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Abstract

There are two common methods for comparing disease incidence rates (such as cancer)

in two populations (such as pulp and paper workers vs non-pulp and paper workers).

In cohort studies, the two groups are followed over time and the incidence rates are

directly compared. These types of studies can be inefficient for low incidence diseases

when very large sample sizes are needed. Case-control methods take each incidence of

disease and match it to a control. Then contributions from variables such as exposure

to chemicals to the disease incidence rate can be determined. While more efficient

than cohort studies, direct incidence rates cannot be computed.

This thesis used a newly proposed method, the case-cohort study, that combines

features of both types of studies. Because it uses two cohorts, it uses more information

than the case-control study but also gains efficiency from the matching of cases with

controls.

While this method has been extensively theoretically developed in the literature,

it has only be applied to simple problems or simulations. We used this new method

to reanalyze a long running study conducted by the British Columbia Cancer Agency.

While the new methodology did not give dramatically different results, it did yield

improved precision in estimates (implying that it will be easier to detect excess disease

rates). Some potential dangers in the uncritical use of this method were also identified.
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Chapter 1

Introduction

In epidemiology, a cohort is generally used to designate a group of people who share a

common experience or condition. Epidemiological studies often involve the follow-up

of a large cohort of subjects, a small fraction of whom will develop a disease at an

endpoint, or endpoints of interest during a prescribed follow-up period.

In 1982, an occupational cancer research program was initiated in British Columbia;

one facet of this ongoing project was aimed at detecting occupational cancer risk fac-

tors. One of the studies was based on collecting lifetime occupational history from

male incident cancer patients, aged 20 or older, ascertained from the British Columbia

Cancer Registry between January 1, 1983 and December 31, 1989. Based on this pre-

liminary analysis a two-phase study of British Columbian pulp and paper workers was

initiated.

Chapter 2 will start with an introduction to some terminology that is common

in epidemiology. The main objective of Chapter 2 is to describe the designs and the

methods of analyses that are used in to analyse the data on the pulp and paper mill

workers of British Columbia in Chapter 3. Section 2.1 will describe the cohort design.

The objective of this section is solely to develop a background of the work that has

already been done on the British Columbian pulp and paper workers. Section 2.2

begins with a brief description of the case-control design and how it compares to

the cohort design. The nested case-control design is introduced in the general case.

However, the focus of this section is the matched case-control design since it is used
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CHAPTER 1. INTRODUCTION 2

in the application described in Chapter 3. In this section the design, the method for

analysing and the problems with the design are described in detail. Finally, section

2.3 discusses the case-cohort design, which is the design of most interest for this

project. The design is introduced in detail for both binary response data and time to

response data, the latter being the most relevant for the application in Chapter 3. To

conclude the chapter, the Cox Proportional Hazards model is introduced so that it

can be included in the description of how to compute the maximum pseudolikelihood

estimator of the case-cohort design.

Chapter 3 describes the two-phase study of the British Columbian pulp and paper

workers. Section 3.1 and 3.2 give an overview of the chapter and a background to the

two-phase study. Section 3.3 recounts Phase I which investigated the cohort’s mortal-

ity and cancer incidence outcomes. In this first phase of the study of British Columbia

pulp and paper workers, no attempt was made to classify workers by departments and

no exposure data were obtained that might provide explanations for the differences in

cancer patterns observed between workers at mills running different processes. Phase

II, which is described in section 3.4, was a matched case-control study with detailed

work history and exposure assessment based on mill-specific job exposure matrices.

The aim of this project is to apply the case-cohort method, first proposed by Prentice

(1986), to this complicated real data situation. The data collected included enough

information to analyse as a case-cohort design, but part of the data was ignored so as

to treat as a matched case-control design. We first re-analyse the data as a matched

case-control for a single chemical, and then re-analyse it as a case-cohort design using

all available information. The two analyses are compared and contrasted, in addition

the ease of application and stability of the case-cohort analysis is explained.



Chapter 2

Methodology

In an observational study there is no manipulation of the study factors by the in-

vestigator. In other words, the investigator has no control over doses, treatments or

exposures.

Before starting the discussion on the different observational designs, it is impor-

tant to carefully define the terminology that will be used throughout this project.

The source population (or cohort), though sometimes referred to as a population, is

a sample which represents a hypothetical study population in which a cohort study

may have been conducted; it is this hypothetical population that one wishes to make

inferences about. For example, one may use the 14 paper and pulp mills in British

Columbia as a source population, but it is actually viewed as a sample of the hypo-

thetical population of all the mills where particular chemicals of interest are used.

From this example, it is clear that the sample is not random, and often this is the

case. Sometimes it is not possible, or too expensive (with respect to time and money),

to take a random sample. The source population is treated as a random sample so

that inferences can be made about the entire population.

Table 2.1 gives a depiction of this project’s scenario, where the source population

is represented by A1 + B1 + A0 + B0. Within the source population there are sub-

cohorts or groups : an exposed group (A1 + B1) and an unexposed group (A0 + B0). It

is possible to have more than two groups; however, for this project, we will restrict

to two groups. In addition, there is the case group (A1 + A0), which represents the

3



CHAPTER 2. METHODOLOGY 4

diseased individuals, and the control group (B1 + B0), which represents the non-

diseased individuals.

Disease Non-Disease
Exposed A1 B1 A1 + B1

Unexposed A0 B0 A0 + B0

A1 + A0 B1 + B0

Table 2.1: Depiction of the Source Population

There are two primary types of observational designs in epidemiology: the cohort

design and the case-control design. Table 2.2 compares the characteristics of these

designs.

Cohort Case-Control

Begins with a defined population at Generally undefined population
risk at risk

Cases not selected but ascertained by Cases selected by investigator from
continuous surveillance an available pool of patients

Comparison group (i.e., non-cases) Controls selected by investigator
not selected - evolved naturally to resemble cases (matching on

auxiliary variables)

Exposure measured before the Exposure measured, reconstructed
development of disease or recollected after development

of disease

Risk or incidence of diseases Risk or incidence of disease cannot
and relative risk measured be measured directly; relative

risk exposure can be estimated by
odds ratio

Table 2.2: Comparison of characteristics cohort and case-control study designs

A major difference between the cohort design and the case-control design is who

is being compared. The cohort design looks at exposed versus unexposed, whereas
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the case-control design is interested in diseased versus non-diseased. In the cohort ap-

proach, sampling is based on exposure whereas in the case-control approach sampling

is based on outcome (disease or not). A cohort study uses all individuals in the source

population. In a case-control study most cases (diseased) occurring in the source pop-

ulation and only a random sample of the control (non-diseased) group are selected.

One can view the case-control design as biased sampling, with over-sampling of cases.

This makes case-control studies more efficient: one does not have to study all persons

in the source population who do not develop the disease but only a small sample from

them. Unfortunately, this sampling scheme hampers computing any direct measure

of risk, because the resulting sample of cases and controls is not proportional to the

number of cases and non-cases in the underlying source population. This is the main

difference between the two designs.

Both cohort and case-control designs measure frequency, but in cohort studies

the frequency of different outcomes is measured, while in case-control studies the

frequency of the presumed causal factors is measured. In cohort studies, risk can be

expressed as relative risk (risk ratio) and attributed risk (risk difference). In case-

control studies risk is expressed as an odds ratio.

The remainder of this chapter describes and compares the designs in detail and

some methods used to analyse them. Then a new design, proposed by Prentice (1986),

is introduced as an alternative.

2.1 Method I: Cohort Study

In a cohort study the primary question addressed is, “What are the health effects of

a given exposure?”

Long term follow-up (cohort) studies of human populations, particularly of in-

dustrial workers, have provided the most convincing evidence of the link between

exposure to specific environmental agents and cancer occurrence. In epidemiology,

the word cohort is often used to designate a group of people who share a common

experience or condition. In other words, a cohort is simply a group of persons who
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have presumed antecedent characteristics in common and who are followed through-

out their experience so that one may observe the development or non-development of

a given health outcome. For example: (i) all first year students in a university during

a particular academic year, or (ii) all the gall-bladder patients who were operated on

in a given hospital during a certain period of time.

Often, if there are two groups in the study, one of them is described as the exposed

group - those individuals who have experienced the potential causal event or condition

- and the other is thought of as the unexposed, or reference, group. If there are more

than two groups, each may be characterised by a different level or type of exposure.

For example, an occupational cohort study of chemical workers might comprise sub-

cohorts of workers in a plant who work in different departments of the plant, with each

sub-cohort being exposed to a different set of chemicals. The investigator measures

and compares the incidence rate of the disease in each of the study groups.

Exposed and unexposed groups at one point in time are then followed to assess the

differences in health outcomes between them. Follow-up from exposure to outcome

is the key feature of a cohort study; it gives assurance about the sequence of events,

namely the occurrence of exposure prior to outcome, a basic requirement to infer

causality.

In a cohort study, the investigator controls neither the exposure conditions nor the

attribution of exposure to study subjects; the subjects in the cohort are selected after

exposure status has been characterised. As a result, risk factors of the health outcome

are likely to be unevenly distributed between the exposed and unexposed groups

leading to differences in baseline risk. To ensure relative comparability between the

exposed and the unexposed subjects, the investigator can only control the selection

of the unexposed group.

There are two types of cohort studies: prospective cohort studies and retrospective

(historical) cohort studies. The primary difference between these two studies is the

way in which the follow-up over time is conducted. The prospective cohort method

assembles the cohort in the present, and follows the individuals prospectively into the

future. The investigator assesses exposures in the present and watches for disease

in the future. A source population is generally a “representative” sample of the
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hypothetical population; this sample may be a random sample, or it may be based

on something, such as exposure. The main advantage to this method is that it allows

one to collect exactly the information thought to be required; however, it does have

the disadvantage that many years may elapse before sufficient cases of disease have

developed for analysis. In contrast, the retrospective cohort study allows one to

identify a group with certain exposure characteristics, by means of historical records,

at a certain defined time in the past, and then reconstruct the disease experience of

the group between the defined time in the past and the present. In addition, in the

retrospective cohort design, like the prospective cohort design, sampling is not based

on case/disease status. The main advantage is that results are potentially available

immediately, and the disadvantage is that the information available on the cohort may

not be completely satisfactory, since it would most likely have been collected for other

purposes or be subject to recall bias. Prospective studies, although more accurate, are

costly and often impractical due to their time requirement. Retrospective studies are

more frequently used as they are faster and cost less. The two types of studies have

a fundamental characteristic in common: the individuals comprising the cohort are

identified, and information on their exposure obtained, before their disease experience

is ascertained (Breslow and Day, 1987). The goal of both studies is to compare exposed

and unexposed individuals.

The design and execution of a cohort study will depend on the individual circum-

stances of the study, and its aim. Even though the scope and purpose of different

studies may vary widely, there are a number of issues in the design and execution

that require attention, irrespective of whether the study is prospective or historical.

These issues are as follows:

• Inclusion rules must be clear and unambiguous.

• Dates of entry and exit must be well defined.

• Follow-up over time of the individuals enrolled in the cohort study is the essential

feature of the study; thus the follow-up mechanisms to be used must be chosen

carefully.
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• The extent and detail of the information on exposure should reflect the rela-

tionship between exposure and excess risk that the investigator might expect.

In addition one requires to know: (i) the dates at which exposure started and

stopped, as well as the subject’s age when exposure started, and (ii) in relation

to exposure level, quantitative information is rarely available throughout the

period. Thus one has to decide which summary measures are most informative.

