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Abstract

Ecological data sets often present problems such as detection, heterogeneity and uncertainty.

Capture-recapture and occupancy frameworks deal with issues of detection for individuals

and species respectively. Although developed separately, both share commonalities that are

highlighted in this thesis. We present two developments in capture-recapture and one in

occupancy.

In capture-recapture experiments parameter heterogeneity is often dealt with by strat-

ifying the population in advance (e.g. by sex), but strata assignment may not always be

possible. For example in the MilleLacs fishery, catachability is known to differ by sex, but

sex could not be determined on all sampling occasions leaving some individuals with an

“unknown” sex designation. This heterogeneity can severely bias estimates of abundance if

the data are simply pooled and treated as coming from a single large population. In the

first development the super-population approach is extended to handle uncertainty in strata

assignments.

Heterogeneity in catchability can also be result when animals do not behave in a com-

pletely independent fashion. The assumption of independence is a long-standing assumption

of capture-recapture models and is known almost never to hold. We take the first steps to

relaxing this assumption by modeling the dependency in capture outcomes between pair-

bonded individuals. Animals in a pair-bond remain in close proximity to one another, and

if one member of the pair is observed, we are also more likely to observe the other mem-

ber. We estimate the “correlation” (termed rho) in capture events using simulated data,

as the motivating example (a harlequin duck study) was more complicated than originally

expected.

In the final development we highlight the similarities between capture-recapture and

occupancy models by rewriting occupancy models to use the capture-recapture multievent
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approach. In this development we also provide design protocols for permanent and tempo-

rary site monitoring and provide a power analysis comparing the efficiency of both protocols

to detect changes in relative abundance. Finally, we provide a complicated multi-year anal-

ysis of the anuran frog data set to demonstrate the ability of the proposed framework to

handle complex biological problems.

Keywords: Abundance estimation; Capture-mark-recapture; Jolly-Seber; Cormack-Jolly-

Seber; Occupancy; Latent states; Heterogeneity; Uncertainty; State-space; Statistical power
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“Statistical thinking will one day be as necessary a qualification for efficient citizenship as

the ability to read and write.”

—H.G. Wells
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Chapter 1

Introduction

Modeling ecological data presents a number of interesting statistical challenges. It has been

argued that ecology is a science of mechanisms (Krebs, 1991). Statistical models have been

viewed as a tool for exploring and understanding the processes affecting wildlife populations

(Nichols, 2001) and carry the meaning of science (Giere, 2004). Models that incorporate

plausible ecological mechanism are generally preferred over models that adequately fit the

data, but are not ecological interpretable (Taper et al., 2008). Yet, ecological data often

violates assumptions of most standard statistical techniques. Data tends not to be normally

distributed and can be over-dispersed relative to a number of standard statistical approaches

(e.g. generalized linear models; GLM).

One of the most pervasive problems with ecological data is our general inability to

observe animals in the field, a problem commonly termed “detectability.” Animals are of-

tentimes sparsely distributed across a landscape making the probability of encounter low.

Further adding to this difficulty, they often possess natural camouflage and exhibit be-

havioural patterns (e.g. nocturnal foraging) that can further add to their cryptic nature.

In fact our ability to reliably detect the simplest of ecological measures, the presence or

absence of a species, is quite limited (Craig and Roberts, 2001; Lindenmayer et al., 2001;

MacKenzie et al., 2002; Tyre et al., 2003).

If not handled correctly, issues of detection will lead to bias in estimates in even the

simplest of experiments. Suppose a researcher is investigating the relationship between

brood size (number of offspring) and survivorship for adult females of a particular species

of bird. The researcher may opt for a natural experiment, looking at relationship between

survival and naturally occurring brood sizes. Alternatively, the researcher may take a more

1
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experimental approach by manipulating brood sizes directly to control for parental qual-

ity. While experimental manipulations are preferable in terms of statistical inference, both

experimental approaches can suffer from the issue of detection.

The researcher, näıve to issues of detection, would most likely determine survival by

counting the number of adult females present at the beginning and end of the breeding

season. The resulting difference in counts could then be modeled as a binomial experiment,

with survivorship as the probability of a “success,” allowing for standard GLM techniques

to be employed. Unfortunately, in doing so, the researcher has assumed birds that were

not observed at the end of the breed season did not survive, when in fact they may have

survived and were simply missed, or they may have survived and emigrated from the area.

Any of these possibilities will bias estimates of the ecological process of interest (survival).

In response to these difficulties a number of specialized techniques have evolved that di-

rectly model the detection process along with ecological processes of interest. The two meth-

ods in this dissertation (mark-recapture and occupancy), use repeated sampling schemes in

order to estimate the degree that “detectability” affects the data. In both cases a series of

indicator variables (i.e. ‘1’ and ‘0’) are used to describe observations on each of the sampling

occasions.

Mark-recapture, as its name implies, involves marking animals with unique tags, releas-

ing the captured animal back into the population, then attempting to recapture the same

marked animals at later sampling occasions. This produces a series of 1’s and 0’s, termed a

capture history, indicating if an individual was caught on a specific sampling occasion. For

example, a capture history of 101 indicates an experiment with three sampling occasions,

where the individual was captured on the first occasion, tagged and released, missed on the

second and captured again on the third. A capture history of 100 indicates the individual

was captured and released on the first occasion, but not recaptured in any further sampling

occasions. For more complex experiments, the indicator variable ‘1’ can be replaced by

codes to indicate various states or groupings (i.e. breeding status, sex, etc).

The occupancy framework operates on a similar premise, but rather than uniquely track-

ing individuals, the framework follows predefined geographical areas, termed sites, over suc-

cessive sampling occasions. Here a ‘1’ indicates that the species of interest was observed on

the site, while a ‘0’ would indicate the species was not observed. Depending on assumptions,

the ‘0’ can indicate that the site was either unoccupied, or occupied but the species was

missed. For an encounter history of 101, if we can assume the site was closed to changes
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in occupancy (e.g. the sampling periods were close enough together in time), then the ‘0’

observation has a similar meaning to the mark-recapture interpretation, in that the species

was there but was missed.

The unique capture and encounter histories can then be modeled as categorical outcomes

in a multinomial distribution. The power of these techniques emerges as we build ecologically

relevant models to describe each of the possible unique encounter or capture outcomes

in the multinomial distribution. Commonly, a shared set of parameters and covariates

across the population, or groups within, is used to represent various sampling and ecological

processes hypothesized to occur. For example, in modeling a ‘0’ occurrence a mark-recapture

experiment could mean the animal could have died (survivorship), emigrated or was available

for capture but simply missed on a given occasion (capture) depending on the sampling

history before and after that zero. By using different parameters to represent each of these

possibilities, we are able to define complex probability statements to describe these processes.

The primary focus of this dissertation has been to provide additional practical tools for

researchers to answer ecological questions. To date there has been an extensive development

of methods based on the direct sampling of individuals such as mark-recapture, while other

frameworks such as occupancy are still newly emerging. This thesis will focus on extending

the occupancy framework to handle a variety of ecological states, other than the presence

or absence of a particular species or set of species. This includes relative measures of

abundance, breeding status, and multi-species occupancy all within the framework of a

multi-year study. For mark-recapture, we focus on dealing with additional classification

uncertainty in abundance estimates and relaxing assumptions of independent fates among

individuals. The latter can especially be important for a number of avian species, such as

migratory birds, that exhibit strong pair-bonding and frequently have shared fates.



Part I

Mark-Recapture Models
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Chapter 2

Introduction to Part I of the Thesis

In this first part of the dissertation, I present extensions made to existing models in the

mark-recapture framework. Within the mark-recapture framework my focus has been on

extending open population models to handle issues of parameter heterogeneity, incorporating

additional types of uncertainty that are known to occur in the data, and taking the first

steps to relax a long standing assumption of independence among individuals.

Generally, open population models are the most commonly employed models to analyze

mark-recapture experiments. Unlike closed models the population size is allowed to change

during sampling (e.g. by processes such as birth/immigration and death/emigration). These

models are an important method for estimating demographic parameters which provides

biologists in-depth knowledge about the driving forces behind changes in population size.

Within open populations models, the Jolly-Seber (JS) and the Cormack-Jolly-Seber

(CJS) are the two predominant modeling frameworks. The JS models consider both births

and deaths (survival), while the CJS framework only models survival by conditioning on first

capture. By making assumptions on the underlying catchability of unobserved individuals

the JS framework also allows for estimates of abundance. While abundance estimates are

of value, earlier formulations estimated population size only as derived parameters and did

not explicitly include parameters for abundance in the model likelihood.

Within both frameworks I have been interested in relaxing modeling assumptions so

that we may better model the true nature of the collected data. In Chapter 3 extend the

super-population formulation (JS framework) of Schwarz and Arnason (1996) to allow for

uncertainties in group assignments. This type of work has already been accomplished in

the CJS framework, but the JS framework presents unique challenges as we need to account

5
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for group membership upon entry into the population, which the CJS framework does not

consider due to conditioning of first capture. The work was published as Challenger and

Schwarz (2009) in the peer-reviewed conference proceedings Modeling demographic processes

in marked populations which was compiled from papers of the 2007 European Bird Ringing

Technical Meeting and is the third volume in the Environmental and Ecological Statistics

series.

Within the CJS open population framework in Chapter 4 I begin the first work to relax

the longstanding assumption that all individuals in the population behave in an independent

manner. Specifically, I consider the dependency between mating pairs in the form of pairwise

dependent capture outcomes. I term this the ρ-CJS framework.



Chapter 3

Mark-recapture Jolly-Seber

Abundance Estimation with

Classification Uncertainty1

3.1 Introduction

The capture-recapture (CR) experimental protocol provides a flexible approach for mak-

ing inferences on animal populations that may be hard to observe otherwise. Inferences

can range from individual level processes, such as survivorship, to population level pro-

cesses such as abundance and recruitment. The Jolly-Seber (JS) model is used for open

populations, where both births (or immigration) and deaths (or emigration) are explicitly

modeled. Current applications of the JS abundance model include estimating overall and

group specific abundances.

