflicts, the sharing of drug paraphernalia, paths of communication, corporate

hierarchy, or simply friendships.

Despite the extremely broad range of applications, it is fascinating that all these

problems (and many more) can be studied within one unified framework. Since

Leonard Euler first used a network to solve the Seven Bridges of Königsberg problem

in 1736 (for details, see Fowler (1988), e.g.), there have been many advancements

in the field from a diverse number of sources – including graph theorists, physicists,

computer scientists, and sociologists. Only in the last few decades, however, have

statisticians made their own contributions with respect to modelling and inference for

network data. The goal of this thesis is to suggest some new methodologies for the
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statistical analysis of networks, with emphasis on social networks and their applica-

tions.

In social networks, the units of interest (often called “actors”) are individual peo-

ple or groups of people that have some connection or relational patterns of interest.

Besides being interesting in their own right, social networks can also be used to study

dynamic processes evolving through society. With recent concerns of bioterrorism,

and the advent of new epidemics that spread with person-to-person contact, such as

SARS, there is a great need for statistical models that emulate social networks in or-

der to better understand the impact of the underlying social structure on the spread

of infectious diseases and other processes.

In the remainder of this chapter, we will introduce social networks and corre-

sponding data more formally, including ways to define and describe some important

network features. We will also begin a discussion on stochastic network modelling,

and why the ability to predict local network topology could improve understanding of

epidemic progressions. After a brief overview of some Bayesian methodology we will

use, an outline of the rest of this thesis is given at the end of the chapter.

1.1 Social Networks

Social network data typically consists of a set of n actors and a pairwise measurement

yi,j made on all pairs i, j = 1, . . . , n. The response could be the number of times two

individuals come into contact with each other in a day, a measure of the strength

of their acquaintance, or a count of conflicts between two countries. In many cases,

yi,j is simply dichotomous, indicating only the presence or absence of a relation of

interest, e.g. whether or not two children are friends, two families are united through

2



Figure 1.1: Example graph with n = 6 actors.

marriage, or two drug users share needles.

When the response yi,j is binary, the data can be represented as a graph, i.e. a

collection of vertices (or nodes) and edges. In the context of social networks, each

actor is a vertex in the graph and an edge exists between vertices i and j if yi,j = 1.

Figure 1.1 illustrates a graph for a small sample of n = 6 actors, created using the R

package network (Butts, 2006).

A graph can be undirected or directed. An undirected graph is one in which

yi,j = yj,i for all pairs. Conversely, this symmetry does not hold in a directed graph.

Direction in graphs can arise, for example, if Bob identifies Joe as a friend, but the

favor is not returned. In this thesis, our primary focus will be on models for undirected

data. This is a reasonable starting point if one is interested in how networks act as

substrates for dynamic processes. In many applications, an edge acts as a channel for

the flow of a disease or rumor, etc., where the transmission can occur between two

adjoined vertices in either direction, thus implying an undirected underlying graph.

As mentioned, there are many kinds of possible relations that one can measure, and

in some cases they may be determined by a process of interest.

It is now a convenient time to introduce some language and terminology as it will

be used in what follows. More algebraic definitions of graph topologies can be found

3



in West (2001), for example.

Definition 1.1. Two actors i and j are connected, denoted i ∼ j, if there is an edge

between vertex i and vertex j. Two connected actors are said to be neighbours, and

the neighbourhood of vertex i, Ni, is the set of indices corresponding to neighbours

of vertex i:

Ni = {j : i ∼ j}.

Definition 1.2. A sociomatrix (or adjacency matrix), Y, is an n × n matrix

with elements yi,j, where

yi,j =







1 if i ∼ j, i 6= j

0 otherwise.

Note that for undirected networks Y is always a symmetric matrix since yi,j = yj,i

for all i, j = 1, . . . , n. Thus, it is also convenient for notational purposes to introduce

an
(

n
2

)

× 1 vector, y, with elements {yi,j}i<j. To illustrate, consider the graph in

Figure 1.1. Here, for example, N1 = {2, 3, 5}. Also,

Y =































0 1 1 0 1 0

1 0 1 1 0 0

1 1 0 1 0 0

0 1 1 0 1 1

1 0 0 1 0 1

0 0 0 1 1 0































and y = (1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1)′. In a slight abuse of terminology, we will

sometimes refer to Y as a graph, by which we mean the graph corresponding to the

4



1 2 3 4 5 6

1

2

3

4

5

6

Figure 1.2: Example image representation of a graph for n = 6 actors.

sociomatrix Y, as in the following definition.

Definition 1.3. The graph Y is a subgraph of Y′, denoted Y ⊂ Y′, if every edge

in Y is an edge in Y′ and every vertex of Y is a vertex of Y′.

The sociomatrix is a convenient representation for small network data sets, but

may be cumbersome for large n. We propose an alternative way to visualize larger

sociomatrices, as an image with n × n pixels. If each row and column of the image

corresponds to the same row and column of the sociomatrix, we shade the (i, j)th pixel

if yi,j = 1, and leave it unshaded otherwise. This visualization technique will prove to

be particularly useful later. Figure 1.2 is such a representation of the graph in Figure

1.1.

There are also a number of summary statistics available to reduce the n × n so-

ciomatrix Y in ways to describe local and global network topologies. In general,

we will use the notation S(Y) for a statistic based on the sociomatrix. Many such

statistics are explored in detail in Wasserman and Faust (1994) and Wasserman and

Pattison (1996). There are some that are of particular interest to our discussion,

however, and worth mentioning specifically here.
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Definition 1.4. The degree of node i, di, is its number of neighbours. That is,

di = |Ni|. The degree sequence of a graph is (D0, . . . , DM), where Dk is the num-

ber of nodes in the graph with degree k, and M is the maximum observed degree

in the graph. The degree distribution is (D0/n, . . . , DM/n), the fraction of nodes

with degree k, k = 0, . . . ,M .

Definition 1.5. The extended degree of node i, ei, is the number of its neighbour’s

neighbours, excluding itself. That is,

ei =
∑

j:i∼j

|Nj \ {i}|.

Returning to the graph in Figure 1.1, the degrees of all six actors are d1 = 3, d2 = 3,

d3 = 3, d4 = 4, d5 = 3, and d6 = 2. Thus, the degree sequence for the graph is

(0,0,1,4,1). The extended degree of actor 3, say, is e3 =
∑

j∈N3
dj − d3 = 7.

Definition 1.6. A path of length v between vertex i and vertex j is a sequence of

indices {i0, i1, . . . , iv+1} with i0 = i and iv+1 = j such that

v
∏

t=0

yit,it+1 = 1.

A cycle is a path with i0 = iv+1, but no other repeated nodes.

Definition 1.7. The minimum geodesic distance between vertex i and j, gi,j, is

the length of the shortest path from i to j in Y. If there is no path, then gi,j = ∞.

The minimum geodesic sequence is (G0, . . . , GM), where Gk is the number of node

pairs that have minimum geodesic distance k, and M is the largest geodesic distance

6



that is not infinity.

Definition 1.8. A triangle is a cycle of length three in a graph. Three nodes i, j,

and k form a triangle if i ∼ j, j ∼ k, and k ∼ i.

To illustrate these last concepts, we return again to Figure 1.1. There exists many

paths between actors 4 and 6, such as {4, 5, 6}, {4, 3, 2, 1, 5, 6}, or {4, 2, 1, 5, 6}. The

shortest path, however, is {4, 6}, which has length 1. Note that the cycle {4, 5, 6, 4}

forms a triangle in the graph. Actor 4 is also a member of the triangle {4, 3, 2, 4}.

There are a total of three triangles in the network.

While there exist a myriad of descriptive network statistics, considerably fewer

network models are available. In the next section, we discuss some of the challenges

with modelling network data.

1.2 Network Modelling

For the purpose of building statistical models, it is often assumed that the data

{yi,j}i<j are realizations of binary random variables. We will use the convention that

the yi,j are called “random dyads,” which is separate from the concept of an edge, the

realization yi,j = 1. In addition to collecting the pairwise responses, a key requirement

of the models that we will be developing is the availability of covariate information

for each actor in the sample. Let xi = (xi1, . . . , xip) denote measurements made on

p characteristics of actor i. We assume this attribute information is easier to collect

than the relational data yi,j. A corresponding n × p matrix of covariates for the

7



sample, X = (x′
1, . . . ,x

′
n)′, can be constructed by stacking the n covariate vectors.

In some applications, it is not obvious which of Y or X is the “response” variable

or “explanatory” variables. For example, do friendships predict smoking habits or

do smoking habits predict friendships? Either way, a relationship is implied between

Y and X, and under the assumption that the covariates are easier to collect, it is

worth considering models that specify a probability distribution P (Y|X). In theory,

such a model can be used to make inferences about network structure, to provide

an explanation for the relationship between Y and X, and to predict unobserved

relations. It is this last point – prediction – that plays a central role in our exposition.

In particular, we are interested in generating likely structures for Y′ given Y ⊂ Y′

for a representative sample of n actors from the population.

As simple as this may sound – after all, the {yi,j} are just binary responses – there

are some unique challenges associated with modelling this kind of relational data. One

striking feature of social networks is that they tend to exhibit some inherent higher-

order dependencies (e.g. Wasserman and Faust, 1994; Watts and Strogatz, 1998;

Newman, 2003). Specifically, they usually contain a large amount of clustering, groups

of nodes that have many within-group connections but fewer outer-group connections.

This is related to the concept of transitivity, heuristically described as a “friends-of-

my-friends-are-my-friends” phenomenon. In topological terms, this often manifests

itself as a large number of triangles and “cliques” in the network (not in the formal

graph-theoretical definition of clique). This propensity for clustering makes intuitive

sense in many social contexts: If Bob and Joe are friends, and Joe and Kate are

friends, then it is more likely that Bob and Kate are friends, forming a triangle with

respect to the relation “friendship.” One rationale for this is the notion of homophily

by attributes (e.g. McPherson et al., 2001; Handcock et al., 2007), i.e. like attracts

8



like. Of course, this may not always be the case, but for some network data it is

expected to apply.

The need for making predictive inferences has certainly been recognized, e.g. by

Anderson et al. (1999), Hoff (2007a), and Handcock et al. (2007) amongst others;

we will also provide our own motivation in the next section. To date, however, only

modest progress has been made. The difficulty behind making predictions for social

network data is in the specification of an estimable model P (Y|X) that accounts

for the often-observed dependencies between the responses – such as clustering and

transitivity. Currently, there are two main schools of thought when it comes to in-

corporating these dependencies, which we broadly classify as exponential random

graph models and latent factor models. Our intention for this thesis is to pro-

pose a new, third class of models, latent spatial process models. Before discussing

these models in more detail, we digress to present one motivation for building these

models.

1.3 Social Networks and Disease Transmission

When this research began, our primary interest in social networks evolved around

understanding the impact network structure has on disease propagation. In particular,

we sought to provide an answer to the question: what is the effect of local network

topology on individual disease incidence?

Historically, deterministic and stochastic models for the spread of infectious dis-

eases assume homogeneous mixing, i.e. a susceptible individual can be infected by

any infectious individual in the population (e.g. Bailey, 1975; Anderson and May,

1991; Andersson and Britton, 2000). Ball (1985), Andersson and Britton (1998) and
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others have proposed generalizations of these models that allow for heterogeneity in

contact and spread rates, but there has been an increasingly growing awareness that

the underlying network structure plays an important role (Eubank et al., 2006; Mey-

ers, 2007). One recent example was the SARS outbreak which took place between

November, 2002 and July, 2003. While mass-action models would have expected any-

where from 30,000 to 10 million cases in the first three to four months before the

disease was recognized and interventions were made, the observed number of cases

during this time – 782 – was significantly less (Meyers et al., 2005). It was not that

the infectiousness of the disease was overestimated, but rather that contact patterns

restricted spread. Therefore, knowledge of the contact network structure can provide

useful information about disease characteristics. This relationship between transmis-

sion models and network structure will be discussed in more detail in Chapter 6.

Unfortunately, the contact structure is rarely fully observed for a whole population

of interest (e.g. for a city). Ideally, a predictive network model relating Y (for a

sample of city residents) to demographic information X could, in principle, be used

to generate likely social network structure, Y′, for the entire city given urban census

demographics. This in turn could contribute to understanding of how an infectious

disease might spread throughout the city.

In the absence of such a model, continued growth in computing power has allowed

researchers to develop complex computer programs that simulate social networks and

disease paths. The EpiSims program at Los Alamos National Laboratory (Eubank et

al., 2004) is an example of such a simulator. EpiSims is a discrete event simulator that

uses demographic information and other inputs, X, to define rules for behavior and

decision-making. Then, individuals move accordingly, coming into contact with each

other, and outputting a corresponding network, Y. A main application of EpiSims is
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exploring the release of an infectious bioterrorist agent, such as smallpox, in an urban

environment. Even with powerful computing, such simulators can be expensive, time-

consuming and require large amounts of manual tuning. In the spirit of modelling

computer experiments (e.g. Sacks et al., 1989a and 1989b), a cheap statistical emula-

tor P (Y|X) of the computer simulator could prove useful in this context as well. For

a typical computer experiment, a number of input settings are selected (a design),

and the computer code is run at those settings. By fitting a model to the observed

input-output pairs, the output for the code can be predicted at untried inputs (see

Chapter 5). Similarly, if an epidemic simulator is run using demographics from one

city, say, then with an appropriate model one might be able to predict the outcome

for a different city, without re-tuning and re-running the entire simulator.

Before moving on to discuss currently available network models, we present a brief

overview of some important concepts in Bayesian estimation. A Bayesian framework

will be used throughout this thesis to estimate parameters for network models, and

introducing some details now will make presentation easier later (more details can be

found in Gelman et al., 2004).

1.4 An Overview of Bayesian Methodology

Let θ = (θ1, . . . , θH) ∈ Θ denote a vector of H unknown parameters in the sampling

model for y = (y1, . . . , yn) given covariates X. For convenience, we drop the double

subscript that is needed for network data. Let [A] be the density of A and [A|B]

be the conditional density of A given B. In the Bayesian paradigm, parameters are

assumed to be random variables with prior distribution [θ], which is used to represent

a priori beliefs in plausible parameter values before data is collected. Letting [y|θ]
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denote the likelihood model assumed for y, then by Bayes’ Rule

[θ|y] ∝ [y|θ][θ]. (1.1)

The distribution given by the left of equation (1.1) is termed the posterior distribution

for θ, and it reflects updated beliefs about θ given the data; it is this distribution

that is used for inference about θ.

1.4.1 Estimation

Quite often, posterior quantities of interest involve integrating over the posterior dis-

tribution. For example, one point estimate of a function g(θ) is the posterior mean,

E[g(θ)|y] =

∫

Θ

g(θ)[θ|y]dθ. (1.2)

In practice, such integrals are usually solved numerically using Monte Carlo tech-

niques. If θ(1), . . . ,θ(T ) denote a large number of draws from [θ|y], then (1.2) can be

approximated by

E[g(θ)|y] ≈
1

T

T
∑

t=1

g(θ(t)).

These draws from the posterior distribution can also be used to easily make other

inferences about θ, e.g. for constructing credible intervals, appropriate percentiles of

the posterior draws can be used.

Unfortunately, [θ|y] is usually a complex distribution with a nonstandard form.

Thus, drawing realizations from the distribution requires the use of sophisticated

sampling mechanisms, such as Markov Chain Monte Carlo (MCMC) algorithms (see
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e.g. Gilks et al., 1996). Gibbs sampling is one such tool. Given starting val-

ues θ(0), realizations from the joint posterior distribution can be generated by it-

eratively drawing each component of θ from its full conditional distribution. Let

θt′

−h = (θt
1, . . . , θ

t
h−1, θ

(t−1)
h+1 , . . . , θ

(t−1)
H ). Then

• For t = 1, . . . , T :

• For h = 1, . . . , H:

– Draw θ
(t)
h ∼ [θh|θ

t′

−h,y].

If the full conditionals themselves are of a non-standard form, then a Metropolis-

Hastings update can be used. Let q(θ∗h|θ
(t−1)
h ) be a proposal distribution for generating

proposed values of θh, θ
∗
h, at iteration t given the preceding value θ

(t−1)
h . For example,

a UNIF [θ
(t−1)
h − c, θ

(t−1)
h + c] for some chosen value of c might be typically used. The

Metropolis-Hastings ratio for acceptance-rejection sampling is

RMH(θh) =
[θ∗h|θ

t′

−h,y]q(θ∗h|θ
(t−1)
h )

[θ
(t−1)
h |θt′

−h,y]q(θ
(t−1)
h |θ∗h)

.

Specifically, if [θd|·] is difficult to sample from directly, then sampling θ
(t)
h in step t of

the Gibbs algorithm can then be done using the following algorithm:

• Draw θ∗h ∼ q(θ∗h|θ
(t−1)
h )

• Set

θ
(t)
h =







θ∗h with probability min{1, RMH(θh)}

θ
(t−1)
h otherwise.
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1.4.2 Prediction

Predicting the response y∗ at a new attribute vector x∗ is quite straight-forward in

the Bayesian context. Using standard techniques, the predictive distribution for y∗

can be expressed as

[y∗|y] =

∫

Θ

[y∗|y,θ][θ|y]dθ. (1.3)

In practice, T draws from the predictive distribution can be obtained as follows:

• For t = 1, . . . , T :

– Draw θ(t) ∼ [θ|y]

– Draw y∗ ∼ [y∗|y,θ(t)].

To simplify, realizations drawn from the posterior distribution generated for estima-

tion can be used to generate predicted responses. Once samples from the predictive

distribution are available, they can be used to get point predictions, such as E[y∗|y],

or prediction intervals.

1.4.3 Goodness-of-Fit

A natural approach to assessing the fit of a model is to generate “replicate” data

and compare properties of the replicated data to the observed data. The predictive

distribution evaluated at the original covariates x can be used to generate replicate

data. That is,

[yrep|y] =

∫

Θ

[yrep|y,θ][θ|y]dθ.
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Given a large number of replicate draws, y
(1)
rep, . . . ,y

(T )
rep , statistical properties of the

observed data, S(y), can be compared to the distribution S(y
(1)
rep), . . . , S(y

(T )
rep). If

S(y) is an extreme value in this distribution, then the model does not fit well with

respect to that feature of the data. The intuition here is that if the same random

mechanism that generated the observed y yesterday generated new observations yrep

tomorrow, then yrep should “look like” y if the model is specified properly and fits

the observed data well, as discussed in Gelman et al. (2004), for example.

1.5 Outline

Given these preliminaries, an outline of the remainder of this thesis is as follows. In

Chapter 2, we will review the most well-studied models for social network data that

are currently available, the exponential random graph models and the latent factor

models. We will particularly highlight the point that if relating Y to X and making

predictions is a goal of the network analysis, then there is room for the development

of new models. Thus, a new class of models for social network analysis, latent spatial

process models, which incorporate dependencies between network dyads through non-

parametric function estimation, will be proposed in Chapter 3. The first model we

will present in this class, the latent socio-spatial process model, will also be covered

in this chapter. In Chapter 4, we will propose an alternative spatial process model,

the meta-distance model. While extremely flexible, spatial process models can be

difficult to interpret. So, in Chapter 5, we will develop a variable selection methodol-

ogy, reference distribution variable selection, which can be used to identify important

covariates in a spatial process model. We will revisit the relationship between disease

transmission models and social networks in Chapter 6, demonstrating the potential
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use of our proposed network models. Finally, we will conclude with a discussion of

future research directions in Chapter 7.
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Chapter 2

Review of Network Models

As mentioned in the introduction, developing probability models for social network

data is a surprisingly challenging task. The greatest difficulty arises from trying to

capture dependencies between the dyads, such as clustering and transitivity. Thus,

the most obvious model for binary data – a logistic regression model (McCullough and

Nelder, 1983) – is typically viewed as inappropriate, since the assumption of statistical

independence between observations is violated. To date, there have been two well-

studied classes of models proposed for allowing dyad dependencies: the exponential

random graph models (ERGMs) and latent factor models.

Although tangential to the models we will be developing in Chapters 3 and 4,

ERGMs have played a significant role in stochastic network modelling, particularly in

the sociology and psychology literature. For this reason, we will devote the following

section to this class. Due to some concerns that we will highlight, however, their use

as predictive network models is limited. Latent factor models, on the other hand,

are quite relevant to the models we propose, and thus will receive a more thorough

treatment.
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2.1 Exponential Random Graph Models

In spatial statistics, a result known as the Hammersley-Clifford (HC) Theorem (Besag,

1974) provides an important link between conditional distributions – that specify local

stochastic dependencies – and joint probability distributions. ERGMs are a class of

models that arise from extending this result to social network data. That is, the HC

Theorem is a mechanism for assigning a probability to the random matrix Y by first

specifying which network structural dependencies exist between the yi,j.

Let Y ⊂ {0, 1}n2
denote the set of all permissible n×n sociomatrices. By permis-

sible, we mean symmetric matrices with zeros on the diagonal. The class of ERGMs

contains all models of the form

P (Y) = c−1exp{

Q
∑

q=1

θqSq(Y)}, Y ∈ Y , (2.1)

where θ = (θ1, . . . , θQ) is a vector of parameters and {Sq(Y)} are a set of jointly

sufficient statistics for Y, specified by the user. The appropriate normalizing constant

in (2.1) is

c =
∑

Y∈Y

exp{

Q
∑

q=1

θqSq(Y)}. (2.2)

Any specification of sufficient statistics will yield a valid probability distribution for

Y, and in general, an ERGM is any network model in the form of their namesake, the

canonical exponential family of distributions (Lehmann, 1983). For the alternative,

i.e. for (2.1) to be motivated by the HC Theorem to correspond to specified conditional

probability distributions, the {Sq(Y)} are typically counts of subgraphs of Y (Frank

and Strauss, 1986; Wasserman and Pattison, 1996). Subgraphs included in the model

are referred to as sufficient subgraphs. In some cases, if the nodes in the graph are
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divided into blocks by attributes X, the sufficient subgraphs may also be functions of

the blocking variables, that is S(Y,X) may be used in (2.1), as is done in Anderson

et al. (1999). Other than this, however, incorporating attributes into the probability

distribution for Y has not been a primary focus.

