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Abstract

Complemented angler surveys are often used to estimate catch from sport fishers. These

surveys consist of two components: one component to estimate catch per unit effort (CPUE)

and a second component to estimate effort. Their product is then an estimator for the total

catch.

In the first part of the thesis, a generalization of the standard CPUE survey to account

for declining efficiency over time caused by, for example, gear saturation, is examined. This

is a violation of the standard assumption of a constant catch rate. Unbiased estimators,

their variances, and estimated variances are derived for roving surveys. This is applied to a

gill net fishery in the Fraser River, British Columbia, Canada.

In many cases, the effort survey cannot be completely randomized. In the second part of

the thesis, estimators, their variances, and estimated variances are derived for this situation

using a ratio estimator for both an access and roving survey. This is also applied to a gill

net fishery in the Fraser River.

Third, the above method is extended to cases where the access survey is a complex,

multi-stage, stratified design. Again, estimators, their variances, and estimated variances

are derived. This is applied in a critical review of the Georgia Strait Creel Survey - a yearly

survey conducted by the Department of Fisheries and Oceans (Canada).
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Chapter 1

Introduction

1.1 The Basic Approach

Many of the decisions in recreational fisheries management are based on estimates of catch.

Since these decisions can be controversial and have major impact on the viability of the

resource, the estimates of catch must be defensible. Such estimates are typically obtained

through survey methods, historically known as creel surveys. Much attention over the past

40 years has gone to the development of these techniques (Pollock et al., 1994).

One strategy for estimating total catch C in larger studies is to employ two separate but

complementary surveys that independently estimate the total fishing effort E and the catch

rate R, also commonly referred to as catch per unit of fishing effort and denoted as CPUE.

The independence of the estimators for total effort and catch rate provides for unbiasedness

of the estimator for total catch if the individual estimators are also unbiased. That is, with

C = E ·R, where R = C/E,

E
[
Ĉ
]

= E
[
Ê
]
E
[
R̂
]

= E ·
C

E
= C .

The independence of the total effort and catch rate estimators has practical as well as

theoretical advantages. One such advantage is overall design flexibility, which can be a

useful feature, since survey designs which are optimal for estimating total effort may not

necessarily be optimal for estimating catch rate.

1



CHAPTER 1. INTRODUCTION 2

A number of methodologies for estimating the catch rate have been developed (Pollock

et al., 1994). In general, these methods involve some form of angler contact, usually in-

terviewing. Interviews are categorized in two ways. “Access” interviews are those that are

conducted after the fishing episodes have been completed. Typically these are taken as the

fishermen leave the fishing resource, passing some point of access. “Roving” interviews on

the other hand, are those interviews that are conducted at some time during the fishing

episode. These occur as the fishermen are intercepted by a roving interviewer. An im-

portant distinguishing feature then is that “access design” surveys deal with information

from completed fishing episodes while “roving design” surveys deal with information from

incomplete fishing episodes.

1.2 Literature Review

Designs based on complemented surveys have become a mainstay for creel survey work in

the sports fishery sector. Rose and Hassler (1969) cite early work by Eschmeyer (1942)

using a sample to obtain catch per fishing trip and then multiplying this by an estimated

number of trips, and similar work by Tarzwell and Miller (1943) using the same technique

but stratifying their data by area, month, and weather conditions. Variations evolved with

the increasing need for more accurate estimates. For their estimation of the 1961 and 1962

catch for North Carolina’s dolphin fishery, Rose and Hassler (1969) used estimates of catch

per boat day and boat days. Continued demand for creel survey work over the years has

led to increased complexity and substantial improvements.

The benchmark work by Robson (1960, 1961) presented models based on catch per hour

and fishing hours that detailed the conditions needed for unbiased sampling and estimation

in creel survey work. Subsequent research and field work encompassed not only catch

estimation but also related social, economic, and political issues and has resulted in a large

and growing body of knowledge that has become increasingly dispersed.

“In recognition of [a need for consolidation of knowledge] ..., the American Fish-

eries Society (AFS) and the Division of Federal Aid of the U.S. Fish and Wildlife

Service undertook a three-part program to produce a book of fisheries survey

techniques. The first step was to convene an International Symposium and Work-

shop on Creel and Angler Surveys in Fisheries Management, which was held in

Houston, Texas, on March 26-31, 1990. This conference brought 300 biologists,
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managers, statisticians, economists, sociologists, and theoreticians together for

5 days of intensive presentations and discussions, and it exposed a great deal

of new research and recent experience relevant to fisheries surveys. The second

step was peer review and publication of the symposium’s 528-page proceedings,

Creel and Angler Surveys in Fisheries Management (American Fisheries Society

Symposium 12, 1991) [edited by Guthrie and seven coeditors, 1991]. The third

and final step is publication of this techniques book [Angler Survey Methods and

their Applications in Fisheries Management, Pollock et. al., 1994], which draws

heavily on work presented in the symposium and proceedings, as well as on other

sources familiar to us.” (Pollock et al., 1994).

The combined volumes, Creel and Angler Surveys in Fisheries Management (American

Fisheries Society Symposium 12, 1991) and Angler Survey Methods and their Applications

in Fisheries Management (Pollock et al., 1994), provide a chronology to time of publication

as well as a comprehensive summary of the research, developments, and techniques currently

available.

Estimating fishing effort often involves a count of anglers which can be broadly classified

as “instantaneous” or “progressive” (Hoenig et al., 1993; Pollock et al., 1994). Instantaneous

counts can be made using aerial overflights, a fast-moving vehicle, or a visual vantage point.

If performed at a randomly chosen moment from some time interval, then the product of

the count and the length of the time interval gives a measure of effort expressed in units

of the time interval (e.g. fishing hours). This estimate of effort can be improved by using

the average of a number of counts taken at randomly selected times (Pollock et al., 1994;

Malvestuto, 1996).

Aerial surveys are often used for instantaneous counts in larger study areas with difficult

terrain (Gunderson, 1993; Pollock et al., 1994). Despite the costs of aircraft time, such

surveys can be efficient and cost effective. Operated with minimal personnel, they can

provide spatial and temporal information, as well as aid in such functions as identification

of access sites. Proper use of aerial surveys requires adequate planning. Routes or transects

and their timings must be designed to best accomplish the intended task. Sighting and

determining activity can be an important issue, especially during poor weather. Methods

of estimating such visibility bias are reviewed by Pollock and Kendall (1987).

Progressive counts are made by an agent travelling along a pre–chosen route that includes

the entire fishing resource under study. Robson (1961) describes the agent travelling at a



CHAPTER 1. INTRODUCTION 4

constant rate and making a number of passes through the study area. Hoenig et al. (1993)

specifies the requirements for proper use of this method:

“ (1) the starting location along the survey agent’s route is chosen randomly,

(2) the direction of travel is chosen randomly (from the two alternatives), and

(3) the survey agent’s speed of travel is greater than that of all anglers while

the anglers are fishing (but not necessarily when they are traveling from

one location to another).”

Hoenig et al. (1993) also argues that one pass can be used to estimate effort, providing that

the start time is chosen in such a way that all times have an equal probability of being

selected. The product of the progressive counts and the time required for the pass through

the study area give an estimate of effort over the “pass time” and so must be expanded by

the number of “pass times” in the fishing day.

Past studies have combined angler interviewing with progressive count taking, which

then exposes the estimates of effort to problems of bias (Robson, 1991; Wade et al., 1991

and Pollock et al., 1994). The amount of bias, potentially a severe underestimation, stems

from missed counts during interview times (Pollock et al., 1994). Wade et al. (1991) suggest

a procedure involving checkpoints along the route which force the interviewer to a time

schedule.

“Bus-route-type access surveys” or simply bus route surveys offer an alternative to in-

stantaneous and progressive counts for estimating effort when dealing with large geographic

survey areas. Travelling to all access points using a route with scheduled arrival, wait, and

departure times, a survey agent records the amount of time that an angler’s vehicle is at

each site. Robson and Jones (1989) developed an estimator for total effort based on a geo-

metric probability of encountering anglers. Chen and Woolcock (1999) propose a condition

on the waiting times that ensures unbiasedness in the estimator (i.e. that the sum of the

travel time to, and wait time at, each access point is the same and equal to the total circuit

time divided by the number of access points).

Another approach for estimating total effort, expressed as angler trips, was used by

McNeish and Trial (1991). Interview data was used to construct angler activity curves

expressed as the proportion of the day’s anglers active at each hour. Instantaneous counts

made at non-randomly selected times were then divided by the proportions at the times

of overflights to estimate the total number of angler trips for that day. McNeish and Trial
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(1991) note that a similar method of estimating effort was discussed by Parker (1956).

The Georgia Strait Creel Survey (Department of Fisheries and Oceans, Canada) also uses

interview data to construct effort profiles (English et al., 1986; Hardie et al. 1999; Shardlow

et al. 1989).

The natural estimator for the catch rate involves a ratio; but until work by Pollock et al.

(1997) there was no clear criterion for choosing between a mean of ratios or a ratio of means

type of estimator. Attention, however, was given to the performance of various estimators,

e.g. by Crone and Malvestuto (1991). As pointed out by Hoenig et al. (1997) in reference

to roving surveys, there was no consensus as to which estimator should be used.

“The ratio of means estimator has been advocated for roving creel surveys by

. . .Malvestuto, Davies and Shelton (1978), Phippen and Bergersen (1991), Dent

and Wagner(1991), . . . among others. In contrast, the mean of ratios estima-

tor has been advocated by Siegler and Siegler (1990) and Hayne (1991) among

others.”

Defining C∗
i and L∗

i as catch and length of time fished, respectively, for a completed

fishing episode (as recorded by an access survey) and Ci and Li as catch and length of time

fished up to time interviewed by a survey agent (as recorded by a roving survey), a ratio of

means estimator is defined as

R̂rom =

∑n
i=1C

∗
i∑n

i=1 L
∗
i

or

∑n
i=1 Ci∑n
i=1 Li

and a mean of ratios estimator is defined as

R̂mor =
1

n

n∑

i=1

C∗
i

L∗
i

or
1

n

n∑

i=1

Ci

Li

·

Noting that the sample inclusion is the same regardless of length for any fishing episode

in an access survey, whereas the sampling probability is dependent on the length of the

time fished in a roving design, Pollock et al. (1997) showed that only the rom estimator is

unbiased for the access design and that only the mor estimator is unbiased for the access

design. A somewhat more detailed version with specific focus on roving designs is given

by Hoenig et al., (1997). In both accounts catch rate has been assumed constant over the

duration of any fishing episode.

Often creel surveys are conducted over large heterogeneous areas or for extended periods

of time (e.g. the Georgia Strait Creel Survey). In these situations stratification can be used
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to improve the precision and facilitate monthly or annual reporting. There may also be

administrative advantages. In addition, more elaborate sampling schemes may better suit

the ground (i.e. access or roving) survey. Because of logistic constraints relating to the

deployment of personnel, multistage designs are often employed. A typical example of a

multistage design would be to sample anglers within a time block within a landing site.

To increase the number of anglers sampled, and hence improve precision, unequal selection

probabilities can be used at each stage of sampling (Hayne, 1991).

In addition to access, roving, and aerial surveys, mail and telephone surveys can offer

relatively simple and inexpensive off–site methods of obtaining survey information (Pol-

lock et al., 1994). Mail surveys, used primarily for opinion polling, have other advantages.

Brown (1991) lists relatively low cost, lack of face–to–face bias, avoidance of time–pressured

response, and facility for longer and more complex questions as advantages; while disadvan-

tages included possible need for reminder notices, inability to restate or clarify questions,

recall bias, and nonresponse. License files or on–site interviews are often used to construct

the sampling frame. However, a weakness is that these may not include the entire target

population. The sampling frame for a telephone survey can be constructed by similar means

and also by also using random dialing or commercially produced directories. Apart from

cost, advantages and disadvantages are generally the complement set of those for mail sur-

veys. In addition, response from telephone surveys is immediate, and automated methods

of data entry can be used, making them an attractive choice for large national surveys.

Using a hyphenated convention in which the effort survey methodology is given first

followed by the CPUE survey methodology, Pollock et al. (1997) noted that

“There are four complemented designs which use complete trip interviews to

estimate catch (effort × catch rate); these are mail–access, telephone–access,

aerial–access, and roving–access. There are also four complemented designs

which use incomplete trip interviews to estimate catch (effort × catch rate);

these are mail–roving, telephone–roving, aerial–roving, and roving–roving. In

terms of analysis, aerial–access and roving–access are equivalent designs, and

aerial–roving and roving–roving are also equivalent designs. This is because an

aerial instantaneous count is treated the same way as any other kind of roving

instantaneous or progressive count.”

The focus of this thesis is aerial–access and aerial–roving designs.
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1.3 The Chapters

A specific set of assumptions has been fundamental for the theoretical development of catch

estimation based on CPUE. This thesis extends the utility of the technique by consider-

ing other sets of assumptions which might better reflect the realities encountered in some

applications.

Chapters 2, 3, and 4 are expanded versions of papers submitted for publication and as

such, essentially are self–contained units. Consequentially, there is some redundancy of the

introductory material. Where possible, consistency in notation has been maintained.

Chapter 2

This chapter is concerned with the assumption of a constant catch rate over the entire

duration of any fishing episode. When determining the appropriateness of their estimators

(i.e. for access versus roving designs), Hoenig et al. (1997) and Pollock et al. (1997) assumed

that fishing was a stationary Poisson process. While this assumption may well be suitable for

certain types of sport fishing, it may not be a suitable model for live bait fishing where the

efficiency of the bait deteriorates over time, or for a gill net fishery where net saturation and

fouling can result in a declining catch rate. More appropriate might be a non-homogeneous

Poisson process in which the catch rate decreases in a “smooth” fashion over time. Even

more appropriate might be a generalization of this, in which the decreases are “irregular”

over time and determined by some random process that describes the times at which a

catch is made. To illustrate the development of a suitable estimator for use with a declining

catch rate, a river–based gill net fishery is used where catch is modeled as a continuous time

Markov process.

An estimator for catch rate, R̂, is proposed and shown to be unbiased. Next, the variance

of R̂ is developed, conditional on knowing the parameters that govern the declining catch

rate. Estimation of these parameters is then discussed and a method for estimating the

unconditional variance of R̂ is presented. Issues of overdispersion, model effectiveness and

bias are also discussed.

A simulation study is used to examine the performance of the estimators. One scenario

of particular interest, and likely to occur in practice, is that of a restriction on the roving

survey to daylight hours. Use of a minimum time to interview for sample inclusion as a

variance stabilizing device is also examined.



CHAPTER 1. INTRODUCTION 8

Finally, the proposed methods are applied to a gill net fishery on the Fraser River, British

Columbia, Canada.

Chapter 3

When instantaneous counts are used to estimate total effort, it is essential that these counts

be taken at times randomly selected over the full fishing day; often this is not practical

or economically viable, e.g. use of aircraft. This chapter considers the problem of catch

estimation when the times of overflight are restricted to a non-randomly selected schedule.

The ground survey for estimating CPUE (i.e. access or roving surveys) are assumed to be

fully randomized.

Ratio–type estimators using the overflight counts as auxiliary information are developed

for use with both access and roving ground surveys and are shown to be unbiased. Their

variance estimators are also developed. In each case these results are then extended to

incorporate multiple overflights in the same day. The question of whether to combine the

overflight counts using ratios of means or using means of ratios is also examined. Relative

performance of these estimators is then analyzed using simulated data.

Lastly, data from the gill net fishery on the Fraser River are used to demonstrate the

use of the proposed estimators.

Chapter 4

This chapter illustrates how results from the previous chapter can be used when the ground

survey is access and has a complex design. In particular, a three stage sampling design is

used. For generality, unequal sampling probabilities are used. It is shown that the structure

of the sampling design must be built into the estimators and that a catch estimate is actually

made using only the data from the randomly implemented access survey. The overflight

counts are used to “fine tune” this estimate. This underscores the need for randomization

in at least one of the component surveys. Development of the variance formulas is shown

to be structured on a decomposition of the variance.

Next, simulations are used to assess the performance of the estimators. Scenarios with

differing amounts of variability and sampling rates at each of the levels of the multistage

structure are considered.

In conclusion, use of the proposed methods is demonstrated using data from the Georgia
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Strait Creel Survey conducted off the west coast of Canada.



Chapter 2

Declining Catch Rates

In general, a CPUE estimator must be based on completed fishing trip information. This

is provided directly by “access surveys”. In “roving surveys”, however, estimators must be

model assisted because they obtain catch and length of trip information prior to the its

completion. Typically, estimates in these surveys have been developed assuming that the

catch rate is constant over time. This chapter extends the problem to that of estimating

total catch in the presence of a declining catch rate, due, for example, to gear saturation.

Using a gill net fishery as an example, a mean of ratios type of estimator for the catch

rate together with its variance estimator is developed. Their performance is examined

using simulations with special attention given to effects of restrictions on the roving survey

window. The Fraser River gill net fishery is used to illustrate the use of the proposed

estimator and to compare results with those from an estimator based on a constant catch

rate.

2.1 Introduction and Motivation

Complemented angler surveys (Pollock et al., 1994) are often used to estimate total catch

(C) in large regional surveys. In these designs, two separate and independent surveys are

used to estimate the total fishing effort (E) and the catch rate (R = C/E) and their product

then estimates the total catch.

Methods to estimate the catch rate generally involve some form of angler interviewing.

Interviews are categorized in two ways: “Access” interviews conducted after the fishing

episodes have been completed, and “roving” interviews conducted at some time during

10
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the fishing episode. Pollock et al. (1997) studied the problem of estimation in a sports

fishery context and recommended separate estimators for the two interview methods. In a

detailed study of estimation in roving surveys, Hoenig et al. (1997) recommended the same

estimators. In developing estimators, both papers stated the assumption that,

“for each angler j , fishing is a stationary Poisson process with parameter λj and

that the fishing rate parameter does not vary with the angler’s starting time or

with the length of the fishing trip”.

However, this may not be realistic in some fisheries. Gear may loose its efficiency over time

because of fouling or saturation resulting in a declining catch rate over time.

A study of non-constant catch rates was motivated by a review of the methodology used

for estimating sockeye catch on the Fraser River, Canada, in a gill net fishery. As a net

fills, its ability to catch additional fish diminishes resulting in fewer catches over successive

time intervals. As well, there are physical limits on the number of fish that a single net can

harvest. These were believed to be significant issues for the longer “soak” times observed

in the study. Estimates made, assuming a constant catch rate, may have unacceptably high

positive bias.

In this chapter total catch is estimated in the presence of catch rate saturation i.e. for

each episode a decline in the catch efficiency of the gear expressed as a function of the

amount already caught. While the ultimate goal is an estimate of total catch, the major

focus is on finding an appropriate estimator for the catch rate. Under a sampling design

similar to that used by Hoenig et al. (1997) and with catch modelled as a Markov process, a

mean of ratios estimator is appropriate and we find its variance estimator. These results are

generalizations of those of Hoenig et al. (1997). Performance of these estimators is assessed

using simulated data, with special attention being given to the possible effects of restrictions

on the window of the roving survey. Finally, a portion of the Fraser River data is used to

illustrate the use of the proposed estimator and how catch estimates can differ if catch rate

saturation is ignored. The Fraser River study is also used to demonstrate the value of the

estimator as a conservative means of dealing with dispersed data.

Note that, because the estimates for catch rate derived from access surveys (i.e. based

on information from completed fishing episodes) would already account for catch rate sat-

uration, it is only the estimators which are derived from roving designs that are of interest

in this chapter.
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2.2 Notation

T Time period for one repetition of the fishing effort pattern. Typically, this

will be 24 hours.

N Number of fishing episodes in the population during one time period T.

n Number of fishing episodes intercepted by the roving survey

I Instantaneous count of the active fishing episodes.

C∗
j Catch from the jth fishing episode when completed,

where j = 1, . . . , N.

Cj Catch from the jth fishing episode at time of interview,

where j = 1, . . . , N. Define Cj = 0 if the jth episode is not selected in

the roving sample.

L∗
j Length of time fished from the jth fishing episode when completed,

where j = 1, . . . , N.

Lj Length of time fished from the jth fishing episode at time of interview,

where j = 1, . . . , N. Define Lj = 0 if the jth episode is not selected in

the roving sample.

L′ Minimum length of time fished required for sample inclusion.

C∗ Total catch =
N∑

j=1
C∗

j .

E∗ Total effort =
N∑

j=1
L∗

j .

R Catch rate (i.e. CPUE) = C∗/E∗.

λ Instantaneous, initial catch rate common to all episodes.

C0 Capacity of net at full saturation.

δj Indicator variable used to denote sample inclusion for the j th episode.

2.3 Survey Design, Assumptions and Model

A gill net fishery provides a good opportunity to examine the problem of total catch esti-

mation in the presence of a declining catch rate, because the declining catch rate is both

plausible and easy to comprehend. As a net fills, its ability to catch additional fish dimin-

ishes resulting in fewer catches over successive time intervals. In the extreme, no further

fish can be caught. Suppose that such a fishery exists and consists of N independent fishers

using nets of a common design and that the fishing effort has a pattern that is cyclic with
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a time period T of one fishing day of 24 hours. A full survey design for estimating catch re-

quires two separate and independent components. The first component should be designed

to provide an instantaneous measure of the effort at randomly chosen times (Hoenig et al.,

1993, Pollock et al., 1994), while the second should be designed to provide catch and length

of time fished information. For example, a helicopter fly-over could be used to count active

nets, while a roving boat patrol could be used to collect the time fished and number caught

information. In the latter, the number of fish caught, Ci, and the start time of the current

episode are recorded for each fisher encountered, from which the length of time fished to

interview, Li, is also obtained.

Assumptions about the process by which episodes are selected to interview are crucial

in developing a catch rate estimator when using a roving survey design. Here it is assumed

that each episode is sampled independently of every other episode and with probability

proportional to the length of the episode. For example, the basic sampling design used by

Hoenig et al. (1997): the starting point, time and direction of travel are chosen at random

for a pass through the fishing resource by the interviewer. Then, as noted by Hoenig et al.

(1997), with δj = 1 denoting sample inclusion, the distribution of Lj | L
∗
j , δj =1 is uniform

over
[
0 , L∗

j

]
with E

[
Lj|L

∗
j , δj = 1

]
= L∗

j/2 and V ar
(
Lj|L

∗
j , δ = 1

)
= L∗

j
2/12. Also,

the δj are independent Bernoulli random variables with E [δj ] = L∗
j/T and V ar (δj) =(

L∗
j/T

)(
1 − L∗

j/T
)
. That is, inclusion of any net in the roving survey is independent of

the inclusion of any other net and depends only on the duration of that fishing episode.

Further, n =
N∑

j=1
δj and E [n] =

N∑
j=1

L∗
j/T . Note that in practice there are many ways in

which assumptions could be violated. The implementation of the roving survey may be

restricted to a period less that T , e.g. boat patrols restricted to daylight hours, while nets

are set and picked at all times of the day; or the timing of an episode may depend upon the

length of an episode, e.g. fishers who will be fishing only for short periods, may tend to fish

only in the morning hours. Deviations from the assumptions are apt to lead to bias in the

estimates.

Implementation of the roving boat patrol survey will affect its results. In order to

determine Cj, the net must be removed from the water, ending the current episode and

initiating another, which impacts on the ensuing catch rate. In recognition of this “sampling

effect”, n is assumed to be small relative to N and it is assumed that fishing time lost to

interview is offset by the higher catch rate resulting from the empty net after interview.
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To model the decline in the catch rate, assume that the probability that a fish will

encounter a given net is constant over time and location but that the ability of the net to

actually catch fish decreases as the net fills to capacity i.e. a catch rate saturation model.

For example, a simple model for the catch rate of a fishing episode after k fish have been

caught is the continuous time Markov process:

λk = λ

(
1 −

k

C0

)
; k = 0, 1, ..., C0 (2.1)

where
λk is the catch rate with k fish already caught,

λ is the catch rate for an empty net (i.e. k = 0), and

C0 is the catch capacity of the net at saturation.

This model is appealing in that the catch rate, λk, is dependent on the number of fish

already caught and decreases strictly to zero as the net approaches saturation. Standard

results (e.g. Taylor and Karlin, 1984) can be used to find the pmf of C(l), the catch at time

l:

P (C (l)) =

(
C0

C (l)

)(
1 − e

− λl
C0

)C(l)(
e
− λl

C0

)C0−C(l)

(2.2)

which is binomial in
(
1 − e

− λl
C0

)
and C0. The expected catch after elapsed time l is then

E [C (l)] = C0

(
1 − e

− λl
C0

)
and V ar (C(l)) = C0

(
1 − e

− λl
C0

)
e
− λl

C0 = e
− λl

C0E [C(l)]. Also, the

model implies that E [C (l)] is an increasing function of l and E [C (0)] = 0. Note that for

fishing episode j: P (Cj |Lj, δ = 1) is binomial in C0 and

(
1 − e

−
λLj
C0

)
; P
(
C∗

j

∣∣∣L∗
j , δ = 1

)

is binomial in C0 and

(
1 − e

−
λL∗

j
C0

)
; and P

(
Cj|Lj, C

∗
j , L

∗
j , δ = 1

)
is binomial in C∗

j and

(
1 − e

−
λLj
C0

)/(
1 − e

−
λL∗

j
C0

)
. These results are used extensively in developing the results

which follow. (For more detail see Appendix A.)

It is of interest to compare the model proposed in this chapter with the natural gener-

alization of the homogeneous Poisson process based model for catch used by Hoenig et al.

(1997). In a non-homogeneous Poisson process, λ(l) , the catch rate at time l of the j th fish-

ing episode, can be expressed as
∂C

∂l
= λ

(
1 −

C (l)

C0

)
where C (l) is the theoretical value of

catch at time l, λ is the initial catch rate, and C0 is the limit of catch as l becomes infinitely
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large. Solving the differential equation gives E [λ (l)] = C0

(
1 − e

− λl
C0

)
, the same formula

for the theoretical catch at time l as the Markov model. (For more detail see Appendix B.)

2.4 Total Effort Estimation

Total effort is to be estimated independently of the catch rate. Appropriate units are fishing

hours (or minutes) in order that they match those in the denominator of the expectation of

the catch rate estimator.

The physical characteristics of the fishing resource that is being considered, i.e. a river

in this case, in large part determine the method of measuring effort. By selecting an aerial

count of active nets to gauge the effort, it can be argued that the count should be viewed

as “instantaneous” (see Pollock et al., 1994). If the instantaneous count, I, is made at a

randomly chosen time during the period T, then the expansion Ê = I × T will give an

unbiased estimator for E, the total effort during time period T . Also, Ê is then expressed

in units of fishing hours (or minutes) as required.

2.5 The Catch Rate Estimator

As noted earlier, it is natural to look to some form of ratioing of the Ci and Li from the

sampled episodes for an estimator of the catch rate R, but whether it is better to use a

ratio of means or a mean of ratios depends on the design of the survey. Since C ∗ is to be

estimated using Ê∗ × R̂ from independently conducted surveys, an appropriate estimator

for R will be one for which E
[
R̂
]

=
N∑

j=1
C∗

j

/
N∑

j=1
L∗

j = C∗/E∗.

Since it is the total catch, after all episodes have been completed, that is to be estimated,

it is desirable to construct the catch rate estimator using information from completed fishing

episodes. But, since the roving surveys deal only with incomplete fishing episodes, completed

catch and length of time fished information must be model based. With the distribution

of Lj | δ = 1 uniform over
[
0 , L∗

j

]
, 2Lj is an unbiased estimator for L∗

j and therefore an

obvious choice for the estimator of the length of time fished for a completed episode. It

naturally follows that some approximation of catch at 2Lj should be used as the estimator

for the catch of a completed episode. To incorporate Ci, the information obtained from the
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survey, note that

E [C (2Li)]

E [C (Li)]
=

C0

(
1 − e

−
2λLi
C0

)

C0

(
1 − e

−
λLi
C0

) =

(
1 + e

−
λLi
C0

)
.

This “nonlinear doubler” for catch then leads to a catch rate estimator which is formed by

the ratio of

(
1 + e

−
λLi
C0

)
Ci to 2Li.

2.5.1 The Ratio of Means Estimator

A ratio of means estimator is the usual ratio estimator in sampling (see Cochran, 1977).

Under a roving design and the proposed model, the ratio of means estimator is given by

R̂rom =

n∑
i=1

(
1 + e

−
λLi
C0

)
Ci

n∑
i=1

2Li

=

N∑
j=1

δj

(
1 + e

−
λLj
C0

)
Cj

N∑
j=1

2δjLj

where

λ and C0 are assumed to be known,

δj , Cj and Lj are random variables,
n∑

i=1
Li > 0,

P (δj = 1) =
L∗

j

T , and

Lj| δj = 1 is distributed Unif
[
0 , L∗

j

]
.

Assuming that the sample size is large enough that the expectations of the ratio can be

approximated with the ratio of expectations and given C ∗
j and L∗

j ,

E
[
R̂rom

]
≈

E

[
N∑

j=1
δj

(
1 + e

−
λLj
C0

)
Cj

]

E

[
N∑

j=1
2δjLj

] ·
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Evaluating the numerator where ELj

[
1 − e

−
2λLj
C0

]
, the expectation of the random vari-

able Lj, is approximated using a first order Taylor expansion about E [Lj] = L∗
j/2:

ELj ,Cj ,δj




N∑

j=1

δj

(
1 + e

−
λLj
C0

)
Cj


 =

N∑

j=1

ELj ,Cj

[
0 ·

(
1 + e

−
λLj
C0

)
Cj

∣∣∣∣ δj = 0

]
P (δj = 0)

+

N∑

j=1

ELj ,Cj

[
1 ·

(
1 + e

−
λLj
C0

)
Cj

∣∣∣∣ δj = 1

]
P (δj = 1)

= 0 +

N∑

j=1

ELj ,Cj

[(
1 + e

−
λLj
C0

)
Cj

]
P (δj = 1)

=

N∑

j=1

ELj

[(
1 + e

−
λLj
C0

)
ECj

[
Cj |Lj, C

∗
j , L

∗
j

]] L∗
j

T

=
N∑

j=1

ELj



(

1 + e
−

λLj
C0

)
C∗

j


1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0




 L

∗
j

T

=
N∑

j=1

ELj




(
1 − e

−
2λLj
C0

)

(
1 − e

−
λLj
C0

) C∗
j

(
1 − e

−
λLj
C0

)

(
1 − e

−
λL∗

j
C0

)



L∗

j

T

=

N∑

j=1

ELj

[
1 − e

−
2λLj
C0

]
C∗

j(
1 − e

−
λL∗

j
C0

) L∗
j

T

≈

N∑

j=1

(
1 − e

−
λL∗

j
C0

)
C∗

j(
1 − e

−
λL∗

j
C0

) L∗
j

T

=
N∑

j=1

C∗
jL

∗
j

/
T.
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Evaluating the denominator:

ELj ,Cj ,δj




N∑

j=1

2δjLj


 =

N∑

j=1

ELj [0 · Lj | δj = 0]P (δj = 0)

+
N∑

j=1

ELj [1 · Lj | δj = 1]P (δj = 1)

= 0 +
N∑

j=1

ELj [Lj]P (δj = 1)

=

N∑

j=1

ELj [Lj]
L∗

j

T

=

N∑

j=1

L∗
j

2

L∗
j

T

=
N∑

j=1

(
L∗

j

)2/
2T.

Therefore

E
[
R̂rom

]
≈

N∑
j=1

C∗
jL

∗
j

/
T

N∑
j=1

(
L∗

j

)2
/

2T

=

2
N∑

j=1
C∗

jL
∗
j

N∑
j=1

(
L∗

j

)2

which is not of the appropriate form and therefore is not recommended for use with the

current model.
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2.5.2 The Mean of Ratios Estimator

The mean of ratios estimator under the current model and roving design is given by

R̂mor =
1

n

n∑

i=1

(
1 + e

−
λLi
C0

)
Ci

2Li
(2.3)

=

N∑
j=1

δj

(
1 + e

−
λLj
C0

)
Cj

2Lj

N∑
j=1

δj

where

λ and C0 are assumed to be known,

δj , Cj and Lj are random variables,

Li > 0 for all i,

Pr {δj = 1} =
L∗

j

T , and

Lj| δj = 1 is distributed Unif
[
0 , L∗

j

]
.