The JS class of models need to make key assumptions on the marked and unmarked

animals in the population of interest. Specifically, both segments of the population are

assumed to be homogeneous in catchability and demographic parameters such as survivor-

ship. This assumption of homogeneity is not only required at the population level but also

at the individual level, where parameters are assumed to be the same among animals. How-

ever, populations often have underlying structures that can violate the latter assumption

of animal homogeneity. For example, animals with differing age and/or sex may exhibit

1Published as Challenger and Schwarz (2009).

7
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differences in catchabilities and/or different apparent survivorship.

If left unmodeled the heterogeneity may result in over-dispersion, model misfit, and

potentially biased estimates. Heterogeneity can be handled by modeling affected parameters

in terms of individual covariates or, at a coarser level, by modeling the heterogeneity through

discrete partitions. When, over the course of the experiment, membership to a partition

is fixed (e.g. sex), the term “group” is often used, while the term “state” often implies

the potential for membership can change. For systems where membership to a partition is

fixed (i.e. groups), classical parameter grouping methods (e.g. Jolly, 1965; Lebreton et al.,

1992) are often used, while for systems where membership can change (non-fixed states)

are handled by multi-state (e.g. Lebreton and Pradel, 2002) and multievent models (Pradel,

2005). These approaches not only assume that heterogeneity may be effectively partitioned,

but that the state/group can also be accurately assessed on capture. Therefore, the ability

to assign state/group represents an additional source of variability, which up until recently

has not been included in many models.

State/group assignment uncertainty can be divided into two distinct types: identifica-

tion uncertainty and mis-assignment uncertainty. Identification uncertainty represents a

probability of identifying a state/group when observed, while mis-assignment is the proba-

bility of assigning the incorrect state/group. Depending on the system, one or both of these

types of error may occur separately or in synchrony. Models have been developed to deal

with uncertainties in identification (e.g. Nichols et al., 2004), state assignment (e.g. Fujiwara

and Caswell, 2002; Kendall et al., 2003; Pradel, 2005), as well as both types simultaneously

(Pradel, 2005). However, these advances are restricted to the Cormack-Jolly-Seber (CJS)

framework and as such do not allow for abundance estimates. Since abundance estimates

are often of interest to wildlife managers, there is a need to extend these approaches to the

JS framework.

In extending the JS framework to deal with state uncertainty, we deal with states that

are fixed over the duration of the experiment. Fixed characteristics, such as sex, are often

of interest to wildlife managers and partition heterogeneity in the population. However, due

to factors, such as lack-of-training, identification of these states on captures is not always

known. To this end we consider the situation where sex can only be accurately assigned on

some of the capture occasions or not at all.

When dealing with group uncertainty for fixed characteristics, it can be appropriate

to look at identification uncertainty rather than mis-assignment (e.g. see Nichols et al.,
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2004). Primarily, each sampling occasion gives an independent opportunity to determine

the true underlying group. As such, group assignments are not required on each sampling

occasion, since future and previous occasions provide useful information. In this manner

positive group assignments may be restricted to situations where the group is known with

certainty, with all remaining scenarios handled by assignment to an unknown group. This

is in contrast to non-fixed characteristics (e.g. breeding state) that can transition between

sampling occasions and where there is an emphasis on making a state assignment each every

capture occasion (but see Pradel, 2005).

In the present paper we extend the approach used by Nichols et al. (2004) to deal with sex

uncertainty, to the JS framework by modifying the super-population formulation of Schwarz

and Arnason (1996). Positive assignments were restricted to situations where sex was known

with certainty and all other situations were dealt with as unknown designations. This model

was then applied to walleye (Stizostedion vitreum) data from Mille Lacs, Minnesota, where

sexing designations were not always possible due to staffing restrictions. The model was

then used to determine sex-specific abundances and sex-specific recruitment over multiple

years.

3.2 Survey Protocol

The survey protocol follows the standard JS protocol with groups except that on each

capture occasion, 3 possible events may occur: unobserved, group unknown, or a positive

group identification. We consider the case of 2 groups, males and females. We assume that

any positive assignment is definitive and as a consequence strictly forbid the assignment

of more than one sex to a tag history. For situations where group uncertainty exists the

unknown designation should be used.

This is intended for situations where there are a mixture of experts and non-experts

conducting the survey and each type of observer has different capabilities to assign group

membership (i.e. sex) on capture. Both types of observers are expected to record tag num-

bers correctly, while only expert observers are allowed to assign group membership. Upon

capture experts may choose to assign group membership (i.e. male or female), or designate

group membership as unknown, while captures by non-experts are given the unknown group

membership. In doing so we give expert observers the option of forgoing group membership

assignment, should the need arise, and allow non-expert observations to be incorporated.
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This treatment of groups differs slightly from the more classical grouping methods (i.e.

Jolly, 1965; Lebreton et al., 1992; Schwarz and Arnason, 1996) that assume all animals can

be definitively assigned to their respective groups at some point during the experiment.

We relaxed this assumptions by modeling the probability of encountering individuals with

unresolved sex as being a composite of both sexes. In this manner we take an approach that

is similar both Nichols et al. (2004) and the post-stratification method developed by Conroy

et al. (1999), which used covariates to assign sex post capture to juvenile animals. However,

both approaches were developed for the CJS framework (excluding abundance estimation)

and unlike the post-stratification we make no requirements on the availability of covariates

that can be used to predict sex. Our approach also differs from ad hoc techniques that

use a unique category with its own demographic parameters to deal with the unknown sex

designations. If handled in such a manner group specific demographic parameters, such as

apparent survivorship, will be positively biased due to the expected increase in encounters

for histories where sex has been resolved (Nichols et al., 2004).

Finally, in the most general case of our model, it is assumed group assignments will be

attempted on each and every sampling occasion. While useful for estimating assignment

probabilities, it is not an absolute requirement. If proper model restrictions are employed,

experimental protocols can be designed where group assignment is only attempted on certain

capture occasions (see the example section).

3.3 Notation

Classical mark-recapture experiments use a capture history vector of ‘1’ or ‘0’ to represent

whether an animal was caught (1) or not caught (0) during k sampling occasions. In our

case we distinguish between the unobserved state (0) and three possible observed “groups”:

unknown (1), female (2) and male (3). Here the female and male represent a positive

identification, while unknown represents uncertainty in assignment. As such the capture

history will still be a vector of length k, but will consisting of 0’s, 1’s, 2’s and 3’s instead of

the traditional 0’s and 1’s. For example, the history 313 would be a male that was caught

on all three sampling occasions but was positively identified as male on the 1st and 3rd

occasions only.

Lastly, because positive identifications are considered definitive, a single tag history

cannot contain both male and female identifications. As a result histories such as 312 are
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not allowed and possible observed tag histories will not be a permutation of all states, but

instead a restricted subset.

3.3.1 Statistics and Indicator Variables

k - number of sampling occasions in the experiment.

m - number of uniquely observable tag histories. Note that this does not include the

unobserved tag history (ω0).

i - the index for tag histories, where i = 0, 1, 2, . . . ,m; i = 0 is used to denote the

unobserved tag history.

j - the index for sampling occasion, where j = 1, 2, . . . , k.

nj - total number of animals caught at sampling occasion j.

vj - total number of animals lost on capture at sampling occasion j.

ωi - capture and identification history vector,

where ωi = [ωi1, ωi2, . . . , ωik]′ and

ωij =


3 for animals captured at sampling occasion j and identified as male

2 for animals captured at sampling occasion j and identified as female

1 for animals captured at sampling occasion j and identified as unknown sex

0 for animals not captured at sampling occasion j

ζi - the sex indicator for history ωi, where

ζi =


{M} for max(ωi1, ωi1, . . . , ωik) = 3

{F} for max(ωi1, ωi1, . . . , ωik) = 2

{M,F} for max(ωi1, ωi1, . . . , ωik) ≤ 1
Animals with an unknown sex designation are modeled as a composite of both

sexes.

ωci - a capture history vector, where ωci = [ωci1, ω
c
i2, . . . , ω

c
ik]
′ and

ωcij =

{
1 if ωij ≥ 1 - a captured animal

0 otherwise

ωsi - sex identification vector, where ωsi = [ωsi1, ω
s
i2, . . . , ω

s
ik]
′ and

ωsij =

{
1 if ωij > 1 - a sexed animal

0 otherwise

nωi - number of animals with tag history ωi.

fi - first occasion when animals with tag history ωi were captured.

li - last occasion when animals with tag history ωi were captured.
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κi - loss-on-capture indicator for tag history ωi, where

κi =

{
1 lost on sampling occasion li

0 not lost on any sampling occasions

3.3.2 Fundamental Model Parameters

N - the super-population is the total of animals that were present at the start of the

study or entered the system between any pair of sampling occasion and survived

to the next sampling occasion.

βj - the expected fraction of the super-population that enters the population at sam-

pling occasion j and survived to sampling occasion j+1 for {j : j = 0, 1, . . . , k−1}.
β0 is the expected fraction of animals alive just prior to the first sampling occasion

and
∑k−1

j=0 βj = 1.

πsj - the probability that an animal entering the population between j and j + 1 is

of sex s, for s ∈ {M,F} and {j : j = 0, 1, . . . , k − 1}. The parameter πs0 is the

proportion of animals of sex s alive in the population prior to the first sampling

occasion and
∑

s π
s
j = 1, for all j.

psj - the sex-specific probability an animal will be caught at occasion j, given that the

animal is alive at sampling occasion j, for s ∈ {M,F} and {j : j = 1, 2, . . . , k}.
δsj - the probability, given an animal has been caught, that the sex will be positively

identified at sampling occasion j, for s ∈ {M,F} and {j : j = 1, 2, . . . , k}. The

probability the animal’s sex cannot be identified is (1−δsj ). Positive identifications

are considered to be definitive.

φsj - The sex-specific probability that an animal survives and remains in the population

from sampling occasion j to sampling occasion j + 1, given it was alive and in

the population at sampling occasion j, for s ∈ {M,F} and {j : j = 1, 2, . . . , k}.
νj - the probability of losing an animal when it is captured at sampling occasion j.