• It is important to collect information on any auxiliary variables that may have

an effect.

• The possible results the study could yield need to be investigated before sub-

stantial resources are devoted to the study. Studies that have low power for

detecting realistic levels of excess risk should not be performed, unless their

results can be merged with those of other studies.

2.1.1 Analysis of the Cohort Study

The following section gives the simplest form of analysis of the cohort study. The

object of the section is to give a background to the application discussed in detail in

Chapter 3 and not to describe all possible analysis methods.

Analysis of data from a cohort study involves estimation of the rates of cancer

and other diseases of interest which occur among cohort members during the study

period. Cohort studies, by recording disease occurrence in a defined group, provide

measures of incidence, or mortality rates, and it is these rates that provide the basic

measures of disease risk. Analysis of cohort data typically involves a comparison of

the rates observed in the study group with rates for the general population. This is a

useful way of identifying diseases which occur at especially high or low frequency in

the cohort, so they may be studied further in relation to particular exposures.

Two measures of effect are used in cohort studies: the incidence (or mortality)

rate ratio which is the incidence rate or outcome in the exposed group relative to

the unexposed one; and the risk ratio or relative risk which is the proportion of the

exposed cohort developing the health outcome of interest relative to the unexposed
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one.

Disease Non-Disease
Exposed A1 B1 A1 + B1

Unexposed A0 B0 A0 + B0

A1 + A0 B1 + B0

Table 2.3: Two by Two Contingency Table For Calculating Risk

From Table 2.3, the Relative Risk (RR) is:

RR =
probability of disease given exposed

probability of disease given unexposed

=
A1/(A1 + B1)

A0/(A0 + B0)
.

Furthermore, in many cohort studies, standardized mortality ratios (SMR) are

used to compare the mortalities. This index is the ratio of the rate of mortality of

disease among the worker group, to the rate of mortality among some reference group.

Also, standardized incidence ratios (SIR) are used to compare cancer incidences. This

index is the ratio of the rate of mortality and incidence of disease among the worker

group, to the rate of incidence among the reference group.

More complex modelling is used when analysing cohort studies; however, since

such was not done to analyse the cohort phase of the application in Chapter 3, it will

not be discussed in this project.

2.2 Method II: Case-Control Study

2.2.1 Description

In a case-control study the primary question addressed is, “What are the contribut-

ing causes of a given disease?” Case-control studies are the most frequently used

epidemiology study design. They examine the cause-effect relationship from a per-

spective opposite to that of a cohort study.



CHAPTER 2. METHODOLOGY 10

Consider the basic case-control study design. Imagine two sub-cohorts, exposed

and unexposed, that can be denoted by the subscripts 1 and 0, respectively. Now,

suppose that we want to study the relationship of exposure incidence rates in these

populations. The disease incidence rate during a time period t (e.g. 1 year) might be

expressed for the exposed group as

I1 =
A1

T1

and for the unexposed group as

I0 =
A0

T0

,

where A1 and A0 are the respective numbers of individuals in whom disease developed

during time interval t, and T1 and T0 are the respective amounts of person-time at

risk of the disease spent in the exposed and unexposed groups, and thus I1 and I0 are

the incidence rates for the exposed and unexposed and are estimates of the rates of

disease and non-disease given the exposure in the hypothetical study population.

In a cohort study, the numerator and the denominator of each rate are evaluated;

doing so requires enumerating the source population and keeping it under surveillance.

A case-control study attempts to observe the source population more efficiently. The

efficiency of the case-control study comes from the use of a control series in place

of complete assessment of the denominators of the incidence rates. The cases in a

case-control study should be the same individuals who would be considered cases in

a hypothetical cohort study of the same source population; using the notation above,

the cases are the A1 + A0 individuals.

Case-control studies are best understood by defining a source population, a sample

which represents a hypothetical study population, in which a cohort study might have

been conducted. If a cohort study were undertaken, the primary tasks would be to

identify the exposed and unexposed denominator experience, measured in person-time

category or study cohort. In a case-control study, the cases are identified and their

exposure status is determined just as in a cohort study, but denominators from which

rates could be calculated are not measured. Instead a control group of study subjects
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is sampled from the non-diseased sub-cohort.

The purpose of the control group is to estimate the relative (as opposed to the

absolute) size of the exposed and unexposed denominators within the source popu-

lation, i.e. T0/T1. From the estimated relative size of the denominators, the relative

size of the incidence rates (or incidence proportions) can be estimated, since

I1

I0

=
A1

T1

· T0

A0

=
T0

T1

· A1

A0

,

and A0, A1 and an estimate from the sub-sample of T0/T1 are available (related to

two-phase sampling in surveys).

Thus, case-control studies yield estimates of relative effect measures. Because the

control group is used to estimate the distribution of exposure in the source population,

the cardinal requirement of control selection is that the controls must be sampled

independently of their exposure status.

Case-control studies first identify and select the cases and controls; these groups

are then followed backward in time to assess whether their retrospective past patterns

of exposure differed before the cases actually developed the health outcome. Tracking

backward from outcome to antecedent is characteristic of case-control studies; it is

inferred that differences in exposure patterns between cases and controls are likely a

cause of the outcome.

A cohort study faces forward in time (whether collected prospectively or retro-

spectively), starting with a defined population and its exposure status, and observing

the subsequent disease experience, whereas a case-control study faces backwards in

time, starting with the disease status, and reconstructing the exposure history from

which it emerged.

Usually, all cases occurring in the population of interest are included in the study,

but only a fraction of the potential controls are selected. This makes case-control stud-

ies more cost effective: one does not have to study all persons in the source population

who do not develop the disease but only a small sample from them. Unfortunately,

this sampling scheme hampers computing any direct measure of risk, because the re-

sulting sample of cases and controls is not proportional to the number of cases and
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non-cases in the underlying source population.

As a final comment, if a case-control study is nested within a defined cohort, it is

referred to as a nested case-control study. Using this definition, nested-case control

studies are often used in occupational epidemiological studies.

2.2.2 Comparison with the Cohort Study

In the present section, the relative merits and drawbacks of the cohort study as com-

pared to the case-control study are discussed. In the cohort approach a group of

individuals is defined, their exposure determined and their subsequent disease experi-

ence ascertained, whereas in the case-control approach, the cases of a specific disease

are identified together with a suitable comparison group, and information on exposure

before disease onset obtained retrospectively. Described in this way, it would seem

natural that the latter might appeal if the focus is on causation of a specific disease,

and the former if interest is on the health consequences of a given exposure (Breslow

and Day, 1987).

There are many reasons that (and situations for which) the cohort design is more

appealing than the case-control study. One such feature is that the results of the

cohort study are considered more conclusive than results from case-control studies.

Another important issue is bias. The cohort study has a lower potential for bias

than the case-control study. In cohort studies recall-bias and selection bias can be

eliminated, whereas in case-control studies recall bias can cause major problems and

selection bias is almost impossible to evaluate. Another advantage of the cohort

approach is that it is good for establishing the temporal sequence and the natural

history of diseases. In contrast, the case-control approach cannot assess temporal

relationships because: i) it is hard to decide when a disease was actually acquired; ii)

because the controls may be “at risk” longer than the cases, it is possible to obtain a

nonsensical result that exposure decreases an individual’s chance of being diagnosed

with the disease; and iii) the case-control design misses diseases still in a latent period.

A final advantage is that the cohort design can estimate overall and specific disease

rates, usually incidence rates. In contrast the case-control approach cannot calculate
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incidence; in addition, it cannot calculate population relative risk or attributable risk.

Case-control studies have predominated in the history of cancer epidemiology

(Breslow and Day, 1987). This would suggest that there are several disadvantages

to the cohort design, despite the advantages discussed thus far.

The following is a discussion of the reasons the case-control design is more appeal-

ing than the cohort design. Time and money are a very important features in designs.

A major disadvantage to the cohort study is that it becomes stronger the longer the

study continues. Therefore, a cohort study may lead to a commitment over many

years, which can in turn be a very expensive operation. In contrast, a case-control

study is inexpensive and can be accomplished quickly because events of interest have

already occurred.

The case-control study is more appealing than the cohort study when the disease

of interest is a rare disease. Recall that in the case-control study the proportion of

cases and non-cases is not the same as in the underlying population; however, in a

cohort study the proportion of the source population being diseased is the same as in

the population, which may cause problems if the disease is rare. If the ratio of cases

to controls is low, then the cohort will have a much higher sample size than the case-

control design. This makes the latter more appealing. This is the main application

and the main reason case-control studies are so popular. A few other advantages of

the case-control are: (i) it can study several potential exposures at the same time and

(ii) it lends itself well to hospital-based studies and outbreaks.

To conclude, it is important to mention two features that the two designs share

in common. First, in both designs, inferences can be biased due to confounders. A

confounder is any circumstance, other than the desired exposure, that makes one

group different than another; the confounder must also be associated with disease

outcome. Confounding can be protected against through random selection. Second,

both allow for inference when a randomised clinical trial would be unethical. For

example, if one is interested in the effect of exposure to chemicals on cancer, it is

unethical to randomly assign individuals to that exposure.
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2.2.3 Stratified Case-Control Study

In the general situation of the stratified case-control design the cases are divided

into strata based on some auxiliary variable, e.g. age ranges. The controls are then

assigned to the appropriate stratum and a stratified sample of controls is taken. The

case-control study described previously is a special case of the stratified case-control

design with only one stratum. The situation that we are interested in (i.e. the one

used in the British Columbia pulp and paper study) involves stratifying so deeply

that there is one case in each stratum and M controls called matched case-controls.

As in the general situation, the M controls are matched to each case based on some

auxiliary variable, such as age. In practice, it is difficult to stratify so deeply that

there is only one case in each stratum. For example, if the auxiliary variable used for

matching is age (in years), it is quite likely that there will be more than one case at

each age. In this situation the controls that also fall in that stratum are randomly

matched to cases and treated as matched.

The key element of a stratified case-control design is that the controls only need

to be followed to the time that their matched case obtains the disease.

2.2.4 Analysis of the Matched Case-Control Study

Since the case-control study and general stratified case-control design were not done

in the application in Chapter 3, the methods of analysis will not be discussed. For

this project, we will confine ourselves to the method that was used in this application,

the matched case-control study.

Matched case-control studies are typically analysed using conditional logistic re-

gression for matched sets. Conditional logistic regression is used to investigate the

relationship between an outcome and a set of prognostic factors; it is a common

method for analysing a case-control study. The conditional approach is best restricted

to matched case-control designs, or to similar situations involving very fine stratifica-

tion where its use is in fact essential in order to avoid biased estimates of relative risk

(Breslow and Day, 1980).
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One design which occurs often in practice, and for which the conditional likeli-

hood takes a particularly simple form, is the situation where each case is individually

matched to one or more controls. The number of controls can be a fixed number, M ,

or it can vary from set to set.

Suppose that the ith of I matched sets contains Mi controls in addition to the case.

Denote the K-vector of exposures for the case in this set by xi0 = (xi01, ..., xi0K) and

the exposure vector for the jth control (j = 1, ..., Mi) by xij = (xij1, ..., xijK). Now,

we want to develop the the conditional likelihood.

Consider the binary dependent variable y, which indicates whether (y = 1) or not

(y = 0) an individual develops the disease, and a series of independent regression vari-

ables x = (x1, ..., xK). The conditional probability formula for y given x is modelled

as

Pr{y = 1|x} =
{

1 + exp(−α−
K∑
1

βkxk)
}−1

.