Assuming that the sample size is large enough that the expectations of the ratio can be

approximated with the ratio of expectations and given C ∗
j and L∗

j ,

E
[
R̂mor

]
≈

E

[
N∑

j=1
δj

(
1 + e

−
λLj
C0

)
Cj

2Lj

]

E

[
N∑

j=1
δj

] ·

Evaluating the numerator where a first order Taylor expansion about E [Lj] = L∗
j/2 is

used to approximate E

[
1−e

−

2λLj
C0

Lj

]
,

ELj,Cj ,δj




N∑

j=1

δj

(
1 + e

−
λLj
C0

)
Cj

2Lj


 =

N∑

j=1

ELj ,Cj

[
0 ·

(
1 + e

−
λLj
C0

)
Cj

2Lj

∣∣∣∣ δj = 0

]
P (δj = 0)

+

N∑

j=1

ELj ,Cj

[
1 ·

(
1 + e

−
λLj
C0

)
Cj

2Lj

∣∣∣∣ δj = 1

]
P (δj = 1)

= 0 +

N∑

j=1

ELj ,Cj

[(
1 + e

−
λLj
C0

)
Cj

2Lj

]
P (δj = 1)
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=
N∑

j=1

ELj



(

1 + e
−

λLj
C0

) ECj

[
Cj |Lj , C

∗
j , L

∗
j

]

2Lj


 L

∗
j

T

=

N∑

j=1

ELj




(
1 + e

−
λLj
C0

)

2Lj
C∗

j


1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0






L∗

j

T

=
N∑

j=1

ELj



C∗

j

2Lj

(
1 − e

−
2λLj
C0

)

(
1 − e

−
λLj
C0

)

(
1 − e

−
λLj
C0

)

(
1 − e

−
λL∗

j
C0

)



L∗

j

T

=

N∑

j=1

ELj


1 − e

−
2λLj
C0

Lj


 C∗

j

2

(
1 − e

−
λL∗

j
C0

) L∗
j

T

≈

N∑

j=1

2

(
1 − e

−
λL∗

j
C0

)

L∗
j

C∗
j

2

(
1 − e

−
λL∗

j
C0

) L∗
j

T

=

N∑

j=1

C∗
j

/
T.

Evaluating the denominator,

Eδj




N∑

j=1

δj


 =

N∑

j=1

Eδj
[δj ]

=

N∑

j=1

{0 · P (δj = 0) + 1 · P (δj = 1)}

=

N∑

j=1

L∗
j

/
T.
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Therefore

E
[
R̂mor

]
≈

N∑
j=1

C∗
j

/
T

N∑
j=1

L∗
j

/
T

=

N∑
j=1

C∗
j

N∑
j=1

L∗
j

=
C∗

E∗

which is unbiased, to the extent of the approximation, and of the required form and therefore

appropriate for use as an estimator in the framework

total catch = (total effort)× (catch rate)

under the current model. Unless otherwise specified, R̂ and catch rate estimator refer to

this mean of ratios estimator.

By modelling catch as a homogeneous Poisson process, Hoenig et al. (1997) obtained

similar results. In their model, catch is linear in time fished. Thus, if Ci were the observed

catch at time Li, the expected catch at time 2Li would be 2Ci. Using this, they found that

R̂rom =

n∑
i=1

2Ci

n∑
i=1

2Li

=

n∑
i=1

Ci

n∑
i=1

Li

, a ratio of means, was an appropriate estimator for catch rate if

the survey was an access design while R̂mor =
1

n

n∑

i=1

2Ci

2Li
=

1

n

n∑

i=1

Ci

Li
, a mean of ratios, was

appropriate if the survey was a roving design. To see the estimator of Hoenig et al. (1997) as

a special case of R̂, the estimator in the proposed model, let C0 → ∞, i.e. no net saturation.

Then

(
1 + e

−
λLi
C0

)
Ci
2Li

→ 2Ci
2Li

. Therefore, as C0 → ∞, R̂ →
1

n

n∑

i=1

2Ci

2Li
showing that R̂

reduces to the mean of ratios estimator used by Hoenig et al. (1997). Also note that in the

proposed model, λk = λ
(
1 − k

C0

)
where λ is the initial catch rate and also the constant

catch rate used by Hoenig et al. (1997). Therefore as C0 → ∞, λk approaches λ and both

models employ the same catch rate. Further details are given in appendix B.
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2.6 Variance of R̂ ( λ and C0 known)

Contributing to the variance of R̂ are uncertainties in Ci, Li and n as well as variability

associated with the estimation of λ and C0. Also, since V ar (Cj) is a function of C∗
j , the

variability in C∗
j is also a contributor. To find a form for the variance of R̂, λ and C0 are

initially assumed to be known.

2.6.1 The Form of V ar
(
R̂ | λ, C0

)

The appropriate estimator for catch rate was shown to be R̂ = 1
n

n∑
i=1

(
1 + e

−
λLi
C0

)
Ci
2Li

which,

by writing Zi =

(
1 + e

−
λLi
C0

)
Ci

2Li
, notationally simplifies to R̂ =

1

n

n∑

i=1

Zi, where now n and

Zi are random variables. Then, assuming λ and C0 are known and conditioning on s, the

sample selected (i.e. a particular set of intercept times),

V ar
(
R̂ | λ,C0

)
= Es

[
V ar

(
Z̄
∣∣ s
)]

+ V ars
(
E
[
Z̄
∣∣ s
])
· (2.4)

Expansion of the first term using a Taylor series approximation gives

Es

[
V ar

(
Z̄ | s

)]
= Es


 1

n2
V ar




N∑

j=1

δjZj


 | s




≈

N∑
j=1

Es

[
δj

2
]
V ar (Zj | s)

(Es[n])2

=

N∑
j=1

L∗

j

T V ar (Zj | s)

(
N∑

j=1

L∗

j

T

)2

since δj is Bernoulli in L∗
j/T . Then for any j, given that δj = 1,

V ar
(
Zj |C

∗
j , L

∗
j

)
= ELj

[
V ar

(
Zj |Lj , C

∗
j , L

∗
j

)]
+ V arLj

(
E
[
Zj|Lj, C

∗
j , L

∗
j

])

= E





1 + e

−
λLj
C0

2Lj




2

C∗
j


1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0




1 −

1 − e
−

λLj
C0

1 − e
−

λL∗

j
C0







+V ar




1 + e

−
λLj
C0

2Lj


C∗

j


1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0





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= E




C∗
j

(2Lj)
2


1 − e

−
2λLj
C0

1 − e
−

λLj
C0




2
1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0







−E




C∗
j

(2Lj)
2


1 − e

−
2λLj
C0

1 − e
−

λLj
C0




2
1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0




2



+V ar


 C∗

j

2Lj


1 − e

−
2λLj
C0

1 − e
−

λLj
C0




1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0






= E




C∗
j

(2Lj)
2 ·

(
1 − e

−
2λLj
C0

)(
1 − e

−
λLj
C0

)(
1 + e

−
λLj
C0

)

(
1 − e

−
λLj
C0

)2 ·

(
1 − e

−
λLj
C0

)

(
1 − e

−
λL∗

j
C0

)




−E




C∗
j

(2Lj)
2 ·

1
(

1 − e
−

λL∗

j
C0

)2 ·

(
1 − e

−
2λLj
C0

)2

1




+V ar



C∗

j

2Lj
·

1(
1 − e

−
λL∗

j
C0

) ·

(
1 − e

−
2λLj
C0

)

1




=
C∗

j

4

(
1 − e

−
λL∗

j
C0

) ·E




(
1 − e

−
2λLj
C0

)(
1 + e

−
λLj
C0

)

L2
j




−
C∗

j

4

(
1 − e

−
λL∗

j
C0

)2 ·E





1 − e

−
2λLj
C0

Lj




2



+

(
C∗

j

)2

4

(
1 − e

−
λL∗

j
C0

)2 · V ar


1 − e

−
2λLj
C0

Lj


 ·

Note: Expressed this way, it is clear that V ar
(
R̂
)

does not exist unless Lj is bounded away
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from zero. It is also clear that the greater this bound, the more stable is V ar
(
R̂
)
. In theory,

Lj is a continuous random variable and can approach zero, however, in practice, whether

as part of sampling protocol or by use of discrete time units, a minimum length of time to

interview, L′, will exist. Accordingly, E [Lj] =
(
L∗

j + L′
)
/2 and V ar (Lj) =

(
L∗

j − L′
)2
/12

and the probability of sample inclusion for any episode is
(
L∗

j − L′
)
/T . In the development

of expressions for both the expectation and variance of Zj , and hence R̂, L′ will be taken to

be sufficiently small that its effects are negligible compared to the order of the approxima-

tions already made and therefore dropped from the notation allowing for some cancelations

and considerable simplification. In the simulations which follow, however, L ′ is carried. A

minimum time to interview was also used by Hoenig et al. (1997) and Pollock et al. (1997)

in their work with a sports fishery under the constant catch rate assumption.

Now, with L′ sufficiently small and using Taylor series approximation about E [Lj] =

L∗
j/2,

V ar
(
Zj |C

∗
j , L

∗
j

)
≈

C∗
j

4

(
1 − e

−
λL∗

j
C0

) ·

(
1 − e

−
λL∗

j
C0

)(
1 + e

−
λL∗

j /2

C0

)

(
L∗

j/2
)2

−
C∗

j

4

(
1 − e

−
λL∗

j
C0

)2 ·




(
1 − e

−
λL∗

j
C0

)

L∗
j/2




2

+

(
C∗

j

)2

4

(
1 − e

−
λL∗

j
C0

)2 ·




λL∗

j

C0
e
−

λL∗

j
C0 −

(
1 − e

−
λL∗

j
C0

)

(
L∗

j/2
)2




2

·
L∗

j
2

12

=
C∗

j(
L∗

j

)2 ·

(
1 + e

−
λL∗

j /2

C0

)
−

C∗
j(

L∗
j

)2

+

(
C∗

j

)2

3
(
L∗

j

)2
(

1 − e
−

λL∗

j
C0

)2

{
λL∗

j

C0
e
−

λL∗

j
C0 −

(
1 − e

−
λL∗

j
C0

)}2

·
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To express this variance as a function of L∗
j only, first note that, given δj = 1,

E
[
Zj|C

∗
j , L

∗
j

]
= ELj

[
E
[
Zj |Lj , C

∗
j , L

∗
j

]]

= ELj



(

1 + e
−

λLj
C0

)
C∗

j

2Lj

1 − e
−

λLj
C0

1 − e
−

λL∗

j
C0




= ELj


1 − e

−
2λLj
C0

1 − e
−

λLj
C0

C∗
j

2Lj

1 − e
−

λLj
C0

1 − e
−

λL∗

j
C0




= ELj




C∗
j

2

(
1 − e

−
λL∗

j
C0

)

(
1 − e

−
2λLj
C0

)

Lj




and using a first order Taylor approximation about E [Lj ] = L∗
j/2, E

[
Zj|C

∗
j , L

∗
j

]
≈ C∗

j /L
∗
j .

Therefore, as a function of L∗
j ,

E [Zj] ≈
1

L∗
j

E
[
C∗

j

∣∣L∗
j

]

=
1

L∗
j

C0

(
1 − e

−
λL∗

j
C0

)
·

Now, with C∗
j

∣∣∣L∗
j distributed binomial in C0 and

(
1 − e

−
λL∗

j
C0

)
, as a function of L∗

j only

V ar (Zj) ≈ EC∗

j

[
V ar

(
Zj|C

∗
j , L

∗
j

)]
+ V arC∗

j

(
E
[
Zj|C

∗
j , L

∗
j

])

=

C0

(
1 − e

−
λL∗

j
C0

)

(
L∗

j

)2

(
1 + e

−
λLj
C0

)

−

C0

(
1 − e

−
λL∗

j
C0

)

(
L∗

j

)2
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+

C0

(
1 − e

−
λL∗

j
C0

)(
e
−

λL∗

j
C0

)

3
(
L∗

j

)2
(

1 − e
−

λL∗

j
C0

)2

{
λL∗

j

C0
e
−

λL∗

j
C0 −

(
1 − e

−
λL∗

j
C0

)}2

+

(C0)
2

(
1 − e

−
λL∗

j
C0

)2

3
(
L∗

j

)2
(

1 − e
−

λL∗

j
C0

)2

{
λL∗

j

C0
e
−

λL∗

j
C0 −

(
1 − e

−
λL∗

j
C0

)}2

+

C0

(
1 − e

−
λL∗

j
C0

)(
e
−

λL∗

j
C0

)

(
L∗

j

)2 · (2.5)

It then follows that for the first term in equation 2.4, as a function of L∗
j ,

Es

[
V ar

(
Z̄
∣∣ s
)]

=
1

(
N∑

j=1

L∗

j

T

)2





N∑

j=1

(Vj +Wj)



 (2.6)

where

Vj =

C0

��
1−e

−

λL∗

j
C0 ��

T L∗

j

{
e

−λL∗

j /2

C0 + e
−

λL∗

j
C0

}

and

Wj = 1
3T L∗

j





1 + e
−

λL∗

j
C0

C0

��
1−e

−

λL∗

j
C0 ��





{
λL∗

je
−

λL∗

j
C0 − C0

(
1 − e

−
λL∗

j
C0

)}2

·
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Next,to express the second term in equation 2.4 as a function of L∗
j only first recall that

E
[
Zj |C

∗
j , L

∗
j

]
= C∗

j /L
∗
j . It is then possible to write

V ars
(
E
[
Z̄
∣∣ s
])

= V ars


 1

n
Es




N∑

j=1

δjZj


 | s




≈ V ars


 1

n

N∑

j=1

δj
C∗

j

L∗
j




= V ars




N∑
j=1

δj
C∗

j

L∗

j

N∑
j=1

δj


 ·

Finally, taking Taylor series approximations about each E [δj ] = L∗
j/T ,

V ars
(
E
[
Z̄
∣∣ s
])

≈
N∑

j=1

V ar (δj)




C∗

j

L∗

j

N∑
j=1

L∗

j

T

−

N∑
j=1

L∗

j

T ·
C∗

j

L∗

j

(
N∑

j=1

L∗

j

T

)2




2

=
1

(
N∑

j=1

L∗

j

T

)2

N∑

j=1

V ar (δj)



C∗

j

L∗
j

−

N∑
j=1

C∗
j

N∑
j=1

L∗
j




2

=
1

(
N∑

j=1

L∗

j

T

)2

N∑

j=1

(
L∗

j

T

)(
1 −

L∗
j

T

)


C∗

j

L∗
j

−

N∑
j=1

C∗
j

N∑
j=1

L∗
j




2

and as a function of L∗
j only where C∗

j is replaced by E
[
C∗

j

∣∣∣L∗
j , δ = 1

]
,

V ars
(
E
[
Z̄
∣∣ s
])

≈

1
(

N∑
j=1

L∗

j

T

)2

N∑

j=1

(
L∗

j

T

)(
1 −

L∗
j

T

)



C0

(
1 − e

−
λL∗

j
C0

)

L∗
j

−

N∑
j=1

C0

(
1 − e

−
λL∗

j
C0

)

N∑
j=1

L∗
j




2

· (2.7)
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V ar
(
R̂ | λ,C0

)
is now found by combining equations 2.6 and 2.7.

In section 2.5.2 it was shown that the estimator for catch per effort developed by Hoenig

et al. (1997) was the same as that proposed in this chapter under the limiting condition

C0 → ∞. It was also shown that when C0 → ∞, λ is the same constant catch rate for both

models. In addition, developing the variance formula for the estimator of catch per effort for

either model will start with equation 2.4 but with Zi equal to

(
1 + e

−
λLi
C0

)
Ci

2Li
under the

proposed model or equal to Ci/Li under the model used by Hoenig et al. (1997). Therefore,

to show that the limiting value of V ar
(
R̂ | λ,C0

)
for C0 → ∞ under the proposed model

approaches V ar
(
R̂Poiss

)
under the Hoenig et al. (1997) model, it is sufficient to show that

lim
C0→∞

E [Z] = E [ZPoiss] and lim
C0→∞

V ar (Z) = V ar (ZPoiss) for any episode.

To do this, first recall that for the proposed model

E [Zj ] =
1

L∗
j

E
[
C∗

j

∣∣L∗
j

]

and rewrite equation 2.5 as

V ar (Zj) ≈
E
[
C∗

j

∣∣∣L∗
j

]

(
L∗

j

)2

(
1 + e

−λL∗

j /2

C0

)

−
E
[
C∗

j

∣∣∣L∗
j

]

(
L∗

j

)2

+

E
[
C∗

j

∣∣∣L∗
j

](
e
−

λL∗

j
C0

)

3
(
L∗

j

)2





λL∗

j

C0
e
−

λL∗

j
C0 −

(
1 − e

−
λL∗

j
C0

)

(
1 − e

−
λL∗

j
C0

)





2

+

(
E
[
C∗

j

∣∣∣L∗
j

])2

3
(
L∗

j

)2





λL∗

j

C0
e
−

λL∗

j
C0 −

(
1 − e

−
λL∗

j
C0

)

(
1 − e

−
λL∗

j
C0

)





2

+

E
[
C∗

j

∣∣∣L∗
j

](
e
−

λL∗

j
C0

)

(
L∗

j

)2 ·
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Letting C0 → ∞ at this point results in indeterminant forms for the third and fourth terms

but, by applying l’Hopital’s rule,

lim
C0→∞

d
dC0

{
λL∗

j

C0
e
−

λL∗

j
C0 −

(
1 − e

−
λL∗

j
C0

)}2

d
dC0

(
1 − e

−
λL∗

j
C0

)2

= lim
C0→∞

−λL∗
j





λL∗

j e
−

λL∗

j
C0

C0
−

(
1 − e

−
λL∗

j
C0

)


C0

(
1 − e

−
λL∗

j
C0

)

= lim
C0→∞

−λL∗
j





λL∗

j e
−

λL∗

j
C0

C0
−

(
1 − e

−
λL∗

j
C0

)


E
[
C∗

j

∣∣∣L∗
j

]

= 0

since E
[
C∗

j

∣∣∣L∗
j

]
is finite because L∗

j < T is finite. Therefore,

lim
C0→∞

E [Zj] =

lim
C0→∞

E
[
C∗

j

∣∣∣L∗
j

]

L∗
j

and

lim
C0→∞

V ar (Zj) =

2 lim
C0→∞

E
[
C∗

j

∣∣∣L∗
j

]

(
L∗

j

)2 ·

Referring to appendix B, the limiting distribution of C ∗
j

∣∣∣L∗
j , δ = 1 as C0 → ∞ is Poisson

with parameter µ = λL∗
j where λ is now the constant catch rate over all L∗

j as used by

Hoenig et al. (1997). Thus,

lim
C0→∞

E

[(
1 + e

−
λLj
C0

)
Cj

2Lj

]
=
λL∗

j

L∗
j

= λ

and

lim
C0→∞

V ar

((
1 + e

−
λLj
C0

)
Cj

2Lj

)
=

2λL∗
j(

L∗
j

)2 ·
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As noted previously, constructing V ar
(
R̂Poiss

)
for the Hoenig et al. (1997) model starts

with equation 2.4 but now using Zj = Cj/Lj. Also, since under their model, P (Cj | Lj, δj =

1) is Poisson with parameter λLj , it follows that P (Cj | Lj, C
∗
j , L

∗
j , δj = 1) is binomial with

parameters C∗
j and Lj/L

∗
j . Hence

E

[
Cj

Lj

∣∣∣∣C∗
j , L

∗
j

]
= ELj

[
E

[
Cj

Lj

∣∣∣∣Lj , C
∗
j , L

∗
j

]]

= ELj

[
1

Lj
E
[
Cj |Lj , C

∗
j , L

∗
j

]]

= ELj

[
1

Lj
C∗

j

Lj

L∗
j

]

= ELj

[
C∗

j

L∗
j

]

=
C∗

j

L∗
j

,

and as a function of L∗
j ,

E

[
Cj

Lj

]
= E

[
C∗

j

L∗
j

∣∣∣∣∣L
∗
j

]

=
λL∗

j

L∗
j

= λ

which is equal to lim
C0→∞

E [Z] under the proposed model. It also follows that

V ar

(
Cj

Lj

∣∣∣∣C∗
j , L

∗
j

)
= ELj

[
V ar

(
Cj

Lj

∣∣∣∣Lj, C
∗
j , L

∗
j

)]
+ V arLj

(
E

[
Cj

Lj

∣∣∣∣Lj, C
∗
j , L

∗
j

])

= ELj

[
1

L2
j

C∗
j

(
Lj

L∗
j

)(
1 −

Lj

L∗
j

)]
+ V ar

(
1

Lj
C∗

j

Lj

L∗
j

)

=
C∗

j

L∗
j

E

[
1

Lj

]
−

C∗
j(

L∗
j

)2 + 0

≈
2C∗

j(
L∗

j

)2 −
C∗

j(
L∗

j

)2

=
C∗

j(
L∗

j

)2
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with the use of first order Taylor approximations. Therefore, as a function of L∗
j ,

V ar

(
Cj

Lj

)
≈ EC∗

j

[
V ar

(
Cj

Lj

∣∣∣∣C∗
j , L

∗
j

)]
+ V arC∗

j

(
E

[
Cj

Lj

∣∣∣∣C∗
j , L

∗
j

])

=
1

(
L∗

j

)2EC∗

j

[
C∗

j

∣∣L∗
j

]
+

1
(
L∗

j

)2V arC∗

j

(
C∗

j

∣∣L∗
j

)

=
1

(
L∗

j

)2λL
∗
j +

1
(
L∗

j

)2λL
∗
j

=
2λL∗

j(
L∗

j

)2 ,

again equal to the limiting result under the proposed model. That is, the expectations

and variances in the Hoenig et al. (1997) model are equal to those in the limiting case

of the proposed model. Therefore, since variance construction for both models proceeds

from equation 2.4 with identical inputs (in the limiting case), it follows that lim
C0→∞

V ar(R̂ |

λ,C0) = V ar
(
R̂Poiss

)
.

2.6.2 The Asymptotic Variance of R̂

For an unbiased estimator formed by some function of the observations divided by the

sample size, expressing a bound on its variance as 1
n2 times some finite quantity is a useful

way to show consistency. For R̂ = 1
n

n∑
i=1

(
1 + e

−
λLi
C0

)
Ci
2Li

such an approach is not possible

since n is a random variable and there is no guarantee that it will not persist in assuming

small values. To overcome this difficulty, it is necessary to find a surrogate for n.

To do this, first note that with Lj uniformly distributed over [0 , L∗
j ] but bounded away

from zero by ε,

ELj

[
1

L2
j

]
=

1

L∗
j − ε

∫ 1/ε

x=1/L∗

j

dx =
1

L∗
j − ε

(
1

ε
−

1

L∗
j

)

is bounded. Then, with Zi =

(
1 + e

−
λLi
C0

)
Ci

2Li
> 0 and C0, the net capacity finite, 0 ≤
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Zj ≤
2Cj

2Lj
≤

2C∗

j

2Lj
≤ ∞ making E

[
C∗

j

Lj

]
finite. It now follows that

V ar
(
R̂ | λ,C0

)
= Es

[
V ar

(
Z̄
∣∣ s
)]

+ V ars
(
E
[
Z̄
∣∣ s
])

≈

N∑
j=1

L∗

j

T V ar (Zj | s)

(E[n])2
+

N∑
j=1

(
L∗

j

T

)(
1 −

L∗

j

T

)

C∗

j

L∗

j
−

N�

j=1
C∗

j

N�

j=1
L∗

j




2

(E[n])2

≤
1

(E[n])2

N∑

j=1



E

[(
C∗

j

Lj

)2
]

+

(
C∗

j

L∗
j

)2




since L∗/T ≤ 1, V ar(Z) ≤ V ar(C∗
j /Lj) ≤ E[(C∗

j /Lj)
2] and

N∑
j=1

C∗
j

/
N∑

j=1
L∗

j ≥ 0. There-

fore, with E [n] =
N∑

j=1

L∗

j

T = E∗/T , for some M > E

[(
C∗

j

Lj

)2
]

+
(

C∗

j

L∗

j

)2
,

V ar
(
R̂ | λ,C0

)
≤

NM

(E∗/T )2

≤
TM

E∗

(
N∑

j=1
L∗

j/N

)

which approaches 0 as E∗ approaches ∞ because T , M and
N∑

j=1
L∗

j/N are bounded.

With the relationship between n,E∗, and N being E [n] = E




N∑

j=1

δj


 =

N∑

j=1

L∗
j

T
=
E∗

T
,

provided that nets are added in such a way that the average episode length does not go to

0 and provided that each episode is correlated with only a finite number of other episodes,

lim
n→∞

V ar
(
R̂
)

= 0 iff lim
N→∞

V ar
(
R̂
)

= 0 iff lim
E∗→∞

V ar
(
R̂
)

= 0 making R̂, to its

approximate unbiasedness, consistent. Interpretation of the first proviso is straightforward.

The latter demands that as effort is increased, it must be disbursed rather than concentrated

at specific locations or times.

2.6.3 A Sample Estimator for V ar
(
R̂ | λ, C0

)

An estimator for V ar
(
R̂ | λ,C0

)
follows naturally from equations 2.6 and 2.7. An esti-

mator for equation 2.6, the variance within a sample due to possible differences in time of
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intercept, is formed by using
n∑

i=1

L∗

i
T V ar (Zi| s)

/
L∗

i
T to approximate

N∑
j=1

L∗

j

T V ar (Zj| s) while

an estimator for equation 2.7, the variance between samples, is formed by using the sample

ratio to estimate the population ratio. These estimators should account for L ′, the minimum

time to interview. This then gives, again assuming λ and C0 known,

V̂ ar
(
R̂ | λ,C0

)
= ̂term1 + ̂term2 (2.8)

for which, using L̂∗
i = 2Li − L′,

̂term1 =
1

n2

n∑

i=1

C0

4
·

(
1 − e

−
2λLi
C0

)(
1 + e

−
λLi
C0

)

L2
i

−
C0

4

(
1 − e

−
λL̂∗

i
C0

) ·

(
1 − e

−
2λLi
C0

)2

L2
i

+

C0e
−

λL̂∗

i
C0 + C2

0

(
1 − e

−
λL̂∗

i
C0

)

4

(
1 − e

−
λL̂∗

i
C0

) ·




2λLi
C0

e
−

2λLi
C0 −

(
1 − e

−
2λLi
C0

)

L2
i




2

·
(2Li − L′)2

12

+

C0

(
1 − e

−
λL̂∗

i
C0

)
e
−

λL̂∗

i
C0

(2Li)
2 ·


1 − e

−
2λLi
C0

1 − e
−

λL̂∗

i
C0




2

=
1

n2

n∑

i=1





C0

(
1 − e

−
2λLi
C0

)

4L2
i

(
e
−

λLi
C0 + e

−
2λLi
C0

)

+



1 +

e
−

λL̂∗

i
C0

C0

(
1 − e

−
λL̂∗

i
C0

)







2λLie
−

2λLi
C0 − C0

(
1 − e

−
2λLi
C0

)

2Li
2




2

(2Li − L′)2

12





and

̂term2 =
1

(
n∑

i=1

L̂∗

i
T

)2

n∑

i=1

(
L̂∗

i

T

)(
1 −

L̂∗
i

T

)(
Zi − R̂

)2
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where again Zi =

(
1 + e

−
λLi
C0

)
Ci

2Li
and R̂ = 1

n

n∑
i=1

(
1 + e

−
λLi
C0

)
Ci
2Li

.

2.7 Estimation of λ and C0

Previous results have been developed assuming λ, the initial catch rate, and C0, the net

capacity, were known. In practice it is likely that these parameters will be unknown. This

section discusses their estimation and the effect that this has on the estimators for R and

V ar
(
R̂
)
.

Values for the parameters λ and C0 can be found by using the roving survey data to fit the

model E [Ci] = C0

(
1 − e

−
λLi
C0

)
. The sole motivation for modelling the catch is to provide

usable estimates of catch that might have occurred had the fishing episodes interrupted by

the roving interview been allowed to continue to completion. These estimates are then to

be used in constructing R̂. Prediction, therefore, is the prime concern and a best fit in the

least squares sense has appeal over a maximum likelihood technique. This is particularly

true for the estimation of C0 where, for small sample sizes, maximum likelihood estimation

could produce unrealisticly low estimates. The interpretation of λ is still the initial catch

rate, however, the interpretability of C0 as a net capacity becomes less clear. C0 now as

an average capacity of similar nets, however, is an acceptable interpretation since the net

capacity of an individual episode is determined by its catch pattern. Note that if a catch can

be made by a vacant mesh opening only if all surrounding mesh openings are also vacant,

then a net with one vacant mesh opening between catches is at capacity as is an identical

net with two vacant mesh openings between catches; yet the total catch of the first net is

approximately double that of the second. This variability in maximum capacity can also

contribute to overdispersion.

Standard output from statistical software packages will provide approximately unbiased

estimates for λ and C0 together with an asymptotic variance-covariance matrix. Direct

substitution of λ̃wls and C̃0wls into the formulae for R̂ and V ar
(
R̂ | λ,C0

)
then yield first

order approximations. Note, however, that the distribution of Ci is binomial at each Li and

that the variance of Ci is dependent upon its mean. As such, variance homogeneity does

not hold and weighted least squares might be considered using the weightings wi = 1
σ2

i
=
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[
C0e

−
λLi
C0

(
1 − e

−
λLi
C0

)]−1

. That is, the weighted least squares estimates for λ and C0 in

min
λ,C0

S (λ,C0) =

∑n

i=1

[
Ci − C̃0

(
1 − e

−
λ̃Li
C̃0

)]2

C̃0e
−

λ̃Li
C̃0

(
1 − e

−
λ̃Li
C̃0

)

for which a solution is found using iterated weighted least squares.

While there are advantages that can strongly support a least squares approach to the

estimation of λ and C0, it is worth noting that, with the approximate consistency of R̂ in

the restricted case where λ and C0 are known, consistent estimators of λ and C0 would

ensure the consistency of R̂ in the general case where λ and C0 are not known. Consistency

would then be transferred to Ĉ = Ê∗ × R̂, the estimate for total catch since Ê∗ from the

overflight survey is also consistent.

Maximum likelihood estimates of λ and C0 would thus ensure consistency through-

out. However, Green(1984) showed that, for exponential families, the estimators that are

produced through iterated weighted least squares lead to those obtained using maximum

likelihood techniques. Alternatively, if maximum likelihood estimation is preferred, a sug-

gested method is to exploit the integer-valued property of C0 (Dahiya, 1981). Required

is a V such that L (V ) = L (V − 1) where L is the likelihood function. At this point it is

helpful to reparameterize as λ̂′ = λ/C0. Now, since Ci is binomial in
(
1 − e−λ̂′Li

)
, V is

such that

L (V )

L (V − 1)
=

n∏

i=1

(
V

Ci

)
e−λ̂′Li(V −Ci)

(
1 − e−λ̂′Li

)Ci

n∏

i=1

(
V − 1

Ci

)
e−λ̂′Li(V −Ci−1)

(
1 − e−λ̂′Li

)Ci

= 1.

This reduces to

n log (V ) −

n∑

i=1

{
log (V − Ci) − λ̂′Li

}
= 0. (2.9)

Since a linearization of the model for catch, Ci =
(
1 − e−λ̂′Li

)
C0, is given by log

(
C0 − Ci

C0

)

= −Liλ
′, an mle for λ′ is

λ̂′ = −

n∑

i=1

{
log

(
C0 − Ci

C0

)}
{Li}

/
n∑

i=1

L2
i . (2.10)
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Substituting V for C0, λ̂
′ as a function of V can now be used in equation 2.9 above which

can then be solved for V . Ĉ0 is then taken to be the integer that lies in the interval

[V − 1 , V ) . The mle for λ′ can then be found from equation 2.10 which, by the generative

property of mle’s, can then be used to find the mle λ̂.