Equal probability is assumed for both sexes. A loss is any event whereby the

animal is not released into the catchable population after capture.
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3.3.3 Functions of Parameters

β∗j - the expected fraction of the super-population remaining to enter the population

between sample occasion j and j + 1, for {j : j = 0, 1, . . . , k − 1}. Note that

β∗0 = β0, β∗j = βjPk−1
i=j βi

, and β∗k−1 = 1. The β∗j ’s were used when fitting the

likelihood, because they are unconstrained, taking on any value in [0, 1], yet

maintain the
∑k−1

j=0 βj = 1 constraint.

χsj - The probability an animal of sex s is not observed again after period j.

χsj =

 1− φsj + φsj

(
1− psj+1

)
χsj+1 j < k

1 j = k
for s ∈ {M,F}.

ψsj - The probability of an animal of sex s entering the population and remaining

unobserved prior to sampling occasion j.

ψsj+1 =

 β0π
s
0 j + 1 = 1

ψsj

(
1− psj

)
φsj + βjπ

s
j j + 1 > 1

for s ∈ {M,F},

where πs0 is the proportion of animals of sex s alive just prior to the first sampling

period, while πsj , for j > 0, is the sex-specific proportion of the entrants.

Bs
j - The total number of animals of sex s that enter the system between sampling

occasion j and j + 1, for {j : j = 0, 1, . . . , k − 1} and s ∈ {M,F}. Bs
0 represents

the number of animals alive (male or female) just prior to the first sampling

occasion. The remaining Bs
j ’s are referred to as the net births and represent

the process of live births, immigration and/or recruitment into the population of

interest. Also note E
[
Bs
j

]
= Nβjπ

s
j and N =

∑
s

∑k−1
j=0 B

s
j .

N s
j - The sex-specific population size at sampling occasion j.

E
[
N s
j+1

]
=

 Nβ0π
s
0 j + 1 = 1

E
[
N s
j

]
φsj +Nβjπ

s
j j + 1 > 1

for s ∈ {M,F}.

When losses on capture occur, a different formulation is required (see Appendix

A.1).
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3.4 Model Development

3.4.1 Assumptions

The standard mark-recapture assumptions are made. As well, we assume that both marked

and unmarked animals of the same sex exhibit the same sex-specific catchability {psi} and

survivorship {φsi} (homogeneity). Also important is the assumption that newly captured

unmarked animals are a random sample of all unmarked animals in the population. Addi-

tional assumptions include a homogeneous probability of being sexed, once captured, that is

shared within each sex and homogeneity of demographic parameters for animals regardless

of whether or not the animal was successfully sexed. This last assumption could be violated

for example if juveniles are harder to sex and exhibit different survivorship. It is also as-

sumed that the underlying characteristic (sex) is fixed throughout the experiment and the

underlying population can be dichotomously divided into either males or females. Finally,

as with most capture-recapture experiments it is assumed that tags are not lost; are not

misread; and are unique to each animal; that sampling is instantaneous; and that the study

area is constant throughout the experiment.

3.4.2 Likelihood

The model we propose is a direct extension of the super-population model proposed by

Schwarz and Arnason (1996). While Schwarz and Arnason did allow for group specific de-

mographic parameters (i.e. {βjg}, {pjg}, {φjg}), we go a step further by modeling the prob-

ability of a positive group assignment (the identification probability), as well as modeling

tag histories in which assignment did not occur.

With the JS capture-recapture models, it is common practice to break the likelihood

into distinct portions. Following the notation of Schwarz and Arnason (1996) the likelihood

of the super-population model can be written as

L = LA1 (N, {βi}, {pi}, {φi})× LB1 ({βi}, {pi}, {φi})× L2({νi})× L3({pi}, {φi}).

These components make up LA1 × LB1 = P (first capture|{βi}, {pi}, {φi}),
L2 = P (loss-on-capture|{νi}) and L3 = P (recapture|{pi}, {φi}) respectively. Schwarz and

Arnason divided the probability of first capture into two components (LA1 and LB1 ), by first

conditioning the complete likelihood on the total number of unmarked animals observed
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in the experiment (we use nobs in place of u·). This formulation used was to develop a

conditional estimate of N̂ by first maximizing LB1 × L2 × L3 and then using the estimates

to derive the conditional MLE of N̂ . Asymptotically, the final result will be equivalent to

maximizing the entire likelihood (Sanathanan, 1972; Schwarz and Arnason, 1996).

We formulate our model in a similar manner except we combine the LB1 , L2 and L3

terms (LB∗1 = LB1 ×L2×L3) so that the probability expression for each observed tag history

can be modeled directly. Also similar to the group specific model proposed by Schwarz and

Arnason (1996), we have male and female specific demographic parameters. However, we

also model the probability an entrant will be of a particular sex (πsj ) and the probability

the sex can be identified, conditional on capture (δsj ).

We start by modeling the total number of observed tag histories (nobs =
∑m

i=1 nωi

and nω0 = N − nobs), where LA1 = [nobs|N ] ∼ Binomial (N, 1− P (ω0)). Here ω0 is the

unobserved capture history ( ω0 = [0, 0, . . . , 0]′) and P (ω0) is the probability of a male or

female entering the population at some time prior to, or during, the study and remained

unobserved for the remainder of the sampling occasions.

P (ω0) =
∑

s∈{M,F}

k−1∑
j=0

βjπ
s
j (1− psj+1)χsj+1 (3.1)

Next, we model the distribution conditional upon being seen at least once, LB∗1 =[{nωi} |nobs
] ∼ Multinomial

(
nobs, {λωi}

)
, where λωi = P (ωi)

(1−P (ω0)) . The probability of

the observed tag history P (ωi), is

P (ωi) =
∑
s∈ζi

ψsfi


li∏

j=fi

(psj)
ωc

ij
(
1− psj

)(1−ωc
ij)


×


li∏
j=fi

(
δsj
)ωs

ij×ωc
ij
(
1− δsj

)(1−ωs
ij)×ωc

ij


×

li−1∏
j=fi

φsj

(χsli)(1−κi)

×

li−1∏
j=fi

(1− νj)ωc
ij

× (1− νli)(1−κi)(νli)
κi . (3.2)
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Note that for the case where an animal is seen only once (fi = li) the terms
∏li−1
j=fi

φsj and∏li−1
j=fi

νj are both treated as evaluating to 1.

The probability of determining the correct sex is represented by the δsj parameter, which

is conditional upon capture (i.e. ωsij×ωcij). For animals where the sex identification has been

positively determined at some point during the experiment ζi ∈ {M} or ζi ∈ {F}, otherwise

ζi ∈ {M,F}. As a result, for tag histories where sex has been confirmed, only demographic

parameters associated with that sex (or group) are used. For example the tag history 0133

(or 0UMM) is a male that was captured on the second, third and fourth sampling occasions.

On the first capture, its sex could not be identified, but on subsequent occasions a definitive

sex assignment was made. The probability of this history (excluding the loss-on-capture

component) will be

P (0133) = ψM2 pM2 (1− δM2 )φM2 pM3 δM3 φM3 pM4 δM4 .

However, for tag histories where a definitive group identification is not possible, the histories

are modeled as belonging to both groups, but with an unidentified status (i.e. ωsij = 0 for

all j where ωcij = 1). As a result the (1− δsj ) term appears in association with each capture

occasion. For example the tag history 0111 (or 0UUU) has the same capture history as the

previous example, but without a definitive sex identification. In this case the probability of

this tag history will be

P (0111) = ψM2 pM2 (1− δM2 )φM2 pM3 (1− δM3 )φM3 pM4 (1− δM4 )

+ψF2 p
F
2 (1− δF2 )φF2 p

F
3 (1− δF3 )φF3 p

F
4 (1− δF4 ).

This form of grouping differs from more classical grouping methods (i.e. Jolly, 1965;

Lebreton et al., 1992; Schwarz and Arnason, 1996) that assume all animals can be definitively

assigned to their respective groups during at least one of the encounters. By doing so the

fully parameterized model (no model constraints, either group or time) will be equivalent

to running multiple independent capture recapture experiments in parallel on each of the

possible groups. In contrast, for the approach used here the unknown designation will be a

composite of the possible positive state assignments, even in the most parameterized model.

As a result, the complete likelihood for this model will be

Lcomplete = LA1 × LB∗1
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=
{(

N

nobs

)
(1− P (ω0))nobs P (ω0)N−nobs

}
×
{

nobs!
nω1 !nω2 ! · · ·nωm !

m∏
i=1

(
P (ωi)

(1− P (ω0))

)nωi

}
. (3.3)

3.4.3 Model Constraints, Link Functions and Covariates

We used parameter index matrices (PIM) as implemented in MARK (White and Burnham,

1999) to provide a flexible modeling environment, as suggested by Lebreton et al. (1992).

This allows a general way to specify parameter restrictions on the fully time dependent

model. Four separate PIM’s were used for the {πMj }, {psj}, {δsj} and {φsj} model parameters

respectively. Covariates may be included through the use of design matrices. Similar to

MARK, parameters may also be fixed at known values. Fixing parameter values can be

useful for creating testable hypothesis such as a 50:50 incoming sex ratio (i.e. πMj = 0.5 for

all j > 0).

A fifth, limited PIM, was implemented for {βj} parameters, where only basic constraints

may be imposed. Some examples include death only (β0 = 1, β1:k−1 = 0), no recruitment

for certain periods (e.g. β1 = 0), and constrained entrance (e.g. β1 = β2 or β1 = β2 = 0.1).

Covariates cannot however be supplied for the {βj} parameters (see Schwarz and Arnason,

1996, for an explanation).

Finally, common link functions were used to restrict parameter estimates to remain

between 0 and 1 (see Lebreton et al., 1992). Available link functions follow the MARK

implementation and include the sin, logit, log and identity links.

3.4.4 Parameter Redundancy

As mark-recapture models become more complex, the large parameter sets needed to de-

scribe the modeled processes may lead to parameter redundancy (Catchpole and Morgan,

1997).