There are two main advantages to this class of models. First, models of the form

(2.1) explicitly tie parameters to sufficient statistics, yielding an attractive interpre-

tation. Second, courtesy of the HC Theorem there is a form of (2.1) consistent with

given conditional distributions for the yi,j. This implies an ERGM can be constructed

to match beliefs on important network structures by first specifying an arbitrary set of

dyads upon which each yi,j is dependent. For example, in the first application of the

HC Theorem to social network data, Frank and Strauss (1986) assume a “Markov”

dependency between the yi,j. That is, letting ∨ denote the logical OR operator, they

model yi,j as dependent on all {yr,s : (r∨ s) = (i∨ j)}, i.e. on all incident dyads. This

parallels a “nearest neighbour” dependency in spatial statistics (Besag, 1974). The

special form of (2.1) corresponding to this assumption is known as the Markov graph.

There are three major criticisms of ERGMs, however, that highlight their lim-

itations as useful inferential and predictive models. The first two points speak to

the estimability of (2.1), while the last point touches on the problem of predictive

inference:

i. The normalizing constant (2.2) is intractable in all but the simplest cases.

ii. Estimation of θ is based on only one observation from P (Y|X).

iii. The support of P (Y|X) is sociomatrices of a fixed size, with n nodes.

To expand further, the biggest obstacle to estimating the parameters in ERGMs

has been enumeration of the normalizing constant (2.2) as remarked in point (i). As

19



a note, models of the general form (2.1) have recently been popularized under the

“p∗-model” moniker by Wasserman and Pattison (1996). This is in reference to the

seminal “p1-model” of Holland and Leinhardt (1980), which was the first log-linear

model for network data, albeit one that assumed dyad independence. Though of

exactly the same form as ERGMs, the term “p∗” has become synonymous with an

estimation technique known as pseudo maximum likelihood estimation (PMLE; Besag,

1975). The wide-spread appeal of this approach is due in large part to its accessibility

to non-statisticians; Strauss and Ikeda (1990) show PMLE is as easy to implement

as standard logistic regression for binary network data – and most importantly, it

does not require estimation of (2.2). The statistical properties of these estimators

are unknown, however, and their use in this context has been criticized by Besag

(2000) and Snijders (2002). Alternative MCMC maximum likelihood techniques have

instead been recommended by these authors, and do show some promise (as well as

highlight the sometimes poor performance of PMLE for network data). To improve

estimability of ERGMs, there has also been a lot of recent consideration given to the

choice of sufficient subgraphs (Snijders et al., 2006), and extensions such as curved

exponential families have been explored (Hunter and Handcock, 2006). Instabilities

are to be expected, though, due to point (ii).

Even if estimation of these models becomes feasible, of additional concern to us is

point (iii) above. ERGMs are a holistic modelling approach, and consciously model

conditional probabilities instead of marginal probabilities. To illustrate a difficulty

with this, consider for example trying to predict the probability that John is friends

with Alice. This probably then, say, depends on knowing everyone that John is

friends with (except for Alice), everyone that Alice is friends with (except for John),

and the number of pairs of people in the population that have a mutual friend. If this
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information is not known, the ERGM says nothing about the chances John and Alice

are friends. Thus, the model implicitly assumes that the network is observed for the

whole population of interest, and is not obviously useful for making predictions on

unsampled pairs.

Given these concerns about ERGMs, other more local approaches to modelling

dyad dependencies have been pursued.

2.2 Latent Factor Models

An alternative to modelling conditional probabilities, as ERGMs do, is to model

marginal probabilities

πi,j = P (yi,j = 1).

This is the approach taken in a number of models that we categorize as latent factor

models. Given the πi,j, the random dyads are assumed to be conditionally independent

Bernoulli random variables. All of the complexity of these models, then, lies in the

specification of a model for πi,j. Letting π denote the
(

n
2

)

× 1 vector with elements

{πi,j}i<j, the likelihood corresponding to a latent factor model is simply given by

L(y|π) =
∏

i<j

π
yi,j

i,j (1 − πi,j)
1−yi,j . (2.3)

Clearly this is much more convenient to work with than (2.1).

In order to incorporate unconditional dependencies between the yi,j, latent node-

specific random effects are introduced in the model for πi,j. Specifically, in this section

we consider models of the form

ηi,j = logit(πi,j) = β0 + xi,jβ
′ + ζi,j, (2.4)
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where logit(a) = log(a/(1 − a)). In this class, statistical dependencies between the

ηi,j (and hence, the yi,j) are captured by the term ζi,j. This emphasis on modelling

“noise,” i.e. the lack-of-fit of the logistic-linear regression, is an interesting feature

of latent factor models. The covariates xi,j = (xi,j,1, . . . , xi,j,p) are presumed to be

pair specific, and while there may be some attributes that are inherently pairwise,

e.g. the distance between the capitals of two countries, typically xi,j is constructed

using individual covariates, xi and xj. In keeping with the idea of homophily by

attributes, we assume that xi,j = (|xi,1 − xj,1|, . . . , |xi,p − xj,p|). The coefficients β0

and β = (β1, . . . , βp) are parameters to be estimated, as well as any other unknowns

in ζi,j.

Before discussing two particular cases of (2.4), we remark that other random effects

models not of this form have been considered for modelling dependencies between

network dyads. For example, Wong (1987) and Gill and Swartz (2004) use random

effects to incorporate dependencies into Holland and Leinhardt’s (1981) p1-model.

However, in what follows, we will restrict our attention to models of the form (2.4).

2.2.1 Latent Space Model

The first model we consider is the latent space model of Hoff, Raftery and Handcock

(2002). For convenience, we will label this the HRH model. In order to capture

network structure that is not accounted for by the logistic-linear function of observed

attributes, this model posits the existence of a latent d-dimensional “social” space,

R
d, in which each actor has an unobserved position zi. We denote the collection

of positions for all n individuals by Z = (z1, . . . , zn)′. The intuition behind this

model is appealing. Actors that are close in the latent space are assumed to have a

higher probability of connection than actors that are far apart, where closeness can
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be measured, for example, using Euclidean distance; this implies a kind of homophily

by unobserved characteristics. Specifically, the HRH model is given by

ηi,j = β0 + xi,jβ
′ − ‖zi − zj‖. (2.5)

While d, the dimension of the social space, can be chosen to be any dimension,

typically d = 2 is used, allowing the latent positions to be easily visualized. In the

HRH model, the term ζi,j = −‖zi−zj‖ is not interpretable as an “error” term since it

is always negative. It does, however, aim to model structural features in the network

that are not explained by the covariates. The use of distance measures (i.e. the

absolute value on the marginal covariate differences and the Euclidean distance on

the latent positions) induces a form of transitivity. If, for example, ‖zi − zk‖ and

‖zj −zk‖ are both small, then by the triangle inequality ‖zi−zj‖ cannot be too large.

It also suggests that actors close to each other in social space will relate similarly with

other people, i.e. if zi ≈ zj, then ‖zi − zk‖ ≈ ‖zj − zk‖ for all k (see Hoff, 2007b, for

more on this point).

With d = 2, there are 2n+ p + 1 parameters to be estimated in the HRH model:

β0, β, and zi ∈ R
2, i = 1, . . . , n. To proceed with Bayesian estimation, priors must

be specified for each unknown. One choice of priors is

βh ∼ N(0, ψβ); h = 0, . . . , p

zi ∼ BV N(0, ψzI2); i = 1, . . . , n,

where I2 is the 2 × 2 identity matrix. In combination with the likelihood (2.3), the

resulting full conditionals for each of the parameters are not of a standard form, but

a Metropolis-Hastings update can be used.

Overall, implementation of this method is a little tricky, and we tried to stay

close to the author’s suggested approach. To select starting values for the latent
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positions, for instance, the minimum geodesic distance is calculated between all pairs,

and then a multidimensional scaling is used to reduce these distances to the desired

two-dimensional positions. These are then used in an optimizer (we use fminsearch in

MATLAB, for example) to yield a maximum likelihood estimate of Z. Also, note that

one inherent difficulty with estimating Z is that any rotation, reflection or translation

of the positions yields the same likelihood value. Following Hoff et al. (2002), at

each iteration t of the MCMC algorithm, the Z(t) that is saved for inference is the

Procrustean transformation of the currently accepted Z∗ around a fixed set of positions

Z0,

Z(t) = Z0Z
∗′(Z∗Z′

0Z0Z
∗′)−1/2Z∗,

assuming all of the positions are centered at the origin. Hoff et al. (2002) take Z0 to

be the maximum likelihood estimator of Z used as the starting value. To illustrate

the performance of the methodology, we consider the following example.

Florentine Family (FF) Example. Padgett and Ansell (1993) collected data on

marriages between 16 prominent Florentine families in the fifteenth century. The

network is displayed in Figure 2.1, with yi,j = 1 if there was a marriage between

families i and j. The wealth of each family, xi, i = 1, . . . , n is an available covariate.

This network is analyzed without a covariate in Hoff et al. (2002); the following is

our own implementation including x. For analysis, the xi are scaled to [0, 1], and

pairwise variables xi,j = |xi − xj| are constructed (note xi,j ∈ [0, 1] as well). Normal

priors with ψβ = ψz = 10 are used for each of the parameters. Due to difficulties with

visualizing the latent social positions for nodes with no connections inherent in the

methodology, one family (labeled 12 in Figure 2.1) that has no marriages is removed
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Figure 2.1: FF Example: Padgett and Ansell’s (1993) Florentine Family network

from the network. Using the specified model and priors, an MCMC algorithm is run

for posterior exploration. We find that it takes on the order of a million iterations

for convergence. Draws from the posterior distribution of the latent social positions

in R
2 for the 15 families included in the analysis are plotted in Figure 2.2. The red

points in the centers of the scattered points are the posterior mean position for each

family.

Using results from the previous chapter, the posterior expectation of πi,j can be

calculated as

π̂i,j = E[πi,j|y,x] =
1

T

T
∑

t=1

exp{η(t)
i,j }

1 + exp{η(t)
i,j }

,

where

η
(t)
i,j = β

(t)
0 + |xi − xj|β

(t)
1 − ‖z(t)

i − z
(t)
j ‖,
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Figure 2.2: FF Example: Posterior draws and mean for latent positions

given draws β
(t)
0 , β

(t)
1 , and Z(t), t = 1, . . . , T from the posterior distribution. Fig-

ure 2.3(a) is a plot of π̂i,j for all pairs i, j = 1, . . . , 15. We developed this plot to

correspond to the image representation of a sociomatrix, but with pixels colored ac-

cording to the posterior probability of connection for the (i, j)th pair. The original

sociomatrix is plotted alongside for comparison. In the probability plot, “hotter”

colors correspond to larger probabilities, while “cooler” colors are smaller. When the

estimated probabilities are plotted alongside the sociomatrix in this way, a feature

that stands out is how similar they are, i.e. high posterior probabilities are estimated

where connections were observed. With O(n) parameters, the HRH model is essen-

tially able to reproduce the observed network Y, and the primary interest seems to

be on interpretation of relative social positions as depicted in Figure 2.2. This leads

to an interesting observation on goodness-of-fit for network models.

As discussed in Chapter 1, to investigate goodness-of-fit we generate a large num-

ber, T , of replicate networks, Yrep. Then, graph statistics based on the sociomatrix,

S(Y), are compared to the replicate distribution S(Y
(1)
rep), . . . , S(Y

(T )
rep). Figure 2.4(a)

shows the degree sequence of Y for the Florentine Family network as a solid line,
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(a) Posterior mean probabilities of connection
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(b) Image representation of sociomatrix

Figure 2.3: FF Example: Sociomatrix and posterior mean probabilities

with pointwise 90% intervals of the replicate distribution in dashed lines. The box-

plots show each element-wise distribution over all replicate draws. In Figure 2.4(b),

the number of edges in Y is marked by a vertical line, and the smoothed histogram

shows the distribution of the number of edges in the replicated sociomatrices. Recall

that if the observed statistics are extreme values in the replicate distribution, then this

suggests a lack-of-fit. This is clearly not the case here. However, the posterior mean

plot (Figure 2.3(a)) suggests the fit almost reproduces Y, so it is natural that it will

do extremely well on these goodness-of-fit measures, i.e. the replicate sociomatrices

essentially are Y. When the variability of Y around the posterior mean probabilities

is considered, there is more objective evidence of this over fitting.

Consider a very basic χ2-test:

H0 : yi,j independent BER(π̂i,j)

Ha : yi,j have a distribution other than H0

We compared the test statistic

X0 =
∑

i<j

(yi,j − π̂i,j)
2

π̂i,j(1 − π̂i,j)
,
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Figure 2.5: FF Example: χ2 test statistic and null distribution

based on the observed sociomatrix Y to the same statistic calculated using a large

number of sociomatrices drawn from the null distribution. The resulting p-value is 1,

as can be seen in Figure 2.5. We note that in this plot the test statistic X0 is marked

by a triangle, and the histogram represents draws from the null distribution of the

statistic. This suggests that the posterior estimates of the πi,j are indeed tailored to

Y; so much, in fact, that any other sociomatrix generated exhibits more variability

around the posterior mean.
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The Florentine Family example illustrates a fundamental difficulty with estimat-

ing models for binary network data. The best “fit” to the sociomatrix is the one

with π̂i,j = 1 or 0 if yi,j = 1 or 0, respectively. Models that achieve this fit may pro-

vide useful interpretations of the network structure – for example, parameters such

as the latent positions serve as representations of unobserved characteristics and de-

scribe the network as a function of these. When it comes to prediction, however, the

node-specific random effects do not model common underlying patterns. Consider

predicting the probability that two individuals, i0 and j0, are connected, πi0,j0 . If

there are no observed responses available for either of these actors, it is not possible

to estimate zi0 and zj0 . Thus, one would imagine that the best that could be done is to

integrate over the prior distribution of positions. This could generate a lot of predic-

tion error, particularly if the prior [Z] is taken to be non-informative. We anticipate

that the scale of the parameters may also become uninterpretable in this case. For

example, an alternative specification of the HRH model is the latent position cluster

model, given in Handcock et al. (2007):

ηi,j = β0 + xi,jβ
′ − βz‖zi − zj‖.

Here it is assumed
√

√

√

√

(

1

n

n
∑

i=1

‖zi‖2

)

= 1

so the scales of all the coefficients are identifiable. If the model is used to make pre-

dictions, any proposed position for an actor outside the sample will alter this scaling.
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2.2.2 Multiplicative Factor Models

The second latent factor model we consider is the multiplicative latent factor (MF)

model proposed by Hoff (2007a). Here, the structure in the network is modeled using

ζi,j = uiDu
′

j + ǫi,j, (2.6)

where the vectors ui, i = 1, . . . , n allow for differences in individual tendencies to

connect. One rationale for this alternative model is that it reduces the confounding

between homophily by attributes and stochastic equivalence (Hoff, 2007b).

Hoff (2007a) motivates model (2.6) by a matrix decomposition. Suppose Z is an

n × n matrix that represents the lack-of-fit in ηi,j from the logistic-linear regression.

This matrix can be modeled as having a signal component and an error component, i.e.

Z = M + E. In the case of undirected networks, these are assumed to be symmetric

matrices. Thus the decomposition

M = UDU′

can be found, where U is an orthonormal matrix and D is a diagonal matrix of real

numbers. Putting all this together yields model (2.6). Typically one would use only

the first k eigenvectors; we only consider the case k = 2. Hoff (2007a) emphasizes

modelling directed graphs, and thus relies on a singular value decomposition of M

instead of an eigenvalue decomposition. No results on analyzing undirected graphs

using this model are currently available, so we derive the following algorithm. Note

that unlike for the latent space (HRH) model, actors with all zero observations can

be better accommodated here due to the structure of the orthonormal matrix. Actors

with no observations, on the other hand, cannot be included, as we will discuss more

below.
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The full specification of the MF model is

ηi,j = β0 + xi,jβ
′ + uiDu

′

j + ǫi,j, (2.7)

where given the ηi,j, it is again assumed that the yi,j are conditionally independent

with likelihood (2.3). The quantities η = {ηi,j}i<j, β0, and β = (β1, . . . , βp) in (2.7)

are
(

n
2

)

+ p+ 1 parameters to be estimated, as well as the n× 2 orthonormal columns

U, and the 2 × 2 diagonal matrix D with diagonal elements d1 and d2.

The inclusion of the error term in (2.7) in some sense simplifies model specification.

In particular, if we begin with the assumption that ǫi,j ∼ N(0, φ) then

ηi,j ∼ N(β0 + xi,jβ
′ + uiDu

′

j, φ).

Using vague N(0, ψ) priors for βh, h = 0, . . . , p and dk, k = 1, 2, the full conditional

distributions of these parameters are recognizable. Specifically,

β0|· ∼ N

[

ψ
∑

i<j fi,j(β0)

ψ
(

n
2

)

+ φ
,

ψφ

ψ
(

n
2

)

+ φ

]

βh|· ∼ N

[

ψ
∑

i<j fi,j(βh)

ψ
∑

i<j x
2
i,j,h + φ

,
ψφ

ψ
∑

i<j x
2
i,j,h + φ

]

; h = 1, . . . , p

dk|· ∼ N

[

ψ
∑

i<j fi,j(dk)

ψ
∑

i<j(uikujk)2 + φ
,

ψφ

ψ
∑

i<j(uikujk)2 + φ

]

; k = 1, 2,

where

fi,j(β0) = ηi,j −

p
∑

d=1

βdxi,j,d − uiDu
′

j),

fi,j(βh) = (ηi,j − β0 −
∑

d6=h

βdxi,j,d − uiDu
′

j)xi,j,h,

fi,j(dk) = (ηi,j − β0 −

p
∑

d=1

βdxi,j,d −
∑

r 6=k

uirujrdr)uikujkdk.

Sampling U from its full conditional requires a bit more thought. The prior we

choose to assign to U is a uniform distribution (with respect to Haar measure) over
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the Stiefel manifold, i.e. the space of n× 2 orthonormal columns. Details on finding

the appropriate normalizing constant for this distribution can be found in James

(1954), for example, but this is unnecessary here since the constant cancels out in the

Metropolis-Hastings (MH) step. To propose a new U∗ at step t of the algorithm given

U(t−1) , we use an idea from Villani and Larsson (2006) and apply a random Givens

rotation (see e.g. Golub and Van Loan, 1996) to the current state. That is, we draw

ω ∼ U(−
π

2
,
π

2
),

and propose

U∗ = U(t−1)





cosω − sinω

sinω cosω



 .

This results in a random counterclockwise rotation of the plane spanned by the

columns of U. Because the proposal for ω is symmetric around 0, the proposal

distribution for U is also symmetric. Thus, the resulting MH ratio for this update at

iteration t is

RMH(U) =
[η|U∗, β

(t)
0 ,β(t),D(t)]

[η|U(t−1), β
(t)
0 ,β(t),D(t)]

.

To finish the updates, new values are required for η. Following Hoff (2007a) on

this step, proposals are generated from

η∗i,j ∼ N(β
(t)
0 + xi,jβ

(t)′ + u
(t)
i D(t)u

(t)′

j , φ)

and accepted according to the MH ratio

RMH(η) =
[y|η∗]

[y|η]
,

where [y|η] is the likelihood (2.3).
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Example: International Conflict (IC) Network. To illustrate the multiplicative

factor methodology, we consider a network of international conflicts between 130 na-

tions during the years 1990-2000. More details on the network can be found in Ward

and Hoff (2007). The network can actually be analyzed as directed, since information

on which country initiated each aggression is available; Hoff (2007a) focuses on mod-

elling the directed network. To make this example applicable to the undirected case,

we take yi,j = yj,i = 1 if either country i or country j initiated aggressive behavior

against the other. The graph of this undirected network is shown in Figure 2.6. We

consider two covariates,

1. The log population of country i, xi1, and

2. The polity score of country i, xi2.

The polity score is a measure of the political leanings of a country. Low scores cor-

respond to authoritarian countries, while higher scores are given to more democratic

countries (Ward and Hoff, 2007). As in the Florentine Family example, we scale the

attributes to [0, 1] and define xi,j,1 = |xi1 − xj1| and xi,j,2 = |xi2 − xj2|.

Using the above algorithm, with φ = 1 and ψ = 1000, we draw a large number of

samples from the posterior distribution; we find that again on the order of a million

iterations is needed. Figure 2.7(a) is a plot of the posterior mean probability of

connection for each pair i, j = 1, . . . , n,

π̂i,j =
1

T

T
∑

t=1

exp{η(t)
i,j }

1 + exp{η(t)
i,j }

,

where η
(t)
i,j , t = 1, . . . , T , are draws from the posterior distribution. Recall that the

log-odds themselves are treated as parameters in this model. The sociomatrix for the

observed network is given alongside for comparison (Figure 2.7(b)). With probabili-

ties shaded in reds and yellows being greater than the ones in blue, we see that the
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Figure 2.6: IC Example: Network of International conflicts.

posterior estimates of connection probabilities imitate the pattern of the observed net-

work connections, as was the case with the HRH model. The χ2 test shows additional

evidence of this over fit (Figure 2.8).

As an alternative fit assessment, Hoff (2007a) proposes looking at the number of

missing links that the model correctly predicts, i.e. consider deleting some links in

the network and treating them as missing data. The model is then fit with these

observations excluded, but note that every actor must have at least some connection

information included to be able to fit the multiplicative factor model (Hoff, 2007a).