2.7.1 Estimation of R̂

Previously it was shown that conditionally, EL,C,δ

[
R̂
∣∣∣λ , C0

]
≈ R =

N∑
j=1

C∗
j

/ N∑
j=1

L∗
j which

involves neither λ nor C0. The unconditional expectation using unbiased estimates of λ and

C0 is

E
[
R̂
]

= Eλ̃,C̃0

[
EL,C,δ

[
R̂
∣∣∣ λ̃ , C̃0

]]
≈ EL,C,δ

[
R̂
∣∣∣E[λ̃] , E[C̃0]

]
≈ R.

Hence R̂ =
1

n

n∑
i=1

(
1 + e

−
λ̃Li
C̃0

)
Ci

2Li
is taken as an unconditioned and approximately unbiased

estimator for R. As such, no adjustment to R̂ is deemed necessary when least squares

estimates for λ and C0 are substituted directly into the formula.

2.7.2 Estimation of V ar
(
R̂
)

The unconditional variance of R̂ is given by

V ar
(
R̂
)

= Eλ̃,C̃0

[
V ar

(
R̂
∣∣∣ λ̃ , C̃0

)]
+ V arλ̃,C̃0

(
E
[
R̂
∣∣∣ λ̃ , C̃0

])

where the term V arλ̃,C̃0

(
E
[
R̂
∣∣∣ λ̃ , C̃0

])
can be taken to be zero because, as argued above,

the term E
[
R̂
∣∣∣ λ̃ , C̃0

]
should involve neither λ nor C0. To estimate the remaining term,

note that in general, for any function g
(
λ̃ , C̃0

)
, approximate expectations are given by

First Order: Eλ̃,C̃0

[
g
(
λ̃ , C̃0

)]
= g (µ1 , µ2)

Second Order: Eλ̃,C̃0

[
g
(
λ̃ , C̃0

)]
= g (µ1 , µ2) +

1

2
E
[
η
′Aη

]

= g (µ1 , µ2) +
1

2
tr (ΣA)

where
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µ = (λ ,C0)
′;

η =
(
λ̃− λ , C̃0 − C0

)′
;

Σ = variance-covariance matrix of λ̃ and C̃0; and

A =




∂2g

∂λ̃2

∂2g

∂λ̃ ∂C̃0
∂2g

∂C̃0 ∂λ̃

∂2g

∂C̃2
0


 evaluated at µ.

Then, for the sample estimator, where g
(
λ̃ , C̃0

)
= V̂ ar

(
R̂
∣∣∣ λ̃ , C̃0

)
,

V̂ ar
(
R̂
)

= Êλ̃,C̃0

[
V̂ ar

(
R̂
∣∣∣ λ̃ , C̃0

)]

= Êλ̃,C̃0




1

n2

n∑

i=1





C̃0

(
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n∑

i=1

L̂∗

i
T

)2

n∑
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i
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)(
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
 (2.11)

where unknown parameters are replaced by their sample estimates. One method of evalu-

ating the A matrix of partial derivatives of g
(
λ̃ , C̃0

)
is the use of finite differences and the

definition of a derivative. That is, for the second partial of g
(
λ̃ , C̃0

)
with respect to λ̃

∂2

∂λ̃2
g
(
λ̃ , C̃0

)
=

(
g
(
λ̃+ ∆ , C̃0

)
− g

(
λ̃ , C̃0

))
−
(
g
(
λ̃ , C̃0

)
− g

(
λ̃− ∆ , C̃0

))

∆2

for some suitable small ∆. A similar procedure is used to approximate the second partial

of g with respect to C̃0. For the partial with respect to λ̃ and C̃0

∂2

∂λ̃∂C̃0

g
(
λ̃ , C̃0

)
=




(
g
(
λ̃+ ∆ , C̃0 + ∆

)
− g

(
λ̃+ ∆ , C̃0 − ∆

))

2∆

−

(
g
(
λ̃− ∆ , C̃0 + ∆

)
− g

(
λ̃− ∆ , C̃0 − ∆

))

2∆



/

2∆.
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Note that it is the 1
2E [η′Aη] = 1

2 tr (ΣA) term that accounts for the additional variability

due the estimation of λ and C0.

2.8 Overdispersion

It was noted earlier that overdispersion is a real possibility in applications. Based on the

Pearson χ2 goodness of fit statistic, a test statistic for the presence of overdispersion is based

on

ψ =
n∑

i=1

(Residual)i
2

C̃0 e
−

λ̃Li
C̃0

(
1 − e

−
λ̃Li
C̃0

) (2.12)

where, under the assumption that catch at Li is binomially distributed and since two param-

eters have been estimated, ψ is asymptotically distributed as chi-square with n− 2 degrees

of freedom.

It also follows that an unbiased estimator for the scale parameter, φ2, is φ̂2 = ψ/(n− 2)

since E [ψ] = φ2(n − 2). However, ψ is apt to be unstable because, in theory, variance for

catch becomes small as catch nears C̃0 while in practice, larger deviations are possible. A

more stable form based on approximating the expectation of a ratio with the ratio of the

expectations is then

φ̂2 =

n∑

i=1

(Residual)i
2

/
n∑

i=1

C̃0 e
−

λ̃Li
C̃0

(
1 − e

−
λ̃Li
C̃0

)
(2.13)

and the variance estimator accounting for overdispersion is

V̂ ar
∗
(
R̂
)

= φ̂2V̂ ar
(
R̂
)
· (2.14)

2.9 Variance of Total Catch

Total effort is estimated as Ê∗ = I ×T where I are counts recorded by an overflight survey.

If the count is “instantaneous” and if the time of overflight is chosen randomly, Ê∗ is an

unbiased estimate for the total effort during T (Robson, 1960 , Pollock et al., 1994). With

independent and approximately unbiased estimators for total effort and catch rate, the result

by Goodman (1960) is used for the product V ar
(
Ĉ∗
)

= V ar
(
Ê∗ × R̂

)
to give

V̂ ar
(
Ĉ∗
)

=
(
R̂
)2

× V̂ ar
(
Ê∗
)

+
(
Ê∗
)2

× V̂ ar
(
R̂
)
− V̂ ar

(
Ê∗
)
× V̂ ar

(
R̂
)
· (2.15)



CHAPTER 2. DECLINING CATCH RATES 39

2.10 Measuring Model Effectiveness

Use of the proposed model is appropriate if the rate of catch declines as a function of

catch. Suppose that catch rate can be modelled as a continuous time Markov process where

expected catch at time Lj is given by C0

(
1 − e

−
λLi
C0

)
. If R̂ =

1

n

n∑

i=1

(
1 + e

−
λLi
C0

)
Ci

2Li
, i.e.

the approximately unbiased estimator of catch per effort developed under the proposed

model, and R̂λ∗ =
1

n

n∑

i=1

Ci

Li
=

1

n

n∑

i=1

2Ci

2Li
where λ∗ is some constant catch rate, i.e. the

estimator of catch per effort assuming a constant catch rate, then one way to measure the

effectiveness of using R̂ would be to examine the difference between R̂λ∗ and R̂. (Note that

if the catch rate does in fact decrease with catch, R̂λ∗ will tend to overestimate R.) A

sample estimate of this difference can be found from

R̂λ∗ − R̂ =
1

n

n∑

i=1

2Ci −

(
1 + e

−
λLi
C0

)
Ci

2Li

=
1

n

n∑

i=1

(
1 − e

−
λLi
C0

)
Ci

2Li
.

An approximate expected value of such a measure is

E
[
R̂λ∗ − R̂

]
≈

E

[
N∑

j=1
δj

(
1 − e

−
λLj
C0

)
Cj

]

E

[
N∑

j=1
δj

]
E

[
N∑

j=1
2δjLj

]

since E[n] = E

[
N∑

j=1
δj

]
.

Evaluating the numerator, where ELj

[
1 − e

−
2λLj
C0

]
is found using a first order Taylor

approximation, gives

ELj ,Cj ,δj




N∑

j=1

δj

(
1 − e

−
λLj
C0

)
Cj


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N∑

j=1

ELj
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1 − e

−
λLj
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)
ECj

[
Cj|Lj , C

∗
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∗
j

]] L∗
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ELj



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)
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
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
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=
N∑

j=1

ELj

[(
1 − e

−
λLj
C0

)2
]

C∗
j(

1 − e
−

λL∗

j
C0

) L∗
j

T

≈
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(
1 − e

−
λL∗

j /2
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)
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j
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=
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(
1 − e
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j
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∗
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E
[
C(L∗

j/2)
]

E
[
C(L∗

j)
] C∗

jL
∗
j

T

which is seen to involve a downward adjustment of C ∗
j , the catch at completion of a fishing

episode, by the ratio of the expected catch at half episode over expected catch at full episode.

Components in the denominator are the same as those found in the denominators of

the mean of ratios estimator considered in section 2.5.2 and of the ratio of means estimator

considered in section 2.5.1 where it was shown that

Eδj




N∑

j=1

δj


 =

N∑

j=1

L∗
j

/
T

and

ELj ,Cj ,δj




N∑

j=1

2δjLj


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N∑

j=1

(
L∗

j

)2/
2T.

Therefore,

E
[
R̂λ∗ − R̂

]
≈

N∑
j=1

2
E[C(L∗

j /2)]
E[C(L∗

j )]
C∗

jL
∗
j

{
N∑

j=1
L∗

j

/
T

}{
N∑

j=1

(
L∗

j

)2
}

which has no easy interpretation.

More meaningful might be a factor, Fλ,λ∗ , that could be used to adjust a total catch

that had been estimated incorrectly based on R̂λ∗ =
n∑

i=1
2Ci

/
n∑

i=1
2Li. A possible sample
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value for such a factor is given by

F̂λ,λ∗ =

n∑
i=1

(
1 + e

−
λLi
C0

)
Ci/2Li

n∑
i=1

2Ci/2Li

· (2.16)

Note that since this quantity deals with end of episode, albeit estimated, the more usual

ratio of means is now used.

The expected value of this measure is approximated as

E
[
F̂λ,λ∗

]
≈

E

[
N∑

j=1
δj

(
1 + e

−
λLj
C0

)
Cj

2Lj

]

E

[
N∑

j=1
δj

Cj

Lj

] ·

Evaluation of the numerator is the same as that for the numerator in the mean of ratios

estimator considered in section 2.5.2 where it was shown that

ELj ,Cj ,δj



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j=1

δj

(
1 + e

−
λLj
C0

)
Cj

2Lj


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j

/
T.

Evaluating the denominator, again using a first order Taylor approximation for expec-

tations of Lj, gives
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The expected value of F̂λ,λ∗ is then approximated as

E
[
F̂λ,λ∗

]
≈

N∑
j=1

C∗
j

N∑
j=1

2E[C(L∗

j /2)]

E[C(L∗

j )] C∗
j

which has the interpretation of total catch divided by total catch increased by a factor equal

to the ratio of strict doubling to nonlinear doubling. In this sense, after an erroneous use

of R̂, F̂λ,λ∗ would be the natural choice for an adjustment factor.

Also note that as C0 → ∞, both F̂λ,λ∗ and E
[
F̂λ,λ∗

]
→ 1; again consistent with the

proposed model as a generalization of the Hoenig et al. (1997) model.

2.11 Bias in R̂

Previously it was shown that R̂ = 1
n

n∑
i=1

(
1 + e

−
λLi
C0

)
Ci
2Li

was an approximately unbiased

estimator for R, however, a slight positive bias has been masked since E [1/n] > 1/E [n]

It was also noted that some minimum time to interview, L′, must be chosen in order to

stabilize V ar
(
R̂
)
. In doing so, greater stability is realized with larger values of L′ but this

is also accompanied by increasing bias in R̂. It is therefore useful when determining L′ to

have this portion of the bias expressed as a function of L′. Therefore, and again ignoring the

bias introduced by approximating the expectation of a ratio with the ratio of expectations

and proceeding as in section 2.5.2,

E
[
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showing that, with the inclusion of a L′, R̂ does tend to overestimate R and using first order

Taylor approximations,

B̂L′ =
1

n

n∑

i=1

C0

(
1 − e

−
λ̂(2Li+L′)

Ĉ0

)

(2Li + L′)

L′
i

T
·

2.12 Simulation Results

As shown in Table 2.1, a test population of 225 fishing episodes was generated to assess

estimators for R and its variance. To ensure that the distribution of effort resembles that

of an actual gill net fishery, episode lengths were set to multiples of 30 minutes and ranged

between 0.5 and 24.0 hours with the greatest repetition of lengths occurring between 2.5

and 6.0 hours (Figure 2.1). This pattern resembles that of the Fraser River fisheries except

for a noticeable spike which occurs at 24 hours (see Palermo and Ennever, 1997). Each

episode was assigned “catches” over its duration according to the continuous time Markov

process given by Equation 2.1. Assuming that no more than one fish would be caught

during a one minute interval, an initial catch rate was taken to be 12 fish/hour and the net
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Table 2.1: Defining characteristics of the simulated population.

Start of the fishing day 00:00
End of the fishing day 24:00
Total number of fishing episodes 225
Net capacity (C0) 75
Initial catch rate (as catch/hr) 12
Initial catch rate (as λ) 0.2003
Total catch 10,533
Total effort (in minutes) 111,060
Average of the episode catch rates 0.1154
Total catch / Total effort (CPUE) 0.0948

0 500 1000 1500
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Episode Lengths (in minutes)

C
ou

nt
s

Figure 2.1: Fishing episodes by length for the simulated population (total count = 225).
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capacity, C0, to be 75 fish which results in an initial catch rate of λ = 0.2003/minute. A

cumulative geometric distribution was used to simulate the time between the k th and the

(k + 1)st catch (Figure 2.2). Episodes were placed either uniformly over the fishing day or

Net Capacity = 75  :  Initial Catch Rate = 0.2003  ( 12 fish/hr )

Time Fished in minutes (jittered)
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Figure 2.2: Catch vs. Time Fished for completed episodes of the simulated population.

Also shown are plots of C0

(
1 − e

− λl
C0

)
, the expected catch at time t for true (upper line)

and least square estimates (lower line) of λ and C0.

using a fishing time preference curve having a peak at 7:30 a.m. Windows for the roving

surveys were defined as the full fishing day or the daylight between 6:00 a.m. and 6:00 p.m.

Results of the simulations are given in Table 2.2. In each simulation, 500 roving surveys

were generated within the windows indicated under each fishing time preference scenario.

The positive bias in R̂ in part reflects the bias caused by assuming the expectation of a ratio

equal the ratio of the expectations as done in the Taylor approximation. Note that while

seemingly small, B/Std(R̂) > 0.2 and therefore should not be viewed as negligible (Cochran,

1977). While variance estimation is made difficult by the number of random components

and, in general, results in an overestimation, the magnitude of the bias leads to confidence

intervals with coverage less than the nominal level.

Restricting the window on the roving survey induces further bias (here offsetting) and
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a noticeable decrease in the variance estimates. A negative bias stems from the fact that

episodes which are not fully contained within the window are intercepted, on average, at

points other than mid-episode. Interceptions at points low on the “doubling” curve over-

estimate catch at 2Li while those at points high on the curve underestimate. With use of

the window, overall there are greater losses from “missed doublings” on the steep (i.e. low)

end of the curve than from “missed doublings” at the other (i.e. high) end. For variance

estimation, a roving survey must provide for possible inclusion of all episodes by making

a complete pass through the entire fishing resource over the full length of the fishing day

(Robson, 1961). With use of a window this does not happen. A “quick fix” would be to

assume that the window was a randomly chosen interval and expand the results by the ratio

of the length of the fishing day to the width of the window (Hoenig et al., 1993).

When comparing the effects of a preference in fishing times, note that a preference

scenario tends to have a greater concentration of shorter episodes near the peak time. With

a full roving survey this should have little effect on R̂ and its variance, however, with a

restricted survey window that contains this peak time, the sample will contain a greater

concentration of shorter episodes, i.e. episodes that “double” low on the curve, tending to

inflate estimates of R. At the same time, with the greater number of episodes eligible for

sample inclusion, i.e. in effect more closely resembling a complete pass over the full length

of the fishing day, the variance estimator is apt to be less affected by the window restriction.

Hoenig et al. (1997) suggested that some minimum time for intercepted episodes should

be used (they suggested 30 minutes). Here a 15 minute minimum was used. Table 2.3

shows that L′ = 15 seems to be a reasonable choice (for this particular population) since

both theoretical and estimated variances appear to be stabilized and contribution to bias

is minimal. Note that BL′ has a negative effect on R̂ and is increasing with L′, however, it

should not be used as a device to offset the inherent positive bias in R̂.
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Table 2.2: Effects of varying the roving survey window for two fishing time preference
scenarios on the performance of R̂, estimators of its variance and the confidence interval
coverage. (Simulated population with 500 replicated samples.)

Fishing Time Preference: Uniform1 Uni-Modal1

Roving Window: Full Day2 Daylight2 Full Day2 Daylight2

R 0.0948 0.0948 0.0948 0.0948

Mean(R̂) 0.1003 0.0978 0.1006 0.0981

Std(R̂) 0.0048 0.0034 0.0047 0.0034

Mean(B̂ = R̂-R) 0.0055 0.0030 0.0058 0.0033

Var(R̂) Over simulations 2.28×10−5 1.14×10−5 2.19×10−5 1.14×10−5

Var(R̂|λ,C0) Eqn 2.4 2.08×10−5 2.08×10−5 2.08×10−5 2.08×10−5

Mean
(
V̂ar(R̂)

)
Eqn 2.11 2.80×10−5 1.90×10−5 2.82×10−5 1.83×10−5

Confidence Intervals:

Nominal coverage Actual percent coverage

95 % 88 96 86 95
90 % 76 90 76 89
85 % 67 84 66 82
80 % 61 78 58 76

1 Uniform: no preferred time; Unimodal: preferred time of 7:30 a.m.
2 Full Day is 24 hr. period; Daylight hours taken to be 6:00 a.m. to 6:00 p.m.
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Table 2.3: Effects of varying the minimum time required for sample inclusion on bias and
variance. (Simulated population.)

Minimum Time Required

5 min. 15 min. 25 min.

R 0.0948 0.0948 0.0948

Mean(R̂) 0.1017 0.1003 0.0987

Mean(B̂ = R̂-R) 0.0069 0.0055 0.0039

Mean(B̂L′) 0.0004 0.0010 0.0017

Var(R̂) Over simulations 2.70×10−5 2.28×10−5 2.12×10−5

Mean
(
V̂ar(R̂)

)
Eqn 2.11 3.30×10−5 2.80×10−5 2.60×10−5

2.13 The Fraser River Study

The Fraser River is a major sockeye river in British Columbia, Canada. Along with a large

ocean fishery, there are substantial in-river terminal fisheries. The Department of Fisheries

and Oceans, Canada, is responsible for the monitoring of this fishery.

In 1995, in-river catch estimates were formed using combinations of helicopter overflights

to estimate effort and access or roving surveys (depending upon location) to estimate the

catch rate. During the roving surveys, boat patrols approached active fishers who were

asked to pull in their nets to check that it met regulations and to count catch. A selected

subset of this data consisting of two adjoining stretches of river over two consecutive weeks

is used to illustrate the use of the proposed estimators and to compare these results with

those had a constant catch rate been employed.

For practical reasons, overflight and roving surveys were restricted to daylight hours,

but nets could be set any time in a 24–hour period. This practice violates the assumptions

of inclusion based on length of time fished and mid-episode interception. Nonsampling

errors that could impact on the results were also present. For example, retrieving a net in

mid-episode is an imposition, and poor cooperation on the part of some fishers is almost
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assured. Also, it was widely known that policy and quotas would be based on the results of

the study. No attempt was made to quantify these effects or question the integrity of the

protocol regarding enforcement or instances of no information from unattended nets. Also,

the raw data files contained “information” that exceeded reasonable physical limitations.

For example, it contained fishing episodes longer than 24 hours or less than half an hour, or

episodes with catch in excess of 33 fish (i.e. approximately 200 pounds for any net assuming

6 lbs./fish). These peculiar data were excluded. This screening did little to change the

overall pattern of the plots (not shown) of fish caught versus time fished, for which there

was considerable scatter and variability by week and area (Figure 2.3).
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Figure 2.3: Edited data for selected study areas located on the Fraser River, Canada.
Lines show the expected catch using the constant catch rate model (straight lines) and the
proposed saturation model (curved lines).

Estimates were made for each week and stretch of river. Table 2.4 summarizes these

results. The overdispersion suggested by plots (not shown) was confirmed, e.g. for area 1

week 1, the test for overdispersion gave p-value < 0.0001 with φ̂2 = 40.7. Significant values

were also obtained for the other week and areas. To underscore the effects of this large

overdispersion, results are presented with and without inclusion of the φ̂2 factor. Note that
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the estimates for catch using the Poisson model are considerably larger than those using

the proposed model (35-50 %) showing that careful consideration should be given to choice

of model. Yet, with such large variability in the data, R̂Poiss remains within the confidence

region of R̂, albeit at the edge.

Surveys restricted to daylight hours might be partially rationalized with claims of ob-

taining a sample representative of catch per effort. While a reasonable estimate of R might

be obtained, variance estimates are apt to be inflated because doubling Li to estimate time

of a completed episode, results in extreme values of Zi. It should also be noted that, with

both overflight and roving surveys restricted to daylight hours, measurement of night time

fishing practices was inadequate. If it can be reasoned that night fishing consists mostly of

fewer but more lengthy episodes, then it can be argued that, with saturation, night catch

rates will be less than that of daytime catch rates, resulting in an overestimation of Ĉ. Also,

overflight counts would tend to be high as a measure typical of activity for the full fishing

day, again contributing to an overestimation. With its “full” doubling of observed catch,

errors caused by these factors would be more pronounced under the Poisson model.
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Table 2.4: Summary of results from the Fraser River study.

Area 1 Area 2

Week 1 Week 2 Week 1 Week 2

Ê1 (net-hours) Estimate 2,608 2,692 1,036 968

ŜE 84 457 123 273

R̂ (catch/minute) Estimate 0.0463 0.0334 0.0815 0.0776

ŜE 0.0045 0.0034 0.0225 0.0202

ŜE
2

φ 0.0289 0.0191 0.1017 0.0986

R̂Poiss (catch/minute) Estimate 0.0690 0.0459 0.1109 0.1137

Ĉ = R̂× Ê Estimate 7,248 5,397 5,065 4,508

ŜE 747 1,071 1,531 1,761

ŜE
2

φ 4,534 3,255 6,396 6,087

Ĉ = R̂Poiss × Ê Estimate 10,804 7,420 6,896 6,606

95% Confidence intervals for R

Without overdispersion Lower bound 0.0374 0.0268 0.0374 0.0380
Upper bound 0.0552 0.0400 0.1256 0.1172

With overdispersion Lower bound -0.0104 -0.0039 -0.1179 -0.1157
Upper bound 0.1030 0.0708 0.2809 0.2709

1 Derived from the overflight survey.
2 φ denotes overdispersion.
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2.14 Conclusions and Discussion

In certain applications the proposed model should be a useful alternative to the more usual

model based on a constant catch rate. Use, however, involves a more complex model for

catch rate and the need to estimate λ and C0, which can lead to an overall loss in precision.

Use also requires more assumptions than the stationary Poisson process method of Hoenig

et al. (1997), for example, that n be small relative to N . Nevertheless, as a generalization of

the constant catch rate model, it should serve to expand the scope and increase the utility

of the complemented survey approach to catch estimation.

Shortcomings inherent in using a roving survey design, as compared with an access

design, are also apparent. Most notably, there are the difficulties associated with designing

a proper sampling scheme, the random sample size which makes planning difficult, and

the less stable mean of ratios form of the catch rate estimator. These features can result

in variance estimates which are unacceptably large and, under a sampling scheme where

inclusion is dependent upon L∗
j , exclude the option of increasing sample size as a means of

remedy. In addition, unbiasedness in R̂ is only approximate. In the simulation results the

bias was not inconsequential and it is doubtful that real data would fare better.

Restrictions in the roving window are a real possibility, especially when considering

factors such as darkness and helicopter availability. As pointed out in the Section 2.12,

estimators of variance tend to be more affected than those of R. In general, underestimations

are expected. While the biasing effects on R̂ caused by episodes overlapping the window at

one end might well offset those at the other, to produce usable estimates of R, the window

must still capture a typical mix of episodes - this is unlikely if catch rates or length of

episode varies by time of day. Similar problems exist when episodes overlap the fishing day

and these are the subject of further research.
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Chapter 3

Restricted Randomization in the

Effort Survey

The method of estimating total effort based on instantaneous counts requires that sample

times are random over the full fishing period. In practice this may not always be pos-

sible and, as a result, the usual estimator may be severely biased. Such a restriction in

randomization is likely when aircraft are used to make “instantaneous” counts of fishing

activity. This chapter proposes alternate estimators for use with both access and roving

designs in conjunction with effort surveys for which sample times are not random. Ratio

type estimators based on activity counts are developed under various scenarios and their

performance examined through simulation. In addition, optimizing strategies for use with

multiple activity counts are explored. Finally, data from an in-river gill net fishery on the

Fraser River is used to illustrate these results.

3.1 Introduction and Motivation

When estimating catch in a fishery, one useful method is to employ two independent surveys:

one to measure CPUE, the catch per unit effort; and another to measure E, the total effort.

With unbiased estimators for CPUE and E it is then possible to estimate total catch C

by their product. This technique, however, requires that both the CPUE survey and the

effort survey be random.

Typically, the CPUE survey is a ground survey in which fishers are contacted to produce

53
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catch and time fished information. This is then expressed as catch per unit time of fishing

effort. The estimate of total effort is derived from the product of an “instantaneous” count

of active fishing episodes made at a randomly chosen time (or average of such counts) and

the number of time units in the fishing day. A true measure of total effort is essential for

this technique and it is only by randomizing the time of the count over the full fishing day

that the effort survey can ensure an unbiased estimate of total effort.

In practice, certain factors can make full randomization of the effort survey impractical

or even impossible (e.g. darkness, aircraft availability). One approach to dealing with this

problem has been to use angler trips as the measure for effort. With estimators for angler

trips and catch per angler trip, catch can then be estimated. McNeish and Trial (1991) used

interview data to construct activity curves that would give the proportion of the day’s trips

that were active at each hour. A count at any time could then be used to determine the total

number of trips for that day. Parker (1956) discussed a similar approach. One difficulty

with this approach is the loss of independence for the effort and catch rate estimators, and

the accompanying complexity of the variance estimator for catch.

This chapter considers catch estimation when the overflight surveys are scheduled at

pre–chosen times. The product of a ratio estimator with an effort–related measure is also

developed i.e. a measure of catch scaled by a count of active fishing episodes made at a non–

randomly selected time. “Totalness” in the effort is now based on the randomness in the

ground survey rather than in the effort survey. To accomplish this, additional information

must be recorded in the ground survey, namely, the start and end times (or estimates of)

of each episode sampled, so that it can be determined whether or not the episode was also

counted by the effort survey.

Catch estimators and their variances, using single and multiple overflight surveys in con-

junction with both access and roving designs, are developed and examined using simulated

data. Also, an optimizing procedure is given for use when multiple effort counts are to be

combined as a weighted average. Effects on the estimators from different patterns in the

effort profiles (as caused by episodes overlapping from one day into the next or time of day

fishing preferences) are also investigated. Finally, results are applied to an in-river gill net

fishery on the Fraser River, Canada where performance of the standard and proposed forms

of the catch estimator are compared.
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3.2 Notation

T Time period for one repetition of the fishing effort pattern.

N Number of fishing episodes in the population.

n Number of fishing episodes sampled. For the access survey

n is fixed and known while for the roving survey n is random.

n
(O)
t Overflight survey count of active episodes at time t i.e.

N∑
j=1

δj(t).

n
(A)
t Access survey count of active episodes at time t i.e.

n∑
i=1

δi(t).

n
(R)
t Roving survey count of active episodes at time t i.e.

n∑
i=1

δi(t).

C∗
j Catch from the jth fishing episode when completed,

where j = 1, . . . , N.

Cj Catch from the jth fishing episode at time of interview,

where j = 1, . . . , N. Define Cj = 0 if the jth episode is not selected in

the roving sample.

L∗
j Length of time fished from the jth fishing episode when completed,

where j = 1, . . . , N.

Lj Length of time fished during the jth fishing episode at time of interview,

where j = 1, . . . , N. Define Lj = 0 if the jth episode is not selected in

the roving sample.

C∗ Total catch =
N∑

j=1
C∗

j .

λj Catch rate for the jth episode.

δj() Indicator variable for the jth episode used to denote inclusion in

sample s or activity at time t.

As a means of distinguishing, the subscript j is used with population units while i is

used with sample units.
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3.3 Survey Design and Assumptions

Consider a fishery on a given fishing resource with N fishers whose fishing activities are

completely independent. For simplicity, consider a single fishing day of length T where the

pattern of fishing repeats from day to day. Each fisher has a fishing episode of length L∗
j for

which fishing is a stationary Poisson process with parameter λj (i.e. catch rate) constant

over the time of its episode producing a catch of C ∗
j . The objective is to find an estimate

for the total catch C∗ =
N∑

j=1
C∗

j . A stationary Poisson process was also used by Hoenig et al.

(1997) and Pollock et al. (1997) to develop catch estimators using fully randomized effort

surveys.

Assume an overflight survey is scheduled for a specific time, t, during T and provides an

accurate count n
(O)
t of the fishing episodes active at that time. Such a count is viewed as

“instantaneous” (Pollock et al., 1994). Moreover, n
(O)
t is a known constant. As a variation,

there may be multiple overflight surveys during T at times ti providing n
(O)
ti

for i = 1, . . . ,m.

Values of t, which are not random, would be based on practical concerns such as aircraft

availability and darkness together with an objective of producing large values of n
(O)
t .

Ground survey methods can be categorized in two ways (Pollock et al., 1994). “Access”

surveys are those that sample fishers after completion of their fishing episodes, typically as

they pass some point of access to the fishing resource. Information for the completed episode

is immediate. In contrast, “roving” surveys are those in which the fishers are sampled while

their fishing episode is in progress by an interviewer roving through the fishing resource.

Information for the completed episode is not available and must be model based relying on

some assumed model for catch rate. These two sample designs result in different estimators

for the catch, the more complex usually associated with roving designs (Pollock et al., 1997).
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If the jth episode is selected, its sample inclusion indicator δi(s) equals 1 and 0 otherwise.

If the ground survey has an access design, assume that a simple random sample of n

episodes is selected. This gives a probability of sample selection for the j th episode of

P (δj(s) = 1) = n/N . The data collected are C∗
i , the catch at completion and the start and

end times of the episode. From this, it is known whether or not the episode was active at

the time of the overflight count and the value of δi(t) equals 1 if the episode was active at

time t or 0 if not active. Sample activity counts are then n
(A)
t =

n∑
i=1

δi(t).

If the ground survey has a roving design, assume that for each episode the time of

intercept is randomly and independently selected according to a uniform distribution over

T by adopting the sampling design used by Hoenig et al. (1997) and Pollock et al. (1997) i.e.

a random starting point and random direction of travel by the interviewer for a complete pass

through the fishing resource. It is also assumed that fishers will be able to provide reliable

estimates of end times as well as accurate start time information. Hence the interview

provides start and end times; Ci and Li, the catch and time fished up to time of interview;

L∗
i , the length of the completed episode; and δi(t), the state of activity at time t for each

episode. A constant catch rate, λj, is assumed for each episode and sample activity counts

are calculated as n
(R)
t =

n∑
i=1

δi(t).

3.4 Estimators for the Access Designs

Randomness in the access survey stems from the simple random sampling of all fishing

episodes. In practice, there may be further variability associated with values which require

recollection on the part of the fishers such as start times and end times if sampling is not

immediate. However, in the development of estimators, these are assumed to be known and
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reported without error.