Now, we need to take into account the matched sets as described above. In this

case, the α’s are allowed to vary from stratum to stratum. However, the β’s remain

fixed so that

Pr{y = 1 in stratum i|x} =
{

1 + exp(−αi −
K∑
1

βkxk)
}−1

. (2.1)

In order to account for this fact in the probability model, it is appropriate to

consider the conditional probability of the retrospective data given the Mi + 1 sets

of values for the x variables which are sampled in each stratum. More precisely,

suppose it is known that Mi + 1 data vectors xij for j = 0, 1, ..., Mi are observed

in the ith stratum, but it is not known which of these corresponds to the case. The

conditional probability that the first vector corresponds to the case, as observed, and

the remainder to the controls is

Pri{xi0|y = 1}∏Mi

j=1 Pri{xij|y = 0}
∑Mi

j=0

[
Pri{xij|y = 1}∏Mi

j′ 6=j Pri{xij′ |y = 0}] . (2.2)
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Each conditional probability Pr(x|y) of risk factor values may be expressed as

pr(x|y) =
pr(y|x)pr(x)

pr(y)
, (2.3)

Now, substituting (2.1) and (2.3) into (2.2),

Pri(y=1|xi0)Pri(xi0)
Pri(y=1) ·∏Mi

j=1
Pri(y=0|xij)Pri(xij)

Pri(y=0)∑Mi

j=0
Pri(y=1|xij)Pri(xij)

Pri(y=1) ·∏j′ 6=j
Pri(y=0|xij′)Pri(xij′)

Pri(y=0)

=
Pri(y = 1|xi0)Pri(xi0) ·

∏Mi

j=1 Pri(y = 0|xij)Pri(xij)∑Mi

j=0 Pri(y = 1|xij)Pri(xij) ·
∏

j′ 6=j Pri(y = 0|xij′)Pri(xij′)

=

exp(αi+
∑K

k=1 βkxi0k)
1+exp(αi+

∑K
k=1 βkxi0k)

Pri(xi0)
∏Mi

j=1
1

1+exp(α+
∑K

k=1 βkxijk)
Pri(xij)

∑Mi

j=0
exp(αi+

∑K
k=1 βkxijk)

1+exp(αi+
∑K

k=1 βkxijk)
Pri(xij)

∏
j′ 6=j

1
1+exp(α+

∑K
k=1 βkxij′k)

Pri(xij′)

=
exp(αi)exp(

∑K
k=1 βkxijk)

∏Mi

j=0
1

1+exp(α+
∑K

k=1)
Pri(xij)

∑Mi

j=0 exp(αi)exp(
∑K

k=1 βkxijk)
∏Mi

j=0
1

1+exp(α+
∑K

k=1)
Pri(xij)

=
exp(

∑K
k=1 βkxi0k)∑Mi

j=0 exp
( ∑K

k=1 βkxijk

)

Thus, the the conditional likelihood for all strata is:

L(β) =
I∏

i=1

exp(
∑K

k=1 βkxi0k)∑Mi

j=0 exp
( ∑K

k=1 βkxijk

)

=
I∏

i=1

1

1 +
∑Mi

j=0 exp
( ∑K

k=1 βk(xijk − xi0k)
) ,
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where βT = (β1, ..., βK). If any of the x’s are matching variables, taking the same

value for each member of a matched set, then their contribution to the likelihood is

zero; therefore, the corresponding β cannot be estimated. This is a reminder that

matched designs preclude the analysis of relative risk associated with the matching

variables; however, by defining some interaction or cross-product terms involving both

risk factors and matching variables, one may model how relative risk changes from

one matched set to the next (see Breslow and Day, 1980).

If there is a single matched control per case, the conditional likelihood simplifies

even further to

L(β) =
I∏

i=1

1

1 + exp
( ∑K

k=1 βk(xi1k − xi0k)
) .

This may be recognised as the unconditional likelihood for the logistic regression model

where the sampling unit is the pair and the regression variables are the differences in

the exposures for case versus control.

Familiar statistical packages, such as SAS, are available to perform conditional

analysis for both matched and, more generally, stratified designs.

2.2.5 Problems with the Matched Case-Control Study

There are several reasons for considering alternatives to a matched case-control design.

To begin with, the alignment of each selected control subject to its matched case seems

inefficient. Why? Because the subject may also properly serve as a member of the

comparison group for cases occurring at a range of other times. In addition, the strict

application of the time-matched case-control approach would involve the selection of a

new set of controls for each distinct disease category under study, whereas intuitively

a single comparison group should suffice as in full-cohort analyses (Prentice, 1986).

The method for analysing a stratified case-control design is as follows. The in-

dividuals are followed through time, and considered “at risk”, until they experience

the event (diagnosed with cancer) or they are censored (leave the study or the study

terminates). The cases are the individuals who are diagnosed with the disease and



CHAPTER 2. METHODOLOGY 18

the controls are the individuals who are disease-free at the end of the study. Since

the controls remain in the study longer than the cases, they are exposed for longer;

therefore, this would potentially cause a bias against the individuals who do not expe-

rience an event. Thus, if one were to follow the controls until the end of the follow-up

period, it would be possible to obtain a nonsensical result that exposure decreases

an individual’s chance of being diagnosed with the disease. To avoid such a scenario,

the controls are only followed until their matched case is diagnosed with the disease.

There is nothing inherently wrong with the approach; however, quite often, informa-

tion on the controls is available until the end of the follow-up, or it is easy to obtain.

This is true of the British Columbia pulp and paper study discussed in Chapter 3.

The question is, does it matter if we use this additional information or not?

2.3 Method III: Case-Cohort Designs

The difference between the matched case-control design and the case-cohort design

is subtle. Recall that in the matched case-control design the controls only needed to

be followed until their matched case is diagnosed with the disease. In a case-cohort

design, the individuals are followed separately; therefore the controls are followed until

the end of the study. Quite often, information until the end of the follow-up is available

for the controls, or it does not cost much to obtain the information. Therefore, using

the above definitions, quite often a case-cohort design is used and then a matched

case-cohort method of analysis is applied to the data. In this case they are the same

sample design with different methods of analysis; however, in this project, we will

refer to them as different designs.

Before starting the discussion on the case-cohort design, it is important to define

some additional terminology to bridge between the typical wording in failure time data

and the Cox proportional hazard model and epidemiology studies. Failure will be the

same as experiencing the event (i.e. being diagnosed with the disease). Censoring

will be synonymous with an individual leaving the study non-diseased.

The case-cohort design is most useful in analyzing time to failure in a large cohort

in which failure is rare. A case-cohort study viewed as failure time data consists
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of a random sample, the subcohort, and any additional cases not in the subcohort.

Covariate information is collected from all failures (i.e. cases) and a representative

sample of censored observations (i.e. the subcohort of controls). Sampling is done

without respect to time or disease status, and, therefore, the design is more flexible

than a matched case-control design. Despite the efficiency of the methods, case-cohort

designs are not often used because of perceived analytic complexity.

Designs in which a subcohort is chosen at the start of the study to constitute

the control group are discussed by Prentice (1986). For failure time data, the semi-

parametric Cox (1972) proportional hazards model is routinely used. Observed fail-

ures are typically more influential than censored observations in such analyses.

Relative risk is the ratio of the probability of an event in the case group to the

probability of the event in the control, adjusted for covariates. This provides a natural

approach to the modelling and understanding of the dependence of disease rates on

aspects of the preceding covariate history. In the presence of a large cohort with

infrequent disease events, the efficiency with which relative risk parameters may be

estimated depends strongly on the number of subjects experiencing failure, but the

marginal contribution from subjects not developing disease is small. In considering

covariate sampling procedures, it is then natural to consider designs in which covariate

histories are assembled for all the cases, along with an independent random sample

(with replacement) of the control subjects at each distinct failure time. Although

this gives rise to a partial likelihood approach to relative risk regression estimation,

it leads to poorer efficiency results than does the odds ratio estimator under simple

case-control sampling with unmatched controls (Self and Prentice, 1988).

Accordingly, Prentice (1986) proposed a case-cohort design to efficiently analyse

cohort data when most observations are censored. Conceptually, a random sample

of the cohort, or “subcohort” is designated prospectively as the source of comparison

observations for the observed events. All failures are included whether in the subco-

hort or not, but censored observations are included only if in the subcohort. However,

the potential to assess covariates for all members of the cohort must exist since one

does not know in advance which individuals fail.

Prentice (1986) proposed a pseudolikelihood procedure for relative risk regression
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parameter estimation. This pseudolikelihood mimics the form of partial likelihood

estimation of the regression coefficient in this proportional hazards model. Also,

a variance estimator was proposed that requires computation of covariances among

score components that arise from the sampling design. A corresponding estimator was

also given for the cumulative baseline failure rate, for which no estimation procedure

currently exists under time-matched case-control sampling. Therneau and Li (1998)

suggest that this model can be computed simply using the Cox Proportional Hazards

function in one of the statistical packages.

The remainder of this section discusses the case-cohort design in detail. In addi-

tion, the Cox Proportional Hazards model is introduced followed by a description of

how this model can be used to analyse the case-cohort design.

2.3.1 The Case-Cohort design: Binary Response

Before focusing on our main interest, relative risk estimation, it is instructive to begin

with a discussion of odds ratio estimation, based on the follow-up of a cohort of size

n to observe whether D = 0 (event does not occur in specific time period)or D = 1

(event occurs during a specified time period).

Suppose initially that one is interested in the dependence of failure probability on

the presence, z = 1, or absence, z = 0, of some covariate. Denote pij = Pr(D =

i, z = j) (i, j = 0, 1). If one assumes that there is no censoring, then a conventional

cohort approach would involve observation of the number of failures d0 and d1, and

the number of subjects n0 and n1, corresponding to z = 0 and z = 1, respectively.

n0 − d0, n1 − d1, d0 and d1 are the counts in the cells/boxes depicted in Table 2.4.

z = 0 z = 1
D = 0 (n0 − d0) (n1 − d1)
D = 1 d0 d1

n0 n1 n

Table 2.4: The Counts in the Case-Cohort Design: Binary Response

Each box has a different probability (think of the boxes being bigger or smaller) and
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we fix the number of balls that fall to be n; n0 − d0 + n1 − d1 + d0 + d1 = n. The

probability of each box is pij, with constraint, p00 + p01 + p10 + p11 = 1 this is a

case in which the counts are not independent. This modelled via a multinomial, with

likelihood of the form

L(p) =

(
n

(n0 − d0), (n1 − d1), d0, d1

)
p00

(n0−d0)p01
(n1−d1)p10

d0p11
d1

where p = (p00, p01, p10, p11). It follows that the respective maximum-likelihood esti-

mators are

p̂00 =
n0 − d0

n

p̂01 =
n1 − d1

n

p̂10 =
d0

n

p̂11 =
d1

n
.

Therefore, because of the invariance of the maximum likelihood estimators, the max-

imum likelihood estimate of the odds ratio λ = p11p00(p10p01)
−1 is

λ̂ =
d1(n0 − d0)

d0(n1 − d1)

(Prentice, 1986). The variance of the log of the odds is approximately the sum of the

inverse of the counts. Thus, β̂ = logλ̂ has asymptotic variance consistently estimated

by d0
−1 + d1

−1 + (n0 − d0)
−1 + (n1 − d1)

−1.