Given the predictions π̂i,j (estimated on the reduced network), the missing links are

predicted by looking at a threshold probability. More explicitly, for some probability

pτ , predict ŷi,j = 1 if π̂i,j > pτ , and 0 otherwise, and then look at what proportion

of missing links correctly predicted. With respect to this measure of fit, Hoff (2007a)

shows the model does quite well. It is fairly clear from looking at Figure 2.7(a) that

there should exist a threshold probability such that missing links will be recovered
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Figure 2.7: IC Example: Multiplicative latent factor model fit
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Figure 2.8: IC Example: χ2 test for MF model

in this manner most of the time, i.e. imagine a plane slicing the three-dimensional

histogram (with bar heights corresponding to probability color). Thus, while this

suggests the model can be useful for predicting missing links between actors within a

sample, it is not intended for predicting connections outside the sample.

We conclude this chapter with a few summary observations about these latent

factor models. As best that we can tell, these models are not intended as predic-

tive models, at least not for making predictions at a local, pair-specific level. It is

possible that randomly generating random effects for a population and constructing

corresponding networks may capture global properties, but we do not pursue this

here. What these models are intended to do, however, they do very well: provide an

intuitive interpretation of the structure in the network. The clustering version of the

HRH model (Handcock et al., 2007), for example, which places a mixture of multi-

variate normal priors on Z, further improves the interpretation of network clustering.

These models also provide estimates for the coefficients β, so some inference on the

importance of the observed covariates X is possible. Finally, we remark again on the

large number of parameters for these models, O(n) for the HRH model and O(n2)
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for the multiplicative factor model. While this may be feasible when fitting smaller

networks, attempts at modelling larger networks may be problematic. The models we

begin to develop in the next chapter attempt to address some of these issues.
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Chapter 3

The Latent Socio-Spatial Process

Model

The latent factor models discussed in the previous chapter have many attractive

features. The Bernoulli likelihood is easy to work with, the concept of latent charac-

teristics has an intuitive interpretation, and the random effects formulation provides a

convenient mechanism for detecting and describing certain network structures. With

their large number of node-specific or pair-specific parameters, however, they have the

potential to over fit some data. While this makes them useful for predicting missing

links within a sample network, they are not particularly geared toward predicting

local network topologies or marginal probabilities of connection for actors outside the

observed sample. In this chapter, we propose a new way of thinking about modelling

network data. Rather than focusing on estimating the lack of fit in a logistic-linear

regression, we instead turn attention to more flexible modelling of the relationship

between Y and X. This is motivated by a change in perspective from modelling the

connections between “these particular actors” to modelling “actors like these.”
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When a goal of analysis is prediction, it is helpful to fit a model that links Y to

X, but does not simply reproduce Y. Therefore, we look for a way to “smooth” the

relationship between the probability of connections and attributes. How to incorpo-

rate covariates for a pair is a difficult question, but assuming homophily by attributes

seems sensible for many kinds of network data. A literal interpretation, though, i.e.

using marginal differences such as xi,j = (|xi1 − xj1|, . . . , |xip − xjp|), for example,

may not be sufficient in all cases. It might be more reasonable to expect that the

relationship between Y and X is quite complex, and may in fact change depending

on the region of the covariate space. Let X ⊆ R
p denote the p-dimensional covariate

space. In contrast to the HRH model, which posits each actor has an unobserved

position in a latent space, we focus on extracting as much information as possible

from the observed positions xi ∈ X .

We begin by assuming there exists a function z : X 7→ R that contains information

on how a relative difference between covariates xi and xj affects ηi,j, the log-odds

actors i and j are connected. That is, we propose to use

ηi,j = µ− |z(xi) − z(xj)| (3.1)

to link the expected value of yi,j to xi and xj, the idea being that the relative po-

sition in social space depends on the covariates x. To model the latent function (or

surface, we will use the two words interchangeably), z(·), ideas from spatial process

modelling will be used. Specifically, we model z(x1), . . . , z(xn) as a finite number of

“observations” from a random process {z(x) : x ∈ X}. By estimating this random

field, we are able to predict z(x0) at any location x0 ∈ X using the height of the

surface at that point. That is, we can make predictions for any actor given their

attribute vector. In this present context, the z(xi) are actually unobserved, and the

“locations” xi represent attributes measured to learn about social relations, so we
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coin this the latent socio-spatial process (LSSP) model. The height of the surface at

point xi, zi ≡ z(xi) ∈ R, is called the LSSP score for individual i. In this termi-

nology, equation (3.1) specifies that actors with similar LSSP scores are more likely

to be connected. The parameter µ is the average log-odds of connection for any two

actors with the same LSSP score. Given the latent surface z, which captures the

correlations between LSSP scores, the yi,j are modeled as conditionally independent

binary random variables, so we maintain the same likelihood (2.3).

To help explain the intuition behind this model, we contrived the following exam-

ple. Suppose one is interested in modelling the relationship between one covariate,

age, and friendship. Consistent with the notion of homophily by attributes, it might

be expected that two actors with similar ages are more likely to be friends than two

with quite different ages. One might think, however, that the impact of age difference

is relative, not absolute. If we have four actors with ages

x1 = 5, x2 = 10, x3 = 50, and x4 = 55,

intuition suggests that actors 3 and 4 are more likely to be friends than actors 1 and 2,

even though |x2−x1| = |x4−x3| = 5. In other words, the same absolute age difference

is expected to have a different impact on the likeliness of friendship depending on the

magnitude of x, or the particular region of the covariate space.

When distance is relative, sometimes a transformation can address this problem.

The function z(x) illustrated in Figure 3.1 suggests one possibility for this scenario.

In this plot, age is represented by the horizontal axis. The LSSP score for an actor

with a given age is the height of the function at that age, i.e. z(50) in this plot is the

LSSP score for any actor who is age 50. Looking at the projection of z(x) onto the

vertical axis, we see that |z(10) − z(5)| is much greater than |z(55) − z(50)|. Thus,

by comparing LSSP scores instead of the actual x values, the impact of age difference
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Figure 3.1: Absolute differences transformed to relative differences via the projec-
tion of a function.

more accurately matches intuition.

Now, consider a second covariate, annual gross income. Again, homophily by this

attribute might be expected. Suppose we have the following information on four

actors:

x3 = (50, $250K), x4 = (55, $65K), x5 = (50, $95K), and x6 = (55, $100K).

Now, one might expect that actors 5 and 6 will be friends with higher probability than

actors 3 and 4, even though the marginal age difference for each pair is the same. This

suggests – at least intuitively – that attributes can interact in their effect on Y.

As the number of covariates grows and the relationships between them become

more complex, manually specifying transformations and interactions to find the most

useful measure of relative distance is bound to become non-trivial. Thus, the function

z(x) in (3.1) is left unspecified, and during estimation the data suggests a simultaneous

transformation of all covariates for which the corresponding projection onto R most

accurately reflects homophily by attributes as it applies to the network under study.

Before moving on to discuss estimation of (3.1), we mention a few important
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features of the model. First, with respect to the actual specification of the model,

the use of absolute value, |z(xi) − z(xj)|, induces a certain amount of transitivity

as in the HRH latent position model. The minus sign in front of this term implies

that all covariates behave similarly in their impact on Y, i.e. as currently expressed,

increased distances in any covariate direction either have no effect or a decreasing

effect on the likeliness of connection. Thus, (3.1) is only intended for network data

where this is an appropriate assumption. We will revisit this point later. Also, no

coefficient is included on this difference term because estimating its magnitude would

be confounded with the estimation of z itself.

Given that actors with similar LSSP scores are more likely to be connected, the

shape of the function z(x) provides an interesting interpretation of clustering. In

regions of X where the function is flat, differences in covariates have little impact on

connection potential. Thus, these regions form groups of actors who are essentially

equally likely to be connected with each other. Conversely, if the function is changing

rapidly, this identifies regions in which small differences in x can have a big impact on

the probability of connection. Thus, it can create a boundary that separates groups

of actors. At a more global level, if the surface remains flat over the whole range of

any particular covariate, then this covariate contains little information about Y. This

suggests that looking at function “activity” in each direction can be used as a means

of identifying important variables. This is the topic of Chapter 5.

To conclude this section, we note that the proposed LSSP model in some ways

closely resembles the HRH model. Although it might be arguable that (3.1) is only

a special case of (2.5) – with the LSSP scores zi just being latent positions in a one-

dimensional social space – there are a few fundamental differences that we feel justify

considering spatial process models a new class of models for network analysis. First,
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whereas the HRH model assumes conditional independence of the yi,j given unob-

served factors exogenous to X, the LSSP model assumes conditional independence

given an appropriate transformation of X, and seeks to average the relationship be-

tween connections and attributes. As we will see, this change in perspective greatly

reduces the required number of parameters and makes prediction feasible. Second,

latent factor models emphasize fitting “noise” in order to fully explain a particular

observed network. In contrast, the latent spatial process seeks to model common

trends expected to hold at a population level, and the observed network is assumed

to be a noisy realization of these underlying probabilities.

3.1 Estimation

To estimate model (3.1) within a Bayesian framework, priors must be specified for

the parameter µ and the random field {z(x) : x ∈ X}. Choosing a prior for µ is a

relatively standard procedure, so we begin our discussion by considering a prior for z,

where more creativity is required. One of the primary advantages of the LSSP model

is that z(x) is left unspecified (to be determined by the data), so we wish to propose

a very general prior class of functions.

The first approach we considered was to use a Gaussian Process (GP) prior for

z. In a standard GP formulation (e.g. see Cressie, 1993), any finite number of

observations Z = z(X) = (z(x1), . . . , z(xn))′ are taken to have a multivariate normal

distribution with a specified mean function – usually a constant or a polynomial –

and a spatial covariance structure which determines

Cov[z(xi), z(xj)] ∀ i, j = 1, . . . , n.

This is a common tool for modelling spatial processes in many geostatistical and
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environmental applications. And while its true that many of these processes take

place in only R
2 or R

3, GP models have also been used in much higher dimensions. For

example, Sacks et al. (1989a, 1989b) introduced their use as a form of nonparametric

function estimation for the analysis of complex computer codes, which we will explore

in Chapter 5.

Although GPs can represent a broad class of functions, there is a difficulty with

using this modelling approach in the present context; namely, the function evaluations,

i.e. the LSSP scores for the sample of n actors, are unobserved. One possible solution

is to estimate z(xi) for each individual i = 1, . . . , n as part of the analysis, but this is

an extremely computationally intensive option and persists the issue of having O(n)

parameters.

In other situations where a traditional GP approach is prohibitive or too restrictive,

an alternative process convolution representation (Barry and Ver Hoef, 1996; Higdon,

1998) has proved very efficient. Some applications can be found in Kern (2000),

Higdon (2002) and Lee et al. (2005), for example. Particularly relevant, Higdon

(2006) uses a process convolution for modelling a binary spatial process (though not

pairwise, as in our situation) and Lee et al. (2007) use this approach for estimating

an unobserved initial distribution in an inverse problem.

In general, instead of specifying a GP by its mean and covariance function, a GP

can be constructed over the space X by convolving a Gaussian white noise process

α(x) with a smoothing kernel k(x),

z(x) =

∫

X

α(x)k(w − x)dw, for x ∈ X . (3.2)

Of practical importance, Higdon (2002) suggests that if the white noise process is

discretized, then the continuous spatial process z(x) can be controlled by relatively

few parameters. Specifically, if the support of α is restricted to a coarse grid W =
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{w1, . . . ,wm}, such that wr ∈ X for all r = 1, . . . ,m, then the discrete process

convolution

z(x) =
m
∑

r=1

αrk(x − wr) (3.3)

is a good approximation to (3.2), where αr = α(wr) is the value of the noise process

at site wr. In other words, the height of the surface at a point x0 ∈ X , say, is the

sum of an independent white noise process with support W weighted by a smoothing

kernel centered at x0.

As noted in Kern (2000), for example, the choice of kernel can have a large impact

on the resulting spatial process. In our case, since the process is latent, we make

the innocuous assumption that z(x) is a smooth surface over X , and thus choose an

independent p-dimensional multivariate Gaussian kernel for k. We let the width of

the kernel vary in each covariate direction by introducing parameters ρ = (ρ1, . . . , ρp),

and use the unconventional parameterization

kρ(xi − wr) =

p
∏

d=1

ρ
(wrd−xid)2

d , (3.4)

where wrd and xid are the dth element of wr and xi respectively. The ρ parameters

measure the “correlation” between function evaluations in each direction. Consider

the more standard notation

ρd = e
− 1

2σ2
d ,

where σd is the standard deviation of the kernel in the dth direction. As kernel widths

increase in a particular direction, function evaluations become more correlated (see,

e.g. Kern, 2000). Similarly, as ρd → 1, the function becomes flatter in the dth

direction. As we will see in Chapter 5, this is related to the earlier comment that

looking at the shape of the function can be used to identify important covariates.
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Using (3.4) is also convenient because 0 ≤ ρd ≤ 1, which simplifies prior specification

and MCMC exploration.

This process convolution representation of a GP can be particularly useful in

applications where a more flexible covariance function in the limiting GP is desired

(as in Barry and ver Hoef, 1996 and Kern, 2000). For this purpose, the grid points W

must be chosen sufficiently dense. For example, Higdon (2002) suggests a lattice with

points no more than the kernel standard deviation apart. Now while using a lattice

for W is feasible in R
2 or R

3, it will become extremely expensive in higher dimensions.

For example, a lattice with, say, 10 points per dimension requires the estimation of

upwards of m = 10p parameters. On the other hand, if the goal is simply function

approximation (and not covariance estimation) as in our situation, then it might be

possible to relax this requirement.

Given our particular choice of kernel, we see that (3.3) can also be viewed as a

radial basis function approximation to z(x). Hastie et al. (2001) is a useful reference

on this approach to fitting data. From this perspective, (3.3) can be interpreted

as a weighted sum of basis kernels, where kρ(x − wr) are the basis functions with

centers wr, and the weights are αr, r = 1, . . . ,m. This parallel is also recognized

in Higdon (2006). Figure 3.2(a) illustrates how a smooth process is generated over

X = [0, 1] using this approach. The circles on the horizontal axis mark the locations

of 6 grid points, w1, . . . , w6, and the heights of the kernels correspond to random

weights α1, . . . , α6. Figure 3.2(b) is the resulting sum of the weighted kernels.

For the purpose of function approximation, if the function is observed at n points

X ∈ X , often these locations themselves are used as the centers for the kernels (again,

we refer to Hastie et al., 2001). As a justification for reducing the number of grid

points, m, in our function representation, we think in terms of these radial basis
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Figure 3.2: Radial basis function approximation

functions rather than limiting GPs. In particular, we make the following argument.

Suppose for the purpose of approximating a surface over X , one has the opportunity

to choose a set of locations in X at which the function will be observed. Given this

chance, what is a good choice of locations?

When designing a computer experiment, for example, where input settings at

which the computer code is to be run are selected, often a Latin hypercube design

(LHD, McKay et al., 1979) is a reasonable choice of input settings. Therefore, given

that no evaluations of the function are ever observed in our case anyway, it seems

reasonable to choose W for use in (3.3) as a LHD over X , in the spirit that if we

could observe the function, we would choose to do so at these points. In practice,

we typically use a LHD with 10 points per dimension. This “10p” rule of thumb is

fairly standard in choosing designs for high-dimensional computer experiments (Jones

et al., 1998). We also use a “space-filling” optimization to ensure the design points

are evenly spread out over X . This choice of W greatly reduces the required number

of parameters α = (α1, . . . , αm) as compared to a dense grid, and it appears to fill

X enough for our needs. See Chapter 7 for more discussion on approximating radial

basis functions in this way.
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To summarize, the prior class of functions we choose for z is

z(x) =
m
∑

r=1

αrkρ(x − wr),

with the kernel given by (3.4). The locations of the kernel centers, W , we choose

according to a Latin hypercube design on X with about 10 points per dimension. We

scale X to [0, 1]p to facilitate the selection of this design, which does imply there is

a prior range of interest on each of the covariates. An advantage of this prior class

of functions is that it is completely governed by only m+ p parameters, α and ρ. It

remains to specify priors for these unknowns.

Because the function z only appears in (3.1) as a difference, we assume without

loss of generality that it is a mean zero process – any mean parameter would be

non-identifiable. In particular, the prior we use for α is

α ∼ N(0, Im),

where Im is the m × m identity matrix. Note that the resulting implied covariance

structure for the latent surface is

cov[z(xi), z(xj)] =
m
∑

r=1

kρ(xi − wr)kρ(xj − wr),

i.e. the covariance between two function evaluations depends on how far each attribute

is from the fixed center points. For ρ, we use non-informative priors

ρd ∼ U [0, 1], d = 1, . . . , p.

Though other choices can be used, these yield a broad enough class of prior functions

for any applications we have considered to date. The remaining parameter in (3.1) is

µ, to which we assign a

µ ∼ N(0, ψµ)
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prior. Taking ψµ to be fairly large makes this prior vague. Recall that this parameter

represents the average log-odds of connection between two actors with the same LSSP

score. This choice of prior centers this probability at 50%.

Given the Bernoulli likelihood (2.3) and the above priors for the m+ p+1 param-

eters (where m is typically 10p), the full posterior distribution for the LSSP model is

simply

[µ,α,ρ|y] ∝ [y|µ,α,ρ][µ][α][ρ].

Since the full conditionals for all parameters are nonstandard, an MCMC algorithm

with a Metropolis-Hastings algorithm is used to generate realizations (µ(t),α(t),ρ(t)),

t = 1, . . . , T from the posterior distribution. Using these draws, we are able to easily

generate some posterior quantities that are of particular interest.

First, the height of the surface, i.e. the LSSP score, at any point x0 ∈ X can be

predicted using the posterior expectation

ẑ(x0) = E[z(x0)|y] =
1

T

T
∑

t=1

z(t)(x0) =
1

T

T
∑

t=1

m
∑

r=1

α(t)
r kρ(t)(x0 − wr).

Also, a prediction of the marginal probability that any two actors i0 and j0 are con-

nected, given their attributes xi0 and xj0 , is simply

π̂i0,j0 = E

[

eηi0,j0

1 + eηi0,j0
|y

]

=
1

T

T
∑

t=1

eη
(t)
i0,j0

1 + eη
(t)
i0,j0

,

where

η
(t)
i0,j0

= µ(t) − |z(t)(xi0) − z(t)(xj0)|.

We refer back to Chapter 1 for these results.

Example: Synthetic Network (SN) of Actors with Two Covariates. To

illustrate the proposed LSSP methodology, we demonstrate estimation and prediction

49



0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

−1

0

1

2

3

4

5

x
1x

2

(a) An LSSP in R
2

10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

0.02

0.04

0.06

0.08

0.1

(b) Probability of connection for n = 75 individuals

Figure 3.3: SN Example: LSSP and connection probabilities.

using a network that is constructed under the pretense that the LSSP assumption is

true. That is, suppose the surface over X = [0, 1]2 shown in Figure 3.3(a) is the LSSP

that relates attributes to the log-odds of connection for a network. We generate a

sample of n = 75 actors by uniformly choosing attribute vectors xi ∈ X , i = 1, . . . , n.

LSSP scores are assigned to each actor according to the height of the surface in Figure

3.3(a) at locations x1, . . . ,xn.

Using (3.1) with µ = −2, we calculate the probability that each pair of actors in

this sample is connected. These probabilities are plotted in Figure 3.3(b). Again, in

this type of plot, “hotter” colors represent larger probabilities, and “cooler” colors

smaller. According to these probabilities, we independently generate binary random

variables, which we then treat as the observed network for this sample – see Figure

3.4(a). The corresponding image representation is plotted alongside in Figure 3.4(b).

Treating this network as observed, we implement the above estimation procedure to

recover the underlying LSSP.

To begin, we choose m = 20 w1, . . . ,wm ∈ X as the centers for our basis kernels
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Figure 3.4: SN Example: Alternative visual representations for a network with 75
people.

(3.4) points according to the “10p” rule. These locations are shown in Figure 3.5(a).

In this example, there are a total of 23 parameters to be estimated: µ, ρ = (ρ1, ρ2), and

α = (α1, . . . , α20). We use the priors given above, with the specific choice ψµ = 10. An

MCMC algorithm with a Metropolis-Hastings step is used to generate a large number

of draws from the posterior distribution [µ,α,ρ|y]. Figure 3.5(b) plots the posterior

means of the parameters α1, . . . , α20 at their respective locations w1, . . . ,w20 ∈ [0, 1]2.

The stems represent the magnitude and direction of the parameters from zero. In

particular, stems going up represent positive parameter estimates, and stems going

down negative parameter estimates. The posterior mean of the latent surface over the

covariate space is given in Figure 3.6(a). This is created by predicting the posterior

mean of z over a fine grid in [0, 1]2. The circles marked on this surface are the estimated

LSSP scores for the original sample of n = 75 actors. By comparing Figures 3.3(a)

51



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Chosen basis kernel centers

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

(b) Posterior mean estimates of basis weights

Figure 3.5: SN Example: Locations and posterior estimates of basis weights.

and 3.6(a), we see that the estimation procedure seems to have done a reasonable

job of predicting the underlying function, i.e. the estimated surface and true surface

appear very similar. The posterior mean probabilities of connection for this sample,

evaluated for all pairs i, j = 1, . . . , n, are plotted in Figure 3.6(b).

To illustrate how the LSSP model can reveal clusters of connections, we sort the

actors with respect to their estimated LSSP scores, from lowest to highest. Figure

3.7(a) is a plot of the posterior probabilities of connection as in Figure 3.6(b), but

with the rows and columns permuted in order of LSSP scores. In this case, since the

true probabilities of connection are actually known, as shown in Figure 3.3(b), we can

apply the same permutation to these as an ad hoc assessment of fit. This is done in

Figure 3.7(b). Finally, we can permute the rows and columns of the sociomatrix, and

see that there is evidence of this clustering pattern in the observed network. This is

illustrated in Figure 3.8.