3.4.1 A Single Overflight Survey

A natural way to produce an estimate for total catch is to expand the value for catch

recorded from the access survey by the ratio of activity counts from the overflight survey to

the activity counts from the access survey. An estimator for catch with an overflight survey

at time t is then

Ĉ =
n∑

i=1

C∗
i

n
(O)
t

n
(A)
t

· (3.1)

By defining R̂ =
n∑

i=1
C∗

i

/
n∑

i=1
δi (t), Ĉ is seen to be a ratio estimator. Note that for Ĉ to

exist there must be at least one episode in the access survey, and hence the population,

active at time t.

3.4.1.1 The Expected Value of Ĉ

Using the standard linear approximation for R̂ (Cochran, 1977), the expectation of R̂ can

be found as,

E
[
R̂
]

= E




n∑
i=1

C∗
i

n∑
i=1

δi (t)




≈

E

[
n∑

i=1
C∗

i

]

E

[
n∑

i=1
δi (t)

]

=

E

[
N∑

j=1
C∗

j δj(s)

]

E

[
N∑

j=1
δj(t, s)

] ·
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Evaluating the numerator:

E




N∑

j=1

C∗
j δj(s)


 =

N∑

j=1

{
E
[
C∗

j δj(s)
∣∣ δj(s) = 0

]
P (δj(s) = 0)

+ E
[
C∗

j δj(s)
∣∣ δj(s) = 1

]
P (δj(s) = 1)

}

= 0 +

N∑

j=1

C∗
j

n

N
·

Evaluating the denominator:

E




N∑

j=1

δj(t, s)


 =

N∑

j=1

{E [δj(t, s)| δj(s) = 0]P (δj(s) = 0)

+ E [δj(t, s)| δj(s) = 1]P (δj(s) = 1)}

= 0 +
N∑

j=1

δj(t)
n

N
·

Therefore

E
[
R̂
]

=
n

N

N∑

j=1

C∗
j

/
n

N

N∑

j=1

δj(t)

=

N∑

j=1

C∗
j

/
n

(O)
t

and

E
[
Ĉ
]

=

N∑
j=1

C∗
j

n
(O)
t

· n
(O)
t

=

N∑

j=1

C∗
j

= C∗.

showing that Ĉ =
n∑

i=1
C∗

i n
(O)
t / n

(A)
t is an unbiased estimator for C∗ for any time t.
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3.4.1.2 The Variance of Ĉ

Since it is assumed that the time of the overflight survey is predetermined, n
(O)
t is not

random and therefore

Var
(
Ĉ
)

=
[
n

(O)
t

]2
Var




n∑
i=1

C∗
i

n∑
i=1

δi (t)


 ·

Note that both C∗
i and δi (t) are measured on the same sample unit enabling the variance of

Ĉ to be constructed using the standard results for a ratio estimator (Cochran, 1977) giving

Var




n∑
i=1

C∗
i

n∑
i=1

δi (t)


 =

1 − f
(
n

(O)
t

)2

1

n
S2

z

where f is the sampling fraction, n
(O)
t =

(
N∑

j=1
δj (t)

)/
N is the population proportion of

episodes active at time t, and S2
z = 1

N−1

N∑
j=1

(zj)
2 with zj = C∗

j −

(
N∑

j=1
C∗

j

/
N∑

j=1
δj (t)

)
δj (t).

The variance of Ĉ can then be simplified to

Var
(
Ĉ
)

=
N2

n
(1 − f)S2

z

=
n

f

(
1

f
− 1

)
S2

z . (3.2)

To form a sample estimator, it is necessary to have an estimator for the sampling fraction

f . A logical candidate for this estimator is f̂ = n
(A)
t

/
n

(O)
t . The sample estimator then

becomes

V̂ar
(
Ĉ
)

= n ·
1

f̂

(
1

f̂
− 1

)
s2z (3.3)

where
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s2z = 1
n−1

n∑
i=1

(zi)
2 using zi = C∗

i −

n�

i=1
C∗

i

n�

i=1
δi(t)

· δi (t) .

3.4.2 Multiple Overflight Surveys

In practice, a reasonable design might be to combine, for a single T , the results of one access

survey with those of two or more overflight surveys. Since ratio estimators will be involved,

combining multiple results leads to a choice between a mean of ratios and a ratio of means

type of estimator. To illustrate the principles involved, only two overflight surveys are used,

however, the results are easily extended to the more general case.

3.4.2.1 A Mean of Ratios Estimator

With multiple overflight surveys it is possible to make multiple estimates of total catch using

the catch measurement from a single access survey. A natural choice for a single measure of

total catch is to weight these estimators equally and use their mean. For a design involving

two overflight surveys at times t1 and t2, the estimator for total catch is thus

Ĉmor =
1

2

{
n∑

i=1

C∗
i ·

n
(O)
t1

n
(A)
t1

+

n∑

i=1

C∗
i ·

n
(O)
t2

n
(A)
t2

}
· (3.4)

3.4.2.1.1 The Expected Value of Ĉmor

Previously it was shown that Ĉ =
n∑

i=1
C∗

i ·
n

(O)
t

n
(A)
t

is an approximately unbiased estimator of

total catch using a single overflight survey at any time t. It then follows that for the average

of two overflight surveys at times t1 and t2
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E
[
Ĉmor

]
=

1

2

{
E

[
n∑

i=1

C∗
i ·

n
(O)
t1

n
(A)
t1

]
+E

[
n∑

i=1

C∗
i ·

n
(O)
t2

n
(A)
t2

]}

≈
1

2
{C∗ + C∗}

= C∗,

showing that Ĉmor is an unbiased estimator for C∗.

3.4.2.1.2 The Variance of Ĉmor

Since Ĉmor is a linear combination of dependent random variables, its variance is formed as

Var
(
Ĉmor

)
=

(
1

2

)2





[
n

(O)
t1

]2
Var




n∑
i=1

C∗
i

n∑
i=1

δi (t1)


+

[
n

(O)
t2

]2
Var




n∑
i=1

C∗
i

n∑
i=1

δi (t2)




+ 2
[
n

(O)
t1

] [
n

(O)
t2

]
Cov




n∑
i=1

C∗
i

n∑
i=1

δi (t1)

,

n∑
i=1

C∗
i

n∑
i=1

δi (t2)








· (3.5)

Forming a sample estimator for Var
(
Ĉmor

)
involves sample estimators for the compo-

nents of Equation 3.5. Estimates for
[
n

(O)
t1

]2
Var




n�

i=1
C∗

i

n�

i=1
δi(t1)


 and

[
n

(O)
t2

]2
Var




n�

i=1
C∗

i

n�

i=1
δi(t2)


 can

be found as per Equation 3.3. An estimate for Cov




n�

i=1
C∗

i

n�

i=1
δi(t1)

,

n�

i=1
C∗

i

n�

i=1
δi(t2)


 can be constructed

using first order approximations as

Ĉov




n∑
i=1

C∗
i

n∑
i=1

δi (t1)

,

n∑
i=1

C∗
i

n∑
i=1

δi (t2)


 =

N2

n
(O)
t1 · n

(O)
t2

1 − f̂

n
c2z

where
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c2z = 1
n−1

n∑
i=1

zt1,i zt2 ,i using zt,i = C∗
i −

n�

i=1
C∗

i

n
(A)
t

· δi (t) for t1 and t2.

A sample estimator for the final term in Equation 3.5 is then

2
[
n

(O)
t1 · n

(O)
t2

]
Ĉov




n∑
i=1

C∗
i

n∑
i=1

δi (t1)

,

n∑
i=1

C∗
i

n∑
i=1

δi (t2)


 = 2

[
n

(O)
t1 · n

(O)
t2

n
(O)
t1

· n
(O)
t2

](
n

f̂

)2 1

n

(
1 − f̂

)
s2z

= 2 n

(
1

f̂

)(
1

f̂
− 1

)
c2z

where the estimator for f may be formed as f̂ = 1
2

{
n

(A)
t1

n
(O)
t1

+
n

(A)
t2

n
(O)
t2

}
or as f̂ =

n
(A)
t1

+n
(A)
t2

n
(O)
t1

+n
(O)
t2

, the

latter offering protection against equal weighting of possible atypical values involving small

numbers of observations that might exist should overflight times be selected near the start

or end of the fishing day.

3.4.2.1.3 The General Case and Optimal Weightings

Expanding to the general case, with overflight surveys at times ti for i = 1, . . . ,m and n

episodes selected for the access survey, the unbiased estimators for total catch using each

overflight survey (as per Equation 3.1) can be arranged in an m× 1 vector C. The (i, j) th

element of V, the estimated variance-covariance matrix of C, is formed as

vij = n

(
1

f̂

)(
1

f̂
− 1

)
1

n− 1

n∑

k=1

ẑti,kẑtj ,k

where ẑt,k = C∗
k −

n�

k=1
C∗

k

n�

k=1

δk(t)
· δk (t) for ti and tj and f̂ =

m∑
i=1

n
(A)
ti

/
m∑

i=1
n

(O)
ti

. If w is an m× 1

vector of weights for each element of C such that
m∑

i=1
wi = 1, then

Ĉmor = w′C
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for which E
[
Ĉmor

]
= w′E [C] = C∗ and

V̂ar
(
Ĉmor

)
= w′Vw.

Expressed this way, it is possible to find weightings that minimize the variance of Ĉmor

using the generalized Cauchy inequality (Olkin, 1958). These optimal weightings are ap-

proximated as

ŵopt =
e′V−1

e′V−1e

where e is an m× 1 vector of 1’s.

3.4.2.2 A Ratio of Means Estimator

Multiple overflight surveys also allow for a pooling of the information used to expand the

measurement of catch from the access survey. This results in a ratio of means type of ratio

estimator of the form

Ĉrom =
n∑

i=1

C∗
i ·

n
(O)
t1 + n

(O)
t2

n
(A)
t1 + n

(A)
t2

· (3.6)

3.4.2.2.1 The Expected Value of Ĉrom

To show that Ĉrom is an unbiased estimator for total catch C∗, note that n
(O)
t1 +n

(O)
t2 is not

random. Then by using first order approximations

E

[
n∑

i=1

C∗
i ·

n
(O)
t1

+ n
(O)
t2

n
(A)
t1 + n

(A)
t2

]
≈

[
n

(O)
t1 + n

(O)
t2

]
·

E

[
n∑

i=1
C∗

i

]

E

[
n∑

i=1
δi(t1) +

n∑
i=1

δi(t2)

]

=
[
n

(O)
t1

+ n
(O)
t2

]
·

N∑
j=1

C∗
j · n

N

N∑
j=1

δj(t1) ·
n
N +

N∑
j=1

δj(t2) ·
n
N
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=
[
n

(O)
t1 + n

(O)
t2

]
·

N∑
j=1

C∗
j

n
(O)
t1 + n

(O)
t2

=

N∑

j=1

C∗
j

= C∗.

3.4.2.2.2 The Variance of Ĉrom

The variance of Ĉrom is found by using the standard variance formula for a ratio estimator.

Since n
(O)
t1

+ n
(O)
t2

is constant

Var
(
Ĉrom

)
=
[
n

(O)
t1 + n

(O)
t2

]2
Var




n∑
i=1

C∗
i

n∑
i=1

δi(t1) +
n∑

i=1
δi(t2)


 (3.7)

for which

Var




n∑
i=1

C∗
i

n∑
i=1

δi(t1) +
n∑

i=1
δi(t2)


 =

1 − f
(
n

(O)
t1 + n

(O)
t2

)2

1

n
S2

z

where

n
(O)
t1

+ n
(O)
t2

= 1
N

N∑
j=1

[δj(t1) + δj(t2)] , and

S2
z = 1

N−1

N∑
j=1

(zj)
2 for zj = C∗

j −

N�

j=1
C∗

j

n
(O)
t1

+n
(O)
t2

· [δj (t1) + δj (t2)] .

Simplifying,

Var
(
Ĉrom

)
=

N2

n
(1 − f)S2

z

=
n

f

(
1

f
− 1

)
S2

z .
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A sample estimator for Var
(
Ĉrom

)
is formed using the simplified form and substituting

s2z = 1
n−1

n∑
i=1

(zi)
2 for S2

z where zi = C∗
i −

n�

i=1
C∗

i

n
(A)
t1

+n
(A)
t2

· [δi (t1) + δi (t2)] . Also, for f substitute

f̂ = 1
2

{
n

(A)
t1

n
(O)
t1

+
n

(A)
t2

n
(O)
t2

}
or f̂ =

n
(A)
t1

+n
(A)
t2

n
(O)
t1

+n
(O)
t2

.

As presented, it is easy to see that both Var
(
Ĉmor

)
and Var

(
Ĉrom

)
decrease with

increased sample sizes. It is also important to note that the variances decrease with an

increase in the number of overflight surveys through changes in S2
z .

3.4.2.3 The Relationship Between Ĉmor and Ĉrom

For multiple overflight surveys, both Ĉmor and Ĉrom were shown to be unbiased, however,

when extreme values occur a ratio of means estimator is, in general, more stable than a mean

of ratios estimator. Simulation results will show that with optimal weightings Var
(
Ĉmor

)

is approximately equal to Var
(
Ĉrom

)
and in some instances, marginally smaller. When two

overflight surveys are being considered optimal weightings for the mean of ratios estimator

can be found as

w1 =
V2 − Cov

V1 + V2 − 2Cov
and w2 =

V1 − Cov

V1 + V2 − 2Cov

where Vi is the variance of the catch estimator associated with the ith overflight and Cov is

the covariance between Ĉ1 and Ĉ2.

To find weightings for which Var
(
Ĉmor

)
equals Var

(
Ĉrom

)
, choose the following weight

conditional on the outcome of the access survey

w =

n∑
i=1

δi (t1)

n∑
i=1

δi (t1) +
n∑

i=1
δi (t2)

=
n

(A)
t1

n
(A)
t1 + n

(A)
t2

·
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Equation 3.7 can now be written as

Var
(
Ĉrom

∣∣∣ s
)

=
[
n

(O)
t1 + n

(O)
t2

]2
Var




1

2





n∑
i=1

C∗
i

n∑
i=1

δi (t1)

· w +

n∑
i=1

C∗
i

n∑
i=1

δi (t2)

· (1 − w)








for which

Var




1

2





n∑
i=1

C∗
i

n∑
i=1

δi (t1)

· w +

n∑
i=1

C∗
i

n∑
i=1

δi (t2)

· (1 − w)








=
(w

2

)2
Var




n∑
i=1

C∗
i

n∑
i=1

δi (t1)


+

(
1 − w

2

)2

Var




n∑
i=1

C∗
i

n∑
i=1

δi (t2)




+2
(w

2

)(1 − w

2

)
Cov




n∑
i=1

C∗
i

n∑
i=1

δi (t1)

,

n∑
i=1

C∗
i

n∑
i=1

δi (t2)


 ·

Next suppose that w = n
(A)
t1

/[
n

(A)
t1 + n

(A)
t2

]
= n

(O)
t1

/[
n

(O)
t1 + n

(O)
t2

]
. Then

Var
(
Ĉrom

)

=

(
1

2

)2





[
n

(O)
t1 + n

(O)
t2

]2
[

n
(O)
t1

n
(O)
t1 + n

(O)
t2

]2

Var




n∑
i=1

C∗
i

n∑
i=1

δi (t1)




+
[
n

(O)
t1 + n

(O)
t2

]2
[

n
(O)
t2

n
(O)
t1 + n

(O)
t2

]2

Var




n∑
i=1

C∗
i

n∑
i=1

δi (t2)




+ 2
[
n

(O)
t1 + n

(O)
t2

]2
·

n
(O)
t1 · n

(O)
t2[

n
(O)
t1 + n

(O)
t2

]2 · Cov




n∑
i=1

C∗
i

n∑
i=1

δi (t1)

,

n∑
i=1

C∗
i

n∑
i=1

δi (t2)







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≈

(
1

2

)2





[
n

(O)
t1

]2
Var




n∑
i=1

C∗
i

n∑
i=1

δi (t1)


 +

[
n

(O)
t2

]2
Var




n∑
i=1

C∗
i

n∑
i=1

δi (t2)




+ 2
[
n

(O)
t1

] [
n

(O)
t2

]
Cov




n∑
i=1

C∗
i

n∑
i=1

δi (t1)

,

n∑
i=1

C∗
i

n∑
i=1

δi (t2)








·

That is, if the overflight counts are proportional to the population counts of active fishing

episodes, i.e. w = n
(A)
t1

/[
n

(A)
t1 + n

(A)
t2

]
= n

(O)
t1

/[
n

(O)
t1 + n

(O)
t2

]
, then using weights which

are ratios of the associated overflight count to the total of all overflight counts will result in

Var
(
Ĉmor

)
equal to Var

(
Ĉrom

)
.

3.5 Estimators for the Roving Designs

For the development of the estimators for use with the roving survey, it is assumed that

the sampling design is that of a random start, time, and direction for the pass through the

resource. That is, for the jth episode in the population, there is a potential interview time

randomly chosen between 0 and T . As noted by Hoenig et al. (1997) and Pollock et al.

(1997) the probability of selection for any episode is P (δj(s) = 1) = L∗
j/T and the δj(s)

are Bernoulli random variables with E[δj(s)] = L∗
j/T and Var(δj(s)) = (L∗

j/T )(1 − L∗
j/T ).

Then, since Lj, the time of intercept is Uniform over L∗
j , given selection, E[Lj |L

∗
j , δj(s) =

1] = L∗
j/2 and Var (Lj|L

∗
j , δj(s) = 1) = L∗

j
2/12. Also, by assuming a constant catch rate

for each episode it is possible to estimate C∗
i as Ci(L

∗
i /Li). By assuming a stationary

homogeneous Poisson process, for the j th episode, given that it is selected
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P (Cj |Lj) =
(λjLj)

Cje−λjLj

Cj !

and

P
(
C∗

j

∣∣L∗
j

)
=

(
λjL

∗
j

)C∗

j
e−λjL∗

j

C∗
j !

·

Also, given the catch at some interim time,

P
(
C∗

j

∣∣Cj , Lj, L
∗
j

)
=

[
λj

(
L∗

j − Lj

)]C∗

j −Cj

e−λj(L∗

j−Lj)

(
C∗

j − Cj

)
!

·

It then follows that

P
(
Cj|Lj, C

∗
j , L

∗
j

)
=




C∗
j

Cj



(
Lj

L∗
j

)Cj
(

1 −
Lj

L∗
j

)C∗

j −Cj

·

Note: While 2Lj , the unbiased estimator for L∗
j is available, it is assumed that L∗

j is also

known (Section 3.3) and is used in subsequent sample quantities.

3.5.1 A Single Overflight Survey

As with designs in which the overflight survey is random, the form of estimators appropriate

for use with an access survey are, in general, not of the same form as those that are appropri-

ate for use with a roving design. In Section 3.4.1 it was shown that R̂ =
n∑

i=1
C∗

i

/
n∑

i=1
δi(t) , or

equivalently
N∑

j=1
C∗

j δj(s)

/
N∑

j=1
δj(t, s) , was appropriate for use with an access survey when

the overflight survey is not random. It is instructive to demonstrate that this form of the

estimator is not appropriate for use with a roving survey where catch and length of episode

are observed only up to the time of interview. Under a constant catch rate assumption

with knowledge of L∗
j , the roving equivalent for this form is one which estimates C ∗

j with

CjL
∗
j/Lj . Hence for any sample s and intercept time t,
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E




N∑

j=1

Cj

L∗
j

Lj
δj(s)


 =

N∑

j=1

{
E

[
Cj

L∗
j

Lj
δj(s)

∣∣∣∣ δj(s) = 0

]
P (δj(s) = 0)

+ E

[
Cj

L∗
j

Lj
δj(s)

∣∣∣∣ δj(s) = 1

]
P (δj(s) = 1)

}

= 0 +

N∑

j=1

E

[
Cj

L∗
j

Lj

]
L∗

j

T

=

N∑

j=1

ELj

[
L∗

j

Lj
ECj

[
Cj |Lj , C

∗
j , L

∗
j

]] L∗
j

T

=
N∑

j=1

ELj

[
L∗

j

Lj
C∗

j

Lj

L∗
j

]
L∗

j

T

=

N∑

j=1

C∗
jL

∗
j

T

and

E




N∑

j=1

δj(s, t)


 =

N∑

j=1

{E [δj(t, s)| δj(s) = 0]P (δj(s) = 0)

+ E [δj(t, s)| δj(s) = 1]P (δj(s) = 1)}

= 0 +
N∑

j=1

δj(t)
L∗

j

T
·

That is, the expected value of this ratio approximately equals

(
N∑

j=1
C∗

jL
∗
j

)/(
N∑

j=1
δj(t)L

∗
j

)

which is not equal to the required C∗/n
(O)
t .

Alternatively, a proposed estimator is R̂ =
n∑

i=1
Ci

L∗

i
Li
/L∗

i

/
n∑

i=1
δi(t)/L

∗
i . This leads to the

catch estimator

Ĉ =
n∑

i=1

Ci

Li
·
n

(O)
t

n∑
i=1

δi(t)
L∗

i

(3.8)
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which exists only if at least one episode in the roving survey is active at time t. When

working with this estimator it is important to note that here, the sample size n, as well as

Ci and Li are random quantities. It is also important to note that determining the value

of δi(t), the activity indicator for the ith episode at time t, requires L∗
i or its estimate if t is

greater than the time of interview.

3.5.1.1 The Expected Value of Ĉ

Again assuming that the expectation of the ratio can be approximated by the ratio of the

expectations,

E
[
R̂
]

= E




n∑
i=1

Ci
Li

n∑
i=1

δi(t)
L∗

i


 ≈

E

[
n∑

i=1

Ci
Li

]

E

[
n∑

i=1

δi(t)
L∗

i

] ·

Examining the numerator and denominator separately,

E

[
n∑

i=1

Ci

Li

]
= E




N∑

j=1

Ci

Li
δj(s)




= E




N∑

j=1

{
Cj

Lj

∣∣∣∣ δj(s) = 1

}
· P (δj(s) = 1)




=
N∑

j=1

ELj

[
1

Lj
ECj

[
Cj|Lj, C

∗
j , L

∗
j

]] L∗
j

T

=

N∑

j=1

ELj

[
1

Lj
C∗

j

Lj

L∗
j

]
L∗

j

T

=

N∑

j=1

C∗
j

T

=
C∗

T
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and

E

[
n∑

i=1

δi(t)

L∗
i

]
= E




N∑

j=1

δi(t)

L∗
i

δj(t, s)




= E




N∑

j=1

{
δj(t, s)

L∗
j

∣∣∣∣∣ δj(t, s) = 1

}
· P (δj(t, s) = 1)




=

N∑

j=1

E

[
δj(t)

L∗
j

·
L∗

j

T

]

=
N∑

j=1

E

[
δj(t)

T

]

=

N∑
j=1

δj(t)

T

=
n

(O)
t

T
·

This then gives

E
[
R̂
]

≈
C∗/T

n
(O)
t /T

=
C∗

n
(O)
t

·

Therefore E
[
Ĉ
]

= n
(O)
t E

[
R̂
]
≈ n

(O)
t · C∗/n

(O)
t = C∗, showing that Ĉ is an unbiased

estimator for the total catch given any overflight time t.

3.5.1.2 The Variance of Ĉ

Under the roving design, the variance of Ĉ is complicated by having the sample inclusion

probabilities vary as the duration of the individual episodes. The design is a variant of a

multistage design in which episodes are primary units and interview times are subunits,

both determined by the same random time of intercept. As such, s, the set of episodes

selected and its size, n, are random quantities. Therefore, conditioning on s with
[
n

(O)
t

]
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constant

Var
(
Ĉ
)

=
[
n

(O)
t

]2 {
E
[
Var
(
R̂
∣∣∣ s
)]

+ Var
(
E
[
R̂
∣∣∣ s
])}

·

The within episode variance can be found by first noting that episodes are assumed

independent and given s, then δi (t) is constant leading to

Var
(
R̂
∣∣∣ s
)

=

n∑
i=1

Var
(

Ci
Li

∣∣∣ s
)

(
n∑

i=1

δi(t)
L∗

i

)2

for which

Var

(
Ci

Li

∣∣∣∣ s
)

= VarLi

(
ECi [Ci|Li]

Li

)
+ELi

[
1

L2
i

VarCi(Ci|Li)

]

= VarLi



C∗

i

(
Li
L∗

i

)

Li


+ELi

[
1

L2
i

C∗
i

(
Li

L∗
i

)(
1 −

Li

L∗
i

)]

= VarLi

(
C∗

i

L∗
i

)
+ELi

[
1

L2
i

C∗
i

(
Li

L∗
i

−
Li

2

L∗
i
2

)]

= 0 +ELi

[
C∗

i

L∗
i

(
1

Li
−

1

L∗
i

)]
See Note

≈
C∗

i

L∗
i

(
1

L∗
i /2

−
1

L∗
i

)

=
C∗

i

L∗
i
2 ·

Note: Since Li is uniform over (0 , L∗
i ], values can approach 0 resulting in extreme values for

E [1/Li] = 1
L∗

i −ε {log(L
∗
i ) − log(ε)} for ε arbitrarily close to 0. Hence Var

(
R̂
∣∣∣ s
)

is unstable.

One strategy to overcome this difficulty is to require a minimum time to interview (i.e. on

Li) for sample inclusion (Hoenig et al., 1997; Pollock et al., 1997). Here it is assumed that

Li is suitably bounded from 0 and a first order Taylor approximation can be used.
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Then, approximating the expectation of a ratio with a ratio of expectations and passing

the expectation operator through the square then gives

Es

[
Var
(
R̂
∣∣∣ s
)]

≈

E

[
n∑

i=1

C∗

i

L∗

i
2

]

E

[(
n∑

i=1

δi(t)
L∗

i

)2
]

<

E

[
n∑

i=1

C∗

i

L∗

i
2

]

(
E

[
n∑

i=1

δi(t)
L∗

i

])2

=

N∑
j=1

C∗

j

L∗

j
2E [δj (s)]

(
N∑

j=1

δj(t)
L∗

j
E [δj (s)]

)2

=

N∑
j=1

C∗

j

L∗

j
2

L∗

j

T

(
N∑

j=1

δj(t)
L∗

j

L∗

j

T

)2

=

T
N∑

j=1

C∗

j

L∗

j

[
n

(O)
t

]2 ·

To find the between episode variance, note that given s

E

[
n∑

i=1

Ci

Li

]
=

n∑

i=1

ELi

[
1

Li
ECi [Ci|Li]

]

=
n∑

i=1

ELi

[
1

Li
C∗

i

Li

L∗
i

]

=

n∑

i=1

C∗
i

L∗
i

while δi (t) is constant. Then,

Var s

(
E
[
R̂
∣∣∣ s
])

= Var s




n∑
i=1

C∗

i
L∗

i

n∑
i=1

δi(t)
L∗

i


 = Var s




n∑
i=1

C∗

i
L∗

i /T

n∑
i=1

δi(t)
L∗

i /T



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which is the variance of the ratio of two Horvitz-Thompson estimators, τ̂y and τ̂x with

selection probabilities πi = L∗
i /T . Viewed this way,

E [τ̂y] =
N∑

j=1

C∗
j

L∗
j/T

P (δj (s) = 1) =
N∑

j=1

C∗
j

L∗
j/T

L∗
j

T
=

N∑

j=1

C∗
j = C∗

and

E [τ̂x] =

N∑

j=1

δj (t)

L∗
j/T

P (δj (s) = 1) =

N∑

j=1

δj (t)

L∗
j/T

L∗
j

T
=

N∑

j=1

δj (t) = n
(O)
t

to give R̂ = τ̂y/τ̂x and R = τy/τx = C∗/n
(O)
t and

R̂−R ≈
τ̂y −Rτ̂x

τx
=

1

n
(O)
t

n∑

i=1

C∗
i −Rδi (t)

πi

which is again a Horvitz-Thompson estimator (Thompson, 1992). Denoting zi = C∗
i −

Rδi (t), the usual Horvitz-Thompson variance estimator is

Var
(
R̂
)

= Var
(
R̂−R

)
=

1
[
n

(O)
t

]2





N∑

i=1

(
1 − πi

πi

)
zi

2 +

N∑

i=1

∑

j 6=i

(
πij − πiπj

πiπj

)
zizj



 ·

However, since fishing episodes are assumed to be independent, the joint inclusion probabil-

ity of any two episodes is the product of their individual inclusion probabilities i.e.πij = πiπj

and the covariance portion of the variance formula vanishes. Therefore

Var s

(
E
[
R̂
∣∣∣ s
])

=
1

[
n

(O)
t

]2
N∑

j=1

(
1 − πj

πj

)
zj

2.

Finally, combining within and between components

Var
(
Ĉ
)
≈ T

N∑

j=1

C∗
j

L∗
j

+

N∑

j=1

(
1 − πj

πj

)(
C∗

j −Rδj (t)
)2
. (3.9)

To develop a sample estimator for Var
(
Ĉ
)
, estimators are found for each component. For

the within variance write
N∑

j=1
C∗

j /L
∗
j = N

(
N∑

j=1
C∗

j /L
∗
j

)/
N for which

(
N∑

j=1
C∗

j /L
∗
j

)/
N
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can be estimated with

(
n∑

i=1
Ci

L∗

i
Li
/L∗

i

)/
n =

(
n∑

i=1
Ci/Li

)/
n. To find an estimator for N ,

note that each episode is selected with probability
L∗

i
T . It can then be argued that for each

episode selected, there are 1
/

L∗

i
T other episodes of equal length in the population. An

estimate for N would then be N̂ =
n∑

i=1

T
L∗

i
.

For the between episode variance, note that for any s,

E

[
Ci
L∗

i

Li

∣∣∣∣ s
]

= ELi

[
L∗

i

Li
ECi [Ci|Li]

]
= ELi

[
L∗

i

Li
C∗

i

(
Lj

L∗
j

)]
= C∗

i .

Then, with τ̂y = T
n∑

i=1
Ci

L∗

i
Li
/L∗

i = T
n∑

i=1
Ci/Li and τ̂x = T

n∑
i=1

δi (t) /L∗
i ,

E [τ̂y] = Es




n∑

i=1

E
[
Ci

L∗

i
Li

]

L∗
i /T

∣∣∣∣∣∣
s


 =

N∑

j=1

C∗
j

L∗
j/T

P (δj (s) = 1) =

N∑

j=1

C∗
j

L∗
j/T

L∗
j

T
=

N∑

j=1

C∗
j = C∗

and

E [τ̂x] =

N∑

j=1

δj (t)

L∗
j/T

P (δj (s) = 1) =

N∑

j=1

δj (t)

L∗
j/T

L∗
j

T
=

N∑

j=1

δj (t) = n
(O)
t

which preserves R̂ = τ̂y/τ̂x and R = τy/τx now giving

R̂−R ≈
τ̂y −Rτ̂x

τx
=

1

n
(O)
t

n∑

i=1

Ci
L∗

i
Li

−Rδi (t)

πi
=

1

n
(O)
t

n∑

i=1

zi
πi

for which the usual Horvitz-Thompson variance formula applies and where again the covari-

ance term is dropped due to the assumed independence of the episodes. Substituting R̂ for

R, the sample estimator for this variance is then

V̂ar
(
R̂
)

=
1

[
n

(O)
t

]2
n∑

i=1

(
1 − πi

π2
i

)
ẑ2
i .

Combining components, the sample estimator for the variance of Ĉ becomes

V̂ar
(
Ĉ
)

=
N̂

n

(
T

n∑

i=1

Ci

Li

)
+

n∑

i=1

(
1 − πi

π2
i

)
ẑ2
i (3.10)
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where

πi = L∗
i /T ,

N̂ =
n∑

i=1
T/L∗

i , and

ẑi = Ci
L∗

i
Li

− R̂δi (t) with R̂ =

(
n∑

i=1

Ci
Li

)/(
n∑

i=1

δi(t)
L∗

i

)
.

3.5.2 Multiple Overflight Surveys

As with access designs, the need to combine the results of two or more non random overflight

surveys with a single, random roving survey is a scenario that might arise in practice. Again

there is a choice between a mean of ratios and a ratio of means type of estimator for total

catch.