Suppose now that the entire cohort is monitored for failure as before, but that

covariate values are assembled only for a randomly selected subcohort of size m ≤ n,

and for any additional failing subjects that are not in the subcohort. The counts

for this scenario are depicted in Table 2.5. The total number who exposed (z = 1),

unexposed (z = 0), and the grand total are the same as in the situation depicted in

Table 2.4. The individuals used in the analysis are the ones that fall into the following

cells: m0 − k0, m1 − k1, d0 and d1.
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z = 0 z = 1

D = 0 (n0 − d0)− (m0 − k0) m0 − k0 (n1 − d1)− (m1 − k1) m1 − k1

D = 1 (d0)− (k0) k0 (d1)− (k1) k0

Table 2.5: The Counts in the Case-Cohort Design with a Subcohort: Binary Response

If one re-parameterizes such that

p00 = pα and p01 = p(1− α)

and notes that p = 1− p10 − p11, the likelihood function for such case-cohort data is

proportional to

p10
d0p11

d1(1− p10 − p11)
n−dαm0−k0(1− α)m1−k1

(Prentice, 1986), where (m0,k0) and (m1,k1) are the numbers of subjects and cases,

i.e. failures, corresponding to z = 0 and z = 1, respectively, in the randomly selected

cohort, and d = d0 + d1. As before, p̂10 = d0/n and p̂11 = d1/n. In addition, it

is easy to show that α̂ = (m0 − k0)/(m − k), where k = k0 + k1. Now, recall that

λ = p11p00(p10p01)
−1. Re-parameterizing, one obtains:

λ = p11pα[p10p(1− α)]−1 = p11α[p10(1− α)]−1

with

λ̂ =
d1(m0 − k0)

d0(m1 − k1)
.

Invariance of the maximum likelihood estimators then yields β̂ = logλ̂. As before,

this has asymptotic variance consistently estimated by d0
−1 + d1

−1 + (m0 − k0)
−1 +

(m1 − k1)
−1 (Prentice, 1986).

Prentice and Pyke (1979) show that the odds ratio estimators and their asymptotic

variance matrices may be obtained by applying the original logistic regression model

to the case-control study as if the data had been obtained in a prospective study.

In summary, using this information, Prentice (1986) shows that asymptotic inference
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on the odds ratio in a case-cohort study can be carried out by applying the binary

logistic failure model

Pr(D|z) =
exp{(α + zβ)D}
{1 + exp(α + zβ)} (2.4)

directly to the s0 + s1 subjects for whom covariate data is assembled; s1 = d failing

subjects and s0 = m− k subcohort members who turn out to not fail. Furthermore,

Prentice also demonstrated that the case-cohort data provides a natural estimator

q̂ = s1/n of the marginal disease probability q = Pr(D = 1), though information

on q is not, in itself, useful for large sample odds ratio estimation. It is possible to

permit parameters in (2.1) and the subcohort selection to be stratified on baseline

characteristics.

2.3.2 The Case-Cohort design: time to response data

Several generalisations of the above formulation will be simultaneously considered: the

use of actual times of failure (cases); the replacement of odds ratios by relative risks;

the allowance for late entry into the cohort, censorship and even intermittent exclusion

from the cohort risk set; and a relaxation to allow non-exponential relative risk forms.

For notational convenience, allowance for stratification on baseline covariates will be

deferred.

For now, time can be thought of as the time since the beginning of the cohort

study; however, in some applications, other specifications, such as age, may be more

appropriate. Let Z(t) denote a covariate measurement on a subject at time t. Now,

let λ{t; Z(u), 0 ≤ u < t} denote the failure rate of interest at time t for a subject with

preceding covariate history {Z(u), 0 ≤ u < t}. Consider the relative risk regression

model, which was introduced by Cox (1972),

λ{t; Z(u), 0 ≤ u < t} = λ0(t)r{X(t)β},

(see Prentice, 1986), where r(x) is a fixed function with r(0) = 1 (e.g. r(x) = 1 + x

or r(x) = ex); X(t) is the column p-vector consisting of, possibly time-dependent,
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functions of {Z(u), 0 ≤ u < t} and possibly product terms between such functions

and t; β is a column p-vector of regression parameters to be estimated; and λ0(t) is a

baseline hazard function corresponding to a standard covariate history for which the

modelled regression vector X(t) ≡ 0.

Let Ni(t), assuming it has a right-continuous sample path (Prentice, 1986), be the

observed number of events for subject i up to and including time t; in other words, Ni

takes the value zero prior to an observed failure on the the ith subject, and the value

one thereafter. Also let Yi(t), assuming it has a left-continuous sample path (Prentice,

1986), take a value of one when subject i is at risk for failure (and under observation)

and zero otherwise. Now, consider a cohort of size n. Let {Ni(u), Yi(u), Zi(u); 0 ≤
u < t} denote counting, censoring and covariate histories for the ith subject prior to

time t.

Now, define the time of failure or censorship for the ith subject as:

ti = min{t|Yi(u) = 0; all u > t}

and the censoring indicator as:

δi =

{
1 : Ni(ti) 6= Ni(ti

−)

0 : Ni(ti) = Ni(ti
−).

Cox (1972) defined a partial likelihood function in the following way:

L(β) =
n∏

i=1

(
rii

/ n∑

l=1

rli

)δi

, (2.5)

where rli = Yl(ti)r{Xl(ti)β}. This is under standard independent failure time and

independent censorship assumptions and full cohort data.

Suppose now that there is a subcohort, C, of size m selected from the censored sub-

cohort. In addition, {Ni, Yi} processes are available for all cohort members; however,

covariate histories are only available for members of C and for subjects that fail. Now,



CHAPTER 2. METHODOLOGY 25

let K(t) = {i|Ni(t) = 1}; i.e., the set of subjects failing at or before time t. Thus,

covariate histories at time t will be assumed available for subjects in M(t) = K(t)∪C.

Also, let R̃(t) = D(t) ∪ C, where D(t) = {i|Ni(t) 6= Ni(t
−)}; this is empty unless a

failure occurs at time t. Finally, let

∆t =

{
1 : R̃(t) 6= C

0 : R̃(t) = C

Prentice (1986) suggests that for estimation of the relative risk parameter β, using

such case-cohort data, one should maximise the function

L̃(β) =
n∏

i=1


rii

/ ∑

l∈R̃(ti)

rli




δi

. (2.6)

The only difference between expressions (2.2) and (2.3) is that in (2.3), the ith denom-

inator factor is a sum over subjects at risk in R̃(ti) rather than over subjects at risk in

the entire cohort. Since expression (2.3) does not generally have a partial likelihood

interpretation (Prentice, 1986), it is termed a pseudolikelihood.

The maximum pseudolikelihood estimate, β̂, is defined by a solution U(β̂) = 0,

where

U(β̂) =
∂logL̃(β)

∂β

is the score function. Noting that

logL̃(β) =
n∑

i=1

δi


log(rii)− log





∑

l∈R̃(ti)

rli






 ,

the score function reduces to



CHAPTER 2. METHODOLOGY 26

U(β) =
n∑

i=1

δi

[
Yi(ti)Xi(ti)r

′{Xitiβ}
r{Xitiβ} −

∑
l∈R̃(ti)

Yl(ti)Xl(ti)r
′{Xltiβ}∑

l∈R̃(ti)
r{Xtiβ}

]

=
n∑

i=1

δi


cii −

∑

l∈R̃(ti)

bli/
∑

l∈R̃(ti)

rli


 ,

where

bli = Yi(ti)Xi(ti)r
′{Xitiβ} and cli = blir

−1{Xl(ti)β}.

In summary, Prentice (1986) proposed a pseudolikelihood procedure for the rela-

tive risk parameter along with heuristic procedures for parameter estimation; a corre-

sponding estimator was also given for the cumulative baseline failure rate, for which

no estimation procedure existed, for time matched case-control sampling. Prentice

also showed that subcohort sampling rates can be allowed to vary among strata. A

pseudolikelihood function for β can be written as a product of terms (2.3) over strata.

Self and Prentice (1988) developed the asymptotic distribution theory for the case-

cohort maximum pseudo-likelihood estimators using a combination of martingale and

finite population convergence results. They also developed corresponding asymptotic

efficiency expressions for relative risk parameter estimation.

2.3.3 The Cox Proportional Hazards Model

As mentioned previously, Therneau and Li (1998) suggest that the Cox Proportional

Hazards model can be used to compute the pseudolikelihood estimator of the previous

section. Therefore, it is necessary to give a brief description of the Proportional

Hazards model.

The hazard or risk function h(t) gives the instantaneous failure rate assuming that

the individual has survived to time t,

h(t) = limδ→0
Pr(t ≤ T ≤ t + δ|t ≤ T )

δ
=

f(t)

S(t)
.
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In other words, the hazard or risk function h(t) approximates the proportion of sub-

jects dying or having events per unit time near time t, where f(t) is the probability

density function and S(t) = Pr(T > t) is the survival function.

When a cohort is subdivided into two subcohorts, C1 (exposed) and C0 (unex-

posed), by the presence or absence of a certain characteristic (an exposure such as

smoking), each subcohort corresponds to its own hazard or risk function and the ratio

of two such functions is called the relative risk,

RR(t) =
h(t; C1)

h(t; C0)
.

In general, RR(t), is a function of time and measures the magnitude of an effect;

when it remains constant we have the proportional hazards model, which assumes

that lifetime and failure time data are independently distributed with the hazard

function given by

h[t|x(t)] = h0(t)exp{x(t)′β},
where x(t) is a vector of observable, possibly time dependent, covariates, and h0(t) is

the hazard function at x(t) = 0 (or h[t; I0]). This is a special case of the regression

model given on page 23. The “regression coefficient”, β, represents the relative risk on

the log scale. One of the reasons for the model’s popularity in fitting failure data is that

the unknown parameter, β, can be estimated by partial likelihood without putting a

parametric structure on h0, and thus, this model is more flexible. Even though the

model makes a number of assumptions which may not always be completely satisfied,

fitting such models can have both descriptive and analytical value.

2.3.4 Computing the Maximum Pseudolikelihood Estimator

The Self and Prentice (1988) estimate of β̂, which is nearly identical to the estimate

proposed by Prentice (1986), can be computed fairly easily, using any Cox (Propor-

tional Hazards) model program that allows for an offset term (Therneau and Li, 1998).

If one assumes that there is a concurrent registry which can be used to identify all

of the subjects who experience an event, then the goal is to collect covariate data on
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only a subcohort of the subjects, randomly sampled from the cohort, and augment

the sample with all of those subjects who experience an event.

Let x be a constructed variable which is equal to zero for subjects in the random

subcohort and take some large negative value (e.g. −100) for subjects who have

experienced the event. If there are subjects who are in both the subcohort and have

experienced the event of interest, then enter them into the data as two separate

observations: one with x = 0 and status equal to censored, and one with x equal to a

large negative number and status equal to event. Now, the model is fit with offset(x)

as a term on the right hand side (Therneau and Li, 1998). The offset function is, in

a sense, putting weights on the observations.

Observations which are not part of the subcohort, although formally part of the

estimation of the mean, do not in actuality affect the result since they have a relative

weight of exp(x), which is very small, when x is a large negative number, as compared

to the subcohort subjects who have a relative weight of exp(0) = 1 when computing

the mean.