The above-mentioned plots give evidence of adequate fit. To more objectively

assess fit, however, we generate a number of replicate sociomatrices (using the sample

covariates) and compare a variety of network statistics from the observed sociomatrix
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Figure 3.6: SN Example: Posterior mean estimates.
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Figure 3.7: SN Example: Probabilities of connection sorted by LSSP scores.
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Figure 3.8: SN Example: Sociomatrix sorted by LSSP scores.

to the distribution of the same statistics calculated using the replicate sociomatrices.

In Figure 3.9(a), the solid line is the degree sequence for the observed network, and the

dashed lines are pointwise 90% credible intervals of degree sequences corresponding to

replicate sociomatrices. The boxplots show the whole replicate distributions of each

element in the degree sequence. We can also look at the number of edges in the graph

as in Figure 3.9(b). This plot shows the observed number of edges as a vertical line

and a smooth histogram of the replicate distribution of edges. The minimum geodesic

sequence is shown in Figure 3.9(c), again with the observed sequence in a solid line

and pointwise 90% intervals and boxplots from the replicate distribution. The last

boxplot on the far right is for the number of pairs that have an infinite geodesic

distance. To assess fit more locally, we plot the observed degrees for each actor in the

network in Figure 3.9(d). Here, the observed degrees are plotted as circles, and 90%

pointwise credible intervals for each actor are indicated by the dashed lines. The null

distribution of a plug-in χ2 goodness of fit test is drawn in Figure 3.10. The observed

statistic (denoted by a triangle) is in the center of this distribution, suggesting a good

fit.

While all of these plots can be used to argue that the estimated model “fits” the
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data fairly well, they do not give any indication of its predictive ability. For this, we

consider a Bayesian cross-validation (CV) procedure.

3.2 Bayesian Cross-Validation

Cross-validation is a useful procedure for testing the predictive ability of a model.

Broadly speaking, the idea is to fit a model using only a portion of the available data,

then predict responses for the withheld sample and make comparisons to the truth.

Ideally, to minimize the impact of the choice of split, this will be repeated a number

of times. A difficulty in the Bayesian context is that each fit of the model requires

MCMC sampling of the posterior distribution. To make implementation feasible,

we follow a Bayesian cross-validation technique proposed by Alqallaf and Gustafson

(2001).

We begin by randomly splitting the n actors into two groups, a training set and a

validation set. We fix the number of actors in the training set to be nT , and thus the

number in the validation set is taken to be nV = n−nT . Let Ts and Vs denote the set of

indices of actors in the training set and validation set, respectively, given a particular

split, s, of the actors. The training data to be used is the
(

nT

2

)

×1 vectors with elements

{yi,j : i < j, (i, j) ∈ Ts}, which we denote by yT (s). The validation responses we wish

to predict are yV (s), which we define as all unique pairs of connections between each

of the actors in the validation set and all other n− 1 actors in the sample. Figure 3.2

is a conceptual drawing of these entities. For convenience, the actors are ordered by

training set and then validation set in this drawing.

After dividing the actors, we sample (µ
(t)
s ,α

(t)
s ,ρ

(t)
s ) from the posterior distribution

56



Figure 3.11: Training and validation data

given the training data,

[µs,αs,ρs|yT (s)] ∝ [yT (s)|µs,αs,ρs][µs][αs][ρs].

We use the subscript s here to emphasize that the training data corresponds to a

particular split, s, of the actors. Then, a prediction ŷ
(t)
V (s) is drawn from

[yV (s)|µ
(t)
s ,α

(t)
s ,ρ

(t)
s ,yT (s)].

Note that given the conditional independence assumption for the network connections,

each element of ŷ
(t)
V (s) is predicted by the generation of an independent Bernoulli

random variable with the log-odds specified by (3.1). This process is first repeated

for many draws t = 1, . . . , T from the posterior distribution given the training data

for a particular split. Finally, it is then repeated for many splits, s = 1, . . . , S.

For each prediction ŷ
(t)
V (s), we wish to compare it to the observed responses yV (s)

using a specified “error” function

ǫ(ŷ
(t)
V (s),yV (s)).

For example, one obvious choice might be

ǫ(ŷ
(t)
V (s),yV (s)) = ‖ŷ(t)

V (s) − yV (s)‖
2,

which for binary response is the total number of wrongly predicted responses. How-

ever, given the sparsity of most sociomatrices, i.e. the large number of zeros, we find
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that this sum of squared prediction error gets “swamped” by correctly predicted ze-

ros. That is, there are only two options for predicted responses, and any model that

mostly predicts zeros will actually be right most of the time.

Since local topologies are one feature of networks that particularly interest us, we

consider error functions that compare the degree of actors in the validation set to

their true degrees, and similarly for extended degree. Note that our definition of yV (s)

includes connections between validation actors and all other n − 1 actors, so we are

able to calculate these predicted topological quantities. In particular, we consider two

functions

ǫ1(ŷ
(t)
V (s),yV (s)) =

1

nV

∑

i∈Vs

I[d
(t)
i ≤ di], (3.5)

and

ǫ2(ŷ
(t)
V (s),yV (s)) =

1

nV

∑

i∈Vs

I[e
(t)
i ≤ ei], (3.6)

where I is the indicator function. Here, d
(t)
i , and respectively e

(t)
i , are calculated using

the predicted response ŷ
(t)
V (s), whereas di and ei are the true degree and extended

degree of each validation actor.

To average over the predictive distribution of the responses given the training data

and the different splits, we calculate

ǫ̂ = E[ǫ] ≈
1

S

S
∑

s=1

1

T

T
∑

t=1

ǫ(ŷ
(t)
V (s),yV (s))

for each of the error functions. From Alqallaf and Gustafson (2001), this is the

so-called “silver estimator” for the cross-validation error, since we must sample the

predictive distribution, i.e. we do not have an analytical solution. By using the

discrepancy measure (3.5), we are finding on average what percentile of the predictive

degree distribution is the true degree of a validation actor. A similar interpretation

holds for (3.6).
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As a final remark, one might recall that Hoff (2007a) uses a form of cross-validation

to assess the ability of the multiplicative latent factor model to predict missing links.

In that implementation, every actor in the sample must have at least one pairwise

observation available in the training set. Here, on the other hand, validation actors

are completely removed from the training data. This emphasizes the change in per-

spective toward making population-level predictive inference.

Example: The Synthetic Network (SN) Revisited. To implement the above

cross-validation procedure for the synthetic network example, we divide the n = 75

actors into nT = 50 training actors and nV = 25 validation actors. For one particular

split of the data, Figure 3.12 shows the location of the observed degree (the solid

vertical line) in the predictive degree distribution for each of the nV actors. Here,

each plot corresponds to one actor in the validation set. If an actor has a degree of

zero in the observed network, this is noted by a triangle. For this same split, we also

consider the bivariate predictive distribution of degree and extended degree for each

validation actor. This is shown in Figure 3.13 for the same 25 actors. In each of these

plots, degree is on the horizontal axis and extended degree on the vertical. The true

pair (di, ei) for i ∈ Vs is indicated by a solid red dot. The other points are predicted

pairs (d
(t)
i , e

(t)
i ) for a number of draws of the predicted sociomatrix given the training

data for this split. Averaged over S = 50 splits, we evaluate ǫ̂1 = 0.61 and ǫ̂2 = 0.53.

As there are currently no other results against which to compare these, we can only

comment that it seems positive that the observed degree (and extended degrees) for

validation actors are on average not extreme values in the predictive distributions.

We will revisit related issues in Chapter 6 when considering disease propagation.
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Figure 3.12: SN Example: Validation set degree distribution.
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Figure 3.13: SN Example: Validation set degree by extended degree.
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3.3 Examples

In this section, we use the LSSP model to analyze two networks that have been previ-

ously explored in the network literature (one being the International Conflict network

which we have already seen). For each example, we estimate the parameters of the

LSSP model, look at some goodness-of-fit plots, and run the cross-validation proce-

dure.

Example: Adolescent Health (AH) Survey. The first network we consider is a

friendship network compiled as part of the National Longitudinal Study of Adolescent

Health (Resnick et al., 1997). This is a very large survey of students in the USA

conducted to monitor the long-term outcomes of health-related adolescent behaviours.

One network from this study was considered by Handcock et al. (2007) in their

exploration of the latent cluster model mentioned in Chapter 2. They also provide

more details on the design of the study. The particular network we consider consists

of 205 students from one school, which is available as part of the R package statnet

(Handcock et al., 2003). The graph for this network is shown in Figure 3.14. Here,

yi,j = 1 for a pair of students if either i or j reported the other as a friend on a

questionnaire. We note that the network as given is not exactly one obtained from

the study, but rather one that has been reconstructed for confidentiality reasons to be

similar, as explained in the statnet manual. The covariate we consider is the grade

of each student, which for this example are grades 7-12.

To estimate the LSSP model, the covariate grade is first scaled to [0, 1], where 0

corresponds to Grade 7 and 1 corresponds to Grade 12. We use m = 10 kernel centers

for this one-dimensional covariate, equally spaced between 0 and 1. The posterior

mean of the function z(x) is shown in Figure 3.15(a). The posterior mean probabilities
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Figure 3.14: AH Example: Friendship network of 205 students

of connection for each pair of students, where the students are sorted by LSSP score

(from lowest to highest), is shown in Figure 3.15(b). We note that by (3.1), students

in the same grade will have the same LSSP score, and will be equally likely to be

connected. This is clearly seen in the plot of the sorted posterior probabilities. This

suggests that in future research it might be interesting to allow the parameter µ to

change over the covariate space, but how to do this with covariates for each pair is

still an open problem.

What is more interesting from Figure 3.15(a), however, is how LSSP scores change

between grades. The estimated function changes rapidly between grades 7-9, so there

is little probability of mixing between these groups. However, the rate of change slows

between grades 10-12, implying more mixing in the higher grades. This is also seen in

Figure 3.15(b), where the blocks of probability in the lower right corner (corresponding

to the higher grades) show more blending than the disjoint blocks corresponding to

grades 7, 8 and 9 (recall that the sorting in this plot is from lowest to highest LSSP
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Figure 3.15: AH Example: Posterior mean estimates.

scores). Figure 3.16 shows the observed sociomatrix with the same permutation of

students with low to high LSSP scores, which shows these blocking patterns to appear

in the observed connections. It might seem surprising that the posterior estimate of

z decreases between Grades 11 and 12. This is due to the fact that there are very

few Grade 12 students in this network, and it just so happens that of the few there

are, many of them are connected to younger students, so the scoring for a Grade 12

student adjusts itself accordingly.

We remark that when Handcock et al. (2007) apply the latent position cluster

model to a similar network (they use a connected network with 71 students, in part

because the method cannot handle isolated individuals), they find clusters amongst

the students that are very much associated with grade. In particular, they find little

mixing between Grades 7, 8, and 9 students, and more mixing between the higher

grades, similar to our interpretation. Fitting a latent position model, however, re-

quires one parameter for each student plus some (i.e. approximately 230 parameters

for the network we are exploring), whereas the LSSP is fit using only 12 parameters
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Figure 3.16: AH Example: Sorted sociomatrix.

(µ, ρ, α1, . . . , α10). We note, however, that this is not a totally fair comparison since

it is possible the network we analyzed had emphasized clustering (due to its recon-

struction). Also, we reiterate that the goals of the two analysis approaches are quite

different.

In any case, we move on to consider some goodness-of-fit plots. In particular, we

consider the same five plots that we used for the SN Example. The first plot, Figure

3.17(a), shows the degree sequence for the observed friendship network in a bold, red

line, and pointwise boxplots and 90% intervals corresponding to the replicate degree

sequences. We can see here that the model expects many less isolates than were

observed. Figure 3.17(b) plots a smoothed histogram of the edge count of a number

replicated sociomatrices, as well as the observed count of edges as a vertical line. The

minimum geodesic sequence is shown in Figure 3.17(c), with the far right boxplot

representing pairs that have an infinite geodesic distance. Finally, the degrees of each

of the 205 students are plotted in Figure 3.17(d) as red circles, with pointwise 90%

intervals given by the dashed lines. The null distribution and test statistic for the

χ2 goodness-of-fit test is given in Figure 3.18. We see that this observed statistic
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Figure 3.17: AH Example: Goodness-of-fit statistics

(identified by the triangle) is a bit extreme in the null distribution. This is partly

due to the impact of the ordinal categorical covariate, grade. While such covariates

can be included in the analysis, we find it is best if they have more categories than

the 6 grades here. For example, though we exclude these results here, we found that

substituting ages for the grades improved the fit but did not change the interpretation

(we did this in an ad hoc way that assumed 2-3 different ages per grade). This suggests

that the information in the grade covariate in this particular example may be just a

bit too coarse. See the discussion in Chapter 7 for more on categorical covariates.

Using the cross-validation procedure described in the previous section, we divided

the students into a training set with nT = 155 students and a validation set with the
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Figure 3.18: AH Example: χ2 test.

remaining nV = 50 students. For one particular split, Figure 3.19 shows the predic-

tive degree distributions for each of the actors in the validation set given the training

data, with the true degree of each actor represented by a vertical line. Figure 3.20

is the corresponding bivariate plot of predicted degree by extended degree. Again,

the true pair for each actor is marked by a red circle. These plots suggest there are

still some challenges to be resolved with handling outliers, i.e. students that have no

connections or many connections. Averaging over S = 50 splits, we obtain ǫ̂1 = 0.54

and ǫ̂2 = 0.56 for the prediction of degrees and extended degrees, respectively.

Example: International Conflict (IC) Network. The second example we con-

sider in this section is the network of international conflicts between 130 nations

discussed in Chapter 2. Recall for this network (pictured again here in Figure 3.21)

yi,j = 1 if there was a conflict between countries i and j during the period 1990-2000.

The covariates we consider are log population (x1) and polity score (x2).

After scaling the covariate space to [0, 1]2, we use 20 basis kernel center w1, . . . ,w20

to anchor the LSSP. There are a total of 23 parameters to be estimated. The posterior

mean of z(x) is shown in Figure 3.22. The circles marked on the surface identify the

LSSP scores for the 130 countries. This LSSP provides an interesting interpretation
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Figure 3.19: AH Example: Validation set degree distribution.
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Figure 3.20: AH Example: Validation set degree by extended degree.

Figure 3.21: IC Example: Network of conflicts between 130 nations.
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Figure 3.22: IC Example: Posterior mean LSSP

about the effect of these two covariates on the probability of a conflict. Notably, for

democratic countries (high polity score), the surface changes rapidly as a function

of population. Therefore, there appears to be a low probability of aggressive be-

haviour between large and small democratic countries (since they are at such different

heights). This effect is less pronounced for more authoritarian countries, highlighting

the interaction between these two attributes. Rather than having conflicts with small

countries, large democratic countries are on a more “level set” with moderately-sized

authoritarian countries (as seen in the LSSP plot). This may be in large part due to

conflicts between, for example, the Unites States and Middle Eastern countries in the

1990s.

In Figure 3.23(a) we plot the posterior mean probability of connection between

these 130 countries. As before, the rows and columns have been permuted from lowest

to highest LSSP. This reveals the sizes of the clusters found by the function fitting.

One might note that this yields quite a different image of connection probabilities

than the multiplicative factor model discussed in Chapter 2. The sociomatrix for this

network is plotted in Figure 3.23(b) with the same LSSP permutation. This reveals
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Figure 3.23: IC Example: Sorted posterior mean probabilities and sociomatrix

some evidence of this clustering, though the network is quite sparse.

Looking at the more “formal” goodness-of-fit plots reveals some interesting ob-

servations about the impact of outliers. The plot of the degree sequence in Figure

3.24(a) shows again the difficulty with generating enough isolated nodes from a model

fit to the average. Comparing the observed number of edges to those in the replicate

distribution in Figure 3.24(b) shows good correspondence on this network property.

More interesting is looking at local statistics such as degree and extended degree. Fig-

ure 3.24(c) plots the degree of each country as a red circle and gives pointwise 90%

bounds. From this, it seems the model did a fairly good job of explaining individual

degrees, except for two outlier countries which are much more connected than any of

the others (Iraq and Jordan). Figure 3.24(d) shows the same local fit but of extended

degree. This illustrates how inability to fit on some network properties (such as de-

gree) can propagate through to higher-order topologies. By underfitting the highly

connected countries Iraq and Jordan, there is much more error in the fit of extended

degrees as a result, since their degrees contribute to the extended degrees of all of

their neighbours. If we remove Iraq and Jordan from the calculation of degree and
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Figure 3.24: IC Example: Goodness-of-fit statistics

extended degree, we see that it reduces the number of outliers in the extended degree

plot (Figure 3.25). The null distribution of the χ2 test shown in Figure 3.26 suggests

a decent overall fit.

While fitting the LSSP model to this network yields some interesting interpreta-

tions, it is also useful to examine how it would predict conflicts if the network had not

been collected for all 130 countries, but only a sample. We divide the countries into a

random split of nT = 105 training countries and nV = 25 validation countries. For this

one split, the observed degree compared to the predicted degree for each validation

country is given in Figure 3.27. Figure 3.28 shows the corresponding bivariate distri-

bution of degree (on the horizontal) and extended degree (on the vertical). Averaging
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Figure 3.26: IC Example: χ2 test.
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Figure 3.27: IC Example: Validation set degree distribution.

over S = 50 splits, we get ǫ̂1 = .49 and ǫ̂2 = 0.58.

3.4 Discussion

To conclude this chapter, we include a brief discussion on a couple of points. First,

a few comments on computational requirements for the LSSP model. Second, we

explore the LSSP assumption that increased differences between attributes always

decrease the probability of connection.
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Figure 3.28: IC Example: Validation set degree by extended degree.
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Figure 3.29: AH Example: MCMC trace plots.

3.4.1 LSSP Computational Requirements

As mentioned in the last chapter, for latent factor models the MCMC algorithm

must be run for quite a long time before it converges (in the ballpark of 1 million

iterations). The LSSP examples we consider in this chapter typically require on the

order of 100,000 iterations to converge. The largest example, the adolescent health

example with 205 students, will run in about two hours on a laptop programmed in

MATLAB. To illustrate what typical trace plots look like, we show trace plots for µ

and ρ in the adolescent health example, which we ran for 100,000 iterations (Figures

3.29(a) and 3.29(b)). These plots show the last 50,000 scans which were kept after

discarding the first half as burn-in. We find that these two parameters, especially ρ,

are in general the slowest to show good mixing.

3.4.2 Revisiting the Homophily Assumption

Recall that the specification of the LSSP model in (3.1) forces the log-odds of con-

nection to decrease as a function of increased differences in LSSP scores. While a
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Figure 3.30: FF Example: Fitting an LSSP model

positive correlation between homophily by attributes and connections is a reasonable

assumption for many social networks, it will not always be the case. We have actually

already seen one network where this assumption is violated, the Florentine Family

network. Here, the likeliness of a marriage increases with more discrepancy in wealth

– perhaps some marriages were arranged for mercenary reasons.

If the LSSP model is fit to a network for which the assumptions do not hold, the

result is what would be expected. Figure 3.30 shows the posterior mean of the LSSP

over the range of x, wealth of family (scaled to [0, 1]) when the LSSP model is fit to

the Florentine Family network. Seeing this result one would immediately question if

the assumptions of the model hold.

Provided it is known a priori that all covariates have this opposite effect, the

model can simply be specified as

ηi,j = µ+ |z(xi) − z(xj)|. (3.7)

Fitting this alternative model to the Florentine Family network yields a more satis-

factory fit. Figure 3.31(a) shows the new posterior mean of the LSSP over wealth

(again scaled to [0, 1]). The posterior mean probabilities of connection are shown in

Figure 3.31(b). Out of interest, the two families that are most likely to be involved
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Figure 3.31: FF Example: Fitting a positive LSSP model

in marriages are the wealthiest.

In general, suppose the covariate vector can be separated as xi = (x−
i ,x

+
i ), where

x−
i are the attributes for which (3.1) holds and x+

i are better fit by the alternative

(3.7). Then a more encompassing version of the LSSP model is potentially

ηi,j = µ− |z1(x
−
i ) − z1(x

−
j )| + |z2(x

+
i ) − z2(x

+
j )|,

where z1(x) and z2(x) are two different surfaces modelled over the separate attribute

spaces. We do not pursue this further here, but leave it as a potential avenue for

future exploration.

In summary, we propose the LSSP model as a means to explain the tendency

for actors to connect via a flexible measure of difference between attributes. Rather

than describing how a particular set of actors connect, we seek to model how similar

actors might connect. Of particular note, we are able to do this with significantly

fewer parameters than the latent factor models previously discussed. There are some

weaknesses of this methodology, however, such as the assumed direction of homophily
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by attributes. In the next chapter, we consider the possibility of a more general model

specification.
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Chapter 4

The Meta-Distance Model

As we have been delineating, building models that average the relationship between

attributes and pairwise binary observations is a challenging – but useful – exercise. In

the last chapter we introduced the use of a spatial process model that assigns a score

to each actor as one potential approach to this problem. In this chapter, we expand

further upon the idea of using spatial process models for network analysis.

One weakness of the LSSP model is that it requires prior knowledge of whether

differences in attributes increase or decrease the log-odds of connection. Spatial pro-

cess models are so flexible it begs the question, why assume any kind of relationship

at all? That is, we consider a more general model

ηi,j = µ+ z(xi,xj),

where z is some unspecified function of xi and xj. Rather than yielding scores (which

are then compared), here the latent function directly models the log-odds of connec-

tions up to a constant shift. As appealing as this sounds, we are somewhat restricted

by the requirement that covariates for two actors have to be incorporated into the
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model. In particular, in the case of undirected graphs, this has to happen in a symmet-

ric way. Our intention in this chapter is to take some initial steps in the exploration

of this kind of model. We emphasize that there are many kinds of network data, and

this approach may be a reasonable alternative for some.