3.5.2.1 A Mean of Ratios Estimator

To form the mean of ratios type of estimator, the total catch estimators using the single

roving survey in conjunction with each of the overflight surveys at times t1 and t2 are

combined as a simple average. This results in the following estimator,

Ĉmor =
1

2





n∑
i=1

Ci
Li

n∑
i=1

δi(t1)
L∗

i

· n
(O)
t1 +

n∑
i=1

Ci
Li

n∑
i=1

δi(t2)
L∗

i

· n
(O)
t2





· (3.11)

3.5.2.1.1 The Expected Value of Ĉmor

Since the estimators for total catch at times t1 and t2 are approximately unbiased, the ex-

pected value of Ĉmor, which is a linear combination of these estimators, is also approximately

unbiased. Further, since the unconditional expectation equal the conditional expectation
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for each estimator, E[Ĉmor] equals E[Ĉmor|n]. That is

E
[
Ĉmor

]
=

1

2




E




n∑
i=1

Ci
Li

n∑
i=1

δi(t1)
L∗

i

· n
(O)
t1


+E




n∑
i=1

Ci
Li

n∑
i=1

δi(t2)
L∗

i

· n
(O)
t2








≈
1

2
{C∗ + C∗}

= C∗.

3.5.2.1.2 The Variance of Ĉmor

Since the total catch estimators at times t1 and t2 are not independent, the variance of

Ĉmor = 1
2

(
Ĉ1 + Ĉ2

)
conditional on any roving survey of size n is given by

Var
(
Ĉmor

)
=

(
1

2

)2





[
n

(O)
t1

]2
Var




n∑
i=1

Ci
Li

n∑
i=1

δi(t1)
L∗

i


+

[
n

(O)
t2

]2
Var




n∑
i=1

Ci
Li

n∑
i=1

δi(t2)
L∗

i




+ 2
[
n

(O)
t1 · n

(O)
t2

]
Cov




n∑
i=1

Ci
Li

n∑
i=1

δi(t1)
L∗

i

,

n∑
i=1

Ci
Li

n∑
i=1

δi(t2)
L∗

i








· (3.12)

A sample estimator for the unconditioned variance of Ĉmor can be formed by us-

ing unconditioned estimators for each of the components in Equation 3.12. That is, use

Equation 3.10 to find the unconditioned estimators for Var
(
Ĉ1

)
=
[
n

(O)
t1

]2
Var




n�

i=1

Ci
Li

n�

i=1

δi(t1)

L∗

i




and Var
(
Ĉ2

)
=
[
n

(O)
t2

]2
Var




n�

i=1

Ci
Li

n�

i=1

δi(t2)

L∗

i


. An estimator for Cov




n�

i=1

Ci
Li

n�

i=1

δi(t1)

L∗

i

,

n�

i=1

Ci
Li

n�

i=1

δi(t2)

L∗

i


 can be

formed by making a Horvitz-Thompson type adaptation to the first order covariance ap-

proximations for use with multivariate ratio estimators under equal inclusion probabilities.

Also, note that for a given roving sample, the variance for any ratio R̂t associated with
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overflight t has a within episode component that is constant, being the product of n
(O)
t and

a function of catch and time fished values common to other R̂t. As such, given the roving

sample, the covariance between any two R̂t involves only the between episode variability.

This then gives as an estimator

Ĉov




n∑
i=1

Ci
Li

n∑
i=1

δi(t1)
L∗

i

,

n∑
i=1

Ci
Li

n∑
i=1

δi(t2)
L∗

i


 =

n∑

i=1

(
1 − πi

π2
i

)
ẑt1,i

n
(O)
t1

ẑt2,i

n
(O)
t2

and, for the final term in the estimator for the variance of Ĉmor

2
[
n

(O)
t1

· n
(O)
t2

]
Ĉov




n∑
i=1

Ci
Li

n∑
i=1

δi(t1)
L∗

i

,

n∑
i=1

Ci
Li

n∑
i=1

δi(t2)
L∗

i


 = 2

[
n

(O)
t1 · n

(O)
t2

n
(O)
t1 · n

(O)
t2

]
n∑

i=1

(
1 − πi

π2
i

)
ẑt1,iẑt2,i

= 2

n∑

i=1

(
1 − πi

π2
i

)
ẑt1,iẑt2,i

where

πi = L∗
i /T , and

ẑt,i = Ci
L∗

i
Li

−

n�

i=1

Ci
Li

n�

i=1

δi(t)

L∗

i

· δi (t) for t1 and t2 .

3.5.2.1.3 The General Case and Optimal Weightings

For the general case with overflight surveys selected at times ti for i = 1, . . . ,m and n

episodes selected for the single roving survey, the unbiased estimators for total catch cor-

responding to each overflight survey (as per Equation 3.10) can be arranged in the m × 1

vector C. Elements of V, the estimated variance-covariance matrix of C, have first order
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approximations

vi,j =

n∑

k=1

(
1 − πk

π2
k

)
ẑti,kẑtj ,k where ẑt,k = Ck

L∗
k

Lk
−

n∑
k=1

Ck
Lk

n∑
k=1

δk(t)
L∗

k

· δk (t) for ti and tj.

If w is an m×1 vector of weightings for each element of C such that
m∑

i=1
wi = 1, then Ĉmor =

w′C and E
[
Ĉmor

]
= w′E [C] = C∗. Also, V̂ar

(
Ĉmor

)
= w′Vw. Optimal weightings to

minimize Var
(
Ĉmor

)
can be constructed using the generalized Cauchy inequality (Olkin,

1958). Approximations to these weightings can be found as

ŵopt =
e′V−1

e′V−1e

where e is an m× 1 vector of 1’s.

3.5.2.2 A Ratio of Means Estimator

As with the access survey, the ratio of means estimator pools information on activity counts

to construct a single expansion factor for use with the value of catch obtained from the

roving survey. Such an estimator has the form

Ĉrom =

n∑

i=1

Ci

Li
·

n
(O)
t1 + n

(O)
t2

n∑
i=1

δi(t1)
L∗

i
+

n∑
i=1

δi(t2)
L∗

i

· (3.13)

3.5.2.2.1 The Expected Value of Ĉrom

Using first order approximations and noting that n
(O)
t1

+n
(O)
t2

is a constant, then, conditional

on any roving survey of size n

E




n∑

i=1

Ci

Li
·

n
(O)
t1 + n

(O)
t2

n∑
i=1

δi(t1)
L∗

i
+

n∑
i=1

δi(t2)
L∗

i


 ≈

[
n

(O)
t1 + n

(O)
t2

]
·

E

[
n∑

i=1

Ci
Li

]

E

[
n∑

i=1

δi(t1)
L∗

i
+

n∑
i=1

δi(t2)
L∗

i

]
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=
[
n

(O)
t1 + n

(O)
t2

]
·

N∑
j=1

ELj
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1
Lj
ECj
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∗
j
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j
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·
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δj(t1)
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N∑
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=
[
n

(O)
t1 + n

(O)
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]
·
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n
(O)
t1 + n

(O)
t2

= C∗

which is independent of n showing that Ĉrom is an unbiased estimator for C∗ and that

E
[
Ĉrom

∣∣∣n
]

and E
[
Ĉrom

]
are equal.

3.5.2.2.2 The Variance of Ĉrom

With
[
n

(O)
t1 + n

(O)
t2

]
constant,

Var
(
Ĉrom

)
=
[
n

(O)
t1 + n

(O)
t2

]2
Var




n∑
i=1

Ci
Li

n∑
i=1

δi(t1)
L∗

i
+

n∑
i=1

δi(t2)
L∗

i


 · (3.14)

Also, as with a single overflight, the roving portion of the design is multistage and
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Var
(
Ĉrom

)
=

[
n

(O)
t1

+ n
(O)
t2

]2 {
En

[
Var
(
R̂
∣∣∣ s
)]

+ Varn

(
E
[
R̂
∣∣∣ s
])}

·

To find a sample estimator for the within episode portion of this variance, recall that

Var

(
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Li

∣∣∣∣ s
)

≈
C∗

i

L∗
i
2

and
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[
n∑

i=1

C∗
i

L∗
i
2

]
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N∑
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C∗
j

L∗
j/T

·

Then, as was done in the single overflight, passing the expected value operator through the

square gives

Es


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/
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and a sample estimator for the within episode variance can be formed by substituting the

estimator N̂

(
n∑

i=1
Ci/Li

)/
n for N

(
N∑

j=1
C∗

j /L
∗
j

)/
N where again N̂ =

n∑
i=1

T/L∗
i .

To find a sample estimator for the between episode variance, again cast R̂ as a Horvitz-

Thompson estimator. That is, with

R̂ =

n∑
i=1

Ci
Li

n∑
i=1

δi(t1)
L∗

i
+

n∑
i=1

δi(t2)
L∗

i

=

n∑
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L∗

i
Li

L∗

i /T

n∑
i=1

δi(t1)
L∗

i /T +
n∑
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i /T

=
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L∗

i
Li

πi
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i=1

δi(t1)
πi

+
n∑

i=1

δi(t2)
πi

where

E

[
n∑

i=1

Ci
L∗

i
Li

πi

]
= C∗ and E

[
n∑

i=1

δi(t1)

πi
+

n∑

i=1

δi(t2)

πi

]
= n

(O)
t1 + n

(O)
t2 ,

it follows that R = C∗
/[
n

(O)
t1 + n

(O)
t2

]
and

R̂−R ≈
1

n
(O)
t1 + n

(O)
t2

n∑

i=1
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i
Li

−R [δi (t1) + δi (t2)]
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=

1

n
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(O)
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for which
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(
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)

=
1

[
n

(O)
t1 + n

(O)
t2

]2 Var

(
n∑

i=1

zi
πi

)

where covariance terms in the usual sample estimator can be dropped. The sample estimator

for the variance of Ĉrom then becomes

V̂ar
(
Ĉrom

)
=

[
n

(O)
t1 + n
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]2
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where
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πi = L∗
i /T ,

N̂ =
n∑

i=1
T/L∗

i , and

ẑi = Ci
L∗

i
Li

− R̂ [δi (t1) + δi (t2)] with R̂ =

(
n∑

i=1

Ci
Li

)/(
n∑

i=1

δi(t1)
L∗

i
+

n∑
i=1

δi(t2)
L∗

i

)
.

In general, samples that are larger will perform better, however, n is random in the roving

surveys and is not under the control of the investigator. Note that n does not explicitly

appear in Var
(
Ĉmor

)
nor in Var

(
Ĉrom

)
. Rather the collection of observations from a

sample of any size are expanded to a full population set according to their probabilities of

selection. As with access designs, increasing the number of overflight surveys does result

in an increased use of auxiliary data and an accompanying decrease in variance and, as a

variance decreasing device, is available to the investigator.

3.5.2.3 The Relationship Between Ĉmor and Ĉrom

As with access surveys, Ĉmor and Ĉrom were shown to be unbiased and as per Table 3.3,

Var
(
Ĉrom

)
is, in general, less than Var

(
Ĉmor

)
with equally weighted Ĉi. To compare

Var
(
Ĉrom

)
and Var

(
Ĉrom

)
again construct a weight conditional on the outcome of the

sample. Given the results of the roving survey, choose

w =

n∑
i=1

δi(t1)
L∗

i

n∑
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i
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·

Now, conditional on any s,
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It then follows that
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Note that even though w is a constant, the values used in its construction are realiza-

tions from a random sample for which L∗
i /T is the probability of selecting the ith episode.

Therefore, in a Horvitz-Thompson sense,
n∑
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i /T is an approximation for
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(O)
t1 .
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(O)
t2

]2

Var




n∑
i=1

Ci
Li

n∑
i=1

δi(t2)
L∗

i




+ 2

[
n

(O)
t1 + n

(O)
t2

ñ
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Thus, to the accuracy of the Horvitz-Thompson estimation, Var
(
Ĉmor

)
using w equals

Var
(
Ĉrom

)
under equal weightings.

3.6 Simulation Results

Performance of the estimators was investigated using a simulated population consisting of

225 fishing episodes placed over a 24–hour fishing day (Table 3.1). As shown by Figure 3.1,

these episodes ranged in length from 0.5 to 24.0 hours with the majority of lengths being

between 1.0 and 5.0 hours. Catch histories were assigned to each episode using an exponen-

tial distribution with parameter λ = 1.5 fish/hour to generate the random times between

Table 3.1: Defining characteristics of the simulated population.

Start of the fishing day 00:00
End of the fishing day 24:00
Total number of fishing episodes (N) 225
Minimum length of any fishing episode in minutes 30
Initial catch rate as catch/hr 1.5
Total catch 2,007
Total effort in minutes (E) 81,150

successive catches. Figure 3.2 shows a plot of the resulting catch versus length of time fished

for the completed episodes. Two scenarios were considered when placing the episodes over

the fishing day: a uniform distribution and a more realistic distribution that uses a strong

preference for fishing at 7:30 a.m. Within each placement method, scenarios allowing for 0

and 24 hours of overlap from the previous or into the following day were considered. When

an episode was positioned such that an overlap would occur, then the overlapping portion
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Figure 3.1: Fishing episodes by length for the simulated population (total count = 225).
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Figure 3.2: Catch vs. Time Fished for completed episodes of the simulated population. Also
shown is a plot of the expected catch using the least squares fit.
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was placed at the opposite end of the fishing day where it was then treated as an episode

overlapping from (or into) the adjacent day. This was justified by the assumption of a re-

peating fishing pattern from day to day. When a “split” portion of an episode was selected

for a roving sample, data using the full episode were recorded ensuring that all scenarios

being compared had the the same total effort and total catch. Effort plots for the various

episode placement scenarios are given in Figure 3.3. Since these plots are counts of active
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Figure 3.3: Count of active fishing episodes by minute of the fishing day. Overflights occur
at minute 720 for the single overflight scenario or at minute 480 and minute 1080 for the
multiple overflight scenario.

fishing episodes by time of day they are also values of n
(O)
t , the overflight survey results for

a given time t, and impact on the values assumed by n
(A)
t or n

(R)
t . Single overflight scenarios

use t = 12:00 noon while for multiple overflight scenarios, t1 = 8:00 a.m. and t2 = 6:00 p.m.

Results of the access simulations are given in Table 3.2. For each scenario, random
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Table 3.2: Performance comparison of the access survey catch estimators and their variance
estimators using 500 replicated samples (simulated population).

Overlap: 0 hours Overlap: 24 hours
Fishing Preference Pattern: Uniform Uni-Modal Uniform Uni-Modal

Actual Catch 2,007 2,007 2,007 2,007

Single Overflight at 12:00 noon

Mean(Ĉs) n=50 2,039 2,037 2,099 2,116
n=125 2,008 2,017 2,036 2,014

Var(Ĉs) n=50 103,793 70,743 241,241 195,906
n=125 20,655 14,101 50,639 29,197

Mean
(
V̂ars(Ĉ)

)
n=50 102,716 72,962 289,515 193,306

n=125 19,640 15,193 51,525 30,458

Multiple Overflights at 8:00 a.m. and 6:00 p.m - mor

Mean(Ĉs) n=50 2,054 2,066 2,077 2,030
n=125 2,017 2,019 2,022 2,023

Var(Ĉs) n=50 44,745 55,911 74,629 51,726
n=125 8,041 11,273 13,568 14,511

Mean
(
V̂ars(Ĉ)

)
n=50 36,994 54,559 63,324 65,345

n=125 7,767 11,445 12,390 14,893

Multiple Overflights at 8:00 a.m. and 6:00 p.m - rom

Mean(Ĉs) n=50 2,012 2,018 2,027 1,998
n=125 2,010 2,008 2,012 2,012

Var(Ĉs) n=50 36,489 36,746 60,417 40,427
n=125 7,635 8,421 12,749 10,199

Mean
(
V̂ars(Ĉ)

)
n=50 34,366 36,621 59,456 46,067

n=125 7,476 8,202 12,107 10,677

Optimal Weightings - mor

Mean(Ĉs) n=50 2,012 2,020 2,026 1,993
n=125 2,010 2,009 2,012 2,011

Var(Ĉs) n=50 36,754 36,714 60,253 39,068
n=125 7,623 8,332 12,779 9,972

Mean
(
V̂ars(Ĉ)

)
n=50 33,806 35,790 58,747 44,479

n=125 7,427 8,089 12,074 10,435
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samples of size 50 and 125 were used. Bias, as a ratio to standard error, is less than 0.2 and

therefore can be considered no worse than “mild” (Cochran, 1977). In general, the results for

the 0–hour overlap scenarios are better than those for the 24–hour overlap scenarios. This

is explained by Figure 3.3 which shows that, for the 0–hour overlap scenarios, there would

be greater counts at times of the overflight surveys which would result in greater use of the

auxiliary data and in turn, estimates that are less biased with lower variances. The lower

variances in the multiple overflight scenarios, where a larger portion of the sample is included

in the overflight counts, underlines the value of the ratio estimator. Also, better results are

obtained from the ratio of means estimators demonstrating their greater stability, however,

with optimized weightings, results from the mean of ratios estimators are comparable. In

all cases, as would be expected, results improve with a larger sample. The larger than

expected change in variance for a 2.5 times increase in sample size can be explained by the

finite population correction factor.

To emulate the roving design, one minute was uniformly selected from the fishing day

for each episode. This minute determined both sample selection for the episode and time

of interview given selection. Note that, for each episode selected, it is assumed that L∗
i

is known and for estimation purposes, is used in place of 2Li. In general, patterns in

simulation results for all roving scenarios were similar to those of the corresponding access

simulations. See Table 3.3. Note that since the total effort E = 81, 150 episode-minutes

and length of a fishing day T = 1, 440 minutes, the average sample size for a roving survey

is E[n] = E/T ≈ 55 episodes making the results of the roving survey comparable, in a

sense, to those of the access survey of size n = 50. Comparing results, the relatively more

simple estimators of the access designs, with their fewer sources of variability, performed
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Table 3.3: Performance comparison of the roving survey catch estimators and their variance
estimators using 500 replicated samples (simulated population).

Overlap: 0 hours Overlap: 24 hours
Fishing Preference Pattern: Uniform Uni-Modal Uniform Uni-Modal

Actual Catch 2,007 2,007 2,007 2,007

Single Overflight at 12:00 noon

Mean(Ĉs) E[n]=55 1,975 1,992 2,020 2,013

Var(Ĉs) E[n]=55 110,068 107,159 251,750 150,076

Mean
(
V̂ars(Ĉ)

)
E[n]=55 93,382 89,032 160,834 115,478

Multiple Overflights at 8:00 a.m. and 6:00 p.m - mor

Mean(Ĉs) E[n]=55 2,004 1,997 2,014 2,031

Var(Ĉs) E[n]=55 67,567 64,221 84,817 86,738

Mean
(
V̂ars(Ĉ)

)
E[n]=55 53,103 50,857 63,375 62,674

Multiple Overflights at 8:00 a.m. and 6:00 p.m - rom

Mean(Ĉs) E[n]=55 1,960 1,972 1,960 1,989

Var(Ĉs) E[n]=55 58,837 64,555 78,266 73,850

Mean
(
V̂ars(Ĉ)

)
E[n]=55 56,681 56,664 69,388 68,308

Optimal Weightings - mor

Mean(Ĉs) E[n]=55 1,998 2,000 2,013 2,027

Var(Ĉs) E[n]=55 62,902 63,956 85,577 79,026

Mean
(
V̂ars(Ĉ)

)
E[n]=55 51,001 51,088 62,595 61,438
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better. It must be remembered, however, that with inclusion based on L∗
i , the roving designs

will tend to sample episodes of longer duration making them more likely to be counted in

the overflight surveys. This could result in greater use of the auxiliary data and hence,

improved estimation. Note that attempts to increase the sample size by making a second

pass through the resource can result in double sampling of some episodes making use of the

proposed estimators inappropriate. It should also be noted that a 15–minute minimum time

to interview was required of all sampled episodes. While this appeared to have little effect

on the estimates of C, variance estimates became more stable but experienced increasingly

negative bias with greater values of the minimum (results not shown). Also, use of L∗
i in

place of 2Li has a stabilizing effect which is more effectively used in the construction of

V̂ar(Ĉ) than in Ĉ which contributes to the persistent underestimation of Var (Ĉ).

3.7 The Fraser River Study

In 1995 the Canadian Department of Fisheries and Oceans (DFO) initiated an ongoing catch

estimation program on the Fraser River, British Columbia, Canada (Palermo et al. 1997).

This was a major undertaking encompassing a large area with changing fishing technologies

and a growing number of fishing sites. One objective of the project is an estimate of

sockeye catch from the gill net component, for which a complemented survey approach has

been implemented. The effort estimates are made using helicopter overflights to count nets

actively fishing, while the catch rate estimates are made from interview data on catch and

time fished information, obtained from interviews using access and roving surveys at selected

sites and on boat patrols over navigable stretches of the river.

To illustrate the use and compare the performance of the proposed estimators, 1996
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data from a single Monday to Friday period over a continuous stretch of water was selected.

Because activity counts at times of overflight were sparse, it was assumed that catch rates

and fishing patterns were consistent from day to day and the data was folded into a single

day. The overflight counts, which occurred on Wednesday and Thursday at 8:35 and 12:24,

respectively, were then multiplied by a factor of five to act as two overflight counts on the

constructed day. Despite improvements made over the initial year of the project, a number

of problems had remained, many of which related to logistics and the difficult terrain. Night

operations were limited and complete randomization was not always possible, particularly in

the overflight surveys. Unattended nets and unwilling participation by some fishers remained

a problem. No corrections were made for these and other such factors, instead, a single edit

of the data file was used. Episodes longer than 3 days (i.e. a soak time of 72 hours in peak

run time) were removed, as were episodes with catch in excess of 100 fish (i.e. a net load

well in excess of 200 kg).

Estimates for catch over the 5–day period were made using the access survey approach

and again using the roving survey approach using only the data collected from the respective

design. Table 3.4 summarizes these results. Apart from their equally weighted mean of ratios

estimates, both approaches estimate catch as being between 19,000 and 22,000 fish and both

have little difference in variation between their respective ratio of means and optimized mean

of ratios methods. The lower variances in the roving survey approach is explained by its

greater use of the overflight auxiliary data, particularly on the 12:24 count. Compared

with standard methods (i.e. based on an estimate of CPUE and total effort), the proposed

methods are seen to be more consistent. The large discrepancy in size of the estimates for

proposed versus standard methods is not surprising since restrictions in randomization of
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Table 3.4: Catch estimates and their estimated variances for a Monday through Friday
period over a continuous stretch of water on the Fraser River gill net fishery (1996).

Access Roving

Proposed Methods

Overflight counts at 8:35 235 235
12:24 175 175

Episodes sampled 49 60

Episodes active at 8:35 17 31
12:24 5 35

mor: Ĉ 28,635 18,017

Ŝtd(Ĉ) 5,369 1,592

ĈOpt 19,976 21,842

Ŝtd(ĈOpt) 4,117 1,448

rom: Ĉ 21,860 19,432

Ŝtd(Ĉ) 4,185 1,471

Standard Methods (Ĉ = Ê × ̂CPUE)

Ê
1

in fishing minutes 295,200 295,200
̂CPUE as catch per minute 0.0525 0.0927

Ĉ 77,424 136,806

1 average of counts at 8:35 and 12:24 multiplied by 1440 minutes.
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the overflights to prime times produce an overestimate of total effort (calculated as average

count times 1440 minutes) which then inflates the catch estimates for the standard method.

Note that actual DFO estimates, made using the total effort approach, did account for

problems with implementation and would be smaller than those shown here. It should

also be noted that, while a stationary Poisson process was used to develop estimators for

the roving survey, a decreasing model for catch rate might have been more appropriate to

describe gill net fishing.

3.8 Conclusions and Discussion

The above methods provide a defensible approach to estimating catch when the effort survey

is not randomized. These methods appear to work well under a variety of scenarios for both

access and roving designs. Fundamental to success is a properly designed and implemented

ground survey and adequate resources must be allocated to this end. Remaining resources

can be directed to increasing the number of overflight surveys. Overflight surveys are most

effective when they yield high total counts and contain a high proportion of the episodes

included in the ground survey. Consequently a single overflight should be scheduled at the

peak fishing time. Choosing optimum times for additional overflights is less straightforward

since now the lengths of the fishing episodes are also a consideration. In general, the more

uniform the effort profile (see Figure 3.3), the more evenly spaced should be the scheduled

times. When multiple overflights are employed, estimators should be based on either mean

of ratios with optimized weightings, or ratio of means which is, in a sense, already optimally

weighted.

In general, access designs are preferable to roving designs. Difficulties with design and
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implementation of the sampling scheme; random sample size with no means of adjusting to

achieve a desired level of confidence; additional variability associated with estimating L∗
i ;

and the greater complexity of the estimators and difficulties relating to division by Li are

potentially serious problems inherent to roving designs. Protocol must include a minimum

time to interview. Hoenig et al. (1997) used 30 minutes for measuring catch rate in a

sports fishery. Here catch is being measured which may be more sensitive to a “cropped”

sample, and 15 minutes may be more appropriate. To explore the usefulness of a known L∗
i ,

simulations were also made with 2Li substituted for L∗
i (results not provided). In general,

variances were two to three times larger.

In addition to overcoming the problem of division by Li, it might also be possible to

reduce variability in the roving survey variance estimators by using λL∗
i in place of CiL

∗
i /Li

to estimate the catch of the ith episode where λ is an overall catch rate. Variance estimators

are then conditional on λ. Unconditioned formulae would be formed by substituting an

estimate for λ and adding a component of extra variability due estimating λ. This is the

subject of further research.

This chapter has shown that for a simple ground survey, estimation is possible even

if the overflight survey is not random, and can be improved by increasing the number of

overflights. In applications, the sampling design of the ground survey is apt to be complex.

This presents a special problem because, for estimators to exist, each sampling session must

include at least one episode that is in the overflight count. The next chapter examines

estimation when the access survey is complex.
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Chapter 4

Applications in Complex Surveys

Focusing on access designs, this chapter examines the problem when restrictions in random-

ization occur in the effort survey, and the sampling design of the access survey is complex.

In particular, a catch estimator and its variance estimator are developed when the access

survey has a three–stage sampling design with unequal probabilities of selection at each

stage. Simulated data are then used to examine the performance of these estimators for

differing amounts of variability at the various stages of sampling. Data from the Georgia

Strait Creel Survey (Department of Fisheries and Oceans, Canada) are used to illustrate an

application.

4.1 Introduction

Chapter 3 showed that, when a simple sampling scheme is used with the access survey,

complemented angler surveys can still be used to estimate total catch in creel surveys, even

if randomization in the effort survey is compromised. This chapter shows how, when the

99
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access survey is embedded in a complex sampling design, acceptable results can again be

achieved, but with suitable modifications to the estimators.

In simple sampling designs, typically the sum of catch from an access sample is simply

inflated to a population estimate, using the ratio of the observed auxiliary data in the sample

to the population value of the auxiliary data observed by the overflight survey i.e. a simple

ratio estimator. In complex sampling designs, however, it will be seen that the structure

of the design must be built into the estimators. In effect, a population estimate of catch is

made from the access survey alone, using the sample catch and the selection probabilities

of the design. A similar estimate is made for the auxiliary information which is then used

to “truth” the expansion procedure and adjust the catch estimate. Note that with unequal

selection probabilities, the single expansion factor approach is not appropriate, especially

when working with variances. It will also be seen that the population from which sampling

units are selected may include units that catch no fish but carry the auxiliary information.

Such units, e.g. non-fishers or fishers targeting a species not of interest, are merely assigned

a zero catch. This feature can be exploited to improve the estimates and, in many cases,

can lend practical convenience.

A complemented angler survey, with restricted randomization in the overflight com-

ponent and a three–stage sampling design in the access component, is used to illustrate

development of an estimator for catch and its variance. Performance of the estimators

is examined using simulated data. For generality, unequal selection probabilities were as-

sumed at each stage of sampling. Scenarios were constructed in which all the variability was

placed in each level of the structure alone, as well as one in which the variability was placed

across all levels. Simulations were then conducted, using combinations of high (75%) and
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low (25%) sampling rates, to study the effectiveness of different sampling strategies. The

variance estimates were also compared with variance estimates computed using a jackknife.

The Georgia Strait Creel Survey is a continuing program, initiated in 1980 by the Cana-

dian Department of Fisheries and Oceans to evaluate the Strait of Georgia sports fishery

off the west coast of Canada. Originally the study was conceived as a complemented sur-

vey with a stratified three–stage access design and targeted only certain species of salmon.

From the outset, the overflight component was not random. Over the course of the study,

broadening of scope and practical considerations have since resulted in some randomization

restrictions in the access component, and other deviations from the original design. The

basic sampling design, however, remains multistage and provides an opportunity to apply

the new estimators.

4.2 Notation

Subscripting for the stratified multistage design uses the following convention.

Population Sample Inclusion

Number Size index Probability

Area or Stratum NA nA a 1.0

Launch Site given Area NLa nLa l τal

Block Time given Area

given Launch Site NBal nBal b πalb

Interview given Area

given Launch Site

given Block Time NIalb nIalb i ωalbi
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For, the ath area, lth launch site and bth time block,

C∗
albi is the total catch for the ith episode and

m
(O)
albi is the number of times the ith episode was counted by all overflight surveys.

(Exists for all subscript values.)

m
(A)
albi is the count of overflight surveys for which the ith episode was active.

(Exists for sampled subscript values.)

When the meaning is clear from the context, the a, l, b and i subscripting may be dropped.

n
(O)
t Overflight survey count of active episodes at time t.

n
(A)
t Access survey count of active episodes at time t.

N (O) Total of n
(O)
t over all t.

N (A) Total of n
(A)
t over all t.

δj() The indicator variable for the j th episode to denote activity at time t.

4.3 Survey Design and Assumptions

Suppose that a sports fishery is stratified into NA geographic areas for which Ĉ, an estimate

of total catch is required, as well as an estimates of Ĉa for each stratum a. For simplicity,

assume that the estimates are to be made for a single day, and that fishing is restricted to

daylight hours which is divided into NB adjacent time blocks e.g. morning, afternoon, and

evening. Also assume that the fishing activity in one area is independent of that in any

other area. In addition, assume independence of the fishing activity of individuals within

areas. In particular, fishing episodes do not cross area boundaries. Access by fishers to each
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area is through any of NLa launch sites within each area.

There are two components for the survey: aerial counts of active fishing episodes and a

ground access survey conducted at the launch sites. The access survey is a properly ran-

domized multistage design. For each of the a = 1, . . . , NA Areas (or strata), l = 1, . . . , nLa

of NLa Launch sites (i.e. primary units) are selected without replacement with probability

τal. Within these, b = 1, . . . , nBal of NBal time Blocks are selected without replacement

with probability πalb. Finally, within each of these, i = 1, . . . , nIalb of NIalb episodes (i.e.

angling parties) are selected without replacement with probability ωalbi. For generality, as-

sume that all sampling is done with unequal probabilities of selection, but in many cases

equal probability designs are used.

The data collected on each selected episode include C ∗
albi, the number of fish caught,

and the start and end times of the fishing episode. From the start and end times δalbi (tp),

an indicator for fishing activity during times tp of the p = 1, . . . , q aerial counts, can be

determined. This “count” data from the access survey can be summarized as m
(A)
albi =

q∑
p=1

δalbi(tp) for each episode. Alternatively, over episodes, counts from each of the p =

1, . . . , q overflights at times tp for a given Area, Launch, and Block combination are denoted

as n
(A)
albtp

=
nIalb∑
i=1

δalbi(tp). It is assumed that the start and end times used to determine δ are

accurate.