Time dependent covariates are coded by breaking each subject up into multiple

observations, each over an interval (start, stop]. Each observation contains the values

of the covariates that apply over that interval, along with a status variable that

indicates whether the interval was terminated with an event (1-yes, 0-no).

Now, assume that we have computed the Self and Prentice (1988) estimate using

this method. Because of oversampling of cases with an event, the usual estimate of

variance will overstate the precision of β̂ (Therneau and Li, 1998). Nevertheless, Self

and Prentice (1988) proposed an asymptotically consistent estimate of var(β̂); this

estimate has been criticised as being overly complex for practical use (Therneau and

Li, 1998). However, Therneau and Li (1998) show that var(β̂) can be calculated by

standard packages as

V̂ = τ̂−1 + (1− α)D
′
SCDSC

,

where τ̂−1 is the “standard” variance estimate returned by the Cox model program and

DSC is the subset of the matrix of dfbeta residuals that contain only those rows from
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the subcohort C; α = m/n is the proportion of cases sampled. The dfbeta residuals

are a matrix, where the ith row gives the approximate change in the coefficients due

to the addition of subject i. The dfbeta matrix contains the dfbeta residuals, with

each column scaled by the standard deviation of that coefficient. For those computer

packages which return dfbeta residuals, this represents a very simple calculation to

correct the “standardised” variance estimate τ̂−1.

Writing the Self and Prentice (1988) estimate in this form, gives further insight

into the meaning of the estimate. Let βp be the true coefficient for the (infinite)

population at large, β̂c the estimate for the cohort, if data were collected on all of the

subjects therein, and β̂sc the value for the actual study as conducted. The first term,

τ̂−1, is an estimate of var(β̂c), the estimated variance that would have been obtained

if all of the subjects in the cohort had been used in the computation. The second

term is an estimate of the finite sample contribution var(β̂sc| cohort).

Another option is to treat the data as the results of a weighted random sample, as

in survey methods (Barlow, 1994). Let n(t) and m(t) be the numbers of cohort and

subcohort subjects which are at risk at time t. The subject with an event is in the

sampled risk set with probability 1, but each of the other subjects with probability

α(t) = m(t)/n(t). Then the sampling weight wi(t) = 1/α(t) for the subcohort, 1 for

the event at time t and 0 for the other (un-sampled) subjects.

In the case of the Pulp and Paper Mill Worker example in Chapter 3, all of the

weights are equal to one. The reason for this is that the subcohort is the cohort, thus

m(t) = n(t).

Both the Self and Prentice (1988) and Barlow (1994) estimators will converge to

the true β in large samples (Therneau and Li, 1998). If α(t) is constant over time,

then the proposals are very similar and only differ in how much weight is given to the

actual event at time t in computing the weighted mean.

Although it appears to be simple to carry out the case-cohort design with time to

response data, it has only been done for very simple examples.



Chapter 3

Application of Case-Cohort

Analysis method

3.1 Overview

Based on some preliminary analyses, the British Columbia Cancer Agency initiated a

two-phase study of British Columbian pulp and paper mill workers. Phase I investi-

gated the cohort’s mortality and cancer incidence outcomes; Phase II was a matched

case-control study (on age ranges).

The matched case-control method was analysed using conditional logistic regres-

sion with age-range matching. The cases and their matched controls were followed

through time and considered “at risk” until they experienced the event (e.g. diag-

nosed with cancer) or they were censored (left the study or the study terminated).

The controls were cutoff at the date their matched control experienced the event;

therefore not all the available information was used. The B.C. Cancer Agency wished

to investigate how the results would differ, if at all, if all of the available information

was used.

A case-cohort design using the survival analysis method, as previously described,

addresses this issue. For each individual, the time-dependent covariates are divided

into intervals, such that each interval contains the values of the covariate along with a

status variable that indicates whether the interval terminates with an event. This will

30
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allow the investigator to use all of the available information without the potential bias

in the matched case-control method since now each individual is examined separately.

Although this method has been developed theoretically, it has only been applied to

simple problems or simulations.

In this chapter, we describe the background, discuss the phase I of the study and

re-perform the matched case-control analysis. In this project, we are only interested

in one chemical, black liquor. So, we re-performed the matched case-control analysis

for only this one chemical. Similarly we only consider one chemical in the case-cohort

method. We then apply the case-cohort method using the Cox Proportional Hazards

function (discussed previously) in S-Plus; the time-dependent covariate is cumulative

exposure and the event is the diagnosis of prostate cancer. In order to obtain a dose-

response relationship, cumulative exposure was coded as a categorical variable. When

compared with the results from the matched case-control study the trends appear to be

similar; however, there are some differences that suggest the case-cohort method may

be more appealing. One major problem, however, is that, although the case-cohort

model worked nicely for certain exposure level breakdowns, it did not converge for

others. Thus, there does appear to be a problem with the stability of the estimation

procedure. It is possible that this difficulty is inherent in the model formulation or

it may be fixable via manipulation of the S-Plus Cox Proportional Hazards function

or via creating a new computer program specific to the methodology. This stability

problem requires future investigation before the case-cohort model can be used over

the case-control model.

3.2 Background

The following section discusses the work from two studies completed at the British

Columbia Cancer Agency (Band et al, 1997; Band et al., 2001). Pulp and paper is a

major industry in British Columbia; it produces almost one third of Canada’s annual

pulp and paper tonnage. Wood can be converted to pulp by mechanical, semichemical

and chemical processes, the most prevalent in Canada being the latter. In chemical

pulping, lignin is solubilized under the following two conditions: the acidic or sulfite
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process, and the alkaline, also called kraft or sulfate, process, the latter being the

most common. The active chemical in the sulfite process is bisulfite salt that is

usually ammonium based, whereas in the alkaline process, the active chemicals are

a mixture of sodium hydroxide and sodium sulfide. After delignification, the pulp

may be bleached; current practice involves use of combinations of chlorination with

elemental chlorine, alkaline extraction with sodium hydroxide, and various oxidative

stages using sodium or calcium hypochlorite, chlorine dioxide, or hydrogen peroxide.

Thus, during chemical pulping, pulp and paper workers are exposed to known or

suspected carcinogens, including organic chlorinated compounds, sulfuric acid mist,

formaldehyde, and arsenic and chloroform (the last two have been previously used as

antisap stain).

In 1982, an occupational cancer research program was launched in British Columbia

based on the review of results of previous epidemiologic proportionate mortality, co-

hort, and case-control studies of pulp and paper workers. It was found that although

excess risks for several cancer sites have been suggested, results were inconsistent.

This is mainly because of limitations of the studies based on vital statistics or on

small numbers. Although these findings relate to pulp and paper workers in general,

they do not take into account the two main types of pulping processes, kraft and

sulfite. Of the numerous studies that have been conducted, only five include data

for these processes. Based on these studies, there is evidence of increased risk among

kraft mill workers for stomach and colon cancers, lymphosarcoma, reticulum cell sar-

coma, and Hodgkin’s disease; in addition, there appears to be an excess risk in sulfite

pulp mills for cancer of the stomach, rectum, pancreas, bladder, kidney, lymphosar-

com, and reticulum cell sarcoma . Furthermore, paper mill workers were found to be

at increased risk for colon, pancreas, and lung cancer; one study reported a marked

excess of lung cancer among paper board workers.

One branch of the 1982 occupational cancer research program was directed towards

detecting occupational cancer risk factors. The initial study was based on a death

certificate analysis of all deaths in BC from 1950 to 1978, later updated to 1984. This

first study revealed a statistically significant increase in the proportional mortality

ratio for lymphosarcoma and reticulum cell sarcoma in pulp and paper mill workers.
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The second study involved collecting lifetime occupational history from male incident

cancer patients of at least 20 years of age ascertained from the British Columbia

Cancer Registry between January 1, 1983 and December 31, 1988. Based on the

preliminary analysis, the odds ratio for non-Hodgkin’s lymphoma appeared to be

significantly increased for workers in the pulp and paper industry. These findings

lead to the initiation of a two-phase cohort study of British Columbia pulp and paper

workers. The objective of phase I was to investigate the cohort’s mortality and cancer

incidence outcomes; phase II was a matched case-control study with detailed work

history and exposure assessment based on mill specific job exposure matrices. In the

first phase, no attempt was made to classify workers by departments and no exposure

data was obtained that might provide further explanations. However, the second

phase should assist in evaluating whether the excess risk for specific cancers reflects

the exposure among subsets of workers.

3.3 Phase I: Cohort study

All members of the cohort were male workers with at least one year of employment

in one of 14 pulp and paper mills between January 1, 1950 and December 31, 1992.

The mills were included in the study if: (i) they started production in 1970 or earlier,

(ii) they have had a minimum of 1000 workers ever employed, and (iii) records were

available for all employees. In order to determine if workers were eligible, question-

naires were sent to management of all pulp and paper mills in British Columbia; the

questionnaires requested information on the type of mill, when production began, an

estimated number of total workers ever employed, and the quality and availability of

records. All male workers with at least one year of employment in eligible mills on

January 1, 1950 until December 31, 1992, the cut-off date for follow-up, were enrolled

in the cohort. The data collection included full names and dates of birth, hire, and

termination of employment. Information on tobacco smoking and other cancer risk

factors related to life-style are not available.
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3.3.1 Cohort Mortality Study

Phase I was divided into two studies: a cohort mortality study and a cohort cancer

incidence study. The first study reported the cancer mortality experience of the

chemical pulping process by type for a cohort of 30,157 pulp and paper workers in

British Columbia (Band et al., 1997).

Standardized mortality ratios (SMRs) were used to compare the mortality of the

cohort with that of the Canadian population. The Canadian population mortality

rates were obtained from the Laboratory Centre for Disease Control, Health Canada;

they were calculated by 5-year age groups and 5-year calendar periods dating back to

1950 (Band et al., 1997). The rates for the period 1985-1989 were used for the period

1990-1992. Person-years at risk were calculated from 1 year after the date of hire

to December 31, 1992, or to the year of death, whichever came first. Observations

were censored at the date when they were last known to be alive. Latency effects were

examined using work duration and time since first employment calculated from 1 year

after the date of hire; time since first employment was calculated to the last follow-

up date (Band et al., 1997). Tests of significance and of the SMRs were calculated

assuming that the observed number of events followed a Poisson distribution with

the mean given by the expected number of events; 90 percent confidence intervals

corresponding to a one-sided 5 percent significance test were used. Record linkage of

the cohort with the National Mortality Database was performed at Statistics Canada

using the generalised iterative record linkage method (Band et al., 1997).

Cancer risks significantly associated with work duration and time from first em-

ployment of 15 years or more were observed for cancers of the pleura, kidney and

brain in the total cohort, for kidney cancer among the kraft mill workers only, for

Hodgkin’s disease among the sulfite mill workers only, and for esophageal cancer

among the workers ever employed in both kraft and sulfite mills.

3.3.2 Cohort Cancer Incidence

Epidemiologic studies specifically designed to investigate pulp and paper workers have

mainly been mortality studies with only three reporting cancer incidence results (Band
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et al., 2001). Therefore, further work was done on cancer incidence outcomes of 28,278

members of the British Columbia pulp and paper cohort (Band, et al., 2001).

Details of the collection methods were previously described. Recall that the mor-

tality study consisted of a total of 30,157 workers. Of these, 1989 were excluded from

the cancer incidence cohort due to the following events which occurred prior to 1969:

1134 were lost due to follow-up, 552 died from non-cancer causes, 175 have been di-

agnosed with cancer. In addition, previously missing birth date information from the

mortality cohort was found for 10 workers, who were added to the incidence study.