Recently, Catchpole and Morgan (1997), Catchpole et al. (1998) and Catchpole and Mor-

gan (2001) developed a technique for assessing parameter redundancy using existing com-

puter algebra packages that are capable of performing symbolic math. The advantage over

numeric techniques is that numerical criteria are not needed to identify uniquely estimable

parameters and in some cases estimable parameter combinations can also be determined.

Following the implementation by Gimenez et al. (2003), we used the software package
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Maple (Version 10) to determine the model deficiency as well as the uniquely identifiable

parameters. In our case the most general, time dependent, model was found to have a

parameter deficiency of 4. The full set of the time dependent classification parameters {δsj}
were identifiable. As in the simple JS super-population model, {φsj : j = 1, 2, . . . , k−2} and

{psj : j = 2, 3, . . . , k − 1} were identifiable. Finally, as the sampling occasions increase the

middle proportion of entrants {βj : j = 2, 3, . . . , k−2} and the probability of a male entrant

{πj : j = 2, 3, . . . , k−2} also become uniquely estimable. The remaining parameters formed

complex estimable combinations. It should be noted that sparse data sets may further

increase the parameter deficiency, as is the case with the example study.

3.4.5 Parameter Estimation

Parameter estimates were derived in a manner similar to the procedure described by Schwarz

and Arnason (1996). Estimates of {ν̂j} were found by maximizing the L2 loss-on-capture

component. The LB∗1 was then maximized with respect to the remaining parameters given

{ν̂j}. Finally, the estimates {β̂j}, {π̂j}, {p̂sj}, {δ̂sj} and {φ̂sj} were used to estimate N̂

using LA1 , where N̂ =
[
nobs/(1− P̂ (ω0))

] (
greatest integer ≤ nobs/(1− P̂ (ω0))

)
as per

Sanathanan (1972).

At this point it should be noted that in this formulation of the JS model, beyond the

assumption on unmarked animals (which is untestable), there is no information about N or

β0 in the capture histories (see Link and Barker, 2005). That said, the capture histories do

contain information on the remaining βj parameters and given reasonable survival estimates,

the estimates of N and β0 may still be fair.

Finally, the LB∗1 was maximized numerically using a quasi-Newton (variable metric) pro-

cedure in R. The Hessian matrix was then numerically determined using the full likelihood

(3.3) and point estimates from the conditional fit. The delta method was then used to de-

termine the variance-covariance matrix for all derived parameters, such as {B̂s
i } and {N̂ s

i }.
It should be noted that the variance calculations for {N̂ s

i } excluded the additional variance

associated with estimating the sex ratio of the loss-on-captures that were not successfully

sexed (see Appendix A.1). This represents a rather rare scenario as well as a small source

of variation in most applications.
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3.4.6 Goodness of Fit

The goodness-of-fit tests for a JS model involves the LB∗1 component, where the likelihood

has been conditioned on the observed histories. Both model deviance and the Pearson chi-

squared statistic were used. The model deviance is computed by comparing the likelihood

of the fitted model to the saturated model, where every ωi history has the probability nωi
nobs

.

The difference between the saturated and fitted model (3.4) will be D ∼ χ2
(m−p−1), where

the number of degrees of freedom equal is to the difference in the number of parameters

between the two models (m−p−1). The number of parameters in the saturated model is the

number of unique tag histories m minus 1, while p is the number of parameters estimated

in the LB∗1 component.

D = 2

[
m∑
i=1

nωi

(
log
(
nωi

nobs

)
− log(λωi)

)]
(3.4)

In addition to deviance, the Pearson chi-squared goodness-of-fit (GOF) statistic was also

used

χ2 =
m∑
i=1

(oi − ei)2

ei
(3.5)

where oi = nωi is the observed tag history frequency and ei = N × P (ωi) = nobs × P (ωi)
1−P (ω0)

is the expected frequency. Under the hypothesis that the model is correct χ2 ∼ χ2
(m−p−1).

Asymptotically, both tests should be equivalent, however differences can occur depending

on the adequacy of the χ2
(m−p−1) approximation. Specifically, for small frequencies there

is some evidence to suggest that χ2 may preform better that D, since D can be unduly

influenced by very small frequencies (see Cressie and Read, 1989).

3.4.7 Model Selection

By using the PIM’s and design matrices, many different models can be specified following

the notation of Lebreton et al. (1992). Of particular interest will be the time-varying param-

eterization (i.e. {πj}) , time independent (e.g. π·) and group independent parameterization

(e.g. pMj = pFj for j = 1, 2, . . . , k). Also of interest may be entrance restrictions such as a

death only model (β0 = 1;βj = 0 for j = 1, 2, . . . , k − 1), or death only for specific time

periods (e.g. β2 = 0). Finally, also of interest may be situations where sex assignment does

not occur in every sampling occasion (i.e. δsj = 0 for some j). These models can be specified
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using the respective parameter PIMs and specifying constants for the fixed parameters.

A variety of techniques can be used to choose between competing sets of models and

model averaging for models that have equal support (see Burnham and Anderson, 2002).

Techniques used for model selection included the Akaike information criterion (AICc) and

QAICc. Both balance overall model fit to the data with number of parameters needed, but

QAICc also corrects for lack of fit and effective sample size. It should be noted the lack of

fit used for the QAICc calculations was based on the Pearson GOF statistic (3.5). Finally,

a candidate model set was chosen a prior ; and the best fit was selected from competing

models.

3.5 Example

Our example is concerned with estimating the number of walleye in Mille Lacs Lake, Min-

nesota, for which the study design is outlined in Schwarz (2004). Briefly, a three-year

mark-recapture study was initiated in 2002. In all years tags were applied in two phases,

first via trap netting on the spawning grounds and second during the angling season from

launch-boats. Recoveries came from angling, trap netting, tribal harvests and a gillnet as-

sessment at the end of the season. Nearly complete sexing occurred during the spawning

ground releases and gillnet assessment at the beginning and end of each season respectively.

However, due to manpower restrictions, only partial sexing was possible during the angling

portion of the season, resulting in capture histories with unknown sex designations.

For the purpose of the example, all 3 years are considered (2002 to 2004), but only two

sampling occasions per year are included, the spawning ground releases and harvest at the

start of the season and the angling season that occurs over the summer, but prior to the

end of the season gill net assessment, which was not included. This results in a total of

six sampling occasions, with two sampling occasions occurring every year (Table 3.1). The

data set is provided in Appendix A.2 (Table A.1).

3.5.1 Model Constraints

The first sampling event within each year (sampling occasions j = 1, 3, 5), was limited

to fish greater than 14 inches in length. For the second event within each year (sampling

occasions j = 2, 4, 6), the minimum size requirement was increased 16 inches so as to preclude

recruitment. Therefore, in the model recruitment was not allowed between occasions 1 and 2,
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Table 3.1: Summary of Mille Lacs study design.

2002 2002 2002
j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Survey Spring Launch Spring Launch Spring Launch
Tagging Boats Tagging Boats Tagging Boats

+ + + + + +
Type Tribal Angling Tribal Angling Tribal Angling

Harvest Harvest Harvest

occasions 3 and 4, and occasions 5 and 6 (i.e. the following values were fixed: β1, β3, β5 = 0).

New recruits were however allowed between occasions 2 and 3, and between occasions 5 and

6 (i.e. β2, β4 ≥ 0). These restrictions reflect allowable catch restrictions and as a result the

{βj} parameters represent recruitment into the size restricted fishery, rather than births.

The walleye data set also suffered from issues of tag loss, mainly between 2002 and 2003

(see Cowen and Schwarz, 2006). As a result, the estimates of φs2 (apparent survivorship

between periods 2 and 3) are expected to be lower than the estimates of φs4 as as such these

values were never restricted to be equal.

3.5.2 Model Selection and Best Model Estimates

Due to the known issue of tag loss in this population (see Cowen and Schwarz, 2006) model

misfit was expected. Since the example is for illustration purposes, the best model presented

was judged so by a combination of model goodness of fit criteria (model deviance and the

over-dispersion estimate ĉ), derived parameter estimates (population sizes), and AIC model

ranking. The fundamental parameter estimates from the best fitting model are displayed in

Table 3.2, with derived parameters, population size (N s
j ) and recruitment (Bjs), displayed

in Table 3.3.

The model fit is poor (ĉ = 128) for two reasons. First, the very large sample sizes imply

that small discrepancies in fit can be detected quite easily. Second, as noted in Cowen and

Schwarz (2006), tag loss, particularly on the first winter, is a serious problem in this study.

The latter would require extensive modeling to incorporate properly. Nevertheless, despite

the apparent lack-of-fit, the estimates are reasonable and match quite well to those from

other work (Schwarz, 2004; Cowen and Schwarz, 2006).
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In particular, the model picks up the known higher catchability of male fish versus female

fish on the spawning ground (occasions j = 1, 3, 5; pMj and pFj estimates, Table 3.2) and the

lower catchability during the angling season (occasions j = 2, 4, 6; pMj and pFj estimates,

Table 3.2). When compared to estimates from an equivalent simple JS, that does not include

sex, the naive catchability estimates occurred somewhere between the sex-specific estimates

(Table 3.4).

The initial male population estimate was low (N̂M
1 ≈ 252, 000 versus N̂F

1 ≈ 490, 000,

Table 3.3), but is not unexpected. Tribal harvest (during the spring) consists mostly of male

fish. Over the years, this will tend to lower the sex ratio of the standing population, as seen

in the female/male ratio column (3.3). We are puzzled though, by the apparent high male

proportion of new recruits prior to 2003. We tried several different initial values, but the

resulting estimates were always high.

Yearly survival rates for 2002 are likely biased low because of the excessive tag loss ob-

served between 2002 and 2003. The estimates appear more reasonable for later periods when

tag loss was much less prevalent. Arnason and Mills (1981) showed that homogeneous tag

loss resulted in unbiased estimates of population size, but biased estimates of recruitment.

Finally, our estimates of population size are comparable to those in Cowen and Schwarz

(2006) which accounted for tag loss, but not a lack of sex identification. The estimate of

total population size are also comparable to those from a simple JS model pooled over both

sexes (Table 3.3).