To incorporate pairs of covariates symmetrically, we turn again to the concept

of homophily by attributes. Despite our argument in the last chapter that absolute

differences between covariates may not always be appropriate, we rely on these for

this alternative model. In particular, we consider using

ηi,j = µ+ z(|xi − xj|) = µ+ z(|xi1 − xj1|, . . . , |xip − xjp|) (4.1)

to directly model the log-odds of connection. Note that here we use a slight abuse of

notation, |xi−xj| = (|xi1−xj1|, . . . , |xip−xjp|) for convenience. We will use the same

spatial process approach for modelling z as before, but here the correlation between

ηi,j and ηk,l for any two pairs will depend on the distances (relative to fixed points W)

between their attribute dissimilarities, |xid − xjd| and |xkd − xld|, in each component

d = 1, . . . , p. That is, two pairs of actors that are equally dissimilar in all attributes

will have the same log-odds of connection. This “distance of distances” interpretation

prompted us to call this the meta-distance (MD) model.

We note that if comparing absolute differences is not ideal for a particular covari-

ate, then if possible a marginal transformation should be made before using (4.1). For

example, a log transformation may work well for some attributes. Whether the LSSP

or this formulation (or neither) is preferable will certainly depend on the application.

In general, leaving z unspecified in (4.1), however, does allow for interactions between

the covariate dissimilarities as well as complex marginal effects.

Many of the ideas involved with the estimation of the LSSP model can be borrowed

in this context. Assuming conditional independence of the yi,j given the ηi,j, i.e.
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given µ and z, we have the same Bernoulli sampling model (2.3) for the pairwise

observations. For the function z, which in this context we refer to as the MD surface,

we use the prior class of functions

z(|xi − xj|) =
m
∑

r=1

αrkρ(|xi − xj| − wr). (4.2)

Assuming the covariate space is scaled to be X = [0, 1]p, then 0 ≤ |xid − xjd| ≤ 1

for d = 1, . . . , p, as well. The MD surface (4.2) is therefore taken to be over the

space of covariate differences, which we define as XD = [0, 1]p. This space ranges from

differences of 0 to differences of 1 in each covariate. The centers W = {w1, . . . ,wm :

wr ∈ XD} are now interpreted as fixed points in this space of differences. As before,

we choose W as a LHD with typically m = 10p points.

The unknowns in (4.2) are α = (α1, . . . , αm) and ρ = (ρ1, . . . , ρp). The correlation

parameters ρ for the MD model dictate how much a change in the dissimilarity of the

dth covariate impacts the log-odds of connection. For a prior for α, we use

α ∼ N(0, Im).

Note that this implies

cov[z(|xi − xj|), z(|xk − xl|)] =
m
∑

r=1

kρ(|xi − xj| − wr)kρ(|xk − xl| − wr).

This reiterates the meta-distance interpretation. For the ρ parameters we assume

ρd ∼ U [0, 1]; d = 1, . . . , p.

While these priors specify the prior class of functions for z, we are left to determine

a prior for µ in (4.1). Here, a vague N(0, ψµ) prior is used.

The posterior distribution for the MD model is simply

[µ,α,ρ|y] ∝ [y|µ,α,ρ][µ][α][ρ],
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where [y|µ,α,ρ] is the Bernoulli likelihood (2.3) with ηi,j specified by (4.1). Sampling

from the full conditionals requires a Metropolis-Hastings step. By taking a large

number of draws (µ(t),α(t),ρ(t)), t = 1, . . . , T , from the posterior distribution, we

can easily predict the height of the MD surface for any pair of actors i0 and j0 with

attributes xi0 and xj0 by

ẑ(|xi0 − xj0|) = E[z(|xi0 − xj0|)|y] ≈
1

T

T
∑

t=1

m
∑

r=1

α(t)
r kρ(t)(|xi0 − xj0|).

Similarly, the predicted probability of connection for the pair is

π̂i0,j0 = E

[

exp{ηi0,j0}

1 + exp{ηi0,j0}
|y

]

≈
1

T

T
∑

t=1

exp{η(t)
i0,j0

}

1 + exp{η(t)
i0,j0

}
,

where

η
(t)
i0,j0

= µ(t) + z(t)(|xi0 − xj0|).

We illustrate the interpretation and fitting of the MD model with two examples.

Example: Meta-distance (MD) Synthetic Network. We begin by constructing

a network under the assumption that the MD model is true. Consider the covariate

space X = [0, 1]2. We randomly generate n = 60 actors with attributes xi ∈ X ,

i = 1, . . . , n. The distances |xid − xjd| are calculated for each pair i < j, d = 1, . . . , p.

These distances lie in the space XD = [0, 1]2 representing distances between pairs.

Figure 4.1(a) shows the MD surface over XD that specifies the log-odds that each pair

of actors is connected for this example. Here, we see that the log-odds of connection for

a pair is greatest when they have a dissimilarity of one in both attributes. Conversely,

it is lower when they are the same on both attributes. Note that the LSSP model

would do poorly when this is an accurate description of the relationship between

covariates and connections. We emphasize the difference in how the MD surface is
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Figure 4.1: MD Example: Latent surface and connection probabilities.

interpreted; it is a literal representation of the log-odds of connection for each pair.

Therefore, the MD surface is to be estimated for all
(

n
2

)

pairs, rather than just on the

n actors as for the LSSP model. We generate independent Bernoulli random variables

according to the log-odds (4.1) with µ = −0.5 to get our observed network. The

probabilities of connection for this example data are shown in Figure 4.1(b).

We begin analysis by specifying 20 kernel basis centers according to a LHD in the

difference space XD. Treating the generated network as the observed observations,

we use the above priors (with ψµ = 10) and draw realizations from the posterior

distribution [µ,α,ρ|y]. The posterior mean MD surface is shown in Figure 4.2(a).

We see that it is a reasonable estimate of the true surface. The heights at locations

corresponding to the
(

n
2

)

pairs are marked by circles in this plot. Figure 4.2(b) shows

the corresponding mean probabilities of connection (which are averages of draws of

the MD surface adjusted by draws of µ). Again, we use the scale of dark blue to dark

red to represent smaller to larger probabilities. We see that the fitted probabilities

are slightly lower than the true probabilities, which appears to be a by-product of
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Figure 4.2: MD Example: Posterior means of latent surface and connection proba-
bilities.

the posterior estimate of µ given this particular data set. With the estimates of the

MD surface being pairwise instead of actor-oriented, there is no obvious sorting of

the probability maps for the MD model as there was for the LSSP model. We can,

however, look at goodness-of-fit plots as before.

For this synthetic example, we consider four goodness-of-fit plots. We begin by

looking at the degree sequence and corresponding replicate bounds in Figure 4.3(a).

The replicate distribution of the number of edges is shown in Figure 4.3(b). A more

local assessment, the individual degrees, are plotted with pointwise 90% bounds in Fig-

ure 4.3(c). Finally, in Figure 4.3(d) we have the null distribution for the χ2 goodness-

of-fit test. The observed test statistic is marked by a red triangle. These plots suggest

the model did fit the particular observed network well.

Example: Florentine Family Network. Recall that the LSSP model did not ini-

tially fit the Florentine Family marriage network until modifications were considered.
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Figure 4.3: MD Example: Goodness-of-fit plots.
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The meta-distance model, on the other hand, will fit this network automatically. We

scale the covariate wealth to [0, 1], and then calculate the pairwise differences between

the 16 families. Since there is one covariate, we use 10 kernel basis functions to model

the latent MD surface. Figure 4.4 shows the resulting posterior mean of the MD

function, with the locations of the
(

16
2

)

pairs in the distance space marked by circles.

As previously discussed for this network, we see that the log-odds for a pair increases

as the difference in wealth growths. This is immediately detected by the MD model.

We remark on the interpretation of the MD function. For example, pairs that are

dissimilar by 0.6-0.7 in the scaled value of wealth have the highest posterior proba-

bility of being connected. On the other hand, the lowest probability of connection

is for pairs that have the same wealth. Unlike for the LSSP model, the magnitude

of the covariate does not play a role here, i.e. a difference of zero in wealth could

imply two families are equally poor or equally wealthy. The resulting posterior mean

probabilities of connection are plotted in Figure 4.5. Comparing these posterior mean

probabilities to those calculated using the “positive” version of the LSSP model, we

see similar results. Here, however, the meta-distance model detects this relationship

on its own.

Goodness-of-fit plots can be generated as usual. In Figures 4.6(a) - 4.6(d) we

include the degree sequence (and pointwise bounds), the replicate distribution of the

number of edges with the observed, the minimum geodesic sequence and pointwise

replicate bounds, and finally a χ2 fit assessment. None of these show serious lack of fit.

We close this chapter with a brief discussion. As we have seen, implementation for

the LSSP and MD models is essentially the same, though the interpretation is quite

different. The MD model has the advantage that it makes no prior assumptions about
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Figure 4.4: FF Example: Posterior mean of MD surface.
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Figure 4.5: FF Example: Posterior mean probabilities of connection.
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Figure 4.6: FF Example: Goodness-of-fit plots.
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the direction of the relationship between attributes differences and log-odds. Instead,

the MD surface is a literal description of the log-odds of connection for every pair.

The benefit of this can be seen in its application to the Florentine Family network, for

example. It is also flexible enough to allow for a wide variety of interactions between

covariate dissimilarities.

There are some aspects of the MD model of which to be aware, however. Using

absolute differences to compare attributes may not be ideal, and this is an important

assumption to consider. Possible remedies are covariate transformations, and in the

future it may be worth trying to embed a transformation of the original covariate

space within the model implementation. Finally, because the MD model operates on

pairs, the computation time can be a bit longer. The number of parameters does

not increase, but evaluating (4.2) at
(

n
2

)

points is slower than evaluating the LSSP

for the n actors. We also find that the MCMC algorithm has to run longer to get

reasonable mixing in draws of µ for the meta-distance model. An example of the

size we consider above (the two covariate example) takes approximately three hours

to run in MATLAB on a laptop. Nonetheless, the MD model may be a reasonable

alternative for some network data.
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Chapter 5

Reference Distribution Variable

Selection

We have now considered two ways that spatial process models can be used to relate

attributes to pairwise binary responses. In the LSSP model, a spatial process model

is used to assign scores to each actor, and these scores are then compared to predict

connection probabilities. The meta-distance model, on the other hand, takes a more

direct approach, using a spatial process model to represent a function that links

attribute dissimilarities to the log-odds of connection.

A main advantage of spatial process models is that they are extremely flexible,

but this can also make them difficult to interpret. Estimated surfaces cannot be easily

visualized in more than two dimensions, and there are no coefficients with analytically

derived null distributions that can be used to test the importance of covariates. As

hinted earlier, the ρ parameters in the spatial process models we have been considering

contain information on how much the surface is changing in each direction. In this

chapter, we focus on developing a variable selection technique, which we call reference
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distribution variable selection (RDVS), that can be used to assess the significance of

each component of ρ. We develop the methodology here for a completely different

application we had in mind initially, screening for important factors in computer

experiments. We will return again to our discussion of the LSSP model at the end of

the chapter, and apply the ideas presented in what follows.

5.1 Computer Experiments

Rapid growth in computer power has made it possible to study complex physical

phenomena that might otherwise be too time consuming or expensive to observe.

Scientists are able to adjust inputs to computer simulators (or computer codes) in

order to help understand their impact on a system. Many such computer simulators

require the specification of a large number of input settings and are computationally

demanding. As a result, only a limited number of simulation runs tend to be carried

out. Scientists must therefore select the simulation trials judiciously and perform a

designed computer experiment (or simply a computer experiment).

One main goal of experimentation, particularly in its early stages, is to determine

the relative importance of each input variable in order to identify which have a sig-

nificant impact on the process being studied. Since there can be many inputs into a

computer code, an important problem is the identification of the most active factors.

Most computer experiments are unique in that the response has no random error

component. That is, replicates of the same inputs to the computer code will yield the

same response. To deal with this, Sacks et al. (1989a, 1989b) propose modelling the

response from a computer experiment as a realization from a stochastic process. This

allows for estimates of uncertainty in a deterministic computer simulation.
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The input to the computer code is an n × p matrix X = (x′
1, . . . ,x

′
n)′, where

xi = (xi1, . . . , xip). At each input setting xi, an output from the computer yi = y(xi)

is observed. For simplicity, we assume that the response is standardized to have mean

0 and standard deviation 1, and that the covariate space is scaled to [0, 1]p. The

responses y(X) are modelled as the sum of a GP, z(X), which depends on X, and

independent white noise. That is,

y(X) = z(X) + ǫ, (5.1)

where ǫ is a mean zero noise process with variance 1/λǫ, independent of z(X). Note

that in this context, the responses yi, i = 1, . . . , n, are observed realizations of the

spatial process z (with error). This is in contrast to the LSSP setting, where the func-

tion evaluations are latent and the responses yi,j are pairwise and binary. Recall that

under the GP assumption, (z(x1), . . . , z(xn)) have a multivariate normal distribution.

We assume the process has mean zero (due to the standardization of the responses)

and use the covariance function

cov[z(xi), z(xj)] =
1

λz

p
∏

d=1

ρ
4(xid−xjd)2

d . (5.2)

Note that this is a bit different than the covariance structure implied by our radial

basis function approximation in Chapter 3. This present formulation is an example

of the more traditional approach to modelling Gaussian processes – through direct

specification of the mean and covariance function. Here, 1/λz is the variance of the

GP, and for this to be a valid covariance function, 0 ≤ ρd ≤ 1. From (5.2), we see

that if ρd is close to 1, the process does not depend on the dth covariate. Therefore,

estimation of the ρd’s can help determine which of the input variables are having the

most significant impact on the response.
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The parameters in the model to be estimated are λz, λǫ, and ρ = (ρ1, . . . , ρp).

Here we are using the GP for fitting observed responses, so a little care is required in

prior specifications. We assume that the GP z(X) explains most of the variability in

the (standardized) response y(X), so for a prior we use

λz ∼ GAM(az = 5, bz = 5), (5.3)

with the expectation that the variance of the GP should be close to 1, the variance

of the response. For the noise, we expect it to be quite small, so we assume

λǫ ∼ GAM(aǫ = 2.5, bǫ = .025). (5.4)

In addition, we include the constraint that λǫ > 5. This prevents the standard

deviation of the noise from being any more than about 45% of the response standard

deviation, and puts its expectation at about 10%.

Since we are looking to use the parameters ρ for variable selection, we use a prior

motivated by the variable selection priors from the regression context (e.g. George

and McCulloch, 1993). Each component of ρ is given an independent mixture prior

of a standard uniform and a point mass at 1,

[ρd] = γI[0 ≤ ρd ≤ 1] + (1 − γ)δ1(ρd). (5.5)

Here, γ is the prior probability that input d is active and δ1(·) denotes a point mass at

1. This is a slight modification of the uniform priors we use in the LSSP setting, but

this specification is particularly attractive in the variable selection context because

the mixture probability can be chosen to reflect prior beliefs on the number of active

factors, thereby incorporating a notion of effect sparsity. For our examples here, we

specify γ = 1/4 to encode a prior belief that about one quarter of the variables will

be important.
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Let R(ρ) denote the matrix with entries

Ri,j(ρ) =

p
∏

d=1

ρ
4(xik−xjk)2

k .

Recall this is the correlation function from (5.2). Given the above priors for the

parameters, the posterior distribution for the responses y(X) is

[λz, λǫ,ρ|y] ∝ [y|λz, λǫ,ρ][λz][λǫ][ρ],

where now

y ∼ N

(

0,
1

λǫ

In +
1

λz

R(ρ)

)

,

from (5.1). Here again, In denotes the n×n identity matrix. Realizations (λ
(t)
z , λ

(t)
ǫ ,ρ(t)),

t = 1, . . . , T , can be drawn from the posterior distribution using an MCMC algorithm

with a Metropolis-Hastings step. The posterior realizations ρ(t), in particular, can be

used to make variable selection decisions. Ideally, one can find a cutoff value for each

component ρd that can be used to decide if a covariate is active or inert in the spirit

of a frequentist hypothesis test. That is what RDVS aims to do.

5.2 Reference Distribution Variable Selection

The flexibility of a spatial process model makes detecting which variables are impor-

tant a challenging task. When there are p variables, there are 2p possible combina-

tions of variables in the model. A good discussion on assigning model priors is given

in Chipman, George, and McCullough (2001). A fully Bayesian implementation often

requires one to specify a prior on all 2p possible subsets, which is not always straight-

forward. In addition, variable selection decisions in this context are often subject and

sensitive to prior specification.
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In this section, a new, simple method for assessing the significance of factors in a

GP is introduced. Our approach to identifying which individual estimates of ρk are

small enough (far enough from 1) to be deemed as evidence of a significant variable

parallels a frequentist’s approach to variable selection. The central issue is to identify a

reference distribution and selection criterion that can be used to assess the importance

of each covariate.

Consider estimating the parameters ρ in the GP model. Because it is unknown

which of them are important, directly gauging the relative magnitudes of the ρd’s

can be difficult. This is what RDVS seeks to address. To implement the method,

an additional variable that is known to be inert – and thus has no impact on the

response – is appended to X. This provides information on how an inert variable

behaves, and therefore can be used as a benchmark against which true covariates

can be compared. We propose to use the distribution of the posterior median of the

inert, or null, variable as a reference distribution to decide which of the real inputs

are important.

The augmented covariate matrix is constructed by adjoining to X one additional

column, X∗ = (x1(p+1), x2(p+1), . . . , xn(p+1))
′. This results in an n × (p + 1) input

matrix. To mimic the p real covariates, the elements of the additional column vector,

X∗, range from 0 to 1 (since the covariate space is assumed to be [0, 1]p). Ideally,

the column vector X∗ is orthogonal to each set of columns in X, but in practice this

is unlikely to be the case. Instead, we randomly sample X∗ from the space of the

original matrix X.

By construction, the augmented variable is not a true covariate, and thus has no

impact on the response. The analysis proceeds as if there are p+1 inputs, but in this

case it is known that the last variable is inert. Therefore, the posterior distribution
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of ρp+1 is the posterior distribution of the correlation parameter for an inert variable.

Because the variable selection problem amounts to deciding which variables have an

impact on the response that is distinguishable from noise, the posterior distribution of

the true variables can be compared to that of the added variable to decide which can

be claimed as active. That is, similar to frequentist hypothesis testing, the posterior

distribution of the added variable is used as a reference distribution to assess the im-

portance of the ρd’s corresponding to the true inputs. The key feature of this approach

is that it makes judging the actual magnitude of the ρd’s unnecessary (i.e. there is no

need to specify an arbitrary value below which ρd is considered to be sufficiently less

than 1). This is beneficial because which ρd are “small” is often dependent on the

particular data at hand. The only judgment that is necessary for RDVS is whether

or not the posterior distribution of the true variables are distinguishable from the

posterior distribution of the inert variable. Because the added column X∗ could be

correlated with some columns in X, this procedure is repeated several times and the

posterior distributions of the added inert variables from each iteration are combined

to form one reference distribution corresponding to that of a null variable. This has

the effect of averaging over all added columns.

There a number of ways one could imagine comparing the estimates of ρd for

the true variables to this reference distribution, but we consider the following. Each

time an inert factor is added to X, the analysis is performed and we summarize the

posterior distribution of ρp+1 by its median, ρ̃p+1. The process of inserting the inert

variable, running the MCMC, and saving the posterior median of ρp+1 is repeated

many times. From this, an estimate of the distribution for the posterior median of

a correlation parameter corresponding to an inert variable is obtained. In addition,

every realization of ρd, d = 1, . . . , p, is recorded at each step of the MCMC for the true
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covariates. The posterior median over all the realizations for each ρd can be compared

to the reference distribution of the inert factor median to assess the importance of

factor d.

The disadvantage of this approach is the increase in computational time – though

not the complexity – because the MCMC must be run many times in order to construct

the reference distribution. However, the approach has many advantages. If ρ̃d is

compared to, say, the 5th percentile of the null distribution for posterior medians,

a frequentist’s interpretation of importance can be used, i.e. one would expect to

falsely identify an inert factor as significant approximately 5% of the time. If one

would prefer to err more on the conservative side, the 10th percentile could be used,

for example. By using this approach, the posterior distributions of the ρd can be

compared and assessed.

To summarize the RDVS procedure:

1. Augment X by creating a new column corresponding to a variable with no

significant effect. The added column is selected at random from the covariate

space of the original variables.

2. Find the posterior median ρ̃p+1 of the added column.

3. Repeat steps 1 and 2 M times. Obtain a distribution for the posterior median

of a null effect to be used as a reference distribution.

4. Compare the posterior medians ρ̃d of the true variables to the reference distri-

bution to assess their importance. The percentile of the reference distribution

used for comparison reflects the rate of falsely identifying the inert variable as

important.
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5.3 Simulated Examples

To illustrate the performance of RDVS, we have chosen three simulated examples of

varying complexity. Using known functions allows us to evaluate the methodology.

For all of the examples, the design matrix used is a 54-run Latin hypercube design

(LHD) with p = 10 input variables. This parallels our decision to use a LHD for

our radial basis function approximation of the LSSP. Latin hypercube designs are

a popular choice (such designs were introduced by McKay et al. (1979) specifically

for computer experiments) because they can be generated with minimal computa-

tional effort and fill the design space relatively well. In addition, when the sample

inputs of such a design are projected into any one dimension, complete stratifica-

tion is achieved. The particular design used in these examples has the additional

property that the minimum pairwise distances in each two-dimensional projection is

approximately maximized, yielding a space-filling design in each of the p(p − 1)/2

two-dimensional projections of the design space.

Example 1. The first example is meant to demonstrate the performance of the RDVS

methodology for a simple case. To begin, data are generated from the linear model

y(xi) = 0.2xi1 + 0.2xi2 + 0.2xi3 + 0.2xi4 + ei, (5.6)

where ei ∼ N(0, σ2) with σ = 0.05. After generation, the response is standardized

to have mean zero and standard deviation one. For the simulation study, data are

generated from the linear model given in (5.6) 1000 times and the important factors

using RDVS are identified at each iteration of the simulation. For this example and

each of the subsequent examples, m = 100 is used in step 3 of the algorithm.