The second component is an aerial survey. It is also assumed that “instantaneous” counts

made by these surveys (Pollock et. al., 1994) are accurate. That is, n
(O)
tp are available and

accurate at the area level from each of the overflight surveys. Note that the timings of

the aerial counts are not random, possibly determined by aircraft availability or other such

practical reasons. As such, they cannot be used to measure the fishing effort.
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4.4 The Estimation of C

For a complemented access survey designed as a simple random sample of n fishing episodes

each with catch C∗
i and for which q overflight counts have occurred at times t1, . . . tq, it was

shown in Chapter 3 that an unbiased estimator for total catch is

Ĉ =

n∑

i=1

C∗
i ·

n
(O)
t1 + · · · + n

(O)
tq

n
(A)
t1 + · · · + n

(A)
tq

=

n∑
i=1

C∗
i

n∑
i=1

q∑
p=1

δi(tp)

·

q∑

p=1

n
(O)
tp

= R̂ ·N (O)

where n
(O)
tp and n

(A)
tp denote counts of episodes active at times tp by the aerial and ac-

cess surveys respectively. Note that N (O) is a known constant. It can also be shown that

n∑
i=1

C∗
i

/
q∑

p=1

n∑
i=1

δi(tp) =
n∑

i=1
C∗

i

/
n∑

i=1
m

(A)
i estimates C/N (O). Thus, if R̂ is formed as the

ratio of unbiased estimators for C and N (O), then Ĉ can be generalized to any sampling de-

sign if unbiased estimators for C and N (O) can be developed for that design. With stratified

designs, two methods for ratio estimation are commonly used (Cochran, 1977). “Separate”

ratio estimates are formed by constructing separate ratio estimates in each stratum and

then combining across strata in the appropriate manner. This method can be used only

if the auxiliary data are available by stratum. “Combined” ratio estimates are formed by

combining the elements of numerator and denominator across the strata before forming the

ratio which is then used with the auxiliary data after they too have been combined over the

strata. Here it is assumed that N
(O)
a is known for each stratum a and, because estimates by

stratum are generally required, only the method of separate estimators is considered. (The

situation involving a single overflight count for all strata requires only minor additional
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modifications and is omitted.) From values for N
(O)
a and independent estimates of Ra for

each stratum, the estimate of total catch is formed using separate ratio estimates as,

Ĉ =
∑

a

R̂aN
(O)
a .

For the proposed multistage sampling plan, an unbiased estimator for catch for each of

the a = 1, . . . , NA areas or strata is formed using a Horvitz-Thompson estimator at each

stage.

Ĉa =

nLa∑

l=1

1

τal

{
nBal∑

b=1

1

πalb

{
nIalb∑

i=1

1

ωalbi
C∗

albi

}}

and similarly for counts of activity at times of overflight

N̂ (O)
a =

nLa∑

l=1

1

τal





nBal∑

b=1

1

πalb





nIalb∑

i=1

1

ωalbi





q∑

p=1

δalbi(tp)













=

nLa∑

l=1

1

τal

{
nBal∑

b=1

1

πalb

{
nIalb∑

i=1

1

ωalbi
m

(A)
albi

}}
·

An estimator for R for the ath stratum is then

R̂a =
Ĉa

N̂
(O)
a

=

nLa∑
l=1

1
τal

{
nBal∑
b=1

1
πalb

{
nIalb∑
i=1

1
ωalbi

C∗
albi

}}

nLa∑
l=1

1
τal

{
nBal∑
b=1

1
πalb

{
nIalb∑
i=1

1
ωalbi

m
(A)
albi

}} · (4.1)

4.4.1 The Unbiasedness of R̂

To show unbiasedness, note that for any stratum a, an unbiased estimate for catch is a

nested sequence of Horvitz-Thompson estimators for which
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E
[
Ĉa

]
= E


E


E




Ĉa

Launch

Block


 Launch






= E

[
E

[
nL∑

l=1

1

τl

{
nBl∑

b=1

1

πlb

{
NIlb∑

i=1

C∗
lbi

}}∣∣∣∣∣Launch
]]

= E

[
nL∑

l=1

1

τl

{
NBl∑

b=1

NIlb∑

i=1

C∗
lbi

}]

=

NL∑

l=1

NBl∑

b=1

NIlb∑

i=1

C∗
lbi

= Ca.

Similarly

E
[
N̂ (O)

a

]
=

NL∑

l=1

NBl∑

b=1

NIlb∑

i=1

m
(A)
lbi

= N (O)
a .

Therefore, to a first order Taylor approximation,

E
[
R̂a

]
= E

[
Ĉa

]/
E
[
N̂ (O)

a

]
= Ca/N

(O)
a = Ra

and the estimators for R at the stratum level are approximately unbiased as is Ĉ since

E
[
Ĉ
]

=
∑
a
E
[
R̂a

]
N

(O)
a . Note that strata subscripts will be suppressed and used only

where needed to avoid confusion.

4.4.2 The Variance of R̂

The variance of R̂ can be determined by standard methods used in multistage sampling by

decomposing it into a sum of components relating to each stage. An estimator for V ar
(
R̂
)

can then be made by applying estimation techniques to each component. With the proposed
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multistage sampling plan, for any stratum

V ar
(
R̂
)

= V ar


 AMONG

Launches


+ V ar


 WITHIN

Launches




= V ar


 AMONG

Launches


+ V ar


AMONG

Blocks


+ V ar


WITHIN

Blocks


 (4.2)

where, as the final stage of decomposition, V ar


WITHIN

Blocks


 = V ar


 AMONG

Episodes


 . Next, each

components is expressed as nested conditional expectations and variances as follows:

• V ar


 AMONG

Launches


 = V ar

(
E

[
R̂

∣∣∣∣Launch
])

for which, using a ratio of expecta-

tions to approximate the expectation of the ratio,

E

[
R̂

∣∣∣∣Launch
]

= E


E




R̂
Launch

Block


 Launch




=

nL∑
l=1

1
τl

NBl∑
b=1

NIlb∑
i=1

C∗
lbi

nL∑
l=1

1
τl

NBl∑
b=1

NIlb∑
i=1

m
(A)
lbi

is a ratio of averaged stratum estimates of total catch and overflight counts made

for each level of Launch. A Taylor expansion about (Y =
NL∑
l=1

NBl∑
b=1

NIlb∑
i=1

C∗
lbi, X =

NL∑
l=1

NBl∑
b=1

NIlb∑
i=1

m
(O)
lbi ) gives

V ar

(
E

[
R̂

∣∣∣∣Launch
])

= V ar

(
Y

X
−

Y

X2

{
nL∑

l=1

1

τl

NBl∑

b=1

NIlb∑

i=1

m
(A)
lbi −X

}

+
1

X

{
nL∑

l=1

1

τl

NBl∑

b=1

NIlb∑

i=1

C∗
lbi − Y

})
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= V ar

(
R+

1

X

{
nL∑

l=1

1

τl

NBl∑

b=1

NIlb∑

i=1

C∗
lbi −R

nL∑

l=1

1

τl

NBl∑

b=1

NIlb∑

i=1

m
(A)
lbi

})

=
1

[X]2
V ar

(
nL∑

l=1

1

τl

{
NBl∑

b=1

NIlb∑

i=1

C∗
lbi −R

NBl∑

b=1

NIlb∑

i=1

m
(A)
lbi

})
·

Note that
nL∑
l=1

1
τl

{
NBl∑
b=1

NIlb∑
i=1

C∗
lbi −R

NBl∑
b=1

NIlb∑
i=1

m
(A)
lbi

}
is a Horvitz-Thompson estimator. A

biased (tending to overestimate) approximation for the sample estimator for its vari-

ance can be formed by converting the estimator to a sample average of totals and then

applying the usual estimate for an average (Brewer and Hanif, 1983). Extending this

sample technique back to the full set of population values,

V ar

(
E

[
R̂

∣∣∣∣Launch
])

≈

1
[

NL∑
l=1

NBl∑
b=1

NIlb∑
i=1

m
(O)
lbi

]2

(
NL− nL

NL

) (
1

nL

)
1

NL− 1

NL∑

l=1

(
Zl − Z̄l

)2
(4.3)

where Zl = nL
τl

(
NBl∑
b=1

NIlb∑
i=1

C∗
lbi −R

NBl∑
b=1

NIlb∑
i=1

m
(A)
lbi

)

for which the sample estimator is then

V̂ ar


 AMONG

Launches


 =

1
[
N̂ (O)

]2
(
NL− nL

NL

)(
1

nL

)
1

nL− 1

nL∑

l=1

(zl − z̄l)
2 (4.4)

where
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N̂ (O) =
nL∑
l=1

1
τl

nBl∑
b=1

1
πlb

nIlb∑
i=1

1
ωlbi

m
(A)
lbi

and

zl = nL
τl

(
nBl∑
b=1

1
πlb

nIlb∑
i=1

1
ωlbi

C∗
lbi − R̂

nBl∑
b=1

1
πlb

nIlb∑
i=1

1
ωlbi

m
(A)
lbi

)
·

• V ar


AMONG

Blocks


 = E


V ar


E




R̂
Launch

Block


 Launch




 for which, again ap-

proximating an expectation of a ratio with the ratio of its expectations,

E




R̂
Launch

Block


 =

nL∑
l=1

1
τl

{
nBl∑
b=1

1
πlb

{
NIlb∑
i=1

C∗
lbi

}}

nL∑
l=1

1
τl

{
nBl∑
b=1

1
πlb

{
NIlb∑
i=1

m
(A)
lbi

}}

which is a ratio of nested sequences of weighted averaged estimates of total catch

and overflight counts, culminating in stratum estimates. A Taylor expansion about

(Y =
NL∑
l=1

NBl∑
b=1

NIlb∑
i=1

C∗
lbi, X =

NL∑
l=1

NBl∑
b=1

NIlb∑
i=1

m
(O)
lbi ) then gives

E




R̂
Launch

Block


 = R+

1

X

[
nL∑

l=1

1

τl

{
nBl∑

b=1

1

πlb

{
NIlb∑

i=1

C∗
lbi

}}

−R

nL∑

l=1

1

τl

{
nBl∑

b=1

1

πlb

{
NIlb∑

i=1

m
(A)
lbi

}}]

= R+
1

X

[
nL∑

l=1

1

τl

{
nBl∑

b=1

1

πlb

(
NIlb∑

i=1

C∗
lbi −R

NIlb∑

i=1

m
(A)
lbi

)}]

for which, again extending the sample estimator of Brewer and Hanif, 1983 to the full

set of population values
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V ar


E




R̂
Launch

Block


 Launch


 ≈

1

[X]2

×

{
1

nL

nL∑

l=1

nL

(τl)
2

(
NBl − nBl

NBl

)(
1

nBl

)
1

NBl − 1

NBl∑

b=1

(
Zlb − Z̄lb

)2
}

where Zlb = nBl
πlb

(
NIlb∑
i=1

C∗
lbi −R

NIlb∑
i=1

m
(A)
lbi

)
·

Finally, to the accuracy of the approximations,

E


V ar


E




R̂
Launch

Block


 Launch




 =

1
[

NL∑
l=1

NBl∑
b=1

NIlb∑
i=1

m
(O)
lbi

]2

×
1

NL

NL∑

l=1

nL

(τl)
2

(
NBl − nBl

NBl

)(
1

nBl

)
1

NBl − 1

NBl∑

b=1

(
Zlb − Z̄lb

)2
(4.5)

for which the sample estimator is

V̂ ar


AMONG

Blocks


 =

1
[
N̂ (O)

]2

×

{
nL∑

l=1

1

(τl)
2

(
NBl − nBl

NBl

)(
1

nBl

)
1

nBl − 1

nBl∑

b=1

(zlb − z̄lb)
2

}
(4.6)

where

N̂ (O) =
nL∑
l=1

1
τl

nBl∑
b=1

1
πlb

nIlb∑
i=1

1
ωlbi

m
(A)
lbi

and

zlb = nBl
πlb

(
nIlb∑
i=1

1
ωlbi

C∗
lbi − R̂

nIlb∑
i=1

1
ωlbi

m
(A)
lbi

)
·
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• V ar


WITHIN

Blocks


 = E


E


V ar




R̂
Launch

Block


 Launch






for which, again using a Taylor expansion about the values Y =
NL∑
l=1

NBl∑
b=1

NIlb∑
i=1

C∗
lbi and

X =
NL∑
l=1

NBl∑
b=1

NIlb∑
i=1

m
(O)
lbi ,

V ar




R̂
Launch

Block


 = V ar




nL∑
l=1

1
τl

{
nBl∑
b=1

1
πlb

{
nIlb∑
i=1

1
ωlbi

C∗
lbi

}}

nL∑
l=1

1
τl

{
nBl∑
b=1

1
πlb

{
nIlb∑
i=1

1
ωlbi

m
(A)
lbi

}}




= V ar

(
R+

1

X

[
nL∑

l=1

1

τl

{
nBl∑

b=1

1

πlb

{
nIlb∑

i=1

1

ωlbi
C∗

lbi

}}

−R

nL∑

l=1

1

τl

{
nBl∑

b=1

1

πlb

{
nIlb∑

i=1

1

ωlbi
m

(A)
lbi

}}])

= V ar

(
R+

1

X

[
nL∑

l=1

1

τl

{
nBl∑

b=1

1

πlb

{
nIlb∑

i=1

1

ωlbi

(
C∗

lbi −Rm
(A)
lbi

)}}])
·

As done previously when expressed in this form, the variance of the Horvitz-Thompson

estimator is next approximated with the usual sample estimator (Brewer and Hanif,

1983) and extended to the full set of population values to give

V ar




R̂
Launch

Block


 ≈

1

[X]2

×

{
nL∑

l=1

1

(τl)
2

{
nBl∑

b=1

1

(πlb)
2

(
NIlb − nIlb

NIlb

)(
1

nIlb

)
S2

Z

}}

where

S2
Z = 1

NIlb−1

NIlb∑
i=1

(
Zlbi − Z̄lbi

)2

with

Zlbi = nIlb
ωlbi

(
C∗

lbi −R m
(A)
lbi

)
·
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Expressed this way it can be seen that

E


V ar




R̂
Launch

Block


 Launch


 =

1

[X]2

×

{
nL∑

l=1

1

(τl)
2

{
1

NBl

NBl∑

b=1

nBl

(πlb)
2

(
NIlb − nIlb

NIlb

)(
1

nIlb

)
S2

Z

}}

and that

E


E


V ar




R̂
Launch

Block


 Launch




 =

1

[X]2

×

{
1

NL

NL∑

l=1

nL

(τl)
2

{
1

NBl

NBl∑

b=1

nBl

(πlb)
2

(
NIlb − nIlb

NIlb

)(
1

nIlb

)
S2

Z

}}
(4.7)

for which a sample estimator is

V̂ ar


WITHIN

Blocks


 =

1
[
N̂ (O)

]2

×

{
nL∑

l=1

1

(τl)
2

{
nBl∑

b=1

1

(πlb)
2

(
NIlb − nIlb

NIlb

)(
1

nIlb

)
s2z

}}
(4.8)

where

N̂ (O) =
nL∑
l=1

1
τl

nBl∑
b=1

1
πlb

nIlb∑
i=1

1
ωlbi

m
(A)
lbi

and

s2z = 1
nIlb−1

nIlb∑
i=1

(zlbi − ¯zlbi)
2

with

zlbi = nIlb
ωlbi

(
C∗

lbi − R̂ m
(A)
lbi

)
·
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4.4.3 Jackknife Estimates

Finding the required formula for variance estimators can become exceedingly tedious as the

sampling design becomes more complex. Jackknife estimates offer an alternative that work

with the relatively more simple formulation of R̂ which can be expressed as

R̂a =

nL∑
l=1

nB∑
b=1

nI∑
i=1

C∗
albiWalbi

nL∑
l=1

nB∑
b=1

nI∑
i=1

m∗
albiWalbi

where weights Walbi are formed using the sample inclusion probabilities. If sampling at all

stages is done using equal probabilities, then R̂ is further simplified with cancelation of the

Walbi.

To form the jackknife estimates for R̂ in a multistage design, estimates using the reduced-

by-one sample are made only at the primary level of sampling. That is, for the three–stage

design being considered, for any stratum estimates R̂∗
−l for l = 1, . . . , nL are constructed

using Equation 4.1 and the sampled data each with Launch l and its levels of Blocks and

episodes removed. The jackknife estimate for each stratum is then formed as

V̂ arJ

(
R̂
)

=
nL− 1

nL

nL∑

l=1

(
R̂∗

−l −
¯̂∗
R
)2

· (4.9)

In general, jackknife estimates work well for continuous functions of means and, therefore,

it can be expected that jackknifing will work well for R̂. Another “rule of thumb” is that

good results can be expected if a Taylor approximation also works well. Because the formula

variance estimator uses a Taylor approximation, similar results might be expected for both

methods. Note that small values of m
(A)
albi can cause problems in both R̂∗

−l and the formula

variance estimator. Referring to simple sampling designs and citing work by J.N.K. Rao,

Sukhatme et. al. (1984) notes that a general conclusion is that the jackknife estimator
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tends to overestimate, while the usual formula estimator for a ratio estimator tends to

underestimate. It was also noted that further work was necessary before any final conclusions

could be made.

4.4.4 Design Variations

The above approach to finding an estimator for R and its variance remains the same whether

the sampling plan changes by varying the number of stages or the method of selecting

sampling units at each stage. Three methods of unit selection at the final stage of sampling

that are likely to arise in practice, however, are worthy of comment.

Select Units With Equal Probability. Inclusion probabilities ωlbi now become nIlb/NI lb

for all episodes within a given Launch and Block combination. As a result, all 1/ωlbi factor

outside their summations as NI lb/nIlb.

Select All Units. All nIlb terms now become NI lb so that quantities such as
nIlb∑
i=1

1
ωlbi

C∗
lbi

are replaced with
NIlb∑
i=1

C∗
lbi. The finite population correction factors are also dropped from

the variance formulae at the episode or interview level.

Bernoulli Sampling. At some interview sites, the anticipated number of fishers might

exceed the manpower available to accommodate them. Bernoulli sampling, in which sample

inclusion is determined according to a pre-chosen probability as episodes are encountered,

offers a means of reducing the number of interviews to be taken, while preserving unbiased-

ness since interviews are randomly selected from across the full Block time. With this type

of sampling, the inclusion probabilities ωlbi now equal ωlb for all episodes, while the sample

size nIlb becomes random. With a target sample size of n and using ωlb = n/NI lb, the
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unbiased ratio estimator is the same as that for selection with equal probability (Särndal,

1992). The variance, however, must include an extra factor to account for the randomness

of nIlb so that given Launch and Block, the form in the estimator for the variance of R̂ is

now

(
NI lb − n

NI lb

)(
1

nI lb

)(
nI lb − 1

nI lb

)
1

nI lb − 1

nIlb∑

i=1

(zlbi − ¯zlbi)
2

where

zlbi = nIlb·NIlb
n

(
C∗

lbi − R̂ m
(A)
lbi

)
·

4.5 The Variance of Catch

It has been assumed that aerial counts are made accurately. Thus, with Ĉ =
∑
a
R̂aN

(O)
a

and independence amongst strata,

V ar
(
Ĉ
)

=
∑

a

(
N (O)

a

)2
V ar

(
R̂a

)
(4.10)

where, for any stratum a, V ar
(
R̂a

)
is found as the sum of Equations 4.3, 4.5 and 4.7. An

estimate is found using the sum of Equations 4.4, 4.6 and 4.8.

If there is variability in N (O), then, provided that there is an unbiased estimate of N (O)

and an estimate of its variance, the variance of the catch estimator is found as

V̂ ar
(
Ĉ
)

= V̂ ar
(
N̂ (O)

)(
R̂
)2

+ V̂ ar
(
R̂
)(

N̂ (O)
)2

− V̂ ar
(
N̂ (O)

)
V̂ ar

(
R̂
)

(Goodman, 1960).
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4.6 Simulation Results

In general, an estimator performs best when the sampling effort is concentrated where the

variability is greatest. To assess the performance of R̂ and its variance estimator, simulations

were made using four variability scenarios, each with a different catch rate for Launch site,

interview Block and Episode. Combinations of high (H = 75%) and low (L = 25%)

sampling rates applied to each scenario could then be used to compare effectiveness of

various sampling strategies. For this purpose, a single fishing day lasting from 5:00 until

21:00 was used. Overflight counts were scheduled at 8:00, 13:00, and 16:00.

The test population was constructed by first generating a total of 2,670 episodes, ranging

in length from 1.5 to 10 hours for 20 launch sites. The distribution of these episode lengths

is given in Figure 4.1. These were then randomly placed over the fishing day according to a
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Figure 4.1: Simulated Data: Distribution of episode lengths for each scenario (total
count=2,670).
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fishing preference curve with a major peak at 7:00 and a lesser peak at 19:30 (Figure 4.2).

This resulted in the effort profile shown in Figure 4.3 and determined into which interview

Relative Preference
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Figure 4.2: Simulated Data: Fishing Time Preference Curve.

block an episode would fall (i.e. episode end time) and, together with its start time, whether

or not, if sampled, it would be included in a particular overflight count. Block times were

defined as Block I from 5:00 to 8:59; Block II from 9:00 to 12:59; Block III from 13:00 to

16:59; and Block IV from 17:00 to 21:00. Table 4.1 summarizes the generation and placement

of episodes. This “shell” was then replicated to form the basis for the four scenarios for a

total of 10,680 episodes.

Catch was assumed to be a homogeneous Poisson process for each episode but with

different catch rates, depending on the scenario. For Scenario I all the variability was put

in the episodes. Each episode had a catch rate randomly chosen between 1.5 and 2.5 fish
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Table 4.1: Simulated data: Episode counts for each scenario.

Total By Length (hrs) By Block
Launch Episodes 0 to 3 3 to 6 6 to 16 1 2 3 4

1 180 24 126 30 13 64 54 49
2 165 21 111 33 8 55 42 60
3 150 27 99 24 7 61 46 36
4 135 27 87 21 9 55 38 33
5 135 27 87 21 8 60 31 36
6 120 21 75 24 10 58 26 26
7 120 21 75 24 8 54 32 26
8 120 21 75 24 7 43 40 30
9 105 21 63 21 15 45 24 21
10 105 21 63 21 9 42 27 27
11 180 24 126 30 12 78 53 37
12 165 21 111 33 10 70 54 31
13 150 27 99 24 7 54 43 46
14 135 27 87 21 12 60 33 30
15 135 27 87 21 13 58 33 31
16 120 21 75 24 9 47 38 26
17 120 21 75 24 11 52 31 26
18 120 21 75 24 9 43 24 44
19 105 21 63 21 10 37 35 23
20 105 21 63 21 6 47 25 27

2,670 462 1,722 486 193 1,083 729 665
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Effort Profile
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Figure 4.3: Simulated Data: Effort profile for each scenario.

per hour. For Scenario II the variability was restricted to among Blocks i.e. a time of day

catch rate. While an episode was active during Block I times, it was given a catch rate of

2.0 fish per hour; while active during Block II times, it was given a catch rate of 1.5 fish

per hour; while active during Block III times, it was given a catch rate of 1.0 fish per hour;

and while active during Block IV times, it was given a catch rate of 0.5 fish per hour. For

Scenario III the variability was restricted to among Launches i.e. a location catch rate. If

an episode was in either Launch 1, 2, 11, or 12, it was given a catch rate of 2.0; if in Launch

2, 4, 5, 13, 14, or 15, it was given a catch rate of 1.5; if in Launch 6, 7, 8, 16, 17, or 18, it

was given a catch rate of 1.0; and if in Launch 9, 10, 19, or 20, it was given a catch rate of

0.5. For Scenario IV the variability was present at both the Block and the Launch levels.

Catch rates were again 2.0, 1.5, 1.0, or 0.5 for Block I to IV, respectively, but now with an
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an augmentation depending on Launch. These were an additional rate of 1.5 for Launches

1, 2, 11, or 12; an additional rate of 1.0 for Launches 3, 4, 5, 13, 14, or 15; an additional rate

of 0.5 for Launches 6, 7, 8, 16, 17, or 18; and 0.0 additional rate for Launches 9, 10, 19, or

20. A total of 70,591 catches were generated. A Tabulation by Scenario and Block of catch

is given in Table 4.2. Block I episodes could be active only during Block I times, however,

Table 4.2: Simulated data: Population catch by scenario.

Scenario I Scenario II Scenario III Scenario IV

Block 1 Episodes 193 193 193 193
R 4.5403 6.9435 4.6774 9.0968
Catch 563 861 580 1,128

Block 2 Episodes 1,083 1,083 1,083 1,083
R 6.4889 8.8746 6.5650 12.4302
Catch 5,535 7,570 5,600 10,603

Block 3 Episodes 729 729 729 729
R 4.5756 5.1197 4.8067 7.9286
Catch 4,356 4,874 4,576 7,548

Block 4 Episodes 665 665 665 665
R 6.4448 4.6205 6.6096 8.4479
Catch 4,144 2,971 4,250 5,432

Total Episodes 2,670 2,670 2,670 2,670
R 5.6757 6.3281 5.8344 9.6077
Catch 14,598 16,276 15,006 24,711

Block II episodes could be active during both Block I and Block II times. Similarly, Block

III and Block IV episodes could be active during preceding block times. Also catch rates
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vary by time of day (i.e. across Blocks) for Scenarios II and IV. These factors are reflected

in the differing values of catch. For any scenario, the overflight counts are 124, 853, 952, and

643 for Blocks I, II, III, and IV respectively. Since R is a ratio estimator, it can be expected

that in general, estimates produced from scenarios making greater use of the auxiliary data,

and for which there is less variability in catch between episodes, should have greater success.

Plots of episode catch versus number of overflight surveys, in which the episode was counted,

indicate linear patterns with positive slopes (Figure 4.4). While not through the origin, it is
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Figure 4.4: Simulated Data: Fish caught by number of times counted in the overflight
surveys. (Lines connect means of catch in each group.)

still felt that overflight counts should be useful auxiliary information for a ratio estimator.

For initial selection, Launches 1 and 11 had a 0.0675 probability of selection; Launches

2 and 12, a 0.0625 probability; Launches 3 and 13, a 0.0550 probability; Launches 4, 5, 14,

and 15, a 0.0500 probability; and Launches 9, 10, 19, and 20, a 0.0400 probability. Block
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I was selected with probability 0.10; Block II with probability 0.40; and Blocks III and IV

with probability 0.25. For any Launch-Block combination, episodes were selected with equal

probability. For each combination of high and low sampling rate on Launch, Block, and

Episode, 500 replicated simulations were conducted. Sample selection was done without

replacement using sample inclusion probabilities based on these initial selection probabil-

ities, however, the sample inclusion probabilities τl, πlb, and ωlbi used in the estimation

formulae were approximated by these selection probabilities multiplied by sample size. This

approximation was done to test the robustness of the estimators, in particular, in a scenario

similar to that of the Georgia Strait Creel Study. See Appendix C for more exact results

based on proper estimates of τl, πlb and ωlbi.

The performance of R̂ is given in Table 4.3. As expected, precision is dependent on

sampling rates and placement of variation within the multistage structure. Inherent to

ratio estimators, R̂ shows negative bias (Cochran, 1977), that, with few exceptions does not

exceed 5 %. A trend of increasing bias (more noticeable at lower levels of sampling) can

be seen moving from Scenario I to Scenario III. This reflects the structure of Equation 4.1

where an inaccurate result at the “inner” (i.e. Episode) level has a greater expansion than

one at the “outer” (i.e. Launch) level. Scenario IV has amplified variability at all levels

and generally shows the greatest amount of bias.

The performance of the variance estimators are given in Table 4.4. Predictably, the

V ars(R̂) variance estimates, calculated using R̂ from the 500 simulated samples, varied ac-

cording to scenario (i.e. variability at the different sampling stages) and sampling intensity.

The formula variance estimator, V̂ ar(R̂), based on the conservative Brewer-Hanif approxi-

mation, tends to overestimate the variance. In general, the jackknife estimator, V̂ arJ(R̂),
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Table 4.3: Simulated data: Performance of the R̂ estimator for differing sampling rates on
Launch Site, Interview Blocks and fishing Episodes (L=25%; H=75%). Catch rates vary by
Episode in Scenario I, vary by Block in Scenario II, vary by Launch in Scenario III and vary
by Block and Launch in Scenario IV. (500 replicated simulations.)

Sampling Percentages Scenario Scenario Scenario Scenario
nL nB nI I II III IV

R (population) 5.676 6.328 5.834 9.608

L L L Means(R̂) 5.672 6.216 5.711 9.452
Bias (%) -0.1 -1.8 -2.1 -1.6
c.v. (%) 8.0 8.9 17.5 10.8

L L H Means(R̂) 5.646 6.120 5.715 9.455
Bias (%) -0.5 -3.3 -2.0 -1.6
c.v. (%) 5.8 7.1 16.6 9.8

L H L Means(R̂) 5.608 6.040 5.688 9.242
Bias (%) -1.2 -4.6 -2.5 -3.8
c.v. (%) 5.8 5.9 15.8 9.8

L H H Means(R̂) 5.575 6.050 5.690 9.222
Bias (%) -1.8 -4.4 -2.5 -4.0
c.v. (%) 3.6 3.7 15.1 8.8

H L L Means(R̂) 5.614 6.212 5.598 9.281
Bias (%) -1.1 -1.8 -4.0 -3.4
c.v. (%) 4.6 5.0 7.0 4.8

H L H Means(R̂) 5.621 6.222 5.583 9.279
Bias (%) -1.0 -1.7 -4.3 -3.4
c.v. (%) 3.3 4.1 6.4 4.0

H H L Means(R̂) 5.566 6.081 5.564 9.120
Bias (%) -1.9 -3.9 -4.6 -5.1
c.v. (%) 3.3 3.4 6.3 4.0

H H H Means(R̂) 5.564 6.077 5.550 9.118
Bias (%) -2.0 -4.0 -4.9 -5.1
c.v. (%) 1.9 2.3 5.6 3.2
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Table 4.4: Simulated data: Comparison of variance and variance estimates of R̂ for differing
sampling rates on Launch Site, Interview Blocks and fishing Episodes (L=25%; H=75%).
Vs(R̂) denotes the variance of the simulated R̂ values, V̂ (R̂) the mean of formula estimates
and V̂j(R̂) the mean of jackknife estimates (without a finite population correction factor).
Catch rates vary by Episode in Scenario I, vary by Block in Scenario II, vary by Launch in
Scenario III and vary by Block and Launch in Scenario IV. (500 replicated simulations.)

Sampling Percentages Scenario Scenario Scenario Scenario
nL nB nI I II III IV

L L L Vs(R̂) 0.204 0.307 0.998 1.051

V̂ (R̂)/Vs(R̂) 2.18 2.18 1.16 1.63

V̂J(R̂)/Vs(R̂) 1.15 1.02 1.23 1.30

L L H Vs(R̂) 0.108 0.190 0.896 0.865

V̂ (R̂)/Vs(R̂) 1.79 2.24 1.05 1.42

V̂J(R̂)/Vs(R̂) 1.06 1.07 1.26 1.54

L H L Vs(R̂) 0.105 0.127 0.812 0.819

V̂ (R̂)/Vs(R̂) 2.10 2.19 1.21 1.31

V̂J(R̂)/Vs(R̂) 1.10 1.10 1.42 1.28

L H H Vs(R̂) 0.040 0.050 0.737 0.666

V̂ (R̂)/Vs(R̂) 1.90 2.64 1.15 1.17

V̂J(R̂)/Vs(R̂) 1.25 1.30 1.47 1.33

H L L Vs(R̂) 0.066 0.098 0.155 0.199

V̂ (R̂)/Vs(R̂) 1.59 1.74 1.23 1.67

V̂J(R̂)/Vs(R̂) 1.06 1.04 2.70 2.14

H L H Vs(R̂) 0.034 0.066 0.126 0.140

V̂ (R̂)/Vs(R̂) 1.32 1.65 1.06 1.55

V̂J(R̂)/Vs(R̂) 1.09 0.98 3.05 2.60

H H L Vs(R̂) 0.033 0.044 0.123 0.134

V̂ (R̂)/Vs(R̂) 1.64 1.59 1.10 1.34

V̂J(R̂)/Vs(R̂) 1.18 1.05 3.02 2.51

H H H Vs(R̂) 0.011 0.019 0.096 0.087

V̂ (R̂)/Vs(R̂) 1.64 1.79 1.06 1.30

V̂J(R̂)/Vs(R̂) 1.36 1.16 3.63 3.34
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performed better than V̂ ar(R̂) when variability was confined to the fishing episodes (Sce-

nario I) or to time of day (Scenario II) where its better performance was more noticeable at

the lower sampling rates. When variability was confined to area (Scenario III), the formula

estimator performed better, particularly with higher sampling rates amongst landing sites.