3.6 Discussion

Abundances, both general and sex or group-specific, are of often of interest to biologists and

managers alike, but obtaining such estimates can be difficult in cases where the group status

was not always be measurable. If the population sex ratio is known and constant then such

assignments are not needed (Zhang et al., 2005). However, situations where the sex ratio

is known and stable is rare. The method presented here provides a general approach to

deal with unknown designations that avoids biased demographic estimates that can arise if

classification uncertainty is otherwise dealt with in an ad hoc fashion.

The JS extension described here is an intermediate between the classical grouping ap-

proach, where the state is fixed and always measurable and the multi-state extension of the

JS model (Schwarz and Dupuis, 2007). If sex is known all the time then the experiment could
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Table 3.3: Estimated male and female specific birth, abundances and sex ratio by sampling
occasion. Note that population size (N s

j ) are in 1000’s. Also note that Bs
0 are not shown as

they are the same as N s
1 values. SE have not been adjusted for over-dispersion. The final

column represents estimates from a simple JS model pooled over sex.

Births (Bs
j−1) Population Sizes (N s

j ) Population Total (Nj)
Year Females Males Females Males F/M Ratio Sex-Specific Simple JS

2002 (j = 1) − − 490 (34) 252 (25) 1.9 743 (46) 695 (10)
(j = 2) 0 (−) 0 (−) 441 (27) 176 (31) 2.5 617 (45) 677 (10)

2003 (j = 3) 22 (11) 23 (11) 302 (23) 125 (3) 2.4 427 (23) 342 (5)
(j = 4) 0 (−) 0 (−) 238 (27) 92 (10) 2.6 330 (28) 327 (5)

2004 (j = 5) 45 (10) 44 (5) 231 (39) 118 (13) 2.0 351 (42) 326 (5)
(j = 6) 0 (−) 0 (−) 182 (41) 89 (20) 2.0 271 (45) 312 (5)

Table 3.4: Recapture probabilities estimates (SE) from the sex-specific JS and a simple JS
model. SE have not been adjusted for over-dispersion.

Sex-Specific Simple JS
Year pFj pMj pj

2002 (j = 1) 0.011 (0.001) 0.142 (0.013) 0.055
(j = 2) 0.024 (0.001) 0.014 (0.002) 0.020

2003 (j = 3) 0.025 (0.002) 0.282 (0.008) 0.131
(j = 4) 0.020 (0.002) 0.010 (0.001) 0.017

2004 (j = 5) 0.028 (0.005) 0.193 (0.018) 0.101
(j = 6) 0.008 (0.002) 0.005 (0.001) 0.007
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be broken down into a simple stratification and results in males and females abundances

being estimated separately. As a result biologically relevant restrictions, such as a 50:50 sex

ratio of incoming entrants, cannot be imposed. One of the nice features of the proposed

model is that the probability of an entrant’s sex is directly modeled in the likelihood. This

makes it a fairly trivial task to impose constraints on the sex ratio of entrants, which in

turn could be useful for testing a variety of biological hypotheses that may be specified in

a multi-model framework (see Burnham and Anderson, 2002). The model presented is also

flexible in regards to identification probabilities. If definitive sex assignments can always

be made (over either a portion or the entire experiment), then this formulation can still be

used by fixing the the appropriate δsj parameter to 1.

While formulation presented here dealt explicitly with sex as the underlying group of

interest, the model notation can also handle multiple fixed groups. In this case the super-

script s would be used to represent the various groups, rather than sex. Also an additional

restriction is needed so that probability of entrant belonging to a specific group sums to

one for all sampling occasions (i.e.
∑

s π
s
j = 1 for all j). Lastly, for the unknown group tag

history i the assigned group ζi would be the set of all possible fixed groups in the system.

This extension is not however without limitations. In dealing with classification uncer-

tainty, explicit assumptions were made on how group assignments occurred. Specifically,

any positive assignments were considered to be definitive. This was intended for sampling

situations where there is a mixture of observers (e.g. experts and non-experts) and only a

subset is capable of making positive assignments. This does not however protect against

mis-assignments. If the proportion of mis-assignment is large, then group-specific estimates

may become biased. While it is possible to adapt the modeling framework to deal with mis-

assignment in addition to group identification uncertainty, mis-assignment can be largely

controlled if field practitioners ensure that any uncertainty in an animal’s group assignment

is treated as an inability to assign a group.

Finally, it is also assumed that there is no unmodeled heterogeneity in the identification

probabilities. This may also not be the case if animals that have less physical development or

are diseased have identification probabilities that differ from the rest of the population. Such

conditions will not only affect the identification probabilities, but such animals may also

exhibit different demographic parameters which would violate homogeneity assumptions.

In this case further groupings or the addition of covariates may be needed to model the

potential heterogeneity in identification probabilities and demographic parameters.



Chapter 4

Modeling Pairwise Dependent

Capture Outcomes in

Mark-Recapture Experiments

4.1 Introduction

Mark-recapture models make assumptions of independence among individuals in the exper-

iment in order to formulate the likelihood as a product of individual likelihood components.

This approach has arisen due both to convenience and practicality. While we may sus-

pect that various dependency structures exist in a population (e.g. preferential selection

of habitat, as well as social behaviour such as herding and pair-bonds), generally there is

little available information on which to act. The assumption of independence then becomes

necessary to make mark-recapture problems mathematically tractable.

While the topic of dependency has been considered in other relevant techniques (e.g.

distance sampling; Buckland et al., 2010) it has received little to no consideration in mark-

recapture methodology. Few however would suggest that associations within a population,

such as mating pairs, can be expected to act in a completely independence manner. Clearly,

there there is a need to handle these types of situations, yet to date we have no modeling

framework available that can even adequately handle information on mating pairs.

Of the potential forms of dependency, pair-bonds (also termed lifelong social monogamy)

provides the best first step. There are a number of instances of known social monogamy

26



CHAPTER 4. THE ρ-CJS FRAMEWORK 27

in wild populations and include perennially monogamous species such as various water

fowl (e.g. ducks, geese, and swans), large seabirds (e.g. albatrosses), many birds of prey

(e.g. eagles and ospreys), cranes, some carnivores (e.g. foxes and wolves), as well annually

monogamous species such as number of passerines such as songbirds. While far from ex-

haustive, the list demonstrates the potential availability of such information. In addition,

this type of dependency is the most likely to be well documented. Most wildlife researchers

are interested in the various aspects associated with reproduction. Information on mating

pairs would certainly qualify under this umbrella.

Our goal then is to the take the first steps towards building such a modeling framework.

As a first effort we introduction a method for handling pairwise capture dependency in the

Cormack-Jolly-Seber (CJS) framework (Cormack, 1964; Jolly, 1965; Seber, 1965). Depen-

dency is assumed to occur between individuals in a mating pair, which we can expect to

be caught together with a probability that differs from other individuals not in the mating

pair. We introduce a sampling correlation parameter ρ to represent this process and herein

referring to our proposed model as belonging to the ρ-CJS modeling framework.

In developing the approach we have also adopted a state-space implementation, based

on the Gimenez et al. (2007) individual state-space formulation. State-space models (SSM)

provide a very general framework that view the complete realization of the data to be a

combination of a state (e.g. survival) and observation (e.g. capture) process. The strength

of this approach is the ability to specify models with highly complex interactions in rela-

tively simple terms. This contrasts with more traditional approaches that rely on complex

probability statements which make future model modifications more difficult. Our chosen

approach should also allow practitioners an easier path for modifying the proposed models

to handle idiosyncrasies of their data sets.

4.1.1 Motivation

The main motivation for our work comes from a long-term studies of harlequin ducks in

the McLeod River region located Alberta, Canada (see Bond et al., 2009). The primary

objective of the study is to monitor wild harlequin populations by obtaining estimates of

demographic processes such as survival. Due to the high capture rates and relatively small

population size, the study has created and maintained an in-depth pairing catalog of known

individuals and known pairings. Since mating pairs are often observed together on the same

capture events, there was interest in being able to account for this non-independence when
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generating demographic estimates.

Harlequins also make a good first candidate for modeling dependence as they typically

exhibit long term pair-bonds, changing mates only when a particular partner dies. For

the initial formulation we will assume individuals strictly pair for life, disallowing mate

switching. Generally, pair-bonds are initiated on the wintering ground (West Coast) prior

to migration to the McLeod River region in the spring for reproduction. As such, we can

expect the majority of individuals entering the experimental area will be either single or

already in a pair bond allowing us, for the time being, to ignore the possibility of new mating

pairs being formed once individuals have entered the experiment. In future models we hope

to relax these restrictions.

The data set also has unique characteristics that make a state-space implementation

preferable. For example, it is suspected that females exhibit fidelity for a specific breeding

site, while males exhibit fidelity only for females. As such, we can expect the male to

permanently emigrate from the site if the female mate dies. These types of complexities can

be handled in relatively straight manner when employing in a state-space formulation.

Our motivation for first extending the CJS framework to account for pair dependency

is that the CJS framework is the predominant form of open population mark-recapture

models used in the literature today. The framework obtains estimates of survival, while

dealing with the nuisance issues such as detectability in the form of encounter or capture

probabilities. Issues of detection occur when we observe 0’s in the capture history even

though the individual was alive and available for capture. The CJS also also provides a

simpler framework to work with than other open population models such as Jolly-Seber

models, that also estimate abundance.

4.2 Model Development

We will be considering a mark-recapture experiment with T capture occasion with all mating

pairings formed prior to the entrance of either individual into experiment. Further we

assume dependence may occur between capture outcomes within mating pairs, but assume

independence between pairs. We also assume that survival is a completely independent

process.

Typically, mark-recapture experiments are represented by a capture history for each

particular animal as a sequence of the form 00110, where ‘1’ represents a capture and ‘0’ no
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capture. The underlying state of the animal is its “alive status” with ‘1’ for alive and a ‘0’

for dead. We know the “alive status” for a captured individual will be a ‘1’, but typically

we do not know the “alive status” after last capture. The observations for an experiment

where n individuals that were caught at least once can then be represented in a matrix of

dimensions n× T .