Thus, 28,278 workers were included in the analysis. Of these workers, 20,041 (71%)

were employed in the kraft process only, 3756 (13%) worked in the sulfite process only,

and 4481 (16%) had worked in both processes. The number of workers also exposed to

the paper-making process in the total cohort and in the three subcohorts was: 16,080

(56%) of all the workers, 12,647 (63%) of the workers employed in the kraft process

only, 942 (25%) of the workers employed in the sulfite process only, and 2941 (56%)

of the workers employed in both the kraft and sulphite processes. Over 95% of those

in all the processes were successfully traced (Band et. al, 2001).

Standardized incidence ratios (SIR) were used to compare the cancer incidence

of the cohort with that of the Canadian male population. A SIR of 1 means that

the cancer incidence rate in the cohort and general population are the same. A SIR

significantly greater than 1, indicates that the cancer rate of the cohort is greater

than that of the general population. As before, the Canadian population mortality

rates were obtained from the Laboratory Centre for Disease Control, Health Canada;

they were calculated by 5-year age groups and 5-year calendar periods dating back to

1950 (Band et al., 1997). The rates for the period 1985-1989 were used for the period

1990-1992. Person-years at risk were calculated from 1 year after the date of hire to

December 31, 1992, or to the year of death, whichever came first. Observations were

censored at the date when they were last known to be alive. Latency effects (the

latency period is the time when the disease is concealed, hidden, or inactive) were

examined using work duration and time since first employment calculated from 1 year

after the date of hire; time since first employment was calculated to the last follow-up

date. A 15-year latency cutoff was selected because the person-year distribution of
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all the workers with time from first exposure of ≥ 15 years (210,546 person-years)

was equally distributed between those with < 15 years of employment (110,211 or

54 %) and those with ≥ 15 years of employment (100,335 or 48 %) (Band et al.,

2001). Tests of significance and of the SMRs were calculated assuming that the

observed number of events followed a Poisson distribution with the mean given by

the expected number of events; 90 percent confidence intervals corresponding to a

one-sided 5 percent significance test were used. Record linkage of the cohort with the

National Mortality Database was performed at Statistics Canada using the generalised

iterative record linkage method. In Canada, asertainment of cancer incidence cases

on a national basis dates back to 1969, hence the 1 January 1969 follow-up starting

date of this study.

The cancer incidence study indicated statistically significant excess risks for work

duration of 15 or more years, for the following cancer sites (Band et al., 2001):

• All workers: skin melanoma (26 cases, SIR=1.78), cancer of the pleura (6 cases,

SIR=2.8), and of the prostate (175 cases, SIR=1.24)

• Workers in the kraft process: skin melanoma (25 cases, SIR=1.73)

• Workers in the sulfite process: skin melanoma (3 cases, SIR=2.65), cancer of

the rectum (11 case, SIR=1.90), and of the pleura (3 cases, SIR=16.84)

• Workers employed in both the kraft and sulfite processes: cancer of the stomach

(21 cases, SIR=1.55) and of the prostate (82 cases, SIR=1.44), leukimas (14

cases, SIR=1.66).

In addition, the data comparing workers exposed only to the pulping process

with those exposed to the pulping and paper-making processes were analysed. These

comparative analyses were carried out for all workers and also for each of the three

subcohorts. The results were similar to those for the pulping and paper-making

processes together and they did not reveal significant differences in the cancer risks

for workers exposed to the paper-making process in addition to the pulping process.

There are several potential causes leading to the differences in cancer rates, in-

cluding occupational exposure, genetic pre-disposition, lifestyle and other risk factors
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(Band et al., 2001). Information on genetic predisposition on other risk factors is not

available in the retrospective study dating back to 1950 (Band et al, 2001).

These findings suggest that long term work in the industry is associated with an

excess risk of skin melanoma, prostate and pleural cancers. The excess risk of pleural

cancer likely reflects past asbestos exposure since 90% of these cases were malignant

mesotheliomas (Band et al, 2001). It should be noted that the incidence rates of

prostate cancer and skin melanoma in British Columbia are high relative to Canadian

rates (Band et.al, 2001). Since 94% of the pulp and paper cohort has been traced to

British Columbia, the data was re-analysed using British Columbia rates. Relative

risks for skin melanoma became reduced to non-significant levels, whereas the relative

risks for prostate cancer remained significantly elevated among long term workers

exposed to both kraft and sulfite processes but not in the total cohort (Band et al.,

2001). The potential exposures that might be associated with prostate cancer risk

were investigated in phase II of the study.

Additionally a significant excess risk for stomach cancer and leukemia was observed

among long term workers employed in both processes, as well as for cancer of the

rectum among long term workers employed in the sulfite process only. Potential

exposures associated with the increased risk will be examined in a later study.

What are the different findings between the incidence study and the mortality

study? The significantly increased mortality cancer risks suggested in the mortality

were not confirmed in this cancer incidence study, including: a) all workers: brain and

kidney cancer; b) workers in the kraft process: kidney cancer; c) workers in sulfite

process: Hodgkin’s disease; and d) workers in both processes: esophageal cancer.

Why are there these differences? The discrepancies between cancer diagnosis listed on

pathology reports and cause of death listed on death certificates caused the differences

for kidney, brain and esophageal cancer; it should be emphasized that the cancer

diagnosis based on pathological diagnosis is generally more accurate (Band et al.,

2001).
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3.4 Phase II: Matched Case-Control Study

In Canada and the United States, prostate cancer is the most common cancer in men,

except for non-melanoma skin cancer (Band et al., 1997). These two countries have

the highest incidence rates for prostatic cancer in the world, with the highest rates

being observed among black men in the United States (Band et al., 1997). There has

been an explosion of scientific interest in the epidemiology of this disease (Gallagher

and Fleshner, 1998). There are still many unknowns concerning prostate cancer’s

etiology. A number of studies have shed light on some important risk factors: age,

family history, black American ethnicity, hormonal and sexual factors, and a high

consumption of animal fat and red meat (Gallagher and Fleshner, 1998). A large

number of diverse occupations have also been suggested to be associated with an

increased risk for prostatic cancer, including administrative, managerial, professional,

health and clerical occupations; mechanics, welders, policemen, and farmers; as well

as workers in metal, paint, and rubber industries (Band et al., 1997). In the study

by Band et al. (1997) there is evidence of an association between prostate cancer and

the pulp and paper industry.

3.4.1 Description of the Data

The general methodology of the study has been described in the previous section.

Recall that the mortality study consisted of a total of 30,157 workers and the cancer

incidence study consisted of 28,278 workers. Both of these studies included individuals

who had been diagnosed with a variety of cancers (and other health problems), the

cases. There are two types of cases: individuals whose cause of death is determined

to be cancer during an autopsy, and the individuals who are diagnosed with cancer

by a physician (cancer incidence cases). In this phase of the study, only the cancer

incidence cases are used. Information on the incidence cases is known only for the

years 1969 to 1992. All studies included the individuals who were healthy at the end

of the study (controls). After selecting only the prostate cancer incidence cases and

their matched controls, 1,997 unique workers remained in the analysis of the matched

case-control study.
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162 chemicals that are used at the pulp and paper mills were identified as po-

tentially contributing to the development of prostate cancer. These chemicals were

grouped into 23 chemical groups. Cohort members who were ever exposed to a partic-

ular chemical are considered exposed to that chemical; otherwise, they are considered

non-exposed. Also, employment within the last five years of the cohort follow-up was

not included in the calculation of exposure.

Table 3.1 is an example of the data set obtained in the matched case-control study.

It should be noted that only the rows pertaining to the chemical of interest were used

in the analysis.

3.4.2 Methodology

The matched case-control analysis was carried out by the British Columbia Cancer

Agency. Recall that in 1992, a two-phase retrospective cohort study of 30,000 British

Columbia pulp and paper workers was undertaken. To describe exposures of the

workers for a matched case-control study within this cohort, job exposure matrices

were developed. The initial stage of development included an exhaustive review of

processes, job titles and chemicals coupled with a survey of each mill to evaluate

equipment layout, collect hygiene data and perform interviews of employees.

Exposure information from 14 pulp mills was then organized into 90 mill-specific

or period-specific matrices. Semi-quantitative exposure assessments were assigned to

each combination of job title and chemical or group of chemicals. Besides an estimate

of the concentration, variables describing the frequency of exposure as well as the

potential for peak exposures were included,

Exposure = Concentration ∗ Frequency ∗Duration.

Duration is measured in months, assuming that a work shift is 12 hours per day. In

early years, workers worked 8 hours a day. Then all mills changed to 12 hour work

days with fewer working days per week. Working months with 8 hours per day were

converted into 2/3 equivalent months. Concentration level of exposure were evaluated

based on proximity to and characteristics of the source where 0 = unexposed, 1 =
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ind. chem. start yr. birth yr. ... cancer yr. ... cum. exp. procase match
1 132 1950 1921 ... 1985 ... 0.05 1 3801
...

...
...

1 132 1984 1921 ... 1985 ... 1.75 1 3801
1 132 1985 1921 ... 1985 ... 1.75 1 3801
1 136 1972 1921 ... 1985 ... 0 1 3801
23 132 1962 1932 ... 1992 ... 0 0 2404
23 132 1963 1932 ... 1992 ... 0 0 2404
...

...
...

23 103 1965 1932 ... 1992 ... 0.6 0 2404
23 103 1966 1932 ... 1992 ... 1.2 0 2404
15 136 1987 1944 ... 1992 ... 0 0 1801
...

...
...

15 162 1972 1944 ... 1992 ... 0 0 1801
15 162 1973 1944 ... 1992 ... 0 0 1801
4 2 1981 1921 ... 1987 ... 0.5 1 3801
4 2 1982 1921 ... 1987 ... 0.7 1 3801
4 2 1987 1921 ... 1987 ... 5.5 1 3801
...

...
...

Table 3.1: An Example of the Matched Case-Control Data

Only the key variables are included (the original data set included 26 variables).
The important variables are: chem. (a number that identifies the chemical), ind. (a
number that identifies the individual), start yr. (the year of employment for that
row), birth yr. (year of birth), cancer yr, (the year of cancer diagnosis or the end of
the follow-up period), cum. exp. (cumulative exposure), procase (an indicator
variable that equals one if the individual is a case), match (a matching variable).
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low and 3 = high. Frequency duration of exposure was broken into levels where 0 =

never exposed, 1 = less than one hour per work shift, 2 = 1 to 3 hours per work shift

and 3 = greater than 3 hours per work shift. The total exposure amount for lifetime

is the sum of all exposures for the same chemical.

A matched case-control analysis method was used. Cases comprised all 287 workers

who were diagnosed with prostate cancer; controls comprised 1,710 healthy workers

at the end of the follow-up. The controls were matched to cases based on age (year

of birth). The matching is based on age since the individuals would then likely have

worked in the mills around the same time; this is important since the degree of

exposure in, say 1950, is different than the exposure in, say 1988. The controls were

followed until their matched case experienced an event.

Conditional logistic regression for matched sets data was carried out using SAS;

test of significance of the adjusted odds ratios (ORs) and 95% confidence intervals were

calculated. Analyses were performed for each of the 162 chemicals individually. Each

analysis was done for 3 different levels of exposure (and of course the baseline level of

no exposure). The 3 exposure levels were chosen such that there was approximately

the same number of controls in each level.