With variability at all levels (Scenario IV), formula estimates generally performed better

than jackknife estimates. A more uniform performance throughout was given by the jack-

knife estimator. One reason for this is its avoidance of estimating the individual variance

components, given in Equation 4.2, which require values for quantities such as s2
z which, in

turn, use quantities such as zlbi = 1
ωlbi

(
C∗

lbi − R̂ m
(A)
lbi

)
. With small sample sizes, relatively

large variations in the m
(A)
lbi are possible resulting in extremes in zlbi and the associated vari-

ance components. The larger variances occurring with the high sampling rates of Launches

in Scenarios III and IV can be explained by the lack of a finite population correction factor.

Table 4.3 also shows an increase in bias accompanying an increase in sampling rate. This

can be explained by the method of calculating the inclusion probabilities. As constructed,

they tend to N × {initial probability of selection} as sample size increases which fails to

adjust for the probability of other units already selected. Thus, when sample size reaches

N , individual units will not necessarily have inclusion probabilities (i.e. weights) equal to

1.0. Then quantities such as Total Catch 6=
N∑
j
Cj. Variance estimates are also affected by

these incorrect inclusion probabilities. See Appendix C.

4.7 The Georgia Strait Creel Survey

Commercial, Native, and Recreational fishers from both Canada and the United States de-

pend on fish stocks of the Georgia Strait, a region in excess of 5,900 km2 of water surface
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and 2,400 km of shoreline located between Vancouver Island and the west coast of Canada.

In 1980 the Department of Fisheries and Oceans (DFO) piloted its Strait of Georgia Creel

Survey program for the sports fishery sector. The region under study is divided into nine

areas from which data are collected using two complemented surveys: an access survey in-

terviewing boaters on completion of their outings and an aerial program providing counts of

boats actively fishing. The initial objective was to provide “accurate and timely sport catch

statistics primarily for chinook and coho”. Over the years the study has remained relatively

unchanged in design but has been expanded to include all species including ground and shell

fish, and other monitoring programs (Shardlow and Collicutt, 1989). The 1998, July and

August data for this ongoing study were used to illustrate the proposed methodology.

Stratification for the access survey is done over month, area, day type (i.e. week-

end/holiday versus weekday) and guided versus unguided anglers. Using a multistage design

on selected days, interviews are conducted on completion of boat-trips within selected shifts

(i.e. “interview work blocks”) at selected launching sites within each area.

“In each region, various landing sites were chosen as location for surveyors to

conduct interviews. Site selection was based on 4 criteria: representativeness,

traffic volume, site accessibility and adequate observation points. Discussions

with local fishers, marina operators and Fisheries Officers and data from previous

surveys were used to choose sites that were representative of local sport fishing

activity (i.e. sites which were used by a wide cross-section of anglers). Sites

with expected traffic volumes of more than 15 boats per day in the summer were

considered as possible sampling locations. Expected traffic volumes for sites

were compiled from previous surveys or from discussions with marina operators
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or local Fisheries Officers.

Site accessibility refers to whether an interviewer can easily reach a site by

car or ferry during the defined shift hours. Only sites with good accessibility

were selected. As a result, landing sites on most of the islands in the Strait of

Georgia were excluded from the survey. This was not expected to be a major

factor, however, since most of the fishing that occurs in these areas is from

boats launching from an accessible site. The final criterion, adequate observation

points, was essential for interviewers to obtain an accurate count of all boats

returning to a landing site. At some large marinas, where the number of access

points made it impossible to see all boats returning, the facility was defined as

two separate sites.

Allocation of sampling effort among months followed the same general pattern

as fishing effort, that is, more effort was allocated during the summer when

fishing effort is at its highest. Allocation of sampling effort among regions ...

also followed fishing effort patterns. Within each month, each chosen site was

allocated between 6 and 10 shifts. These shifts were divided equally among

weekend and mid-week days and early and late daily time periods. (Hardie et.

al., 1999).”

For every interview, the date, area, landing site, and hour of trip completion (and hence

shift) are recorded. If it is determined that the purpose of the boat-trip was fishing, then the

interview continued, recording the length of time fished (and hence start time). In addition,

if the trip was successful, information on effort, catch, release, and other data of interest by

species at the sub-area level is also recorded.
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Overflight counts were conducted using one fixed wing aircraft. Routing and time of

departure were selected to maximize the count of active fishing episodes over the entire

study region.

“Aerial surveys, conducted from airplanes travelling along pre-defined routes,

allowed observers to count vessels actively sport fishing throughout the Strait of

Georgia. Planes flew at an altitude of 150-210 m to facilitate a broad range of

vision and still allow easy identification of vessel characteristics. ...

The flight path and time of departure were designed to cover major concentra-

tions of sport fishing activity at peak periods. To maximise precision, flying

times during which fishing effort was rapidly changing were avoided. The num-

ber of overflights each month was governed by budget constraints, targets of

desired precision and by the expected number of interviews from a given num-

ber of sampling shifts (English et. al. 1986). The days for overflights during a

month were randomly selected for each day type. (Hardie et. al., 1999).”

These two components are then used to form a ratio estimator for catch.

“These data are used to calculate catch per boat trip for a catch region (CPE)

and the proportion of the days total fishing effort that occurred in a given hour

of the day (P ).

The proportion of daily boat trips fishing at various times during the day, the

activity pattern, is formed using the relationship:

Pi =

∑NS
j

∑NB
k FT ijk ·Wjk∑NS

j

∑NB
k (

∑
i FT ijk) ·Wjk
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where

Pi = proportion of daily fishing trips that included fishing

time block i [“Fishing Time Block - There are 16

one hour fishing time blocks in each day.”],

FT ijk = number of fishing trips that included fishing time block

i that landed at site j during interview work block k

[“Interview Work Block - There are four four-hour

interview work blocks in each day.”],

Wjk = a weighting factor which adjusts interview data for

sampling effort both within and between work blocks.

(i.e., if 10% of the morning work blocks in a month were

worked and 50% of the boats landing were interviewed

the weight factor would be 20.),

NS = number of landing sites sampled,

NB = number of interview work blocks (normally 4 per day).

Aerial surveys are conducted so observers can count all the sports boats (Y ) ac-

tively fishing [defined as stationary or with only moderate bow wave] in specified

sub-regions of Georgia Strait at the time of the survey. The above data can be

combined to estimate catch and effort by statistical area and month:

EFFORT = Y ·
1

P

CATCH = Y ·
1

P
· CPE

... The means and standard deviations of catch per effort ... were calculated
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... Variances of the means were calculated using the following standard variance

formula:

S2
x̄ =

∑
x2 −

(
�

x)
2

n

n(n− 1)

where x is the unweighted catch by statistical area, month, method [e.g. bait

versus lure] and species for each interview and n is the number of interviews in

each category (English et. al., 1986).”

Notwithstanding a compromise of randomization in the access survey, the structure of

the Strait of Georgia Creel Survey resembles that of Section 4.3. However, to apply the

proposed methods, some adaptations were necessary. In particular, the proposed method

requires that, with each interview session, a sample can be selected such that at least one

episode is counted in an overflight survey. With interview sessions occurring on days with

no overflight, this was not the case in the DFO survey. However, since overflights were

flown at regularly scheduled times, it was possible to extend the days of operation of the

overflight schedule to include all days with interview sessions using the means of actual entry

times into the subareas by day type. Counts for these additional overflights were imputed

based on the means of actual counts using same area and day type combinations. Note

that variability is now introduced into N (O) by this estimation, however, in the analysis, no

account was made for this extra variability.

With this extended overflight schedule it was then possible to view a month as a “single

fishing day” with multiple overflights, and the design as multistage with boat interview

within day-shift (defined as block) within landing site within area. Taken this way, stratifi-

cation over day type was implicit.
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Non-response was relatively low (1.5% in July). A random number and proportions by

area, day type, landing site and shift were used to impute the fishing status of boaters that

refused to be interviewed. Similar categorizing was used to determine δ status and number

of fish caught on these boat trips.

Increasingly, site and shift selection has been based on an objective of maximizing in-

terview counts rather than random selection. Accordingly, inclusion probabilities were ap-

proximated by observed frequency of occurrence. Thus, for a given block (i.e. day-shift)

in July, the inclusion probability was taken to be the proportion of times that shift was

actually selected within its area divided by 31. Boat interviews were taken to have equal

probabilities and it was assumed that all potential interviews within a selected block were

conducted.

Table 4.5 gives the July 1998 Chinook salmon catch estimates and their standard errors

for each of the nine areas and the regional total using the proposed methodology, and

compares these with the regional estimate given in the DFO study (Hardie et. al., 1999).

This was also done using equal probabilities for site and block selection. Table 4.6 provides

the same sets of comparisons for August 1998 Chinook catch, while Tables 4.7 and 4.8

provide July and August comparisons for Rockfish catch.

It was expected that regional DFO estimates and those made using the proposed meth-

ods would have been similar. Lack of randomness in the access survey makes it difficult to

establish a claim as to which estimate might be more accurate, however, apparent discrep-

ancies in documentation point to some potential theoretical difficulties. For example note

that for time block t in a fishing day with T time blocks, each one hour long, and assuming
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Table 4.5: Georgia Strait Creel Survey: Comparison of July 1998 Chinook catch estimates
using various methods of analysis with estimates made by DFO. The first comparison ap-
plies the proposed multistage technique using unequal site and block selection probabilities
based on observed frequencies while the second uses equal selection probabilities. The third
comparison assumes a simple random sample of interviews.

Unequal Equal Random
Probabilities Probabilities Sample

Area Est s.e. Est s.e. Est s.e.

13 1,256 609 1,314 671 1,228 209
14 170 121 159 111 179 49
15∗ 0 0 0 0 0 0
16 232 254 224 250 216 104
17 125 89 125 89 127 34
18 23 38 23 38 25 29
19 1,010 331 1,009 332 991 174
28 166 123 163 119 122 47
29 4 7 11 12 35 21

Total Region 2,986 764 3,029 812 2,922 303

DFO Total Region 4,143 1,150 4,143 1,150 4,143 1,150

∗ No catch was recorded by interviewers in Area 15.
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Table 4.6: Georgia Strait Creel Survey: Comparison of August 1998 Chinook catch esti-
mates using various methods of analysis with estimates made by DFO. The first comparison
applies the proposed multistage technique using unequal site and block selection probabili-
ties based on observed frequencies while the second uses equal selection probabilities. The
third comparison assumes a simple random sample of interviews.

Unequal Equal Random
Probabilities Probabilities Sample

Area Est s.e. Est s.e. Est s.e.

13 1,023 347 1,039 340 1,072 167
14 695 469 798 587 853 138
15 65 94 62 93 37 35
16 168 201 203 230 267 154
17 205 128 207 123 270 64
18 190 98 190 98 218 61
19 1,547 352 1,571 370 1,588 201
28 33 56 33 56 38 38
29 50 39 45 36 41 16

Total Region 3,977 738 4,148 829 4,382 349

DFO Total Region 7,163 1,721 7,163 1,721 7,163 1,721
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Table 4.7: Georgia Strait Creel Survey: Comparison of July 1998 Rockfish catch estimates
using various methods of analysis with estimates made by DFO. The first comparison ap-
plies the proposed multistage technique using unequal site and block selection probabilities
based on observed frequencies while the second uses equal selection probabilities. The third
comparison assumes a simple random sample of interviews.

Unequal Equal Random
Probabilities Probabilities Sample

Area Est s.e. Est s.e. Est s.e.

13 851 826 827 795 737 276
14 286 242 252 197 284 86
15∗ 61 2,689 65 3,911 78 67
16 642 511 621 490 592 272
17 291 211 291 211 296 86
18 815 798 815 798 844 462
19 2,392 1,323 2,422 1,347 2,489 650
28 429 580 396 572 471 280
29 9 14 25 26 18 5

Total Region 5,774 3,316 5,713 4,362 5,808 940

DFO Total Region 19,163 5,044 19,163 5,044 19,163 5,044

∗ No overflight counts were made in Area 15. To avoid division by 0,
a default of 1 was used.
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Table 4.8: Georgia Strait Creel Survey: Comparison of August 1998 Rockfish catch esti-
mates using various methods of analysis with estimates made by DFO. The first comparison
applies the proposed multistage technique using unequal site and block selection probabili-
ties based on observed frequencies while the second uses equal selection probabilities. The
third comparison assumes a simple random sample of interviews.

Unequal Equal Random
Probabilities Probabilities Sample

Area Est s.e. Est s.e. Est s.e.

13 955 854 960 810 982 316
14 122 93 143 106 156 62
15∗ 0 0 0 0 0 0
16 893 728 854 670 713 345
17 324 206 322 198 259 69
18 123 96 123 96 117 45
19 1,886 1,005 1,959 1,039 2,095 467
28 623 642 623 642 682 443
29∗ 0 0 0 0 0 0

Total Region 4,926 1,656 4,984 1,631 5,003 803

DFO Total Region 21,571 5,377 21,571 5,377 21,571 5,377

∗ No catch was recorded by interviewers in Areas 15 and 29.
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that all episodes are sampled (i.e. weighting factors are equal to 1)

Pt =
nt

T∑
t=1

nt

=
nt

T · E [nt]
=

nt

N∑
j=1

L∗
j

where L∗
j is the length of time fished by the j th episode. Then

EFFORT = Yt ·
1

Pt
=
Yt

nt

N∑

j=1

L∗
j

where Yt /nt is a sample-to-population expansion factor and EFFORT is a measure with

units “fishing hours”. However, CPE is measured in catch per boat, and consequently

CATCH = Yt ·
1
Pt

· CPE would tend to overestimate the catch by a factor approximately

equal to the average fishing duration in hours.

Note that if “fishing hours” were used to measure effort, then effort profiles must be

constructed for each species for which estimates are to be made. This could prove difficult

and even beyond the capability of the data for specified accuracy requirements.

Alternatively, disregard the formula and take Pi to be “the proportion of daily fishing

trips that include time block i”, then, if Y is the count of boats actively fishing at time block

i, Y · (1/P ) will estimate the number of boats actively fishing that day and Y · (1/P ) ·CPE

is an estimate of catch for the day. Concern now centres around the weights Wjk which

scales the number of boats that fished to the number of boats that landed. Also, for this

method of catch estimation, overflight counts must be made for each day. This was not the

case but, assuming imputations, no methodology was given.

Further investigation has shown that DFO imputations were performed with correct

understanding of the underlying theory. However, details of the programming were not

available. Work is currently underway to discover the cause of the discrepancy between the

two methods.
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Table 4.9: Georgia Strait Creel Survey: Components of variance analysis 1998 for selected
months and species.

Variance Component (Percentage)

Stratum Site Block Interview

Chinook Jul 0.1 2.4 8.7 88.8
Aug 0.1 3.2 3.8 92.9

Rockfish Jul 0.3 0.1 7.2 92.4
Aug 1.7 0.6 9.9 87.8

A variance component decomposition (Table 4.9) showed that most of the variation

occurred at the episode level with little contribution from stratum, site, or block. The third

set of estimates on Tables 4.5, 4.6, 4.7, and 4.8 were derived by ignoring the site and

block stage of the design and treating the interviews, that had been selected within each

stratum by day type, as a simple random sample. The methods of Chapter 3 can then be

used. Accordingly,

Ĉ =
n∑

i=1

C∗
i ·

N (O)

N (A)

with

V̂ar
(
Ĉ
)

=
n

f̂

(
1

f̂
− 1

)
s2z

where
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s2z = 1
n−1

n∑
i=1

(zi)
2 using zi = C∗

i −

n�

i=1
C∗

i

N(A) ·m
(A)
i and

f̂ = N(A)

N(O)

was used to construct the estimates.

For this approach to be appropriate, it is necessary to assume that there is similarity in

catch rates and fishing patterns from day to day in mornings versus afternoons. Then, with

an approximately even split on morning versus afternoon shifts, it might be argued that the

set of interviews actually sampled could have been realized using a simple random sample

and the estimator Ĉ = N
n∑

i=1
C∗

i

/
n, the usual estimate for population total in a simple

random sample (Cochran, 1977), should be used. But, since f̂ = N (A)/N (O) ≈ n/N , the

estimator actually used becomes Ĉ =
n∑

i=1
C∗

i · N (O)/N (A) ≈ N
n∑

i=1
C∗

i /n. Therefore, since

the catch rate and fishing pattern assumptions seem reasonable, it is not surprising that

estimates of catch by area are similar to those made using the full multistage structure.

Variance estimates may not be exact because of the lack of full randomization, however,

results indicate that there is little difference if the data is analyzed as a multistage or as a

simple random sample. This is not surprising given the components of variance (Table 4.9).

Also, simulations (Table 4.4, Scenario I) have shown that when the variability is strictly

among Episodes, the variance estimator for the proposed method can be expected to work

reasonably well. (Jackknife estimators can also be expected to work well.) It is interesting

to note that the coefficient of variation for the DFO estimate, using a variance estimator

that ignores the ratio aspects of their catch estimator, is similar to that for the proposed

methods (but not the analysis done as a simple random sample).
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The components of variance clearly show that the greatest source of variance is between

interviews and correspondingly, a best survey design should allocate most of the resources

and effort to obtaining a large random sample of interviews. Concern about variability

between blocks should be a distant second, however a strategy is less clear. Recall that

block is actually day-shift and a large portion of the block variability may lie in only one

of these components, i.e. among days or amongst shifts. Intuitively, a broad sample over

both would seem appropriate. It is also appealing, though not indicated by the components

analysis, that sampling be done over sites to some extent. The need to measure over area

might well be only for administrative or reporting purposes.

The requirement of a minimum value for counts in the access survey is highlighted in

Table 4.7. For Area 15, extreme variance estimates are generated by the leverage in small

values of m(A). To avoid division by zero within the estimator, a minimum default value

of one was used. Results should be monitored for such occurrences where one remedy is to

collapse strata.

Sample inclusion probabilities for launch and block were calculated as the product of

relative frequency of actual selection and sample size. With these frequencies nearly uniform,

effects of this choice of inclusion probability on catch estimates were minor. In addition,

because all boat trips were sampled, inclusion probabilities were not an issue with interviews

and overall error was minimal, as seen if estimates in the unequal and equal probability

columns in Tables 4.5 to 4.8 are compared. Also, since most of the variability was among

interviews, there was little effect on variance estimates.

In applying the proposed estimator to the Georgia Strait Creel Survey data a number

of issues, specific to the application and general in nature, were encountered.
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1. The access survey must be completely randomized. With lack of randomization in the

overflight survey, this is essential. Any compromise is a potential source of bias and

destroys the defensibility of the estimates. This is true no matter how the data are

analyzed.

2. The population of boats counted by the overflight surveys should be the same popu-

lation that uses the landing site, and all landing sites should have positive probability

of being selected. It is of little consequence if boats in this population actually fish. If

not, a zero catch is assigned and there is no modification to the estimators.

3. It is of vital concern that it be known whether or not an interviewed boat was counted

by an overflight survey. To this end, any combination of two of start time, end time or

time fished should be recorded. This includes non-fishing interviews if they are part

of the population of overflight counts. When start times for flights through subareas

are separated by enough time to invalidate an “instantaneous” count using a single

area time, care should be taken to accommodate this on the interview.

4. Overflight counts are useful only if some of the boats will be interviewed. Without

a “match” to an interview session, such counts only serve to arbitrarily inflate N (O),

and correspondingly Ĉ. Data obtained from overflights in areas on days with no

interviewing should, therefore, be discarded. Also, if there is not at least one interview

with δ = 1 (i.e. indicator for being counted), the estimator for R involves division by

0 and breaks down. To achieve this, overflights may have to be scheduled daily. Recall

that in the analysis, block = day–shift was introduced, as was an extended overflight

schedule. This arrangement preserved the multistage design by keeping blocks within
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landing sites and, by now having 31 overflights in the single month-long fishing day, at

least one interview from any block had δ = 1. Note that if “extending” the schedule

is done in practice, variability in N (O) is introduced which should be dealt with (not

done in the above analysis). Catch is now the product of two unbiased, independent

estimators (Goodman, 1960).

5. When landing sites service significant numbers of boats fishing in waters outside their

area, the strict nesting required of a multistage design is violated. These sites might be

considered an augmentation to the list of sites for the fished areas. Their interviews

could then be included with the others of the area if an appropriate probability of

selection were constructed. If so, some means of sorting out overflight counts would

also be required. If these issues could not be resolved or a workable interviewing

protocol devised, then combining areas might have to be considered.

4.8 Conclusions and Discussion

When catch estimation using complemented angler surveys with restricted randomization is

embedded in a complex survey design, the estimator developed in Chapter 3, Ĉ = R̂ ·N (O),

must be adjusted accordingly. In simple sampling designs, R̂ is the ratio of the raw sample

catch to the raw overflight count in the sample. In this way the sample catch is “ratioed” up

to the population level. In complex designs, R̂ becomes the ratio of an estimated population

catch to an estimated population overflight count. The catch estimate made using the access

survey is adjusted according to how well the expansion “factor” used to expand the sample

catch performs in expanding the sample overflight counts to population overflight counts.

That is, the auxiliary information is used to refine the expansion of the catch to population
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estimate. The catch estimate must be able to stand alone. This is the reason, if results are

to be defensible, that the access survey must be fully randomized.

One of the advantages of the proposed methodology is that the overflight surveys need

not restrict their counts to boats which produce the catch that is to be estimated. The only

requirement is that the population being counted must also be the population that is subject

to possible interview. Boats with activity other than fishing or even fishing but targeting a

species that is not of interest are merely assigned a catch of zero with no modification to the

methodology. This eliminates the difficulties associated with selective counting and complex

structuring of specific effort profiles. Such profiles add additional variability and because

they combine results from both the overflight and access surveys, can present difficulties with

theoretical aspects such as finding expected values of estimators (essential in determining

an appropriate estimator, see for example Pollock et. al., 1997) and constructing variance

formulae. Notice that while true effort curves are essential in the more standard techniques,

exact measures of effort on the target species and issues of independence of effort between

species are not a concern in the proposed methodology.

A requirement of the proposed methodology is that at least one of the sampled boat

trips be active during an overflight count. Because small sample counts have high leverage,

larger counts are desirable and overflights should be scheduled, if feasible, to result in high

counts in any possible access sample. This goal of high counts complements tolerance in the

overflight counting of boats other than those fishing the targeted species.

In general, the formula variance of the proposed methodology is conservative owing

to its construction based on the Brewer-Hanif approximation. Also, it may be tedious to

develop. For scenarios for which a components of variance analysis shows that the variability
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is confined to the lower levels of the sampling structure, as with the Georgia Strait Creel

Survey, a jackknife estimator seems to work well as an alternative.

It is not known whether the results produced by methods involving restricted random-

ization in the overflight survey are, in general, better than those with randomization in

both the access and overflight surveys using the more usual Ĉ = ̂CPUE · Ê estimator. With

the assumptions required for estimating catch rate generally less restrictive than those for

estimating catch, given a simple effort profile, the latter is likely the method of choice, how-

ever, this is a matter of further research. Another area requiring further research is that

relating to a minimum acceptable value for
nIalb∑
i=1

m
(A)
albi, or equivalently, a sufficient size for

the total of all counts made by all overflight surveys of episodes selected for sample. Also

requiring further research is sensitivity to incorrect inclusion probabilities. Preliminary re-

sults appear to show that the “näive” approach to forming inclusion probabilities, by using

a simple product of initial selection probability and sample size, may be acceptable if the

initial selection probabilities are not too different from 1/N .

Because implementation of the DFO estimator requires, as a minimum, full randomiza-

tion of the access survey, their estimates may not be unbiased, however, the magnitude of

the difference in these estimates from those obtained using the proposed methods remains

disturbing. One explanation could be use of overall rather than species specific effort pro-

files. As a first step in rationalizing the difference, it is proposed that a sample, or series

of samples, from the simulation data (for which there is a known population catch) be run

through the DFO programs and the programs for the proposed estimator.
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Chapter 5

Summary and Future Research

Over the years, complemented surveys with catch estimation based on Effort × CPUE

has been one of the most widely used techniques in creel survey work. Under standard

conditions where simple catch rate assumptions and simple access or roving sampling designs

suffice, underlying theory is well developed (Pollock et al., 1994) and clear guidelines for the

appropriate choice of estimators have been outlined (Pollock et al., 1997). This thesis has

extended the theory to include other conditions which are apt to occur in many applications.

For applications in which it is reasonable to assume that the catch rate of each fishing

episode declines (the standard assumption is a constant catch rate over the entire duration of

each episode), Chapter 2 proposes an alternative catch estimator and a method of estimating

its variance.

• Future research. Consider other catch rate models e.g. a non-homogeneous Poisson

process. To be suitable for a live bait fishery, the decline in catch rate might more

suitably be based on time fished. Also, a model involving more parameters might

more aptly describe data patterns (Figure 2.3).

145
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The variance of R̂, the catch rate estimator (Equation 2.3), involves the expectation

of the reciprocals of Lj and L2
j (i.e. time to interview of sampled episodes) and as such,

does not exist unless bounded from zero. Also, with the possibility of small Lj , V̂ ar(R̂) is

extremely unstable. One method to deal with this problem is use of L′, a minimum time

to interview required for sample inclusion of the selected episodes (a technique also used by

Hoenig et al., 1997 and Pollock et al., 1997). It was shown (Table 2.3) that variance does

become more stable as L′ increases, however, it was seen (and shown analytically) that a

bias induced in R̂ also increases as L′ increases.

• Future research. Investigate an optimal value of L′ and the conditions that deter-

mine this value.

For estimators to be unbiased, the starting time of the roving survey must be randomly

determined in such a way that all times in the full fishing day have a positive probability of

being included. In some applications it may be a practical necessity to restrict the window

of opportunity for the roving survey. Such restrictions result in episodes overlapping the

limits of the window and, in general, lower estimates of catch rate.

• Future research. Investigate correction procedures for window restrictions. One

consideration is a restricted window that is not symmetric with respect to the effort

profile i.e. an irregular fishing preference profile or restrictions such that the window

is situated nearer one end of the fishing day.

• Future research. Investigate the effects of fishing episodes overlapping the current

fishing day e.g. a gill net fishery in which nets may soak from one day into the next.

• Future research. Develop appropriate methods for night versus day fisheries.
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In Chapter 3, methods were developed for applications in which randomization of the

effort survey is not possible or practical. Ratio type estimators were developed for use

with both access and roving ground surveys for estimating CPUE. For roving surveys it

was assumed that fishers could accurately estimate the end time of their fishing episodes.

Consequently, in the development of estimators, L∗
i was used in place of the usual estimator,

2Li. Single as well as multiple overflight counts were considered and the question of how

best to use this auxiliary data (i.e. ratios of means or mean of ratios) was examined. A

homogeneous Poisson process was used to model a constant catch rate.

• Future research. Investigate the relative advantages of using L∗
i estimates provided

by interviewed fishers in place of the more conventional 2Li estimator in roving survey

estimation. Of interest are the potential gains in precision and the effects of recall

bias.

• Future research. Investigate the appropriate value for an L′, a minimum time to

interview for sample inclusion in roving surveys.

• Future research. Consider the use of an overall catch rate λ, so that completed

episode catch C∗
i can be estimated as λL∗

i where L∗
i is the estimate provided by

the ith fisher. Estimates and associated variance estimates would then be developed

conditional on λ. The parameter λ also requires estimation, as does a component of

extra variation due to its estimation which must be added to the variance estimate.

Also examine the use of λ with 2Li.

• Future research. Consider non–constant alternatives for the homogeneous Poisson

model for catch rate in roving surveys.



CHAPTER 5. SUMMARY AND FUTURE RESEARCH 148

• Future research. Investigate optimal allocation of resources. These should address

the number and times of overflights as well as the trade-offs between optimizing the

ground CPUE survey versus the overflight effort survey(s).

• Future research. Investigate the relative merits of the proposed methodology with

those based on fully randomized effort and CPUE surveys.

Chapter 4 illustrates how the results of Chapter 3 (i.e. methods for restricted random-

ization in the effort survey) can be applied when the ground survey for estimating CPUE

is complex and of the access variety. In particular, formulae were developed for a three–

stage design and it was shown how construction of the estimator for variance follows its

decomposition. For generality, results were developed assuming unequal probabilities of

selection.

Sample inclusion probabilities for unequal initial selection probabilities are, in general,

not a straightforward calculation. With equal initial selection probabilities, i.e. 1/N , the

sample inclusion probabilities are simply n/N . For unequal, but approximately equal initial

selection probabilities, multiplication by n may still produce acceptable results for some

range of sampling intensity. Opting for such an estimation is likely in practice and was

incorporated in the simulation testing.

• Future research. Investigate the effects of using n× {initial selection probabili-

ties} as the sample inclusion probabilities in unequal probability sampling. Alterna-

tive methods for estimating selection probabilities should also be investigated. These

should be examined in conjunction with the amount of bias they introduce and an

acceptable range of sampling intensity.
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• Future research. Explore methods to determine optimal allocation of resources with

respect to sampling intensities at the various levels of the access structure and number

and timings of overflight surveys.

• Future research. Determine minimal acceptable values for the number of overflight

counts made on the sampled episodes, i.e. for
nIalb∑
i=1

m
(A)
albi. Because this quantity is found

in the denominator of R̂ and its variance, small values can have powerful leverage.

• Future research. Investigate the relative merits of the proposed methodology with

those based on fully randomized effort and CPUE access surveys.

• Future research. Investigate the use of regression estimators in place of ratio esti-

mators. Note that Table 4.4 suggests that, while catch does appear to increase linearly

with the number of times counted in the overflight surveys, the relationship may not

be linear through the origin.

Issues related to survey design offer numerous opportunities for future research. An

obvious extension to this thesis, but with fewer opportunities for application, is roving

surveys in complex designs. Less obvious might be applications to aquatic catch other than

fish e.g. shell fish. Here the units observed in overflight may differ from those sampled by the

ground survey e.g. parties versus individuals. Perhaps creel methods can have non-aquatic

applications. Large scale and small scale surveys have their own particular sets of problems

each requiring separate solutions. Also, the recent developments in bus route surveys to

estimate catch may have triggered a shift away from the traditional use of aerial surveys.

Creel surveys, with their focus on catch, are only one aspect of the more encompassing

activity of angler surveys. Fisheries are multi–million dollar resources involving political,
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economic, social, and environmental issues and fisheries management has come to involve

more than inventory management of fish stocks. Surveys will be required to provide the nec-

essary information about angler needs and habits, and the socioeconomic and demographic

trends that affect the fisheries. Work on bringing the collection of this type of data together

with the more traditional creel survey task of collecting biological information and catch

has only just begun.



Appendix A

Catch Distributions for the Markov

Model

This appendix outlines the derivation of a number of results that follow from modelling

catch rate as the continuous time Markov process given by

λk = λ

(
1 −

k

N

)
; k = 0, 1, ..., N

where

λk is the occurrence rate of an event after k occurrences,

λ is the initial occurrence rate, and

N is the maximum possible number of occurrences.

The pmf for the number of occurrences at time t from such a model is given by the

probability that the process takes on the value n at time t, or notationally,

Pn (t) = Pn (X(t) = n) .

151
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To simplify notation when finding an expression for this probability, reparameterize the

model as λk = λ′ (N − k) and use λ for λ′. Finding the expression for this probability then

follows from a solution to

Pn (t) = Pn (X(t) = n |X(0) = 0)

= λ0 · ... · λn−1

[
B0,ne

−λ0t +B1,ne
−λ1t + ...+Bn,ne

−λnt
]

for n > 1

where the components are given as follows:

λ0 = N λ = Nλ

λ1 = [N − 1] λ = Nλ− λ

...
...

λi−1 = [N − (i− 1)] λ = Nλ− iλ+ λ

λi = [N − i] λ = Nλ− iλ

λi+1 = [N − (i+ 1)] λ = Nλ− iλ− λ

...
...