For the ρ-CJS model we need to consider a total m < n independent entities, that

consist of either single individuals or mating pairs. For entity j there are four possible

female/male pair states: alive/alive, alive/dead, dead/alive and dead/dead. (Note we use

dead and absent interchangeably, as is commonly practiced in the CJS literature.) Let Zj,t
be a random state vector talking the values (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1)

to represent these states for entity j on sampling occasion t. Individuals without mates are

restricted to two of the possible four states depending on their sex.

Similarly, let Yj,t be a random observation vector taking the values (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0) and (0, 0, 0, 1), but representing whether both members of the pair were captured;

only the female member of the pair was captured or a lone female was captured; only the

male member of the pair or a lone male was captured; or no capture of an animal.

The fundamental model parameters are as follows:

φsj,t - Probability of survival from occasion t to t+1 for an individual of sex s ∈ {M,F}
in entity j given that it was alive at t.

psj,t - Marginal probability of capture for an individual sex s ∈ {M,F} on occasion t

belonging to entity j given that it was alive at t.

ρ - The correlation coefficient for pairwise capture outcomes of individuals in a mat-

ing pair.

We have only introduced one new parameter ρ that doesn’t exist in the standard CJS

framework. It should also be noted that capture probability psj,t is now defined as a marginal

probability of capture only for individuals belonging to a pair, for single individuals it retains

its standard definition.

4.2.1 Modeling Pairwise Captures

For a given mating pair we assume there will be dependence in the Bernoulli capture out-

comes for the pair. We can produce a 4× 4 table of the possible pairwise capture outcomes
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in terms of our marginal capture probabilities and ρ (Table 4.1). The expression for pfmj,t
is derived from the definition of covariance (see Appendix B.1) with the rest of the entries

following from the constraints placed on the margins. It is also worth noting that we use

superscripts that are lowercase (e.g. pm0) for parameters that are functions of fundamental

parameters (e.g. pM ), which use capital superscripts.

By modeling pairwise capture outcomes as a function of ρ we are making strong as-

sumptions about how individuals in a mating pair associate with one another. For example,

arguments could be made that once mated, the pair may act in a completely different fashion

(e.g. the pair could act as a super or meta-individual). For these types of cases we will want

to make the fewest possible assumptions on the probabilities of Table 4.1. Let pfmj,t , pf0
j,t and

pm0
j,t be the pairwise, female only and male only capture probabilities conditional on that

both individuals in mating pair j are alive. The complement p00
j,t = 1−pfmj,t −pf0

j,t−pm0
j,t is the

probability of no capture for pair j. The only constraint required is that pfmj,t +pf0
j,t+p

m0
j,t ≤ 1

for all j and all t.

Instead of estimating ρ we will have to estimate pfmj,t , pf0
j,t and pm0

j,t separately from the

capture probabilities of single individuals (psj,t for {s ∈M,F}). This will likely result in an

over-parameterized model requiring further constraints (beyond the constraint on the sum)

to be added in order to make the model estimable. Finally, also note that the definition of

psj,t changes slightly, becoming probability of capture for single individuals only.

4.2.2 Observation and State Equations

State-space models describe the evolution of two time-series processes; one is referred to

as the state process and the other the observation process (Buckland et al., 2004). The

state process is not observable (e.g. the alive/dead state of birds after last capture) and the

observation process is assumed to be a function of the state process. Typically, observations

for a given point in time are modeled as being conditionally dependent on the state process

at that same time point. Furthermore, the state process is assumed to be a first-order

Markov process, that is the current state is only depend on the state in the previous time

step.

To fully specify a state-space model we need to specify the initial state distribution along

with the distributions for the state and observation processes. Statistical inference is then

accomplished by integrating the joint distribution of the observation and state processes over

the state process. If a Bayesian approach is employed, numerical techniques for deriving
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the posterior distribution, such as Markov-chain Monte Carlo (MCMC), will automatically

integrate over the possible values of the state-space.

To gain an intuitive understanding of how this might work, consider the capture history

110 in a regular CJS experiment. We know the individual was alive for the first two

occasions, but may be alive or dead on the last occasion. Normally, these possibilities are

accounted for when formulating the marginal capture probability statement. For example in

a standard CJS model the marginal probability statement P (110) = φi,1pi,2(φi,2(1− pi,3) +

1 − φi,2) would be directly used in the likelihood. The term φi,2(1 − pi,3) accounts for the

possibility individual i survived from the second to third occasion, but was not captured in

the third. The term 1 − φi,2 accounts for the alternate possibility where individual i died

between the second and third occasions and was therefore not available for capture.

In a state-space formulation the integration of this final state is performed by directly

considering each possible outcome. If we take a Bayesian approach at each iteration of the

MCMC chain one of the two states on the third occasion (t = 3) would be realized. When

the chain reaches the stationary distribution, and we are sampling from the posterior, these

two state-space possibilities would be then sampled with the correct proportion. In φ2 of

the cases a ‘1’ will be selected (corresponding to the animal being alive at t = 3) and in the

other 1−φ2 cases a ‘0’ will be selected (corresponding to the animal being dead at t = 3). In

each case the “complete data” likelihood would be evaluated using one of these two states.

The resulting posterior will have the same properties as if we had integrated the likelihood

directly.

A key advantage of the state-space formulation is that the “complete-data” likelihood is

based on knowing the latent state, making the model simpler to write down. For example

(Gimenez et al., 2007) provided an individual state-space CJS formulation (which models

the states of each individual), where the state and observation processes are modeled as

Xi,t+1|Xi,t ∼ Bernoulli(Xi,tφi,t), (4.1)

Yi,t|Xi,t ∼ Bernoulli(Xi,tpi,t), (4.2)

respectively, for t ≥ ei and pi,ei = 1; ei indicates the first occasion individual i was captured.

Here Xi,t is a random variable designating the state of individual i on occasion t and Yi,t is

the observation. Note that CJS mark-recapture models condition on first capture, removing

the first capture probability from the probability statement for an individual capture history.
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In the state-space formulation this is accomplished by setting pi,ei = 1. The likelihood (not

shown) is the integral of the observation/state joint distribution over the possible state-

space. The initial state distribution, used to form the likelihood, is a simple point mass as

the animal is known to be alive.

This reduction of the problem into observation and state components also follows ap-

proaches such as the matrix population models of Caswell (2001), the multievent model of

Pradel (2005) and the multistate occupancy model discussed later in this thesis. However,

while these approaches focus on specifying complex capture history probabilities in a simpler

manner, the state-space approach is more generalizable and can handle any situation where

the distributions for the initial state, the state process, and the observation processes are

known.

ρ-CJS State Equations

For the proposed ρ-CJS model the state equation for Zj,t can be formulated as either a

multinomial process or a combination of Bernoulli trials. The multinomial state equation is

defined as

Zj,t+1|Zj,t ∼ Multinomial

1,Zj,t


φFj,tφ

M
j,t φFj,t(1− φMj,t) (1− φFj,t)φMj,t (1− φFj,t)(1− φMj,t)

0 φFj,t 0 1− φFj,t
0 0 φMj,t 1− φMj,t
0 0 0 1



 .

(4.3)

Here pairs may may transition from both being alive to one or both being dead. We assume

independent survival of the male or female, and that matings occur prior to entry into the

experiment so that once single, an individual does not form another mating pair. These are

somewhat arbitrary restrictions that may be relaxed in future work.

Rather than modeling state transitions as being a multinomial process, we can alter-

natively define the state equation in terms of n total individuals. In this case the state

equation will be defined as

Xi,t+1|Xi,t ∼ Bernoulli (Xi,tφi,t) (4.4)

for t ≤ fi, where fi is the first known instant where individual i has entered the experiment
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(and known to be alive), and Xi,t is the individual’s alive/dead state on occasion t. Next,

the mating-pair state vector for pair j on occasion t will be defined as

Zj,t|Xl,t, Xk,t =
[
Xk,tXl,t, Xk,t(1−Xl,t), (1−Xk,t)Xl,t, (1−Xk,t)(1−Xl,t)

]
,

(4.5)

for female k and male l of pair j. For the alternative formulation care must be taken

when defining fi, the first occasion in which individual i has entered the experiment. For

example if the known mate of individual i enters the experiment prior to the first capture

of individual i, the first occasion of the mate will be used.

Generally, we prefer formulation (4.4, 4.5) as it allows more flexibility for future modi-

fications, such as the eventual inclusion of mate switching.

4.2.3 ρ-CJS Observation Process

All CJS models condition on first capture, restricting inference to individuals that have

been observed, removing the first capture probability from the likelihood. For the ρ-CJS

framework first captures differs somewhat, because entities may consist of either single

individuals or pairs of individuals. For single individuals, the first capture conditioning

does not change from standard CJS models. However, for entities consisting of pairs we

approach first capture differently as there are three possible capture outcomes: female only

(F0), male only (M0) and both (FM).

Let ej be the occasion where entity j is encountered for the first time. The observation

model for the first capture occasion will be

Yj,t|Zj,t ∼ Multinomial

1,Zj,t


pfm

j,t

1−p00j,t

pf0
j,t

1−p00j,t

pm0
j,t

1−p00j,t
0

0 1 0 0

0 0 1 0

0 0 0 1



 for t = ej . (4.6)

The first row of (4.6) contains pairwise capture probabilities for the three possible capture

outcomes, conditioned on the overall probability of capture 1−p00
j,t. The the second and third

rows correspond to states where only the female or male are alive on first capture. Here we

use a value of 1 which is equivalent to removing the first capture probability. Entities were

both individuals are dead cannot be captured also receive a value of 1 which corresponds to
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neither individual individual being seen.

Subsequent captures are modeled in a manner that is consistent with multistate mark-

recapture models, with the following observation equation

Yj,t|Zj,t ∼ Multinomial

1,Zj,t


pfmj,t pf0

j,t pm0
j,t 1− pfmj,t − pf0

j,t − pm0
j,t

0 pFj,t 0 1− pFj,t
0 0 pMj,t 1− pMj,t
0 0 0 1



 for ej < t ≤ T.