For illustration, consider in detail one iteration of the simulation study. First,
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a response is generated as described above. To implement RDVS, an inert variable

(i.e. an 11th factor) is added to the design, with levels randomly selected from the

design region of the original ten experimental inputs. The GP previously described

in Section 5.1 is used to model the response surface. As mentioned, for all examples

γ in (5.5) is taken to be 1/4 (in general, γ should be chosen to reflect the user’s prior

beliefs on effect sparsity).

Using the augmented design matrix, 600 iterations of the MCMC algorithm are

run to generate posterior realizations of the ρk, k = 1, . . . , 11, under the GP model,

with the first 100 discarded as burn-in. The augmentation procedure and MCMC

implementation is repeated M = 100 times. We find this is sufficient to obtain a

reasonable estimate of the distribution for the posterior median of ρ11. All 50,000

realizations of ρk for the ten experiment inputs are saved, and the posterior median

of the correlation parameter for the inert variable is obtained. The combined 100

posterior medians ρ̃11 form the reference distribution to be used for variable selection.

Figure 5.1 shows boxplots of the posterior realizations of ρk (k = 1, . . . , 10) ob-

tained from the MCMC corresponding to one iteration of the simulation study. The

10th percentile of the reference null posterior median distribution is indicated by the

solid horizontal line on the figure. There are some features of Figure 5.1 worth noting.

As usual, the boxes of the boxplots denote the first, second and third quartiles of a

distribution. One can see in this plot that for this data, the posterior distribution of

an inert factor, such as factor 5, is pushed up against one. Indeed, for this factor,

the upper three quartiles of the posterior distribution are all one. The “tail” on the

distribution shows the range of the small fraction of posterior realizations that are less

than one. This pattern is also observed for the other inert factors to varying degrees.

Conversely, the posterior distribution of an active factor (e.g. factor 1) is centered far
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Figure 5.1: Posterior distributions of ρk for one iteration of the simulation study in
Example 1.
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less than one.

By just inspecting these boxplots, an experimenter would likely correctly iden-

tify the first four inputs as having a significant impact on the response because the

posterior medians are all much less than 1 relative to the other factors. Looking at

Figure 5.1, one may be tempted to also declare factor 6 active. However, the posterior

median for this factor is exactly 1. If the more formal rule of comparing the posterior

distributions of ρk for the experimental variables to the 10th percentile of the null

median distribution is followed, the first four inputs are indeed correctly identified as

being important. Thus, for this iteration of the simulation study, the decision is made

to declare the first four inputs as active and the remaining factors as inert.

Table 5.1 summarizes the results for 1000 simulations. The performance of the

approach is investigated using the 5th, 10th, and 15th percentiles of the reference

distribution as cut-off points. The results show that RDVS does well at correctly
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Table 5.1: Proportion of times each factor is identified as important in 1000 gener-
ations of the linear function given in (5.6).

Factor
Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.619 0.618 0.717 0.631 0.030 0.034 0.021 0.074 0.051 0.051
10th 0.852 0.855 0.910 0.880 0.061 0.064 0.053 0.137 0.076 0.102
15th 0.947 0.954 0.973 0.955 0.079 0.091 0.080 0.173 0.108 0.135

identifying the active factors in this simple example, as would be expected. It can

also be seen from Table 5.1 that the false identification of inert inputs as active is at

the expected level corresponding to the percentile used for decision making.

Before continuing, we make a brief digression back to the iteration of the simulation

study explored in detail throughout this example. One might question if the addition

of the extra variable for RDVS has an impact on the posterior distribution of the

experimental variables. To explore this point, the MCMC analysis is repeated on

this same response without adding the inert factor. Figure 5.2(a) shows the posterior

distributions of the experimental variables when the extra factor is added, while Figure

5.2(b) shows the same distributions generated without using an augmented design

matrix. The similarity of these plots suggests that there is no obvious altering of the

experimental posterior distributions as a side effect of the methodology. Furthermore,

inspection of the differences between posterior medians corresponding to the two

approaches (with and without augmentation) showed an average difference of only

2.85 × 10−4.

In order to explore the size of effects the RDVS selection method is able to detect,

consider repeating this simulation study with a slightly more complex linear func-

tion. The response is now generated according to a linear function with decreasing
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Figure 5.2: Posterior distributions of the experimental variables.

coefficients on the first eight inputs:

y(xi) = 0.2xi1+
0.2

2
xi2+

0.2

4
xi3+

0.2

8
xi4+

0.2

16
xi5+

0.2

32
xi6+

0.2

64
xi7+

0.2

128
xi8+ei, (5.7)

where again ei ∼ N(0, σ2) with σ = 0.05. After generation, the response is stan-

dardized to have a mean zero and standard deviation of one. Table 5.2 gives the

results for 1000 simulations of this response. From these results, it can be seen that

the first factor is still easily identified as active, which is consistent with the previous

results. In addition, the second and third factors are detected as active more often

than would be expected by chance, while the remaining inputs (which have relatively

small coefficients) are determined to be inert for the most part.

Example 2. For our second example, we explore how well RDVS can correctly iden-

tify a complete lack of signal. Welch et al. (1992) observe it is difficult to distinguish

between a model with no active factors and one with all active factors. Indeed, the

sequential likelihood approach to screening they proposed does not distinguish be-

tween these two models. In this case, because RDVS decisions are made by making

comparisons with an inert variable, it is anticipated the methodology will be able to
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Table 5.2: Proportion of times each factor is identified as important in 1000 gener-
ations of the linear function given in (5.7).

Factor
Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.679 0.180 0.062 0.025 0.016 0.023 0.017 0.031 0.009 0.036
10th 0.889 0.379 0.133 0.058 0.034 0.051 0.035 0.067 0.030 0.094
15th 0.959 0.540 0.217 0.092 0.061 0.098 0.065 0.107 0.063 0.149

correctly detect a lack of activity amongst the experimental variables when none ex-

ists. For this example, the response is generated as random noise. That is, y(xi) = ei,

where ei ∼ N(0, σ2) with σ = 0.05, and analysis proceeds as in Example 1. Figure

5.3 shows boxplots corresponding to one iteration of this simulation study.

Note that in this plot it appears that all factors have correlations much less than

one and seem to be significantly impacting the response. This is because the amount

of variability that can be attributed to random noise is restricted in the model, and

therefore the GP tries to interpolate a signal through most of the “jitter”. In this

case, based on a subjective examination of the boxplots, an experimenter would likely

incorrectly declare all the ρk’s to be less than one (and therefore important). When

RDVS is used, however, the extra null factor added for the analysis looks and behaves

like all the other inert factors, as indicated by the low value of the 10th percentile

of the reference distribution drawn as a solid horizontal line in the figure. As a re-

sult, when the RDVS decision rule is used, the correct variable selection decisions are

made. This illustrates the point that RDVS is based on comparisons between the

experimental factors and the inert factor, not on the actual values of the realized ρk’s.

The results from 1000 simulations are given in Table 5.3. It can be seen from these

results that RDVS performs extremely well in this setting.
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Figure 5.3: Posterior distributions of ρk for one iteration of the simulation study in
Example 2.
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Table 5.3: Proportion of times each factor is identified as important in 1000 gener-
ations of random noise.

Factor
Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.003 0.013 0.004 0.007 0.006 0.008 0.001 0.006 0.003 0.005
10th 0.012 0.039 0.009 0.013 0.016 0.022 0.010 0.017 0.011 0.013
15th 0.033 0.064 0.032 0.039 0.029 0.041 0.023 0.027 0.027 0.031
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Table 5.4: Proportion of times each factor is identified as important in 1000 gener-
ations of the response given by (5.8).

Factor
Percentile 1 2 3 4 5 6 7 8 9 10

5th 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001
10th 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001
15th 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001

Example 3. For the third example, the data is generated according to

y(xi) = sin(xi1) + sin(5xi2) + ei, (5.8)

where again, ei ∼ N(0, σ2) with σ = 0.05 and the response is standardized. This

function is slightly more complex than the others considered because factor 1 and

factor 2 impact the response quite differently over their [0, 1] ranges.

Figure 5.4 shows the posterior distribution of ρk, k = 1, . . . , 10, for one iteration of

this simulation. For this data, the posterior distributions corresponding to the inert

variables are all pushed tightly against one. As it should, the added null variable

mimics this behaviour, as can be seen by looking at the 10th percentile of the dis-

tribution for posterior medians of inert variables drawn on the figure. As a result,

RDVS correctly detects that the distributions for ρ1 and ρ2 look discernibly different

than the distribution for ρ of an inert factor. Table 5.4 summarizes the results for

1000 simulations. For this example, RDVS does very well at identifying factors 1 and

2 as having a significant impact on the response.
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Figure 5.4: Posterior distributions of ρk for one iteration of the simulation study in
Example 3.
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5.4 Sensitivity to Choice of Prior Distributions

To further understand the performance of RDVS, it would be beneficial to consider its

robustness to the choice of prior distributions. Recall from Section 5.1 that priors are

assigned for the GP parameters λz, λǫ, and ρ, and that in this case – where function

evaluations are observed – these hyperparameters can have an impact on the model

fit. The prior assigned to λz was a gamma distribution with parameters az and bz

chosen so that E(λz) = 1. This selection was made to reflect the prior belief that

the GP z(X) should account for essentially all of the variability in the standardized

response. This is expected in this setting, so we do not explore alternative priors on

λz.

A gamma prior was also used for the white noise variability λǫ, governed by pa-

rameters aǫ and bǫ. The prior on λǫ specifies the amount of variability in the response

that can be attributed to random error. We chose aǫ and bǫ so that E(λǫ) = 100; that
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is, so that it is expected only about 10% of the response standard deviation is ex-

plainable by random error. We also had the additional constraint that λǫ < 5, which

prevented the white noise component from absorbing any more than about 45% of

the response standard deviation at any realization of the MCMC analysis.

To investigate the robustness of RDVS to the choice of prior on λǫ, we try varying

the choice of bǫ. For fixed aǫ, changing bǫ allows for adjustments to the mean of

this prior distribution. Consider again the linear response function given by (5.6) in

Example 1 of the previous section. The simulation study on this response function is

repeated with two alternative prior choices for λǫ. First, a Γ(aǫ = 2.5, bǫ = .0025)I[λǫ5]

prior is used. Under this prior, E(λǫ) = 1000, which implies only about 3% of the

response standard deviation is expected to be attributable to noise. The same lower

bound constraint is kept. An example of the impact on the analysis due to making this

particular change on bǫ can be seen in the boxplots of the ρk posterior distributions

given in Figure 5.5(a). For this plot, the same linear response used for the detailed

illustration of RDVS in Example 1 is used. This prior encourages the GP to account

for more of the variability in the response, which manifests itself as an increased signal,

or more values far from one in the boxplots. However, the added inert variable is given

the same prior, and it self-calibrates itself to behave like the other inert factors. As a

result, the 10th percentile cut-off of the reference distribution is also farther from one,

and the correct variable selections are still made. The results over 1000 simulations

(with the response generated by (5.6)) are given in Table 5.5. This table shows a slight

decrease in the frequency of the correct detection of the first four factors compared

to Table 5.1 of Example 1.

Alternatively, we consider changing the prior on λǫ to encourage more of the

variability to be absorbed by the random error component. To do this, a Γ(aǫ =
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(a) bǫ = 0.0025
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(b) bǫ = 0.1

Figure 5.5: Posterior distributions of the experimental variables corresponding to
changes in the prior on λǫ.

Table 5.5: Proportion of times each factor is identified as important in 1000 gener-
ations of the response when the prior on λǫ has bǫ = 0.0025.

Factor
Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.568 0.578 0.680 0.566 0.043 0.041 0.028 0.079 0.050 0.067
10th 0.777 0.809 0.877 0.801 0.078 0.081 0.058 0.135 0.101 0.130
15th 0.902 0.909 0.944 0.915 0.108 0.107 0.092 0.194 0.133 0.180
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Table 5.6: Proportion of times each factor is identified as important in 1000 gener-
ations of the response when the prior on λǫ has bǫ = 0.1.

Factor
Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.854 0.862 0.895 0.871 0.028 0.027 0.028 0.078 0.040 0.039
10th 0.969 0.979 0.988 0.976 0.043 0.044 0.041 0.107 0.058 0.058
15th 0.995 0.997 0.998 0.995 0.047 0.055 0.046 0.121 0.068 0.063

2.5, bǫ = 0.1)I[λǫ>5] prior on λǫ is used. Given this value of bǫ, E(λǫ) = 25, so about

20% of the response standard deviation is expected to be in the error. This has the

opposite impact on the posterior distribution of the ρk as the previous change. In this

case, the boxplots corresponding to inert factors are pushed against one. Mimicking

this behaviour, the posterior distribution of the added inert factor is also pushed closer

to one, as illustrated in Figure 5.5(b) (again, the same example response was used for

this plot). The results from 1000 simulations are displayed in Table 5.6. Here, the

first four factors are correctly determined to be active with a higher frequency than in

Example 1. Overall, changing this prior does have some impact, but due to the self-

calibration of the added inert variable, the performance of the RDVS methodology is

still quite good.

We next explore the impact of changing the prior for ρ on the methodology. This

mixture prior, given in (5.5), is specified by γ, the prior probability that a factor

is active. In all of the previous examples, γ = 1/4 was taken to be a reasonable

value. Consider now two alternative values of γ: γ = 1/10 and γ = 1/2. We believe

these to be extremities in terms of prior beliefs on effect sparsity. Returning to the

linear function given in (5.6), the simulations are repeated with these varying priors.

Again, because the added factor has the same prior information as the other factors,

its corresponding posterior distribution still mimics those of the other inert factors
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Figure 5.6: Posterior distributions of the experimental variables corresponding to
changes in the prior on ρk.

Table 5.7: Proportion of times each factor is identified as important in 1000 gener-
ations of the response when the prior on ρ has γ = 0.1.

Factor
Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.652 0.637 0.742 0.674 0.036 0.019 0.023 0.069 0.030 0.041
10th 0.887 0.878 0.907 0.892 0.054 0.038 0.037 0.096 0.052 0.076
15th 0.963 0.955 0.981 0.966 0.064 0.048 0.047 0.109 0.063 0.093

in the analysis. Figure 5.6 demonstrates this point for the same illustrative response

used throughout. As can be seen in Tables 5.7 and 5.8, the performance of RDVS is

quite robust to the prior choice of γ.

5.5 Cylinder Deformation Application

Detailed computer simulation of physical processes plays an important role in the

development and understanding of physics-based mathematical models. One of the

applications from Los Alamos National Laboratory (LANL) is a finite element code
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Table 5.8: Proportion of times each factor is identified as important in 1000 gener-
ations of the response when the prior on ρ has γ = 0.5.

Factor
Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.659 0.675 0.759 0.661 0.037 0.035 0.035 0.114 0.043 0.072
10th 0.844 0.875 0.921 0.868 0.068 0.070 0.074 0.172 0.093 0.120
15th 0.939 0.945 0.974 0.948 0.099 0.110 0.113 0.235 0.148 0.176

that simulates a high velocity impact of a cylinder (hereafter referred to as the Tay-

lor cylinder experiment). In this experiment, a copper cylinder (length = 5.08 cm,

radius = 1 cm) is fired into a fixed barrier at a velocity of 177m/s. The resulting

impact deforms the cylinder according to the elastic-plastic deformation model of

Preston, Tonks, and Wallace (2003), the PTW model. This model is governed by 14

parameters (factors), which control the behaviour of the cylinder immediately after

impact. Figure 5.7 shows a sample of cylinder deformations corresponding to a range

of settings for these input parameters.

Figure 5.7: Collection of simulated cylinders ranging from most compressed to the
least taken from the set of 118 simulations of the Taylor cylinder test.

h = 3.5 cm h = 3.8 cm h = 4 cm h = 4 cm h = 4.1 cm h = 4.4 cm

The PTW model was developed to be applicable for a wide range of strain rates,

and, in general, all of the factors play an important role in simulating the deformation.

Indeed, this is why they were included as inputs to the computer code. However,
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a computer experiment frequently exercises the simulator over a limited range of

physical conditions (e.g., velocities or strain rates). Over this range, the simulator

response is often dominated by a very limited number of input parameters.

At the input velocity of 177m/s used for this experiment, it is expected that

deformation will only be affected by a subset of the 14 input parameters. Furthermore,

the Taylor cylinder experiment is only a small component of broader experimentation,

so reducing the number of factors to carry on to further experiments is beneficial. The

goal of this study is to identify which factors most significantly impact the deformation

(i.e., screening) over the reduced input space of the complex computer simulator.

A computer experiment was performed based on a five-level, nearly orthogonal

array design (Wang and Wu, 1992), which prescribed 118 different input settings at

which to carry out the simulation trials for the 14 factors. We look at the length of

the cylinder after impact as our response. Figure 5.8 shows plots of the simulated

cylinder length against the five standardized settings for each of the 14 input factors.

From this rudimentary figure it appears that factor 6, which controls how temperature

and density affect the plastic stress of the metal, is most important. It is difficult to

otherwise distinguish between the factors, so RDVS is used to determine which of the

factors are influencing the cylinder lengths after impact. To implement RDVS in this

setting, the 118× 14 design matrix, X, is (repeatedly) augmented with an additional

column and the model outlined in Section 5.2 is fit. The idea is that this would be

the analysis followed if this were a 15 factor experiment. In this case, however, it is

known for certain that the 15th factor is inert.

To be comparable, the added factor should be treated in the same manner as

the experiment factors in both the design and analysis stages. Thus the added
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Figure 5.8: Plots of 118 simulated cylinder heights versus standardized input param-
eter settings for each of the 14 parameters governing the plastic-elastic
flow model used to model the cylinder deformation.
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factor should have five level settings, with 23 or 24 trials per setting, correspond-

ing to the original 5-level, nearly orthogonal design matrix. To create the random

added column, we begin with a vector which has five equally spaced level settings,

(0, 0.25, 0.50, 0.75, 1.00), with 23 copies of each level (i.e., a 115 × 1 vector). Next,

three additional trials from the five level settings are randomly chosen, giving 118

trials for the added factor. The vector is then randomly permuted, resulting in the

added column. This procedure is repeated for each of the m = 100 added columns.

A quick glance at Figure 5.9 reveals that our initial intuition is confirmed (i.e.,

factor 6, the impact of temperature and density on the stress rate, is an important

factor). When the 10th percentile of the posterior distribution of the median correla-

tion parameter for the inert column is drawn (the solid horizontal line in Figure 5.9),

seven factors are identified as active: factors 3, 5, 6, 7, 9, 11, and 14. Notice that
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Figure 5.9: Posterior distributions of ρk for the experiment factors in the Taylor
cylinder experiment.
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factor 2 is deemed inert since the posterior median of ρ2 (0.9921) is larger than the

cut-off (0.9909) computed from the posterior distribution of the median correlation

parameter for the added factor. It is likely, however, that an experimenter may con-

sider carrying factor 2 forward to the next stage of investigation if the cost of doing

so is not prohibitive.

After carrying out this analysis, a more in-depth investigation of the simulation

output was made. It was found that the “overdriven” regime of the PTW model,

which accounts for behaviour at very high strain rates, was never accessed in any of

these 118 simulation runs. Hence factors 12 and 13, which govern the behaviour of

the model in this regime, are truly inert for the purposes of this screening study and

explained by known physics.
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5.6 RDVS and the Latent Socio-Spatial Process

Model

We have seen that RDVS can be useful for identifying important factors in computer

experiments when a Gaussian spatial process model is used. We conclude this chapter

by demonstrating how incorporating an inert covariate into an analysis can be used

to identify important variables in the latent socio-spatial process (LSSP) model that

we developed in Chapter 3. Thus far we have only considered using this model

on examples with one or two covariates. This is partially due to the difficulties in

interpreting the results in higher dimensions. Here, we consider an example with 10

covariates, of which only the first four are actually important.

To begin, using the covariate space X = [0, 1]10, we generate covariate vectors

corresponding to n = 200 actors. A random function that is active in four dimensions

(corresponding to the first four covariates) is generated, and taken to be the LSSP

for this example. The function cannot be visualized, but Figure 5.10(a) shows the

resulting probabilities of connection for all i, j = 1, . . . , 200. These probabilities were

calculated using the LSSP model (3.1),

ηi,j = µ− |z(xi) − z(xj)|,

with µ = −1.5 and the “true” LSSP function. The sociomatrix we generate from

these probabilities to be our observed network data is shown in Figure 5.10(b).

To implement the LSSP model we choose 100 basis centers in the 10-dimensional

covariate space. Thus, there are 111 parameters to be estimated: µ, α, and ρ.

For these unknowns, we use the same priors previously specified in Chapter 3, i.e.

µ ∼ N(0, 10), ρd ∼ U [0, 1], d = 1, . . . , p and αr ∼ N(0, 1), r = 1, . . . ,m. Unlike

in the designed experiment case, a variable selection prior on ρ, such as the one
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Figure 5.10: Probabilities and sociomatrix for 10 covariate example.
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considered in (5.5), is not as intuitive here. Figure 5.11(a) is a plot of the posterior

mean probabilities of connection for the sample, sorted by estimated LSSP score from

lowest to highest. The sociomatrix sorted by the same permutation of actors is plotted

in Figure 5.11(b). It seems from this plot that the overall pattern of probabilities was

captured fairly well.

Using some more formal goodness-of-fit assessments, we see that the fit is satis-

factory. Here we show the degree sequence of the true sociomatrix and the pointwise

90% bounds for a number of replicated sociomatrices in Figure 5.12(a). The replicate

distribution of the number of edges is illustrated in Figure 5.12(b), with the observed

value noted by a vertical line. For a more local fit, we look at the degree of each

actor and the pointwise 90% replicate bounds in Figure 5.12(c). Finally, the χ2 test

we have been considering is plotted in Figure 5.12(d).