3.4.3 Results

For this project, only the results for the chemical black liquor are of interest (Table

3.2). We re-performed the matched case-control analysis to verify that we obtained the

same results as the British Columbia Cancer Agency. These results will be compared

to the results from the case-cohort study in the following section.

Exposure Cases OR 95% CI
Non-Exp 247 1.00 -
≤ 2.92 14 2.65 1.58 - 5.08

2.92- 12.0 12 1.93 0.96 - 3.87
> 12.0 14 1.96 1.04 - 3.71

Table 3.2: Results from the Matched Case-Controls Method

The odds of an individual with exposure ≥ 2.92 developing prostate cancer is
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2.65 times that of the odds of an individual with no exposure. Similarly, the odds

of an individual with exposure within the range 2.92 to 12.0 and an individual with

exposure > 12 developing prostate cancer are, respectively, 1.93 and 1.96 times that of

the odds of an individual with no exposure. Therefore, the odds ratios indicate that

the exposed individuals are significantly more likely to be diagnosed with prostate

cancer than the un-exposed individuals. When we look at just the point estimate,

the odds of being diagnosed with prostate cancer does not appear to increase when

exposure increases. However, if we look at the confidence intervals, it is hard to draw

a conclusion.

3.5 Case-Cohort Method

3.5.1 Description of the Data

In this section, we describe our re-analysis of the phase II data using the case-cohort

method described in Chapter 2. As in the matched case-control study, the data for

the analyses included information on 1,997 unique workers with at least one year of

employment in one of 14 pulp and paper mills between January 1, 1950 and December

31, 1992. Recall that, information on the cancer incidence cases is known only for

the years 1969 to 1992. The data included 287 individuals who have been diagnosed

with prostate cancer (cancer incidence cases) and 1,710 individuals who were healthy

at the end of the study (controls).

162 chemicals that are used at the pulp and paper mills were identified as poten-

tially contributing to the development of prostate cancer. Each row of this data set

represents one individual’s exposure to one chemical at one job for one year; infor-

mation is given for several factors, such as cumulative exposure, in each row. Recall

that

Exposure = Concentration ∗ Frequency ∗Duration.

For this project, we were only interested in an individual’s exposure history to

one chemical (black liquor). Therefore, the data set needed to be altered from its
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original format. Tables 3.3 and 3.4 give and example of the original format and the

new format, respectively.

The remainder of this section describes how the data was converted from the

original format to the format used in the case-cohort analysis. First, the data set was

separated into the individuals who were at some point exposed to black liquor (373

individuals; 80 cases and 293 controls) and the individuals who were never exposed

to black liquor (1,624 individuals; 207 cases and 1,417 controls).

The following was done to the individuals who were exposed to black liquor (chem-

ical 132). First, the rows that did not pertain to the chemical of interest were removed

(373 individuals; 80 cases and 293 controls). There were some individuals who were

exposed to the same chemical at two jobs in the same year; therefore, there were two

rows for that year for that individual. When this situation arose, one of the two rows

was removed; this removed 13.3% of the rows (no individuals were removed). Finally,

rows were added to each individual from the termination date (last year of work)

until the diagnostic date, or the end of study (1992); once again, no individuals were

removed. Note that the cumulative exposure for these added years is the cumulative

exposure for last year of work. To illustrate, consider individual 1. In the original

data (Table 3.3) individual 1 was exposed to two chemicals, 132 (black liquor) and

136 (some other chemical). The row that pertained to chemical 136 was removed.

There are two rows for year 1975 for chemical 132, so one of these rows was removed.

Finally, rows were added for the years 1981 (since 1980 was the last year of work)

through 1985 (the diagnostic date).

Next, the data individuals who were not exposed to black liquor was re-formatted.

Since all of the information in this portion of the data set did not pertain to the

chemical of interest, only one row for each individual who was not exposed was kept;

this row contained all of the important information such as age, year of diagnosis (or

year censored) and whether the individual was a case or a control. Certain values

of some of the variables had to be replaced. Cumulative exposure was set to be

zero for all individuals; the starting year was set to be 1950 (the first year of the

study). Finally a row was added for each individual for each year from 1951 until the

diagnostic date, or the end of study (1992); this left all 1,624 individuals (207 cases
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ind. chem. start yr. birth yr. ... cancer yr. ... cum. exp. procase match
1 132 1950 1921 ... 1985 ... 0.05 1 3801
...

...
...

1 132 1975 1921 ... 1985 ... 1.75 1 3801
1 132 1975 1921 ... 1985 ... 1.75 1 3801
1 132 1980 1921 ... 1985 ... 1.75 1 3801
1 136 1972 1921 ... 1985 ... 0 1 3801
23 132 1962 1932 ... 1992 ... 0 0 2404
...

...
...

23 103 1965 1932 ... 1992 ... 0.6 0 2404
23 103 1966 1932 ... 1992 ... 1.2 0 2404
15 136 1987 1944 ... 1992 ... 0 0 1801
...

...
...

15 162 1972 1944 ... 1992 ... 0 0 1801
15 162 1973 1944 ... 1992 ... 0 0 1801
4 2 1981 1921 ... 1987 ... 0.5 1 3801
4 2 1981 1921 ... 1987 ... 0.5 1 3801
4 2 1987 1921 ... 1987 ... 5.5 1 3801
...

...
...

Table 3.3: An Example of the Original Format

ind. start yr. birth yr. ... cancer yr. ... cum. exp. procase status cov
1 1950 1921 ... 1985 ... 0.05 1 0 1
...

...
...

1 1985 1921 . ... 1985 ... 1.75 1 1 1
23 1962 1932 . ... 1992 ... 0 0 0 0
23 1963 1932 ... 1992 ... 0 0 0 0
...

...
...

23 1992 1932 ... 1992 ... 1.2 0 0 1
15 1950 1944 ... 1992 ... 0 0 0 0
...

...
...

15 1992 1944 ... 1992 ... 0 0 0 0
4 1950 1927 ... 1987 ... 0 1 0 1
4 1951 1927 ... 1987 ... 0 1 0 1
...

...
...

4 1987 1927 ... 1987 ... 0 1 1 2
...

...
...

Table 3.4: An Example of the Case-Cohort Data

Key variables are the same as those in Table 3.1. New ones introduced are: status
(indicator variable that equals one if the interval was terminated with an event) and
cov (a categorical covariate).
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and 1,417 controls). As an example, consider individual 4. This individual was never

exposed to chemical 132, so all rows, but one, were removed. Then, the cumulative

exposure was set to zero and the starting year was set to 1950. This row was repeated

for all years until 1987 (the diagnostic date). The only variable that changed from

row to row was start yr. (the starting year).

The rows for the exposed and unexposed individuals were combined to form a data

set with all 1,997 individuals (287 cases and 1710 controls) remaining in the data set

to be analysed.

Recall that in the model proposed by Prentice (1986) the time dependent covari-

ates were coded by breaking each subject up into multiple observations, each over an

interval (start, stop]. Each observation contains the value of the covariates that apply

over that interval, along with a status variable that indicates whether the interval

was terminated with an event (i.e. diagnosis of cancer). Therefore, a status indicator

variable was created; it took the value one for all the rows when the individual expe-

rienced an event (i.e. when the starting year of the row and the diagnosis date were

the same) and zero otherwise. Once again, consider individual 4. This individual was

diagnosed with prostate cancer in 1987, so the status variable is equal to 0 for all

years except this year.

In addition, the time dependent covariate, cumulative chemicals exposure, had to

be coded as a categorical variable rather than continuous. This would give some sense

of the dose-response relationship.

Cumulative exposure has a minimum value of 0 and a maximum value of 534.14.

Several approaches were used to come up with cut-points for the cumulative exposure.

The question was how to come up with the cut-points and how many categorical

levels would be the best. All of the methods that are described below were done for a

different number of categorical levels. Initially the categorical levels of exposure were

created by simply dividing the range of cumulative exposure into groups of equal size.

A major problem with this method is that it creates empty cells; in other words, there

will be some levels that have no controls (or no cases). This will lead to a failure of

maximum likelihood estimation procedure. Therefore, a different way of dividing the

cumulative exposure was required. From looking at the data, it is obvious that there
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are a large number of zeros present, and not so many values in the upper limit. Out

of the 69,960 records, 65,317 have cumulative exposure values equal to zero. One

possible method to choose the cut-points was to divide the data so that there were

an equal number of exposed individuals in each interval. However, what one really

desires is to have approximately the same number of events (cases who are diagnosed

with cancer) in each interval. This is how the intervals were selected (with the end-

points rounded to the closest integer). Table 3.5 shows the categorical exposure levels

we selected, plus the cut-points that were used in the matched case-control analysis.

As a final note, it may be of future interest to look at design methods for selecting

the cut-points, rather than just an ad-hoc method as was used in this project.

Exposure Levels Exposure Records Events

0 0 62846 247
1 > 0 4271 40
0 0 62846 247
1 (0, 7] 2280 21
2 > 7 1991 19
0 0 62846 247
1 (0, 2] 1276 14
2 (2, 12] 1581 12
3 > 12 1414 14
0 0 62846 247
1 (0, 1] 920 10
2 (1, 4] 961 8
3 (4, 17] 1328 10
4 > 17 1062 12
0 0 247 62846
1 (0, 2.92] 1596 14
2 (2.92, 12.0] 1261 12
3 > 12.0 1414 14

Table 3.5: Exposure Levels

For the analysis, we used the above cut-points. The latter was done so that a

direct comparison could be made.
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3.5.2 The Analysis

As described in detail in Section 2.3.4, the Self and Prentice (1988) estimate of β̂,

which is nearly identical to the estimate proposed by Prentice (1986), can be computed

fairly easily using any Cox (Proportional Hazards) model; the coxph function S-Plus

was used for this analysis. Relative risks and 95% confidence intervals were calculated.

Exposure Events RR 95% CI cluster bound 95% CI
Non-Exp 247 1.00 - -
≤ 7 21 2.04 1.31 - 3.19 1.33 - 3.12
> 7 19 1.61 1.01 - 2.57 0.97 - 2.66

Non-Exp 247 1.00 - -
≤ 2 14 2.46 1.43 - 4.21 1.51 - 4.00

2 - 12 12 1.61 0.90 - 2.88 0.87 - 2.98
> 12 14 1.57 0.91 - 2.68 0.88 - 2.77

Non-Exp 247 1.00 - -
≤ 1 10 2.44 1.29 - 4.61 1.33 - 4.48
1- 4 8 1.89 0.92 - 3.77 0.98 - 3.55
4- 17 10 1.35 0.72 - 2.55 0.69 - 2.67
> 17 12 1.90 1.07 - 3.40 1.03 - 3.52

Non-Exp 247 1.00 - -
≤ 2.92 15 2.05 1.25 - 3.55 1.27 - 3.31

2.92- 12.0 11 1.82 0.99 - 3.35 0.95 - 3.50
> 12.0 14 1.56 0.91 - 2.36 0.88 - 2.77

Table 3.6: Results from the Case-Cohort Method

In this example, all of the weights are equal to 1. Also, since the cases are known,

the subcohort consists of only the controls.

The model proposed by Prentice (1986) was fit separately to different groups of

dummy variables (for each different range of cumulative exposure; the baseline being

cumulative exposure being equal to zero), with age included in all of the models. First

the model was fit with no cluster function, and then it was fit with cluster function.