λN−1 = [N − (N − 1)] λ = λ

λN = [N −N ] λ = 0

and
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Bi,n =
1

(λ0 − λi) (λ1 − λi) · ... · (λi−1 − λi)

×
1

(λi+1 − λi) (λi+2 − λi) · ... · (λn − λi)

=
1

[(Nλ) − (Nλ− iλ)][(Nλ − λ) − (Nλ− iλ)] · ... · [(Nλ− iλ+ λ) − (Nλ− iλ)]

×
1

[(Nλ− iλ− λ) − (Nλ− iλ)] · ... · [(Nλ− nλ) − (Nλ− iλ)]

=
1

[iλ][(i − 1)λ] · ... · [λ][−λ][−2λ] · ... · [−(n− i)λ]
·

Therefore,

Pn (t) = {λ0 · λ1 · ... · λn−2 · λn−1}

×

{
e−λ0t

[−λ][−2λ] · ... · [−nλ]

+
e−λ1t

[λ][−λ][−2λ] · ... · [−(n− 1)λ]

+
e−λ2t

[2λ][λ][−λ][−2λ] · ... · [−(n− 2)λ]

...

+
e−λn−1t

[(n− 1)λ][(n− 2)λ] · ... · [λ][−λ]

+
e−λnt

[nλ][(n− 1)λ] · ... · [2λ][λ]

}
·
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Expressing λi in terms of λ and factoring 1
λ and e−Nλt from each term then gives

Pn (t) = {Nλ · [N − 1]λ · [N − 2]λ · ... · [N − n]λ} e−Nλt

×

{
1

λ

1

[−1][−2] · ... · [−n]

+
1

λ

eλt

[1][−1][−2] · ... · [−(n− 1)]

+
1

λ

e2λt

[2][1][−1][−2] · ... · [−(n− 2)]

...

+
1

λ

e(n−1)λt

[n− 1][n− 2] · ... · [1][−1]

+
1

λ

enλt

[n][n− 1] · ... · [2][1]

}
·

Finally, cancelling the free λ’s and extracting 1
n ! from each term and combining with the

first factor, Pn (t) can be written as

Pn (t) =
N !

(N − n) ! n !
e−Nλt

×

{
eλt[n−n]

0 ! n !

±
eλt[n−(n−1)]

1 ! (n− 1) !

±
eλt[n−(n−2)]

2 ! (n− 2) !

...

±
eλt[n−1]

(n− 1) ! 1 !

±
eλt[n−0]

n ! 0 !

}
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=
N !

(N − n) ! n !
e−Nλt

n∑

i=0




n

i


 (−1)i

(
eλt
)n−i

which, by the binomial theorem, can be written as

Pn (t) =
N !

(N − n) ! n !
e−Nλt

(
eλt − 1

)n

=




N

n



(
e−λt

)N(
eλt − 1

)n
(
e−λt

)n

(e−λt)
n

=




N

n



(
e−λt

)N(
eλt − 1

)−n[(
eλt − 1

)(
e−λt

)]n

=




N

n



(
e−λt

)N−n(
1 − e−λt

)n
·

Thus, expressed in the original parameterization,

Pn (t) =
N !

(N − n) ! n !

(
1 − e−

λt
N

)n(
e−

λt
N

)N−n

which is seen to be binomial in
(
1 − e−

λt
N

)
and N .

By modelling the catch rate as this continuous time Markov process and using the

original parameterization, it has been shown that for any fishing episode, the pmf for C(l),

the catch at a given time l, is binomial i.e.

P (C (l)) =




C0

C (l)



(
1 − e

− λl
C0

)C(l)(
e
− λl

C0

)C0−C(l)

·

It then follows immediately that for catch at times Lj and L∗
j ,

P (Cj |Lj , δ = 1) =




C0

Cj



(

1 − e
−

λLj
C0

)Cj
(
e
−

λLj
C0

)C0−Cj



APPENDIX A. CATCH DISTRIBUTIONS FOR THE MARKOV MODEL 156

and

P
(
C∗

j

∣∣L∗
j , δ = 1

)
=




C0

C∗
j



(

1 − e
−

λL∗

j
C0

)C∗

j
(
e
−

λL∗

j
C0

)C0−C∗

j

·

To find the probability that catch equals C∗
j at time L∗

j given that a catch of Cj < C∗
j has

been realized at time Lj < L∗
j requires an adjustment to account for the non-randomness

in the time and catch that have already occurred. The pmf at time L∗
j remains binomial,

but only after the first Cj catches and after time Lj. Effectively, the randomness is C0 −Cj

possible values of catch for the variable C∗
j − Cj. The initial catch rate, λ, is accordingly

modified as λ(L∗
j −Lj) rather than remaining as the λL∗

j that would have been used in the

unconditioned case. This results in

P
(
C∗

j

∣∣Cj, Lj , L
∗
j , δ = 1

)
=




C0 − Cj

C∗
j −Cj



(

1 − e
−

λ(L∗

j −Lj)
C0

)C∗

j −Cj
(
e
−

λ(L∗

j −Lj)
C0

)C0−C∗

j

·

This result can also be derived directly by using a continuous time Markov process where

again λk = λ
(
1 − k

C0

)
but now for k = Cj , Cj + 1, ... , C0.

Finally, observe that

P
(
Cj |Lj , C

∗
j , L

∗
j , δ = 1

)
=
P
(
C∗

j

∣∣∣Cj, Lj , L
∗
j , δ = 1

)
P (Cj|Lj, δ = 1)

P
(
C∗

j

∣∣∣L∗
j , δ = 1

) ·

Using the previous results and simplifying the components,




C0 − Cj

C∗
j − Cj







C0

Cj







C0

C∗
j




=




C∗
j

Cj



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and, with the aid of a symbolic computational package such as Maple,

(
1 − e

−
λ(L∗

j −Lj)
C0

)C∗

j −Cj
(
e
−

λ(L∗

j −Lj)
C0

)C0−C∗

j(
1 − e

−
λLj
C0

)Cj
(
e
−

λLj
C0

)C0−Cj

(
1 − e

−
λL∗

j
C0

)C∗

j −Cj
(
e
−

λL∗

j
C0

)C0−C∗

j

=


1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0




Cj

e

−
λLj
C0 − e

−
λL∗

j
C0

1 − e
−

λL∗

j
C0




C∗

j −Cj

=


1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0




Cj

1 −

1 − e
−

λLj
C0

1 − e
−

λL∗

j
C0




C∗

j −Cj

·

Combining,

P
(
Cj|Lj, C

∗
j , L

∗
j , δ = 1

)
=




C∗
j

Cj





1 − e

−
λLj
C0

1 − e
−

λL∗

j
C0




Cj

1 −

1 − e
−

λLj
C0

1 − e
−

λL∗

j
C0




which is seen to be binomial in C∗
j and

(
1 − e

−
λLj
C0

)/(
1 − e

−
λL∗

j
C0

)
.



Appendix B

Results for the Markov Model as

C0 → ∞

This appendix outlines how, when N → ∞, the continuous time Markov process considered

in appendix A approaches a homogeneous Poisson process and also develops some of the

basic results that follow as an immediate consequence of using these processes to model

catch rate.

In appendix A was shown that, under the original parameterization,

Pn (t) =
N !

(N − n) ! n !

(
1 − e−

λt
N

)n(
e−

λt
N

)N−n
·

Let θ = E[n] = N
(
1 − e−

λt
N

)
. It is well known that for a binomial distribution, the

limiting distribution when N → ∞ in such a way that θ remains constant is a Poisson

distribution in θ. To show that θ = λt when N → ∞, write

θ = N
(
e−

λt
N

)

=
1 − e−

λt
N

N−1
·
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Applying l’Hopital’s rule gives

θ = lim
N→∞

N
(
1 − e−

λt
N

)

= lim
N→∞

d
dN

(
1 − e−

λt
N

)

d
dNN

−1

=
lim

N→∞
− λte−

λt
N N−2

lim
N→∞

−N−2

= λt

where λ is interpreted as a rate or intensity.

From the above it can be seen that, in the limit as C0 → ∞, modelling the catch rate as

a continuous time Markov process results in a homogeneous Poisson process with parameter

λ. It is also clear that the initial catch rate used in the Markov process is the same rate

used in the Poisson process where the pmf of catch at time l is now given by

P (C (l)) =
(λl)C(l)e−λl

C (l) !
·

It immediately follows that

P (Cj |Lj , δ = 1) =
(λLj)

Cje−λLj

Cj !

P
(
C∗

j

∣∣L∗
j , δ = 1

)
=

(
λL∗

j

)C∗

j
e−λL∗

j

C∗
j !

and

P
(
C∗

j

∣∣Cj , Lj , L
∗
j , δ = 1

)
=

[
λ
(
L∗

j − Lj

)]C∗

j −Cj

e−λ(L∗

j−Lj)

(
C∗

j − Cj

)
!

·
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The above can be used to derive

P
(
Cj|Lj , C

∗
j , L

∗
j , δ = 1

)
=

P
(
Cj ∩ C

∗
j

)

P
(
C∗

j

)

=
P
(
C∗

j

∣∣∣Cj, Lj , L
∗
j , δ = 1

)
P (Cj |Lj , δ = 1)

P
(
C∗

j

∣∣∣L∗
j , δ = 1

) ·

Substituting,

P
(
Cj|Lj, C

∗
j , L

∗
j , δ = 1

)
=

[λ(L∗

j−Lj)]
C∗

j −Cj e
−λ(L∗

j −Lj)

(C∗

j −Cj) !
·

(λLj)
Cj e−λLj

Cj !

(λL∗

j )
C∗

j e
−λL∗

j

C∗

j !

=
C∗

j !(
C∗

j − Cj

)
!Cj !

·

(
L∗

j − Lj

)C∗

j −Cj

L
Cj

j

L∗
j
C∗

j

=




C∗
j

Cj



(
Lj

L∗
j

)Cj
(

1 −
Lj

L∗
j

)C∗

j −Cj

i.e. binomial in
(

Lj

L∗

j

)
and C∗

j .



Appendix C

Approximating the True Inclusion

Probabilities

This appendix outlines a defensible method of approximating sample inclusion probabilities

using unequal initial selection probabilities. Results are developed for τl and πlb, i.e. inclu-

sion probabilities for Launch and Block respectively. Because Episodes are selected as a

simple random sample with equal initial selection probability, their inclusion probabilities

have been correctly calculated as initial selection probability × sample size = n/N .

For any particular sampling unit, calculation of its inclusion probability in a sample of

size n with unequal initial selection probabilities pj for j = 1, . . . , N sampling units involves

summing all




N − 1

n− 1


 possible samples that contain that unit. The probability of each of

these samples is the sum of the probabilities of each of their n! permutations. To illustrate

the calculation required for each permutation, consider a sample of size n = 3 where units
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1, 3, and 7 with respective initial probabilities p1, p3, and p7 have been selected. Then

p〈1,3,7〉 = p1 ·
p3

1 − p1
·

p7

1 − (p1 + p3)
·

A method of approximating the inclusion probability for any unit is then to randomly

generate m such permutations and average the resulting permutation probabilities. This

average is then expanded by




N − 1

n− 1


n!

Table C.1 demonstrates the error in using n× initial selection probability for Block.

Note that for sample size n = 3, π2 > 1. With N = 4, it is possible to perform the 192

Table C.1: Block inclusion probabilities: Estimates (initial selection probabilities × sample
size).

Sample Unit Inclusion Probabilities
Size π1 π2 π3 π4

N∑
j=1

πj

1 0.10 0.40 0.25 0.25 1
2 0.20 0.80 0.50 0.50 2
3 0.30 1.20 0.75 0.75 3
4 0.40 1.60 1.00 1.00 4

calculations required to construct Table C.2, the table of correct inclusion probabilities for all

possible sample sizes. Tables C.3, C.4, and C.5 use the proposed method to approximate

the inclusion probabilities and show the usefulness of increasing the number of random

permutations.
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Table C.2: Block inclusion probabilities: Exact values.

Sample Unit Inclusion Probabilities
Size π1 π2 π3 π4

N∑
j=1

πj

1 0.1000000 0.4000000 0.2500000 0.2500000 1
2 0.2333333 0.7111111 0.5277778 0.5277778 2
3 0.4380952 0.9196581 0.8211233 0.8211233 3
4 1.0000000 1.0000000 1.0000000 1.0000000 4

Table C.3: Block inclusion probabilities: Approximation (based on samples of size m=30).

Sample Unit Inclusion Probabilities
Size π1 π2 π3 π4

N∑
j=1

πj

1 0.1000000 0.4000000 0.2500000 0.2500000 1.000000
2 0.2433333 0.6755556 0.4633333 0.6111111 1.993333
3 0.4638462 0.8777289 0.9997436 0.7294505 3.070769
4 0.9568742 1.0334554 0.9418803 1.0832723 4.015482
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Table C.4: Block inclusion probabilities: Approximation (based on samples of size m=100).

Sample Unit Inclusion Probabilities
Size π1 π2 π3 π4

N∑
j=1

πj

1 0.1000000 0.4000000 0.2500000 0.2500000 1.000000
2 0.2346667 0.6966667 0.5190000 0.5270000 1.977333
3 0.4531648 0.9258901 0.7315495 0.7970989 2.907703
4 0.9039707 0.9798535 0.8469158 0.9770989 3.707839

Table C.5: Block inclusion probabilities: Approximation (based on samples of size m=500).

Sample Unit Inclusion Probabilities
Size π1 π2 π3 π4

N∑
j=1

πj

1 0.1000000 0.4000000 0.2500000 0.2500000 1.000000
2 0.2315333 0.7284000 0.5114667 0.4966667 1.968067
3 0.4565670 0.8602286 0.8088352 0.8051165 2.930747
4 0.9957158 0.9985729 0.9892806 0.9818784 3.965448
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Inclusion probabilities for Launch using the simplistic approach are given in Tables C.6

to C.9. Results using the proposed technique are given in Tables C.10 to C.13.

Table C.6: Launch inclusion probabilities Part I: Estimates (initial selection probabilities ×
sample size).

Sample Unit Inclusion Probabilities
Size τ1 τ2 τ3 τ4 τ5

1 0.0675 0.0625 0.0550 0.0500 0.0500
2 0.1350 0.1250 0.1100 0.1000 0.1000
3 0.2025 0.1875 0.1650 0.1500 0.1500
4 0.2700 0.2500 0.2200 0.2000 0.2000
5 0.3375 0.3125 0.2750 0.2500 0.2500
6 0.4050 0.3750 0.3300 0.3000 0.3000
7 0.4725 0.4375 0.3850 0.3500 0.3500
8 0.5400 0.5000 0.4400 0.4000 0.4000
9 0.6075 0.5625 0.4950 0.4500 0.4500
10 0.6750 0.6250 0.5500 0.5000 0.5000
11 0.7425 0.6875 0.6050 0.5500 0.5500
12 0.8100 0.7500 0.6600 0.6000 0.6000
13 0.8775 0.8125 0.7150 0.6500 0.6500
14 0.9450 0.8750 0.7700 0.7000 0.7000
15 1.0125 0.9375 0.8250 0.7500 0.7500
16 1.0800 1.0000 0.8800 0.8000 0.8000
17 1.1475 1.0625 0.9350 0.8500 0.8500
18 1.2150 1.1250 0.9900 0.9000 0.9000
19 1.2825 1.1875 1.0450 0.9500 0.9500
20 1.3500 1.2500 1.1000 1.0000 1.0000
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Table C.7: Launch inclusion probabilities Part II: Estimates (initial selection probabilities
× sample size).

Sample Unit Inclusion Probabilities
Size τ6 τ7 τ8 τ9 τ10

1 0.0450 0.0450 0.0450 0.0400 0.0400
2 0.0900 0.0900 0.0900 0.0800 0.0800
3 0.1350 0.1350 0.1350 0.1200 0.1200
4 0.1800 0.1800 0.1800 0.1600 0.1600
5 0.2250 0.2250 0.2250 0.2000 0.2000
6 0.2700 0.2700 0.2700 0.2400 0.2400
7 0.3150 0.3150 0.3150 0.2800 0.2800
8 0.3600 0.3600 0.3600 0.3200 0.3200
9 0.4050 0.4050 0.4050 0.3600 0.3600
10 0.4500 0.4500 0.4500 0.4000 0.4000
11 0.4950 0.4950 0.4950 0.4400 0.4400
12 0.5400 0.5400 0.5400 0.4800 0.4800
13 0.5850 0.5850 0.5850 0.5200 0.5200
14 0.6300 0.6300 0.6300 0.5600 0.5600
15 0.6750 0.6750 0.6750 0.6000 0.6000
16 0.7200 0.7200 0.7200 0.6400 0.6400
17 0.7650 0.7650 0.7650 0.6800 0.6800
18 0.8100 0.8100 0.8100 0.7200 0.7200
19 0.8550 0.8550 0.8550 0.7600 0.7600
20 0.9000 0.9000 0.9000 0.8000 0.8000
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Table C.8: Launch inclusion probabilities Part III: Estimates (initial selection probabilities
× sample size).

Sample Unit Inclusion Probabilities
Size τ11 τ12 τ13 τ14 τ15

1 0.0675 0.0625 0.0550 0.0500 0.0500
2 0.1350 0.1250 0.1100 0.1000 0.1000
3 0.2025 0.1875 0.1650 0.1500 0.1500
4 0.2700 0.2500 0.2200 0.2000 0.2000
5 0.3375 0.3125 0.2750 0.2500 0.2500
6 0.4050 0.3750 0.3300 0.3000 0.3000
7 0.4725 0.4375 0.3850 0.3500 0.3500
8 0.5400 0.5000 0.4400 0.4000 0.4000
9 0.6075 0.5625 0.4950 0.4500 0.4500
10 0.6750 0.6250 0.5500 0.5000 0.5000
11 0.7425 0.6875 0.6050 0.5500 0.5500
12 0.8100 0.7500 0.6600 0.6000 0.6000
13 0.8775 0.8125 0.7150 0.6500 0.6500
14 0.9450 0.8750 0.7700 0.7000 0.7000
15 1.0125 0.9375 0.8250 0.7500 0.7500
16 1.0800 1.0000 0.8800 0.8000 0.8000
17 1.1475 1.0625 0.9350 0.8500 0.8500
18 1.2150 1.1250 0.9900 0.9000 0.9000
19 1.2825 1.1875 1.0450 0.9500 0.9500
20 1.3500 1.2500 1.1000 1.0000 1.0000
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Table C.9: Launch inclusion probabilities Part IV: Estimates (initial selection probabilities
× sample size).

Sample Unit Inclusion Probabilities

Size τ16 τ17 τ18 τ19 τ20
N∑
j
τj=1

1 0.0450 0.0450 0.0450 0.0400 0.0400 1.0
2 0.0900 0.0900 0.0900 0.0800 0.0800 2.0
3 0.1350 0.1350 0.1350 0.1200 0.1200 3.0
4 0.1800 0.1800 0.1800 0.1600 0.1600 4.0
5 0.2250 0.2250 0.2250 0.2000 0.2000 5.0
6 0.2700 0.2700 0.2700 0.2400 0.2400 6.0
7 0.3150 0.3150 0.3150 0.2800 0.2800 7.0
8 0.3600 0.3600 0.3600 0.3200 0.3200 8.0
9 0.4050 0.4050 0.4050 0.3600 0.3600 9.0
10 0.4500 0.4500 0.4500 0.4000 0.4000 10.0
11 0.4950 0.4950 0.4950 0.4400 0.4400 11.0
12 0.5400 0.5400 0.5400 0.4800 0.4800 12.0
13 0.5850 0.5850 0.5850 0.5200 0.5200 13.0
14 0.6300 0.6300 0.6300 0.5600 0.5600 14.0
15 0.6750 0.6750 0.6750 0.6000 0.6000 15.0
16 0.7200 0.7200 0.7200 0.6400 0.6400 16.0
17 0.7650 0.7650 0.7650 0.6800 0.6800 17.0
18 0.8100 0.8100 0.8100 0.7200 0.7200 18.0
19 0.8550 0.8550 0.8550 0.7600 0.7600 19.0
20 0.9000 0.9000 0.9000 0.8000 0.8000 20.0
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Table C.10: Launch inclusion probabilities Part I: Approximation (based on samples of size
m=500).

Sample Unit Inclusion Probabilities
Size τ1 τ2 τ3 τ4 τ5

1 0.0675000 0.0625000 0.0550000 0.05000000 0.05000000
2 0.1346493 0.1245176 0.1108029 0.09924387 0.09954335
3 0.1959769 0.1867371 0.1646648 0.14953696 0.14752081
4 0.2629198 0.2477580 0.2195224 0.20332355 0.20578856
5 0.3281954 0.3029183 0.2758950 0.25374610 0.24875815
6 0.3774486 0.3585680 0.3305658 0.30049576 0.30450734
7 0.4469081 0.4242398 0.3728706 0.36017878 0.35386192
8 0.4949651 0.4821595 0.4243410 0.40456261 0.40499865
9 0.5374499 0.5365399 0.4833915 0.45603660 0.46324712
10 0.6302676 0.5858602 0.5292155 0.49630734 0.50641742
11 0.6743451 0.6210828 0.5774209 0.57557255 0.57415287
12 0.7170988 0.6994098 0.6255683 0.58059688 0.61646668
13 0.7532376 0.7117767 0.6592466 0.65449762 0.65597756
14 0.8033414 0.7922664 0.7235615 0.71114748 0.68715393
15 0.8419091 0.8264320 0.7688638 0.71986671 0.70427442
16 0.9003853 0.8477645 0.8214963 0.78716461 0.78504976
17 0.8860276 0.9426887 0.9142763 0.84977488 0.86629850
18 0.9691974 0.9318554 0.9581405 0.91463731 0.90258405
19 0.9719204 0.9798450 0.9606950 0.94445742 0.95093686
20 1.0176409 1.0527602 1.0106806 1.00291996 0.94037269
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Table C.11: Launch inclusion probabilities Part II: Approximation (based on samples of size
m=500).

Sample Unit Inclusion Probabilities
Size τ6 τ7 τ8 τ9 τ10

1 0.0450000 0.0450000 0.04500000 0.04000000 0.04000000
2 0.0896518 0.0901465 0.08984819 0.08034797 0.07962864
3 0.1361961 0.1359559 0.13730069 0.12065753 0.12206792
4 0.1788189 0.1816934 0.18005582 0.15578200 0.16324841
5 0.2292446 0.2276714 0.22277442 0.20875861 0.20422774
6 0.2841982 0.2713462 0.27923416 0.24986449 0.24535700
7 0.3261092 0.3240168 0.31479728 0.28735546 0.30211323
8 0.3718857 0.3756389 0.36357195 0.33879679 0.32501651
9 0.4181641 0.4215374 0.42099432 0.37718203 0.38261930
10 0.4572962 0.4702630 0.45951477 0.42274847 0.42771507
11 0.5263391 0.5164458 0.53805328 0.46323904 0.46623802
12 0.5441679 0.5418895 0.56574482 0.53326098 0.52796854
13 0.6300473 0.6207567 0.62245582 0.58285258 0.61280555
14 0.6629983 0.6422980 0.67195800 0.62779072 0.63428308
15 0.7566360 0.7622972 0.70130597 0.63953448 0.66705342
16 0.7546106 0.7561330 0.78718814 0.75343682 0.72780452
17 0.8477016 0.8404843 0.82744326 0.81279276 0.80036706
18 0.8651557 0.8697812 0.91472182 0.84988022 0.91895031
19 0.8949400 0.9900792 0.87945584 0.92385089 0.94470532
20 0.9814962 1.0215923 0.99404229 0.97488078 1.01319523
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Table C.12: Launch inclusion probabilities Part III: Approximation (based on samples of
size m=500).

Sample Unit Inclusion Probabilities
Size τ11 τ12 τ13 τ14 τ15

1 0.0675000 0.0625000 0.0550000 0.05000000 0.0500000
2 0.1329987 0.1242675 0.1105155 0.09982692 0.1005485
3 0.1993074 0.1879401 0.1656474 0.14953166 0.1501808
4 0.2629347 0.2529937 0.2236341 0.20213867 0.2031855
5 0.3205978 0.2888352 0.2693552 0.24436359 0.2508030
6 0.3832685 0.3559710 0.3305106 0.30571411 0.3062322
7 0.4414147 0.4312900 0.3812751 0.35168300 0.3531653
8 0.5027901 0.4746572 0.4492888 0.41322801 0.4147091
9 0.5442168 0.5364258 0.4991249 0.45025113 0.4233271
10 0.6189088 0.5847700 0.5435932 0.51515792 0.5080231
11 0.6417237 0.6556217 0.5970652 0.55032574 0.5463011
12 0.7209494 0.7077335 0.6423451 0.59841360 0.6036795
13 0.7629902 0.7299963 0.6955751 0.68777631 0.6365514
14 0.7966527 0.7363406 0.7674146 0.68362148 0.7171547
15 0.8708451 0.8576469 0.7759921 0.74617133 0.7486741
16 0.8988033 0.9028806 0.8152420 0.79337823 0.8146582
17 0.9172304 0.9185908 0.8714121 0.86684129 0.8489400
18 0.9497322 0.9196450 0.9332090 0.93641358 0.9009972
19 1.0012602 1.0359072 0.9085764 0.94310995 0.9612150
20 0.9852716 1.0173743 0.9865965 0.98229742 1.0114769
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Table C.13: Launch inclusion probabilities Part IV: Approximation (based on samples of
size m=500).

Sample Unit Inclusion Probabilities

Size τ16 τ17 τ18 τ19 τ20
N∑
j
τj=1

1 0.04500000 0.04500000 0.04500000 0.04000000 0.04000000 1.0000
2 0.09090157 0.09102988 0.09012941 0.08037868 0.08014218 1.9992
3 0.13695313 0.13484320 0.13835225 0.12345900 0.12208495 3.0049
4 0.18116614 0.18377876 0.18433681 0.16534431 0.16191717 4.0203
5 0.23164525 0.23825735 0.22926204 0.20369743 0.20328612 4.9823
6 0.27855694 0.27047779 0.27527685 0.25064024 0.24721538 6.0054
7 0.31424076 0.31900970 0.31484456 0.29386346 0.29306868 7.0063
8 0.36737707 0.36937764 0.36852207 0.34281330 0.32719904 8.0159
9 0.41803170 0.41488454 0.41028914 0.38234167 0.36554519 8.9416
10 0.48303003 0.45977287 0.46296382 0.42968171 0.42158397 10.0131
11 0.50797904 0.52587655 0.50280402 0.48547239 0.47359236 11.0197
12 0.58926059 0.57894483 0.58301270 0.49685986 0.50528354 11.9787
13 0.64112348 0.60683516 0.62402958 0.56787504 0.58018614 13.0366
14 0.68837489 0.67111492 0.67728493 0.64718778 0.62312858 13.9651
15 0.72596764 0.71171117 0.72996601 0.66488326 0.69167439 14.9117
16 0.76260520 0.80841871 0.76243165 0.73650549 0.73000351 15.9460
17 0.80554324 0.77724962 0.79269985 0.83473967 0.77721580 16.9983
18 0.91131142 0.91465121 0.86978748 0.86249195 0.84173711 18.1349
19 0.88679060 0.86514645 0.93206295 0.88093604 0.94168881 18.7976
20 0.95082976 1.00817357 1.01828613 1.02841223 0.99777377 19.9961

Simulations were rerun using results of the proposed methodology. Table C.14 is a

revised Table 4.3 while Table C.15 gives revised results for Table 4.4.
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Table C.14: Simulated data: Performance of the R̂ estimator for differing sampling rates
on Launch Site, Interview Blocks and fishing Episodes (L=25%; H=75%). Catch rates vary
by Episode in Scenario I, vary by Block in Scenario II, vary by Launch in Scenario III and
vary by Block and Launch in Scenario IV. (500 replicated simulations.)

Sampling Percentages Scenario Scenario Scenario Scenario
nL nB nI I II III IV

R (population) 5.676 6.328 5.834 9.608

L L L Means(R̂) 5.678 6.273 5.856 9.451
Bias (%) +0.0 -0.9 +0.4 -1.7
c.v. (%) 7.8 9.0 17.8 11.2

L L H Means(R̂) 5.682 6.271 5.852 9.452
Bias (%) +0.1 -0.9 +0.3 -1.7
c.v. (%) 5.7 7.6 16.4 10.4

L H L Means(R̂) 5.661 6.265 5.809 9.513
Bias (%) -0.3 -1.0 -0.4 -1.0
c.v. (%) 5.7 6.3 17.1 9.4

L H H Means(R̂) 5.648 6.261 5.792 9.484
Bias (%) -0.5 -1.1 -0.7 -1.3
c.v. (%) 3.7 4.7 16.2 8.6

H L L Means(R̂) 5.644 6.298 5.704 9.402
Bias (%) -0.6 -0.5 -2.3 -2.2
c.v. (%) 5.6 6.7 10.2 7.3

H L H Means(R̂) 5.654 6.268 5.691 9.444
Bias (%) -0.4 -1.0 -2.5 -1.7
c.v. (%) 3.2 4.2 6.2 4.3

H H L Means(R̂) 5.650 6.283 5.708 9.448
Bias (%) -0.5 -0.7 -2.2 -1.7
c.v. (%) 3.3 3.3 6.2 4.1

H H H Means(R̂) 5.645 6.281 5.710 9.448
Bias (%) -0.6 -0.8 -2.2 -1.7
c.v. (%) 1.9 2.5 5.6 3.6
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Table C.15: Simulated data: Comparison of variance and variance estimates of R̂ for differ-
ing sampling rates on Launch Site, Interview Blocks and fishing Episodes (L=25%; H=75%).
Vs(R̂) denotes the variance of the simulated R̂ values, V̂ (R̂) the mean of formula estimates
and V̂j(R̂) the mean of jackknife estimates (without a finite population correction factor).
Catch rates vary by Episode in Scenario I, vary by Block in Scenario II, vary by Launch in
Scenario III and vary by Block and Launch in Scenario IV. (500 replicated simulations.)

Sampling Percentages Scenario Scenario Scenario Scenario
nL nB nI I II III IV

L L L Vs(R̂) 0.198 0.317 1.082 1.117

V̂ (R̂)/Vs(R̂) 2.22 2.24 1.12 1.54

V̂J(R̂)/Vs(R̂) 1.21 1.10 1.19 1.23

L L H Vs(R̂) 0.105 0.224 0.918 0.971

V̂ (R̂)/Vs(R̂) 1.86 2.09 1.04 1.27

V̂J(R̂)/Vs(R̂) 1.14 1.07 1.25 1.18

L H L Vs(R̂) 0.105 0.156 0.984 0.796

V̂ (R̂)/Vs(R̂) 2.04 2.03 1.01 1.45

V̂J(R̂)/Vs(R̂) 1.07 1.11 1.18 1.41

L H H Vs(R̂) 0.042 0.085 0.878 0.671

V̂ (R̂)/Vs(R̂) 1.83 2.04 0.98 1.29

V̂J(R̂)/Vs(R̂) 1.12 1.12 1.25 1.44

H L L Vs(R̂) 0.101 0.176 0.341 0.471

V̂ (R̂)/Vs(R̂) 1.78 1.76 1.32 1.45

V̂J(R̂)/Vs(R̂) 1.03 0.96 1.87 2.44

H L H Vs(R̂) 0.033 0.069 0.122 0.161

V̂ (R̂)/Vs(R̂) 1.36 1.68 1.14 1.42

V̂J(R̂)/Vs(R̂) 1.12 1.10 3.24 2.39

H H L Vs(R̂) 0.035 0.042 0.125 0.148

V̂ (R̂)/Vs(R̂) 1.46 1.83 1.13 1.34

V̂J(R̂)/Vs(R̂) 1.06 1.26 3.10 2.46

H H H Vs(R̂) 0.011 0.024 0.103 0.114

V̂ (R̂)/Vs(R̂) 1.55 1.75 1.05 1.15

V̂J(R̂)/Vs(R̂) 1.36 1.25 3.53 2.80
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