A difficulty with this analysis when there are multiple covariates is interpreting the

relationship between attributes and network connections. Thus, we consider using the

RDVS technique described in this chapter to see if it detects the active covariates in the

example. To implement, we add an 11th covariate to the attribute matrix, randomly

selected from the values of the original 10 covariates. We fit the LSSP model, but use

m = 110 basis functions, with the addition of the extra variable. Posterior draws are

generated, and we save the posterior draws of ρ for the original 10 factors, and the

posterior median ρ̃11 for the inert variable. This is repeated 100 times, and the null

distribution for the posterior median of ρ for an inactive variable is built up. Figure

5.13 shows the results of this analysis. The boxplots for the posterior distribution

of ρd for d = 1, . . . , 10 are shown, with the 10th percentile of the distribution of the

dummy variable marked by a horizontal line. We see that the first four factors are

correctly identified as active, and the 6th variable is incorrectly identified for this
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Figure 5.11: Posterior probabilities for 10 covariate example.
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Figure 5.12: Goodness-of-fit plots for 10 covariate example.
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Figure 5.13: Posterior distributions of ρk for LSSP with 10 covariates.

particular example. To be thorough, it would be useful to do a simulation study on

this to verify that the false identification rate is where it should be expected. We

remark that computational time for this analysis is somewhat intensive. To run the

LSSP model on the 10 covariate example (with n = 200 actors) requires between 2-3

hours, so conducting RDVS requires about 200 hours, at least conditional on using

MATLAB and available computing. While this is feasible for analysis, it makes a

simulation study something we will consider for the future.
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Chapter 6

Application: Disease Transmission

Modelling

To review, we have proposed a class of latent spatial process models for the analysis

of social network data. Our approach is motivated by a new conceptualization of the

link between individual attributes and pairwise relations. The framework we consider

allows one to make inferences about likely connections between actors, given observed

connections and attributes for a sample. The reference distribution variable selection

technique discussed in the previous chapter – although initially developed for screening

important factors in computer experiments – is one aid to interpretation of spatial

process models. In this chapter, we consider an exciting potential application.

Recall that one of our primary motivations for developing network models was

to gain insight into how an infectious disease might spread through a population.

An infectious agent, released naturally or maliciously, has the potential to have a

profound impact on society. In general, mathematical epidemiological models are
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invaluable tools for allowing policy makers to experiment with different transmis-

sion scenarios and intervention strategies. Traditional compartmental transmission

models (in which the population is divided up into disjoint “health” compartments)

assume homogeneous mixing, i.e. an equal chance of contact between every person

in the population. Anderson and May (1991) and Andersson and Britton (2000) are

encompassing references on the discrete and stochastic versions of compartmental

epidemiological models, respectively.

While such models can provide important information about the after-effects of

many epidemics, some recent cases – such as SARS – highlight the weaknesses of the

mass-action assumption. Contact network epidemiology (e.g. Newman, 2002; Meyers,

2007) has led to substantial refinements of the homogeneous mixing assumption. In

this paradigm, transmission is assumed to be restricted to a network structure. That

is, each infected individual is assumed to have a limited number of contacts. This

can show improved predictions of final outbreak sizes, lengths of epidemics, threshold

limits, and other global epidemic properties for contact-based infections. Despite the

incorporation of more flexible contact structures, these models still treat every actor

as completely exchangeable, making study of the effects of an infectious disease at a

more local level infeasible.

6.1 Networks and Disease Incidence

To make this discussion more concrete, we introduce two elementary – but extensively

used – disease transmission models. In particular, we aim to emphasize the impact

of local network topologies on predicted individual disease incidence. In turn, we

will revisit the latent socio-spatial process (LSSP) model and explore how generating
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networks from the predictive distribution captures uncertainty about contact patterns

in the predictions of local disease properties.

6.1.1 The SIS Transmission Model

The first transmission model we consider is a discrete-time contact dependent susceptible-

infected-susceptible (SIS) model. This is in essence an individual-level compartmental

model, where at any time t an actor can be in one of two disjoint categories: suscep-

tible, meaning healthy at time t but susceptible to infection; or infective, ill at time t

and capable of infecting contacts. Denote the health status of a population with N

actors at time t by

Ht = (H t
1, . . . , H

t
N) ∈ {0, 1}N

where

H t
i =







1 if actor i is infected at time t

0 otherwise.

To simulate an SIS epidemic, let ν be the probability that an infected person

infects a susceptible neighbour between time t and t + 1, and γ be the probability

that an infected person at time t recovers at time t + 1. In addition, we introduce

a probability ǫ that a susceptible individual becomes infected between t and t + 1

independently of the contact structure. We introduce ǫ partly to make exploration of

the process stationary distribution possible, but we feel it is also reasonable from a

practical point of view. In studying a disease on a network, even though every effort

might be made to capture the whole population of interest, there is always a chance

that someone in the network will be infected by someone outside. Anecdotal evidence
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for this particular transmission model is the common cold. When it arrives in your

circle of contacts, everyone seems to get it. Then it disappears for a while, only to

make a random reappearance a few months later when it reenters your circle. It is

this kind of persistent infection that this SIS model aims to capture.

The {Ht} form a Markov chain since the health status for the population at

time t only depends on Ht−1. The transition H t−1
i → H t

i for individual i, however,

depends not only on H t−1
i but all of Ht−1, since the probability individual i moves

from the susceptible state to the infected state depends on the health status of his/her

neighbours. Having this global Markov property but dependencies at the individual

level makes this SIS model an example of an interacting particle system (Liggett,

1985), with evolutionary equations

P (H t
i = 1|H t−1

i = 0,Ht−1) = 1 − (1 − ǫ)(1 − ν)
P

j∈Ni
Ht−1

j (6.1)

P (H t
i = 1|H t−1

i = 1,Ht−1) = 1 − γ. (6.2)

Under normal circumstances, H = 0 would be an absorbing state for the SIS

model. With our non-standard inclusion of ǫ > 0, however, there exists a limiting

probability

λi = lim
t→∞

P (H t
i = 1).

We use simulations to begin looking at how λi depends on local network topologies.

Suppose that a population of N = 75 individuals has the network structure shown in

Figure 6.1. We randomly choose a “patient zero,” i0, and then run the SIS epidemic

from this point for T = 6, 000 time steps, with ν = 0.8, γ = 0.5, and ǫ = 0.01. Figure

6.2 is a plot of the cumulative estimates of λi,
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Figure 6.1: A network with n = 75 actors.

λ̂i(t) =
1

t

t
∑

x=1

Hx
i ,

where each curve on the plot represents an individual actor. It can be seen from this

simulation output that long-run probabilities of infection differ between actors. To

be sure starting location is not having an impact, we repeat this simulation M = 100

times, randomly selecting i0 and running the epidemic for T = 6, 000 time steps at

each iteration. Based on these runs, an estimate of the limiting probability (when

ǫ > 0)

λ̂i =
1

M

M
∑

m=1

1

T

T
∑

t=1

H
t(m)
i

is calculated for each individual, where H
t(m)
i corresponds to the health status of actor

i at time t in simulation m.
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Figure 6.2: Cumulative probabilities of incidence for n = 75 actors

To illustrate how these probabilities relate to network topologies, we plot in Fig-

ure 6.3 the pairs (di, λ̂i) for i = 1, . . . , N . This reveals that if an SIS transmission is

assumed, the degree of an actor, di, plays a significant part in his/her proneness to

infection. Even for individuals with the same degree, however, there are some differ-

ences in limiting probabilities due to other local topologies, such as extended degree.

Figure 6.4 is a plot of the triplets (di, ei, λ̂i), where ei is the extended degree. Inter-

estingly, differences between λ̂i in this simulation are almost completely accounted

for by these two properties. This can be seen by the very small differences in λ̂ for

individuals with the same (d, e) pair.

Some preliminary results suggest that for the SIS model (with spontaneous infec-

tion) this is likely true for any choices of ν, γ, and ǫ > 0. To partially understand
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Figure 6.4: Probability of infection versus degree and extended degree.
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this, we consider

λi = lim
t→∞

P (H t
i = 1)

= lim
t→∞

{

P (H t
i = 1|H t−1

i = 0,Ht−1)P (H t−1
i = 0) + P (H t

i = 1|H t−1
i = 1)P (H t−1

i = 1)
}

= lim
t→∞

E

[

1 − (1 − ǫ)(1 − ν)
P

j∈Ni
Ht−1

j |H t−1
i = 0

]

(1 − λi) + λi(1 − γ)

=
1 − (1 − ǫ)Ei

1 − (1 − ǫ)Ei + γ
,

where

Ei = lim
t→∞

E

[

(1 − ν)
P

j∈Ni
Ht−1

j |H t−1
i = 0

]

.

From this we see that λi depends on the network only through Ei. Intuitively, Ei

represents the long-run probability that a susceptible individual escapes infection

from his neighbours. Given the contact nature of transmission, this will most certainly

depend on di, and similarly, how often the neighbours of i will be infected depends on

ei. These preliminary results suggest that it is important to accurately capture local

topologies such as degree and extended degree in order to understand the long-run

properties of even as simple a model as the SIS at a local level.

6.1.2 The SIR Transmission Model

A second, and arguably more widely used, transmission model is the susceptible-

infected-recovered (SIR) model. Here, each person can be in one of three possible

states at time t. The susceptible and infected states are defined as before. In this

model, however, an infected person never returns to the susceptible state, but rather

transitions to a recovered state. The recovered state describes actors who were in-

fected during the course of the epidemic, but are now removed from the population

(presumably through immunization or death) and can no longer be infected or infect
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others. This transmission model is often a reasonable representation of some more

severe infectious diseases, such as measles or smallpox.

Unlike our rendition of the SIS model – which reaches an endemic state – a disease

spreading according to an SIR model will eventually cease. As a result, the typical

epidemiological quantities of interest for the SIR model are usually the global prop-

erties mentioned previously, such as how long an epidemic lasts, the ultimate size

of the epidemic, or the threshold limit, i.e. the critical point at which the epidemic

will either take off and infect a large number of people or die off very quickly. Given

that all actors are assumed exchangeable, local effects such as the probability that

a particular actor (or type of actor) will be infected are not typically considered. A

simulation of the SIR model on a network reveals that such local effects of the disease

are again closely related to topological properties of the network.

As before, let ν be the probability that an infected individual infects a neighbour

between time t and t + 1. Thus, the evolutionary equation for the transition from

the susceptible state to the infected state is the same as previously given in (6.1).

For simplicity, we assume here than an infected individual at time t recovers with

probability 1 at time t + 1. This is consistent with a Reed-Frost “generation” inter-

pretation of the SIR model (see, e.g. Andersson and Britton, 2000). Consider the

graph in Figure 6.1. For the network SIR model, the starting location of the epidemic

will have a significant effect on its predicted outcome. To demonstrate, we consider

looking at the outbreak from two angles.

First, we begin the infection once on each of the N = 75 nodes. Over these 75

starts, we record the proportion of times each actor becomes infected during the course

of the epidemic. Taking ν = 0.6, Figure 6.5 shows the results of this simulation in blue.

Here, the proportion of times each actor is infected is plotted as a function of his/her
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Figure 6.5: Probability of incidence by degree and extended degree. Blue: averaged
over starting node; Red: conditional on a fixed starting node, identified
by an arrow.

degree and extended degree. Alternatively, instead of averaging over all possible

starting locations, we can condition on the epidemic starting at a particular person.

An arrow points to this starting node in Figure 6.5. The probabilities marked in red

in Figure 6.5 are the revised probabilities that each actor will be infected averaged

over 75 simulations starting from the same point. In this simulation, given the fixed

starting location, the predicted probability of infection for some individuals increases

by as much as 20%. Clearly, the more information that can be incorporated about

the structure of the population and the characteristics of patient zero, the better.
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6.2 LSSP Model and SIR Incidence

The above explorations indicate that if the network structure of a population is known,

it can provide extremely valuable information about how an infectious disease will im-

pact each actor. This may, for example, help determine optimal intervention strategies

– particularly if the characteristics of initially infected individuals are known. Unfor-

tunately, while simulations can be conducted to learn about a disease spreading on

one particular observed network, the results are not readily generalizable. For exam-

ple, suppose a network is collected for one classroom, school or city, perhaps through

observation, a questionnaire, or via a complex simulator such as EpiSims. What can

be said about probable patterns of connection and the resulting disease incidence in

other similar classrooms, schools, or cities?

Having predictive social network models suggests a new way to approach the ex-

ploration of disease transmission models. Likely network structures generated from

the predictive posterior distribution (given an observed network) can be used to reflect

uncertainty about contact patterns in similar populations. Advantageously, this leads

to predictive posterior distributions of network topological features and disease prop-

erties. While ultimately we are interested in a variety of network and transmission

models, we will restrict our attention here to the LSSP and SIR models, respectively.

In particular, we conduct a small simulation study to look at the potential for using

the LSSP predictive distribution to explore network topologies and predict local SIR

disease incidence.

Recall that the premise behind the LSSP model is that it is possible to assign a

score to each actor as a function of his/her attributes. Actors are modelled to have a
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higher probability of connection if their scores are closer together,

ηi,j = µ− |z(xi) − z(xj)|. (6.3)

The spatial process assumption for the scores z(x) over the attribute space implies

that actors with “similar” characteristics are likely to have “similar” scores, where

similarity here is in essence governed by the correlation parameters. Therefore, the

shape of the LSSP specifies what types of individuals are most likely to connect. In

combination with the distribution of actors’ attributes in the population, this provides

information about expected network topologies.

As mentioned, in a typical contact epidemiology model, every actor is assumed to

have the same degree distribution. Intuitively, if the attributes of the individuals in

a population are known, the expected degree of any actor is going to be a complex

combination of the kind of actors with whom he/she is most likely to connect, and

how many actors with those characteristics are in the population. For example, if it

is believed that homophily by age is explanatory for how people connect, then the

number of relations a twenty-something is expected to form in a room filled with

people his/her age versus in a room filled with teenagers is likely to be quite different.

The LSSP model is a natural framework for incorporating this intuition.

To illustrate this point, consider the surface shown over X = [0, 1]2 in Figure

6.6(a). This could be an LSSP for a population in which actors are divided into

two fairly clear groups, where the clusters are determined by a combination of two

covariates. In principle, the groups could result from any number of attributes, but

we use two for convenience. The sketch in Figure 6.6(b) shows roughly the partition

of the covariate space that separates the groups. We let XB denote the bigger region

and XS the smaller.

To emphasize the relationship between the LSSP and how the clusters are formed,
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Figure 6.6: SIR Example: LSSP and implied clustering of population.

note that the surface in Figure 6.6(a) is flat over both XB and XS, but changes quite

drastically in height between them (by design). Under the assumptions of the LSSP

model, for pairs {(i, j) : xi,xj ∈ XS}, z(xi) ≈ z(xj), so ηi,j ≈ µ. Similarly for two

actors both in XB. In contrast, pairs {(i, j) : xi ∈ XS,xj ∈ XB} are not likely to

be connected, since |z(xi) − z(xj)| is large, in log-odds terms. Our motivation for

considering this exaggerated example is two-fold. First, it illustrates that the LSSP

model can be quite flexible, representing as much or as little information between

attributes and connections as is present. Second, it facilitates explanation of the

interplay between the underlying trends modelled by the LSSP, the distribution of

attributes in a population, and the resulting expected network topologies.

For example, we take a population of N = 100 actors with attributes uniformly

distributed over X . According to Figure 6.6(b), about 1/3 of the actors should be in

XS and the other 2/3 in XB (due to the respective areas of the covariate space these

regions cover). Using the LSSP in Figure 6.6(a), and taking µ = −1 in (6.3), the

probabilities of connection between these 100 actors can be found, and are shown in
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Figure 6.7: SIR Example: True sorted probabilities of connection for a uniformly
distributed population of N = 100 actors.

Figure 6.7. In this plot, we have permuted the rows and columns according the the

true LSSP scores of the actors (from lowest to highest). This clearly illustrates the

two groups implied by the LSSP. We remark that in this example, clusters are formed

by assuming a very specifically shaped LSSP and uniform distribution of attributes.

Alternatively, a non-uniform distribution over the attribute space combined with a

less extreme LSSP can represent similarly. Case in point is the adolescent health

example in Chapter 3, which showed clustering of students, but in this case with a

less extreme LSSP function and non-uniform distribution of attributes.

To summarize, our aim is to investigate the ability to recover what information an

LSSP model contains in regards to local network topologies, and as a result, disease

behaviour. From Figure 6.7, the expected degree of an actor in XB is much greater

than for an actor with attributes in XS, simply because there are more people in the

first group with whom to potentially connect. Specifically, the expected degree of an

actor in a specified population can be derived analytically with our assumption of

conditional independence between dyads. Given probabilities π for the population,
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the expected degree of actor i is

E(di) =
∑

j 6=i

πij.

We know from the previous section that this suggests the risks of infection for actors

in the two groups is also expected to be different. A small simulation study shows

that these expected differences can be captured through the posterior predictive dis-

tribution of the LSSP model.

For evaluating our simulations we need some measure of the true network topolo-

gies and disease incidence for each type of actor in our example. As mentioned, the

expected degree can be found theoretically from the “true” probabilities in Figure 6.7.

To get a measure of the expected extended degree, we generate 1000 networks from

the true probabilities, and average each person’s extended degree over these realized

networks.

When looking at the expected SIR disease incidence, we consider three different

scenarios. First, we average over all possible starting locations. To get the true

expected incidence for each actor in this case, we generate 1000 networks from the

true probabilities, and run many SIR epidemics on each one (here we use disease

transmission probability ν = 0.1). Specifically, we begin the epidemic ten times from

each of the 100 nodes, and average the proportion of times each actor is infected. For

the other two scenarios, we consider an SIR epidemic that spreads beginning from a

particular person with attributes in XB, say iB, and then one that begins from an actor

in XS, iS. To get the true incidence in each of these cases, on 1000 networks generated

from the probabilities in Figure 6.7, we begin the epidemic 200 times starting at iB

and 200 times starting at iS, averaging the results separately.

For our first simulation, we consider a somewhat optimal situation. Suppose a
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Figure 6.8: SIR Example: Sorted simulation probabilities of connection.

network is observed between N = 100 actors. For our purposes this network is

generated as a single realization from the true connection probabilities in Figure 6.7.

The LSSP model can be fit to this network, and posterior mean estimates of the

probabilities of connection between any N = 100 actors with these same attributes

can be found (as described in Chapter 3). From these fitted probabilities, we generate

R = 105 replicate sociomatrices. Using these replicates, we calculate the expected

degree and extended degree of each actor. In addition, we run SIR epidemics on each

replicate (starting once on each node again with transmission probability ν = 0.1),

recording the proportion of times each actor is infected. Recall that when we were

considering goodness-of-fit, we compared properties of the replicate sociomatrices to

the particular network that was fit. Here we wish to assess performance against the

“truth,” where the truth is found as described above. To make our assessment, we

repeat this entire process of observing, fitting, and predicting for M = 100 networks

generated from the true connection probabilities.

In Figure 6.8, we show the average posterior mean connection probabilities for

137



the 100 actors, averaged over the R replicates for the M different fitted networks.

Comparing Figures 6.7 and 6.8, we see that overall, given any observed network, we

recover on average the connection probabilities that underly the observed networks

quite well. The same sorting is applied in this plot as was previously done. In ad-

dition, we explore the expected degree and extended degree for each actor. For a

particular observed network, we use the R replicates from the fitted model to get the

posterior predictive estimate of the degree and extended degree for each actor. This

is repeated for each of the M networks, and we plot the corresponding boxplots of the

simulated expected degree and extended degrees in Figures 6.9(a) and 6.9(b), respec-

tively. Again, we use the same sorting of actors to highlight the difference between the

two groups. The red lines in these plots show the true expected degree and extended

degree of each actor. We see that on average, over many different realizations, the

expected degree and extended degree calculated for each actor from the fitted model

tends to be a good estimate of the truth. In particular, the identification of the two

groups is quite clear.

Finally, we look at what this suggests about potential SIR disease transmissions.

There are multiple ways to look at performance, but as mentioned, we will focus on

three scenarios in particular. First, we consider incidence for each actor averaged

over starting location. For each of the R replicate networks generated from a fit of

the LSSP model to an observed network, we run the SIR epidemic (starting on each

node once) and save the proportion of times each actor is infected. Figure 6.10 shows

the boxplots of these estimated probabilities over the M = 100 networks generated

as “observed” networks. As expected, the predicted incidence for actors in each of

the two groups is quite different. The red line shows the expected probability each

actor is infected according to the true underlying model that we found previously.
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Figure 6.9: SIR Example: Simulated distributions of network topologies.

Though there seems to be some over-estimation in this limited simulation, the general

structure is readily apparent. We remark that there are two explanations for the over-

estimation that seem plausible. One is the small size of the simulation. Many runs of

the SIR model were performed to get the true expectation, and it is possible that the

limited number of starts used in the simulation component reduce accuracy slightly.

A second possibility is the challenging nature of the particular example function we

use (Figure 6.6(a)). modelling the slope of this function is difficult – particularly when

only a few binary responses are observed in the region of the change. To relate this

to the over-estimation seen, note that if the slope is estimated to be more gradual

than the truth, this will cause more mixing of the two groups than expected. This

then increases the probability that the infection will spread from one group to the

other, and thus the probability that any particular person will be infected. Further

investigation will be needed to verify the cause.

Next, we consider the cases where we condition on the epidemic starting at par-

ticular locations. To do so, we look at the proportion of times each actor is infected

139



0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Actors

Figure 6.10: SIR Example: Simulated distribution of SIR on LSSP network

in our simulation conditional on the spread starting from iB and iS. Recall that iB

and iS are chosen actors in the big and small groups, respectively. From the results of

the previous section, the predicted probabilities of infection should depend strongly

on which group the infection began in. In Figure 6.11(a), we show the simulated dis-

tribution of predicted disease incidence conditional on the epidemic beginning with a

person in XB, as well as the true predicted path under this scenario in red. Similarly,

in Figure 6.11(b), we consider the same, but starting from the person in XS. It is

promising to see that over all fitted networks, the difference in disease incidence as a

result of starting location is detected.