The cluster function identifies correlated groups of observations. In this example,

there are multiple rows for each individual, so by using the cluster function, this is

accounted for by adjusting the standard error. The results of these two models are

sumarised in Tables 3.6. The only difference in the two models is the addition of a



CHAPTER 3. APPLICATION OF CASE-COHORT ANALYSIS METHOD 48

robust standard error and therefore different confidence intervals.

In all of the category groups above, the risk for developing prostate cancer is

higher for the exposed individuals than the un-exposed individuals. Based on the

point estimates, there also does not appear to be more of a risk for the more exposed

individuals; this is the same result as found in the matched case-control analysis.

The models that are of interest are the ones that incorporate the cluster function.

In particular we are most interested in the model with the cluster function and the

same cut-points as the matched case-control analysis.

The risk of an individual with exposure ≥ 2.92 developing prostate cancer is 2.05

times that of the risk of an individual with no exposure. Similarly, the odds of an

individual with exposure within the range 2.92 to 12.0 and an individual with exposure

> 12 developing prostate cancer are, respectively, 1.82 and 1.56 times that of the risk

of an individual with no exposure. The results of this model will be compared to the

results of the matched case-control analysis.

3.5.3 Comparison of the Results

One of the major objectives of this project is to compare the results of the matched

case-control method with the results from the case-cohort method. As was expected,

they both indicate that the chance of being diagnosed with prostate cancer is much

higher for the exposed individuals than the unexposed individuals. Another similarity

is that the risk (or odds) of developing prostate cancer does not appear to increase

when the level of exposure increases.

The noticable difference between the results of the two models is that at each

level the case-cohort model has lower risk values and shorter confidence intervals than

the case-control model. One possible reason for this difference is due to the extra

information that is used in the case-cohort study but not in the matched case-control.

Consider just this extra information. The reason the risks are lower in the case-cohort

is that there are more controls with more exposure, which reduces the the relative

risk. Recall the partitioning of the source population, re-displayed in Table 3.7,

and the Relative Risk (RR)
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Disease Non-Disease
Exposed A1 B1 A1 + B1

Unexposed A0 B0 A0 + B0

A1 + A0 B1 + B0

Table 3.7: Two by Two Contingency Table For Calculating Risk

RR =
probability of disease given exposed

probability of disease given unexposed

=
A1/(A1 + B1)

A0/(A0 + B0)
.

If there are more controls who are exposed, then the value of B1 will increase and

the value of B0 will decrease. In other words, if during this period, there is an increase

in controls who fall into the high levels of exposure, the relative risk will decrease. This

is a possible explanation for why the risks are lower in the case-cohort study when

compared to the matched case-control study. Thus, if the proportion of exposed

and un-exposed controls does not change even when this additional information is

included, the two methods should give similar risks. Similarly, if there is a shift

towards fewer exposed controls, one would expect the risks to be higher in the case-

cohort study than the matched case-control study. Therefore, it depends on the

situation which method will show higher risks. However, assuming this explains the

differences in the risks, it can be argued that the case-cohort method gives a more

accurate interpretation of what is going on. Thus, it is more appealing. It would be

possible to determine if the controls fall into the high levels of exposure during this

period of time; however, this would require complicated work involving linking two

data sets; thus, it was not done for this project.

Furthermore, in the case-cohort method, we used more information than in the

matched case-control study; therefore, in a sense we have a larger sample size to calcu-

late the estimated confidence intervals. Therefore, we would expect to obtain smaller

confidence intervals, which suggests that the case-cohort method is the more accurate

of the two. However, since the methods of analysis are very different, one should be
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cautious about comparing the two estimated confidence intervals and drawing any

conclusions from them.

3.5.4 Problems with the Stability of the Model

Although the model worked nicely for the exposure levels given below, there does

appear to be a problem with the stability of the method; the estimation method (i.e.

maximization) does not always converge. Clearly, there will be problems with the

model when there are intervals with missing cells (i.e. no cases or no controls). If

there is a cell with no count, the estimate will be zero or infinity. Therefore, when such

a situation arose, it made sense that the estimation procedure did not converge. In

addition, it is desirable to not have low numbers of individuals in each cell since small

counts can lead to convergence problems. However there was one situation that evoked

suspicion (Table 3.8). When these cut-points were used, the estimation method failed

to converge, but there were no problems in a situation that was very similar (Table

3.9). The two situations have the same number of levels with approximately the same

number of events in each interval. Therefore, the fact that the estimation procedure

failed to converge for one and not the other needs to be investigated further.

In the above two situations, the number of events in the exposure levels 1 and 2 are

different. It may be useful to examine the case that is switching levels when the cut-

points are changed. It may, somehow, be contributing to the convergence problem.

Another cause of the problem may be that the estimates are going off to positive or

negative infinity, or it may be finding a local maximum. In order to determine if this

is what is happening, one could look at the value of the estimate at each interval of

the maximizing procedure. This was not done in this project, but it is a possible

avenue for future work.

Initially, we looked into using different initial values in the S-Plus Cox Proportional

Hazards function. Although this changed the output, it did not change whether or

not the method converged.

Next, we changed the length of ranges in the situation where the estimation pro-

cedure failed. When only the range (0, 0.45] was changed to (0, 1], the estimation
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Exposure Levels Range Records Events

0 0 62846 247
1 (0, 0.45] 668 6
2 (0.45, 1.54] 450 6
3 (1.54, 3.92] 761 6
4 (3.92, 10.37] 779 6
5 (10.37, 19.06] 676 9
6 > 19.06 937 7

Table 3.8: Exposure Levels that did not Converge

Exposure Levels Range Records Events

0 0 62846 247
1 (0, 0.56] 668 6
2 (0.56, 2.33] 441 5
3 (2.33, 6.62] 755 6
4 (6.62, 12.10] 779 6
5 (12.10, 26.98] 680 10
6 > 26.98 937 7

Table 3.9: Exposure Levels that did Converge



CHAPTER 3. APPLICATION OF CASE-COHORT ANALYSIS METHOD 52

procedure converged. Based on this, we tried upper cut-points between 0.45 and 1.0

to determine the minimum value of the upper end that could be used so that the

method converged. It was found that with 0.5 the method did not converge, but with

0.6 the method did converge. Using bisection, we concluded that at 0.56 the estima-

tion procedure did not converge, but at 0.57 the estimation procedure did converge.

The next step would be to use the estimate from the estimation procedure that did

converge as the initial value in the situation we were initially concerned about (Table

3.9). If the method then converged, it may be a matter of changing the initial value.

However, if it still did not converge, this would suggest a more serious problem. The

problem may be with the algorithm that the function in S-Plus is implementing. If

this is the case, using the Cox Proportional Hazards function in S-Plus may not be

satisfactory.



Chapter 4

Conclusion

Pulp and paper is a major industry in British Columbia. During the pulping process,

pulp and paper mill workers are exposed to known or suspected carcinogens. In 1982,

an occupational cancer research program was launched in British Columbia. One

branch of this research program was directed towards detecting occupational cancer

risk factors. Based on preliminary findings, a two-phase study of British Columbia

pulp and paper mill workers was launched by the British Columbia Cancer Agency.

Phase I was a cohort study that was divided into 2 sub-studies: a cohort cancer

mortality study and a cohort cancer incidence study. The former reported the cancer

mortality of 30,157 pulp and paper workers in British Columbia. This study reported

cancer risks significantly associated with work duration and time from first employ-

ment of 15 years or more were observed for cancers of the pleura, kidney and brain in

the total cohort, for kidney among the kraft mill workers only, for Hodgkin’s disease

among the sulfite mill workers only, and for esophageal cancer among the workers

employed in both kraft and sulfite mills.

The cohort cancer incidence study used 28,278 members of the British Columbia

pulp and paper cohort. This study found that long term work in the industry is asso-

ciated with an excess risk of skin melanoma, prostate and pleural cancers. The excess

risk of pleural cancer was explained by past exposure to asbestos. Since the incidence

rates of prostate cancer and skin melanoma in British Columbia are high relative to

Canadian rates, the data was re-analysed using British Columbian rates rather than

53
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Canadian rates. It was found that skin melanoma was no longer significant, whereas

the relative risks for prostate cancer remained significantly elevated among long term

workers. The potential exposure that might be associated with prostate cancer were

investigated in phase II of the study.

In the first phase of the study of British Columbia pulp and paper workers, no

attempt was made to classify workers by departments and no exposure data were

obtained that might provide explanations for the difference in cancer patterns observed

between the kraft only and sulfite only workers. Thus, mill-specific and period-specific

job exposure matrices were developed for a matched case-control study with detailed

exposure assessment by title. Therefore, Phase II, which is the matched case-control

study, should enable one to evaluate whether the excess risk for prostate cancer reflects

the exposure among subsets of workers.

The matched case-control study was comprised of 287 cases (workers who were

diagnosed with prostate cancer) and 1,710 controls (workers who were healthy at the

end of the follow-up). In this project we focused on the results for one chemical,

black liquor. The results of this study indicated that the exposed individuals are

significantly more likely to be diagnosed with prostate cancer than the un-exposed

individuals. However, the odds of being diagnosed with prostate cancer does not

appear to increase when exposure increases.

The aim of this project was to apply the case-cohort method to the pulp and

paper worker data in order to determine if this method is more appealing than the

matched case-control method. We were successful in computing the estimates for the

case-cohort model by using the Cox Proportional Hazards model in S-Plus. As we

expected, the results from this model were similar to those found in the matched

case-control analysis. We found that the risk of developing prostate cancer is much

higher for the exposed individuals than the unexposed individuals. However, the risk

does not appear to increase when exposure increases.

Although the trends are similar for the matched case-control, the risks are con-

sistently lower in the case-cohort model. Recall the key difference between the two

methods is that in the matched case-control study the controls are only followed until
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their matched case experiences the event, whereas in the case-cohort study the con-

trols are followed until the end of the follow-up period. Therefore, in the case-cohort

method we have this additional information. The following comments are based on

hypotheses rather than fact since the work required to verify the hypotheses was

complicated and not done in this project. Now, consider only the information on

the controls that is included in the case-cohort method, but not the matched case-

control method. If during this period, there is an increase in controls who fall into the

high levels of exposure, the relative risk will decrease. This is a possible explanation

for why the risks are lower in the case-cohort study when compared to the matched

case-control study. In addition, the confidence intervals are smaller in the case-cohort

analysis than in the matched case-control analysis. This is another indicator that the

case-cohort may be more appealing method.

Although the case-cohort method appears to be more appealing than the matched

case-control method, future work must be done on the stability of the estimation

procedure. As was mentioned in Chapter 3, the procedure does not always converge.

There are certain situations, such as when one of the category levels contains either

no events or no controls (or a small number of either), where the estimates will be

undefined. However, the method still failed to converge in one situation where it

would seem that it should not have had a problem. It is possible that the cut-points

that were chosen for one of the categories were not appropriate for some reason (e.g.

the range within the cut-points may have been too small). How cut-points should

be chosen needs to be examined more rigorously. In addition, this stability problem

requires further investigation before the case-cohort model can be recommended over

the case-control model.

As a final note, thus far the case-cohort model has only included one chemical (i.e

one time-dependent covariate). Since the workers were, in general, exposed to more

than one chemical, it is quite conceivable that more than one chemical, as well as

possible interactions between the chemicals, needs to be accounted for in the model.

How this can be done is one potential avenue of future work.
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