(4.7)

If both individuals are alive (the first row) we used the derived pairwise capture probabilities

(e.g. pfmj,t ), otherwise we use the appropriate marginal capture probability psj,t. For the state

where both individuals are dead, neither are captured with probability 1.

Special Case: Permanent Male Emigration

One of the interesting characteristics with the McLeod harlequin study is possibility that

males emigrate from the site when their mate dies. In this case we would expect single males

to only produce ‘0’ observations, resulting in the following alternate observation equation

Yj,t|Zj,t ∼ Multinomial

1,Zj,t


pfmj,t pf0

j,t pm0
j,t 1− pfmj,t − pf0

j,t − pm0
j,t

0 pFj,t 0 1− pFj,t
0 0 0 1

0 0 0 1



 for ej < t ≤ T

(4.8)

used in place of the original observation equation (4.7).

4.2.4 Likelihood Formulation

Statistical inference (Bayesian or frequentist) requires a fully formed likelihood to be spec-

ified. Assuming that mating pairs are independent of one another, the likelihood can be

constructed as the product of the individual mating-pair likelihood components. As such,

the likelihood component of mating-pair j is the probability of obtaining observation matrix

Yj = (Yj,ej , . . . ,Yj,T ) determined by integrating over all the possible states. For pair j the
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likelihood component will determined as

∫
Zj,ej

· · ·
∫
Zj,T

[
Yj,ej |Zj,ej

]
[Zj,ej ]


T∏

t=ej+1

[Yj,t|Zj,t] [Zj,t|Zj,t−1]

 dZj,ej . . . dZj,T (4.9)

where
[
Yj,ej |Zj,ej

]
is the distribution describing the first captures (4.6) and Zj,ej is one

of three possible initial alive states, which is assumed to be known with certainty. The

distribution [Yj,t|Zj,t] is used for subsequent captures (4.7). Finally, [Z] is the distribution

used to describe our latent alive/dead status matrix Z and may be specified by either (4.3)

or (4.4 and 4.5) state formulations. The full likelihood is then formed by taking the product

of the m (pairs) independent components.

4.2.5 Model Assumptions

Standard assumptions under the mark-recapture framework are that tags are not lost, over-

looked and are recorded correctly, sampling is instantaneous, emigration from the sampling

area is permanent and the fate of each marked individual (capture and survival) is indepen-

dent to that of any other individual (e.g. Pollock et al., 1990; Williams et al., 2002). We

relax the last standard assumption so that the capture of each entity (the mating pair or

singleton) is independent, as well as making some new assumptions.

It is assume that mating pairings are known with certainty and can be discerned at

some point during the experiment. For pairs where only one mate is caught, we assume it

is possible discern the captured individual has a mate. Second, we assume that all pairwise

matings occur prior to a pair’s entrance into the experiment. Furthermore, individuals

that enter the experiment without a mate, will not become mated during the course of the

experiment. While these last assumptions may not be realistic for all system the provide a

starting point for modeling pairwise dependence in mark-recapture experiments.

4.2.6 Example Probability Statement of a Capture History

It is often helpful to consider the probability expression for sample capture histories. For

example, we will use the capture history 301 to indicate a mating pair that was captured

together on the 1st occasion, both missed on the 2nd occasion and only the female was

caught on the 3rd occasion. In this history we know the female survived the duration of the

experiment, but the male was only observed on the first occasion.
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To develop a probability statement for history 301 we need to consider the possible

fates of the female along with the male simultaneously. The resulting marginal probability

statement will be

P (301) =
pfmj,1

1− p00
j,1

φFj,1

(
φMj,1p

00
j,2

(
φFj,2

(
φMj,2p

f0
j,3 + (1− φMj,2)pFj,3

))
+ (1− φMj,1)(1− pFj,2)φFj,2p

F
j,3

)
.

(4.10)

where the subscript j refers to the jth pair of animals. At first glance the probability

statement may seem quite complex, but it can be broken down into smaller pieces by

consider the possible each unique combination of fates separately (Figure 4.1).

Common to all three unique combination outcomes is the leading term
pfm

j,1

1−p00j,1
which

represents the probability of observing both mates on the first capture occasion, given a

capture event occurred and both mates were alive. For the situation that only one of the

two mates were alive we would exclude the first capture probability as is the case in standard

CJS models.

After first capture each of the possible unique paths are modeled in a similar fashion to

standard CJS models except at each time interval we need to include the correct sex-specific

survival probabilities (e.g. φFj,t) for both the male and female of a given pair. The only real

departure from standard CJS type models is the change in capture probability terms used

which depends on whether or not the male is alive on a given occasion. For example in both

fates (a) and (b) in Figure 4.1 the probability of observing a ‘0’ on the second occasions is p00
j,2

because both the female and male are alive on the second occasion, but for (c) the capture

probability is (1−pFj,2) because only the female is alive. Summing over these individual fate

outcomes gives us back our original marginal probability statement (4.10).

4.2.7 Contrasting ρ-CJS and Standard CJS Models

While the ρ-CJS considers the history of mating pairs, it should be noted that without

knowledge of the mate pairing structure, there is no way to distinguish the observations

from a ρ-CJS experiment with that of a standard CJS models. For example, if we consider

again the capture history 301, we can view it as be constructed of a male 100 history and

a female 101 history.

If we deconstruct the the combined female/male histories into individual histories and
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History 301 (MS)

- 6 -

Alive

Alive

Alive

Dead

Alive Alive

3 0 1

+

+

M

F

Alive

Dead

pfm
j,1

1− p00
j,1

φF
j,1φ

M
j,1p

00
j,2φ

F
j,2φ

M
j,2p

f0
j,3

pfm
j,1

1− p00
j,1

φF
j,1φ

M
j,1p

00
j,2φ

F
j,2(1− φM

j,2)p
F
j,3

pfm
j,1

1− p00
j,1

φF
j,1(1− φM

j,1)(1− pF
j,2)φ

F
j,2p

F
j,3

P (301)

=

(a)

(b)

(c)

Figure 4.1: The capture history 301 will consist of a female that is known to be alive for
all three sampling occasions and a male that has three potential fates over the experiment.
The overall probability of this history is the combination of the three possible female/male
fates.

determine the expected frequencies, it can be shown (rather surprisingly) that these fre-

quencies do not differ between the ρ-CJS and standard CJS models if we exclude the 00..0

history which can only occur in the ρ-CJS setting. This is the result of restricting the

marginal capture probabilities when paired to be the same as the capture probabilities of

single individuals.

4.3 Numerical Example

We compare a standard CJS type approach against the proposed ρ-CJS framework on a sim-

ulated data set with a known amount of pairwise capture dependency. Data was simulated

the statistical programming language R (R Development Core Team, 2010) with parameter

values that appear to be reasonably based on the harlequin study. Fates (alive/dead states)

were simulated for each individual using a constant survivorship across all individuals, occa-

sions and sexes (i.e. φsj,t = φ = 0.8 for s ∈ {F,M}). A subset of individuals were then placed

in pairs and multinomial draws for pairwise capture outcomes were made for individuals in

mating pairs using the pairwise probabilities of Table 4.1 with ρ = 0.25. Captures for single

individuals were generated using binomial draws. In both cases a sex specific capture prob-

abilities was used that was constant across occasions and individual/pairs (i.e. pFj,t = pF and



CHAPTER 4. THE ρ-CJS FRAMEWORK 39

pMj,t = pM ). The capture outcomes and pairing information was then used to construct the

observation matrix.

In order to fit the standard CJS model we had to exclude individuals with a 0. . .00

individual capture history as these histories cannot be observed in a regular CJS type

framework. In contrast, the ρ-CJS framework can produce this type of individual history

if we know the mate exists but the mate was never captured. In this case the 0. . .00 type

history may be hidden in summary histories such as 101 or 202.

In total we simulated histories for 1500 individuals over T = 8 occasions. Not all

individuals entered the experiment, resulting total of 1463 individuals included in the ρ-

CJS model and 1407 individuals included in the standard CJS model.

The parameter estimates for the CJS data set were obtained through maximum likeli-

hood using Program MARK (White and Burnham, 1999) and the parameter estimates for

the ρ-CJS model were obtained using a Bayesian approach and implemented in WinBUGS

(Spiegelhalter et al., 2003). The WinBUGS code is provided in Appendix B.2. Multiple

chains were initiated, the first 10,000 samples from the posterior were discarded for burn-in,

then an additional 100,000 samples of the posterior were taken with a thinning of 10, to

reduce autocorrelation between some of the parameters. This resulted in a total 10,000

usable samples from the posterior distribution for each parameter.

As would be expected both approaches yield point estimates that appear to be unbiased

(Table 4.2). However the ρ-CJS model was able to successfully estimate the degree of

correlation between capture outcomes, whereas the standard CJS model is naive to such

processes. Furthermore the ρ-CJS also produced slightly lower measure of uncertainty,

due to the extra information used by ρ-CJS framework (i.e. individual 0. . .00 histories).

Goodness-of-fit tests available in Program MARK did not indicate a problem except for

ĉ, the estimate of model over-dispersion. The observed ĉ was 1.68, with a bootstrapped ĉ

value of 1.88 (se 0.15). Both show an indication of over-dispersion in the data relative to

the model. A ĉ value of 1.88 was used to adjust the standard error estimates of näıve CJS

model, which increased the standard error estimates slightly (Table 4.2).

4.4 Discussion

We present an important first step to laying the framework needed for the consideration of

dependency structures in mark-recapture experiments. Of the standard assumptions made
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Table 4.2: Parameter estimates from simulated data for both the standard CJS approach,
which is naive to any dependency in pairwise capture outcomes and the ρ-CJS approach
which models this type of dependency. Standard errors for the näıve CJS model were not
adjusted for over-dispersion.