Admittedly, we are being somewhat generous in this simulation study, since we are

only making predictions for the same number of actors (with the same attributes) as

in the observed network. A key advantage of the LSSP model is that predictions can

be made for actors outside the observed sample. To begin exploring the performance

of the methodology in this context, we repeat the above simulation study, but assume

the network is only observed for n = 50 actors. Specifically, for a network with
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Figure 6.11: SIR Example: Simulation of SIR conditional on starting location.

N = 100 actors (generated from the truth, Figure 6.7, we take a random subset of

n = 50 actors as the actors in the observed network. We repeat this for T = 20

randomly chosen training sets of size n = 50. Using only the training data, we predict

the probabilities of connection for the entire N = 100 actors. In Figure 6.12(a), we

show the average posterior mean connection probabilities for the 100 actors, averaged

over the R replicates for the T training samples from M different fitted networks. The

clusters are still detected quite well, though with more error than before. This is also

reflected in the predictions of the SIR disease incidence for all 100 actors (averaged

over all starting locations), shown in Figure 6.12(b).

These simulations suggest that it may be possible to detect differences in disease

risks in a population of interest by first fitting a network model to an observed sam-

ple. In particular, using the posterior predictive connection probabilities to obtain a

predictive distribution on network topologies and disease incidence is a natural frame-

work for incorporating uncertainty about the population network structure. If it is

believed that different types of people connect with different rates, this may impact
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Figure 6.12: SIR Example: Predicted contact probabilities and SIR incidence based
on training samples.

intervention strategies – especially if it is known in what region of the attribute space

early cases are detected. We note that this illustrates the advantage of considering

network models that aim to capture trends, rather than over-fitting an observed net-

work. If the fitted network model simply reproduces the observed network, then the

ability to look at uncertainty over different possible networks is diminished. Certainly

much more investigation is required here. Our simulation is very small, in terms of

population size, training sizes, and sample sizes. We have also restricted our attention

to only one particular example that was constructed to create a strong distinction be-

tween two clusters, albeit one that is not necessarily “easy” to fit. This is a research

direction we will continue to develop in the future.
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Chapter 7

Conclusions and Future Research

In this thesis we have considered a new class of models for analyzing social network

data. This kind of data is challenging to model due to its pairwise and dependent

nature. The class of models we proposed, latent spatial process models, use variations

on the assumption of homophily by attributes to link pairs of covariates to the prob-

ability of connection. The first model we developed, the latent socio-spatial process

(LSSP) model, assigns a score to each actor and then compares scores to determine

the log-odds of connection. This approach has an intuitive interpretation of transitiv-

ity and clustering. Alternatively, the meta-distance (MD) model directly models the

log-odds of connection for each pair as a function of the component-wise dissimilarities

in each attribute. This model has the advantage that it requires no prior assumptions

about how differences in attributes impact the likeliness of connection, i.e. whether

it increases or decreases.

Using a radial basis function representation (similar to a process-convolution con-

struction) for the latent surface in both models makes implementation feasible. Par-

ticularly important, by choosing the centers of the basis functions according to a Latin
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hypercube design (LHD), we are able to estimate both models using only m + p + 1

parameters, where m is the chosen number of basis functions in the LHD and p is the

dimension of the measured attribute vector. This can be a huge reduction from the

O(n) or O(n2) parameters that are typically used to model social network data.

While interpretation of these models can become difficult in higher covariate di-

mensions, the reference distribution variable selection technique proposed in Chapter

5 can aid in the detection of significant effects. Though originally developed for screen-

ing important factors in computer experiments, we find that the same philosophical

approach appears promising for identifying active variables in the LSSP model.

One of the main motivations we had for building these network models was to find a

way to easily predict unobserved relations. This plays an important role, for example,

in understanding how an infectious disease might spread through a closed, structured

population. We saw in Chapter 6 that if the LSSP model reasonably describes the

structure in an observed sample, it can be used to predict likely structures for a

larger population. A small simulation showed these predicted networks have similar

topologies to networks generated according to an assumed true underlying trend. This

shows promise for more accurately predicting how an infectious disease might spread

in a population.

We close with a few remarks and an outline of some possible future research

directions. One thing we note about using latent spatial process models as opposed

to latent factor models, say, is that predicted probabilities of connection for each pair

are very small. This is a by-product of the change in inferential perspective. From a

population-inference perspective, the probability that any actor is connected to any

other is very small (otherwise we would all know each other). Latent factor models,

on the other hand, more accurately describe potentials of connection for a particular
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set of actors. If this kind of description is desired, there is no reason why the latent

spatial process and latent factor approaches could not be combined. Then, estimates

of error found via the latent factor model can be used for descriptive purposes, and

the latent spatial process component can be used for improved predictive ability.

This raises the issue of how to assess fit of network models. Models that maximize

the likelihood by proposing fits close to 0 or 1 for unlinked pairs versus linked pairs,

respectively, will fit the observed data very well. Indeed, by looking at even a simple

χ2 test, we see that sometimes latent factor models can fit too well. Bayesian cross-

validation procedures seem promising for assessing predictive ability, but more needs

to be done on choosing useful measures for comparison.

In our attempts at using cross-validation, we find that outliers in networks are a

stumbling block to obtaining good fits. For network data, we consider outliers to be

individuals that are highly connected or completely isolated. Completely removing

isolates does not seem to us to be the best option, since they do actually contain

information on the likeliness of connection, i.e. an individual with all observed zero

connection is notably different than an individual with all missing observed connec-

tions. For the case of binary relations, it may be worth considering mixture distribu-

tions for the pairwise dyads. For example, we might assume that there are structural

appearances of 0’s and 1’s as well as random realizations. In the spirit of modelling

zero-inflated data, we could try to implement a 0-1 inflated model,

yi,j =



















0 with probability λ0
i,j

BER(πi,j) wp 1 − λ0
i,j − λ1

i,j

1 with probability λ1
i,j.

Here, λ0
i,j and λ1

i,j are the probabilities that a dyad will always be 0 or 1 for a particular

pair. These might be assumed constant across pairs, or simultaneously modelled as
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a function of pairwise covariates. A Bayesian approach to estimating finite mixture

distributions is given in Diebolt and Robert (1994), for example.

We conclude by highlighting some more specific avenues for future research.

Handling Categorical Covariates

An obviously strong assumption we make in the development of our latent spatial

process models is that the covariate space X ⊆ R
p. As we saw in the Adolescent

Health and International Conflict examples, ordinal categorical variables (such as

grade and polity score) can be directly included provided they have enough levels.

Certainly handling non-ordinal categorical covariates is an important consideration

– particularly for sociological network data. Incorporating categorical variables into

spatial process models is a challenging task in general, and only a few approaches

have been considered to date (e.g. McMillan et al., 1999; Qian et al., 2006).

There are a few potential directions we have been considering. Perhaps the most

obvious choice is to take a block-model approach (e.g. Wang and Wong, 1987). Sup-

pose, for example, that individuals are partitioned into blocks B1, . . . , Bg by a number

of categorical attributes. Following Wang and Wong (1987), a parameter λa,b can be

assigned to each Ba ×Bb block. Let

δi,j,a,b =







1 if the pair (i, j) is in Ba ×Bb

0 otherwise.

Then, a possible extension of the LSSP model, say, is

ηi,j = µ+
∑

a,b

λa,bδi,j,a,b − |z(xi) − z(xj)|,

where
∑

a λa,b = 0 and
∑

b λa,b = 0. This might be an improvement on the LSSP

assumption of a constant mean, for example. It does not address any interactions
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between the categorical and continuous covariates, however.

An alternative might be to take an optimal scoring approach. This is used to

incorporate mixtures of continuous and categorical variables in discriminant analysis,

for example (Huberty et al., 1986; Tuv and Runger, 2004). Though we have not

implemented the idea, it seems intuitive for network data. Generally speaking, one

finds clusters of connections in the network data (using, for example, methods of

Girvan and Newman, 2002). Let G denote a vector which indicates which group each

actor belongs to as a result of this clustering. Let C contain the value of a categorical

covariate for each actor, with say l levels.

The information contained in C can be represented by l indicator variables, δ1, . . . ,

δl. This is, for example, the trick used in linear regression when categorical variables

are represented by dummy indicator variables. Replacing the levels of C with con-

tinuous scores x1, . . . , xl is equivalent to replacing δ1, . . . , δl by a linear combination

x1V1 + . . . + xlVl. In particular, one chooses the combination Vx that maximizes

the ability to discriminate between the groups G. More details on this approach can

be found in Tuv and Runger (2004). Provided there are enough categories, l, for

each categorical variable, the optimal scores can be assigned to each actor and used

directly in the spatial process model for network analysis.

Directed Networks

Throughout this thesis we have focused on developing models for undirected links in

networks. There are applications, however, where interest is in directed relations. In

the case of a directed network, yi,j is observed to be 1 if a tie is sent from person i to

person j, and yj,i does not have to be the same as yi,j. As mentioned in Chapter 1,

this can arise when person A claims person B as a contact, but not vice versa. Such
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situations are likely to be expected if network data is collected via a questionnaire, for

example. Alternatively, in the International Conflicts example we have considered,

information is available on which country is the aggressor, so the directed network

can be considered.

In addition to capturing tendencies such as homophily by attributes and cluster-

ing, directed models also look to quantify reciprocity, the tendency for links being sent

to be returned. Directed versions of the latent factor models discussed in Chapter 2

have been developed. For example, in the latent space model, the social positions can

be compared using z′izj (Hoff, 2005) instead of using the Euclidean distance. Simi-

larly, the multiplicative factor model has an alternative singular value decomposition

interpretation for handling directed connections.

In future work, we would like to extend the LSSP and MD models to handle

directed networks. There are a couple of approaches we have considered. For the LSSP

model, instead of assuming LSSP scores are realizations from one spatial process,

we could introduce two correlated processes, a sender process, zs(x), and a receiver

process. zr(x). These could be modelled, for example, as

zs(x) =
m
∑

g=1

αgk(x − wg;ρs)

and

zr(x) =
m
∑

g=1

αgk(x − wg;ρr).

Here, ρs and ρr are the correlation parameters that govern the sender and receiver

functions, respectively. As before, they govern how much LSSP sender and receiver

scores differ between actors as a function of the attributes. In addition, correlation

is induced between the two processes via the use of the same grid W and weights α

(see, e.g. Higdon, 2002). This captures how similar an actor’s LSSP sender score is
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to his/her LSSP receiver score.

Using these two processes, the LSSP model can be reformulated as

ηi,j = µ− |zs(xi) − zr(xj)|.

Here, the log-odds that actor i will send a tie to actor j, ηi,j, is modelled by comparing

actor i’s LSSP sender score to actors j’s LSSP receiver score. Under this model, the

probability for a tie being sent is highest if the scores are similar. Reciprocity is

captured by how much correlation exists between the two processes. For example,

if zs(x} ≈ zr(x), i.e. there is very high correlation between the two processes, then

ηi,j ≈ ηj,i for all i and j.

As a second approach, instead of working within the LSSP framework (assigning

scores and comparing them), we could think along the lines of the MD model which

models ηi,j directly. In the undirected case, we were restricted as to how attributes

could be incorporated because we wanted to force symmetry. This led specifically to

the MD model, which models differences between dissimilarities. When symmetry is

not required, this yields more model choices. One attractive possibility is an additive

model, i.e.

ηi,j = µ+ zs(xi) + zr(xj).

Here, zs and zr are correlated processes as specified above, where the correlation be-

tween them captures reciprocity. The function evaluations zs(xi) and zr(xi), however,

are now interpreted more as random effects that capture actor i’s contribution to the

log-odds of connection as a sender or a receiver, respectively. What separates this

from other random effect models for network data (such as Hoff, 2005, e.g.) is that

the effects are assumed to be correlated according to actor attributes. This greatly

reduces the number of required parameters, since only the m+ 2p parameters for the
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processes zs and zr need to be estimated, rather than 2n individual-specific sender

and receiver random effects.

Designed Radial Basis Functions

Our use of designed radial basis functions to represent a prior class of functions for

the latent spatial process models raises some interesting questions about the general

applicability of the method. This idea seems natural for predicting a latent surface,

but it may be useful as a similar parameter reduction technique when fitting observed

functions.

A typical approach to estimating radial basis functions is to center the kernels

at the n data points. Since this can result in computational difficulties for large

problems, a great deal of effort has been made on the selection of m basis kernels,

where m < n. The number of basis functions that one should choose is going to be

related to the perceived complexity of the function to be approximated. We suspect

that this is similar to the issue of selecting input runs for the approximation of complex

computer simulators. Heuristically, there may be an argument that a radial basis

function centered at all data points can be well approximated by a designed radial

basis function, with many less kernels. It would be interesting to see if there is any

theoretical argument for whether or not a designed basis function approximates well

a radial basis function with more kernels, and the rate at which the bias and error

decrease.

Given the number of basis kernels, there has been much discussion about how

best to place these points. For example, Yousef and el Hindi (2005) summarize a

number of methods that have been tried. These include randomly selecting a subset

of training data or clustering inputs and centering kernels at cluster centers. Genetic
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algorithms and other optimizers have also been considered for choosing locations.

Here we conduct a small simulation study to consider the performance of our idea to

use a LHD to choose the centers.

We consider estimating a surface on X = [0, 1]2 using

z(x) =
m
∑

r=1

αrkρ(x − wr), (7.1)

with six different choices of center points W . Our goal is to compare prediction mean

square error and estimates of the kernel widths.

The test function we use is

z(x) = sin(5x1) + 5sin(2x2), (7.2)

which is plotted over [0, 1]2 in Figure 7.1(a). We assume that the function is observed

(with a small amount of error) at n = 50 points, X. These points are selected

at random, and we keep them fixed for all simulations. Figure 7.1(b) shows their

locations. As mentioned, we consider six different choices for W , each with a different

number of points, m. The cases and a pointer to their illustrations are as follows.

1. A LHD with m = 10, Figure 7.2(a)

2. A LHD with m = 20, Figure 7.2(b)

3. A LHD with m = 40, Figure 7.2(c)

4. A LHD with m = 50, Figure 7.2(d)

5. The data points X, m = 50, Figure 7.1(b)

6. An evenly spaced 11 × 11 grid, m = 121, Figure 7.2(e)
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Figure 7.1: A function and data points

One iteration of the simulation study proceeds as follows. Let

f(xi) = z(xi) + ei

denote the observed response at point xi, i = 1, . . . , n, where ei ∼ N(0, σ2) with

σ = 0.05 known. Let f = f(X) = (f(x1), . . . , f(xn))′. We standardize the response

to have mean 0 and standard deviation 1 to simplify prior selection. We use (7.1)

as a prior class of function (corresponding to the choice of W). With the response

standardized, the prior

α ∼ N(0, Im)

is taken for the weights. Non-informative U [0, 1] priors are used for each component

of ρ. For convenience, let K denote the n×m matrix with elements

Ki,j = kρ(xi − wj).

The full posterior for this example is then

[α,ρ] ∝ [f |α,ρ][α][ρ],

where

f |αρ ∼ N(Kα′, σ2)
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Figure 7.2: Different choices of kernel basis centers
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is the sampling distribution for the observed function evaluations.

Given draws (α(t), . . . ,ρ(t)), t = 1, . . . , T from the posterior distribution, the func-

tion can be predicted at any point x0 by

ẑ(x0) =
1

T

T
∑

t=1

m
∑

r=1

α(t)
r kρ(t)(x0 − wr).

Using this result, we make predictions for a find grid G over [0, 1]2 with G = 101×101

points and calculate the predicted mean square error (PMSE) as

PMSE =
1

G

∑

g∈G

[z(xg) − ẑ(xg)]
2,

where z(xg) is the true value of the function from (7.2) at the location xg.

For each choice of W , we repeat this process for 30 iterations. Figure 7.3 shows

the average PMSE (over the 30 simulated responses) for each of the six cases. Un-

surprisingly, using only m = 10 centers results in the highest PMSE. Increasing the

number of centers to m = 20 results in a substantial gain in efficiency. The gains

are much slower after this. Table 7.1 summarizes the PMSE and relative efficiency of

each choice of centers, compared to using basis kernels centered at each data point.

Finding a way to account for the number of basis kernels in the comparison of the

performance would be useful in the future.

We also look at the impact of the choice of W on estimates of ρ. There is expected

to be an interplay between the distance between centers and the estimate of the kernel

width. Figure 7.4(a) shows boxplots of 30 posterior median estimates of ρ1 for each

of the 5 cases. Figure 7.4(b) does the same for ρ2. Interestingly, there is not much

difference between estimates of ρ1 over the last four cases. There is much more

variability in the estimates of ρ2. It is somewhat surprising that this variability does

not decrease with an increase in the number of centers. Further exploration of this

point is left for future study.

154



1 2 3 4 5 6
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 7.3: PMSE for six choices of grid

Table 7.1: PMSE and relative efficiency (compared to using data points as kernel centers)
for 5 different choices of basis kernel centers.

Case m PMSE Rel. Eff.

1 10 .0729 4.31
2 20 .0240 1.42
3 40 .0216 1.27
4 50 .0175 1.04
5 50 .0169 1.00
6 121 .0147 0.87
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Figure 7.4: Posterior median estimates of ρ for 5 choices of grids.
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These are some preliminary results on the impact of using an LHD for choosing

basis centers. There is some indication that if prediction is the goal, using an LHD

might be a reasonable first approximation. Certainly the computation saving would

be enough (particularly in higher dimensions) to make this worth further exploration.

We remark that there may be other choices of design that are more optimal. For

example, it may be more desirable to use something like a nearly-orthogonal LHD

that has good projection properties onto subsets of two, three or more variables.

Again, this choice will be related to how complicated the function is believed to be,

and perhaps which directions have the most activity. Finally, Kern (2000) notes the

importance of choosing basis centers outside the covariate space to reduce boundary

effects on predictions near the edge of the covariate space. This is not an issue we

have explored yet, but it is worth considering in the future.

Extensions to Other Data Structures

It will also be important to eventually consider other forms of network data. For ex-

ample, in some cases non-binary responses may be measured – such as measurements

made on the strength of a relationship, i.e. an ordinal scale of responses. Poisson

distributed observations can arise when counts of events are made for each pair, such

as the number of positive international relations between countries in Central Asia

considered in Hoff (2005). The LSSP and MD models should be readily generaliz-

able to non-binary (univariate) data in the spirit of a generalized linear model. To

illustrate, if yi,j are counts, one might consider models of the general form

ηi,j = log(λi,j) = µ+ z(xi,xj),
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with the sampling distribution of the responses being

[y|λ] =
∏

i<j

e−λi,jλ
yi,j

i,j

yi,j!
.

Being able to generalize to other response distributions is an advantage of the con-

ditional independence assumption used in our models; exponential random graph

models, for example, are only applicable to binary data.

Other more complex situations may also need to be considered. For instance, there

may be more than one sociomatrix observed for a sample of actors (Fienberg et al.,

1985). This can arise if participants are asked multiple questions in a survey about

different ways they relate. Developing models for networks that change over time, or

networks that have a bipartite structure, are also possible future directions.

Estimation of Disease Transmission Parameters

In Chapter 6, we considered using social network models to help predict disease in-

cidence for epidemics yet to happen. The other side of this coin is analyzing data

collected on epidemics that have already occurred. Due to the dependent nature of

infection data, inference on transmission rates and other disease properties is typi-

cally done by assuming a transmission model, such as the SIS or SIR model (see,

e.g. Becker and Britton, 1999; Andersson and Britton, 2000). We expect, therefore,

that many of our observations on the relationship between networks and transmission

models will have counterpoints from an inferential perspective.

There are at least two aspects of epidemic inference that we would like to explore

in the future. For one, we would like to investigate possible bias in the estimation

of transmission parameters when the contact structure of the population is ignored

or assumed to be homogeneous. Incorporating information from a partially observed
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network may help reduce confounding between estimates of contact rates and trans-

mission rates.

This leads to our second interest, which is in building a model that incorporates

infection and network data simultaneously. We feel it will be beneficial to model the

two components in unison, since both network data and infection data provide insight

into the other. One reasonable approach may be to build a hierarchical model, with

the transmission model being conditionally dependent on the network. For example,

let I and R be data collected on infection and removal times, respectively. According

to an assumed contact transmission model, these data have a likelihood [I,R|θ,Y],

where θ contains model parameters, such as transmission and recovery rates, and Y

is the underlying network structure. A network model – such as the ones we have

considered in this thesis – could be used as the prior for the network structure, [Y|ψ].

We use ψ to generically denote unknowns in the network model.

In principle, inference could be made about the network structure given the infec-

tion data,

[Y,θ,ψ|I,R] ∝ [I,R|θ,Y][Y|ψ].

This is an interesting point to consider from a sociological point of view, i.e. can

one learn about social connections from observing a known process taking place on

the network? Alternatively, with respect to estimation of transmission parameters, it

would be interesting to explore if having partial network data can help improve infer-

ence. Britton and O’Neill (2002), for example, consider a hierarchical model similar

to the one given above, but with the assumption of equal rates of contact between

individuals. Some of their results, however, may suggest a means to estimate the

more detailed model we propose.
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Final Remarks

Overall, which assumptions and models will best describe a particular network is

going to vary in each case. Fortunately, there are so many possible kinds of networks,

it is hopeful that any reasonable model will be appropriate in at least some cases. To

the best of our knowledge, there has been a limited collection of network data and

attributes that can be analyzed with models like the LSSP or MD models. One of our

hopes for this thesis is that it will encourage new directions in network sampling and

modelling. For example, if a spatial model is to be used for analysis, ideally sample

networks will be collected to “cover” the attribute space in a sufficient manner. We

acknowledge that this is in no way a trivial matter, and we hope progress will continue

to be made in the collection and analysis of network data.
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