Parameter True Value1 Näıve CJS (MARK) ρ-CJS (WinBUGS)
Est. SE SE2 Mean SD 95 % CI

φ 0.800 0.794 0.006 0.008 0.794 0.006 0.784 0.805

ρ 0.250 - - - 0.258 0.031 0.196 0.320

pF 0.731 0.746 0.011 0.015 0.740 0.009 0.722 0.758
pM 0.818 0.826 0.010 0.013 0.822 0.009 0.805 0.839

p00 0.092 - - - 0.090 0.008 0.075 0.105
pf0 0.091 - - - 0.088 0.007 0.076 0.101
pm0 0.177 - - - 0.170 0.008 0.154 0.187
pfm 0.641 - - - 0.652 0.010 0.632 0.671

1Parameter values used in that data simulation. The concept of a “true” parameter value

does not exist in a Bayesian framework.
2Standard errors adjusted for over-dispersion using a ĉ value of 1.88.

in the CJS modeling framework (see Pollock et al., 1990; Williams et al., 2002), this is the

first time the long standing assumption of independent fates among individuals has been

approached. While violations of independence are often cited as an issue in analysis of

model misfit, we are the first to provide a potential solution.

In this formulation we focused on modeling the pairwise dependency that may occur

in capture outcomes only, assuming independence in the survivorship process. While de-

pendency in survivorship may exist, we feel this restriction is justified. Mark-recapture

sampling occasions are considered instantaneous and tend to occur during periods of re-

production when the majority of individuals in the population are available for sampling.

Under these conditions we may expect individuals in a mating pair to be associated together

more often with each other than with individuals who are not in the mating pair. How-

ever, this association may be temporarily seen during sampling periods only, after which the

mating pair may or may not share fates. This makes it unclear whether or not survivorship

dependency needs to be handled in addition to capture dependency.

We suspect dependency in survivorship will be highly dependent on the system under

study. If individuals in a mating pair are always be associated with one another, then we
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see no reason why survivorship dependency cannot be handled in a manner similar to the

method we have outlined for captures. However, if individuals in a mating pair are only

associated together temporarily, then considerations of dependency may not be necessary.

Note however that these considerations of survivorship dependency are based on individuals

sharing fates.

Dependency in survivorship may also exist if individuals in a mating pair select other

individuals of similar quality. In this case, we may expect individuals of lower or higher

quality to be associated with other individuals of similar quality. Because quality and

survivorship are often related, individuals with higher or lower survivorship may also be

associated together, due to mate selection. We suspect this possibility could be handled

with the careful use of random effects between individuals in a pair and represents a simpler

modeling case than dependency in captures.

Any of these future considerations will be highly dependent on a flexible modeling frame-

work. To these ends we were successfully able to implement a state-space model in a Bayesian

framework using the common Bayesian software package WinBUGS. state-space implemen-

tation as this type of model formulation is very promising for modeling ecological data sets

(see Buckland et al., 2004; Gimenez et al., 2007).

In terms of the model presented, we prefer the individual state equation using Bernoulli

trials as opposed to provided multinomial state equation. This type of formulation will

be easier to carry forward as additional model features are added and also allows for the

incorporation of additional information about the alive/dead states if there exists knowledge

outside the current study. For example, an individual may be observed as being alive in

another study, but was not captured recently in the current study. This type of state-space

formulation makes including this type of additional information fairly trivial. Furthermore,

if we are to accommodate more complex forms of interactions such as mate switching, an

individual state equation will be essential. Lastly it should be noted that the current model

may also be formulated in the multievent framework (Pradel, 2005).

While we have taken the important first steps towards solving this problem, we are

still not in a position to approach the motivational data set due to various intricacies such

as the occurrence mate switching, which the proposed model currently does not handle.

Mate switching can occur even in socially monogamous species when one of the mates dies,

or in the context of our framework, mate switching may occur if an individual enters the

experiment single then finds a mate at a later occasion. Switching mates adds additional
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problems as we can no longer represent the experiment in terms of a simple multi-state

capture history, because the definition of an entity (in our case either a single individual or

a mating pair) changes as the mate changes.

There are a couple of potential approaches that could be taken to handle the problem.

First the standard capture history data format will have to be changed to an single entity

(single or mating pair) format, with information about the individuals making up the entity

and the capture occasions. Currently our WinBUGS model takes this approach to the data.

Secondly, mate switching requires that we either know the exact occasion, or range of

occasions that switching takes place, otherwise another process will need to be included in

the model that accommodates for the process of pairing, breakups and repairing. For any

of these scenarios we must also carefully consider the entrance indicator for each individual,

as this is used in part to correctly set the period we know an individual is alive. Incorrectly

specifying the entrance will lead to biased parameter estimates. Specifically, entrance indi-

cator must accommodate for the situation where one of the mates is captured earlier in the

experiment, but at the time is not paired to the individual of interest. In this case the mate

that was captured earlier provides no additional information about when the individual of

interest entered the experiment.

Setting aside the topic of entrances, handling switching is still a non-trivial exercise for

all situations except when the exact timing of the switch is known. Since this is an unlikely

situation we will consider the situations where switching takes place during some interval

or we need to introduce a new process to the model.

If we only know that switching took place within an interval we may opt to condition

out those capture observations from the observation equation, since we do not know with

observations came from a single individual and which capture outcomes came from a paired

individual. Alternatively, we can introduce another process into the model representing the

pairing process, for example a pairing probability. Introducing this would then allow one to

integrate over the possible states in the known switching interval.

While this may seem like a straight forward solution, introducing a pairing probability

also introduces additional problems. For starters there is the implicit assumption that

there is no restriction in the availability of mates, and that all single individuals wish to

form mating pairs. While the latter assumption is not particularly problematic, the former

could be in smaller populations. Incidentally, we would also expect smaller populations to

be the prime candidate for this type of modeling framework due to the work required to
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acquire a detailed mating record. This problem could be overcome if we knew the exact

number of available individuals, however this would also require moving away from CJS

framework towards a Jolly-Seber (JS) framework (see Schwarz and Seber, 1999; Williams

et al., 2002), where individuals available for capture are explicitly modeled. Interesting, if

an adequate solution is determined, modeling the pairing process would also one to relax our

initial assumption of knowing the initial entity state. Similar to switching, one could also

integrate over the possible initial states, rather than setting them as a knowing quantity.

Generally, this direction in modeling approach is also consistent with the general ap-

proach of incorporating more information on the alive/dead state of an individual than a

regular CJS type framework allows. Typically, in a CJS model, we only know about the in-

terval from first capture to last capture and the birth/entrance to the study is left censored

and the death/exit from the study is right censored. The CJS framework conditions on

first capture to remove the issue of left censoring and integration to handle the second. In

contrast the JS framework integrates out both types, thereby making stronger assumptions.

Our proposed model is somewhere in between as we are able to include some information

outside the regular CJS interval.

In particular, we can include more information about the alive/dead state when a mate

is known to be alive due to its association with its mate (e.g. the male is not observed but the

female is still producing offspring). Depending on the situation we can widen the interval

we know a given animal is alive, providing more information and more precise estimates. In

addition, unlike the regular CJS framework the proposed ρ-CJS framework is explicitly able

to include 0...00 type individual histories, for example a 101 history could be a mating-pair

where only the female was caught (a 101 female history and a 000 male history) or a single

female. The difference being that we knew the initial state upon capture. Again this starts

to blur the line between a JS and a CJS type model.

Another interesting feature of our proposed modeling framework is that if we break the

joint capture histories into individual capture histories (e.g. a 303 history consists of both a

female 101 history and a male 101 history) we find that the expected frequency of observed

individual capture histories (excluding the 0...00 type individual histories) is identical to

a CJS type framework.

Regular CJS type experiments contain no information about pairwise capture dependen-

cies and the mating information is an auxiliary component to the regular mark-recapture

type experiment. The equivalence in observed frequencies is due to our assumptions that
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pairwise captures are distributed as dependent Bernoulli trials. In a ρ-CJS expiment we

restricted the marginal capture probabilities of paired individuals to be the same as the cap-

ture history for single individuals, thereby producing similar observed frequences. While the

expected frequencies are equivalent other distributional characteristics will differ between a

ρ-CJS experiment and a regular CJS type experiment. Furthermore this outcome is only

valid if pairwise captures follow our assumptions, to which we also provided an alternative

capture model that will likely result in a divergence in observed frequencies between regular

CJS and ρ-CJS experiments.

Often mark-recapture experiments produce data that is over-dispersed relative to the

models. Typically this is quantified with the ĉ statistic, the model dispersion divided by

the degrees of freedom, where values greater than one show potential problems of over-

dispersion. Model over-dispersion is often attributed to problems such as non-independence

without citing definitive proof. Now that the initial workings it would be worth investigate

the effect varying levels of pairwise dependency has on the estimated uncertainty of model

parameters.



Part II

The Multiple Season Multi-State

Occupancy Framework
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Chapter 5

Modeling Ecology Processes Using

Ecological States

5.1 Introduction

Understanding driving forces behind changes in wildlife populations is a central scientific

goal for ecologists, conservationists, and wildlife managers, yet after a century of research

many topics still remain hotly debated. For example, the mechanisms behind density depen-

dence, a well accepted and often cited population process, is still being called into question

(e.g. the role of individual variation as a mechanism; Benton et al., 2006). In general, a

variety of factors have been argued to be behind the difficulty. These have ranged from

the type of mathematics historically used (Nieminen, 2008), to the difficulties involved in

obtain high quality data sets (e.g. Wolda and Dennis, 1993; Hanski and Henttonen, 1994).

We side with the latter concern over the availability of quality data sets and further observe

that most studies have chosen to focus on sampling individuals which can be notoriously

difficult.

While individuals may provide the ultimate level of inference, sampling can be notori-

ously difficult. Species are often under study because they are rare or endangered, with

populations that are sparsely distributed across the landscape. This naturally leads to

sampling inefficiencies. Sampling individuals often requires physical capture, presenting

managers and conservationists with a potential trade-off between gaining information and

potential disturbance. In particular, when studying rare species a disproportionately larger
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percentage of the population must be sampled in order to obtain estimates of acceptable

precision. This in turn represents a larger impact due to sampling than would be the case for

a more plentiful species. A balance then between impact on the study species (through sam-

pling) and knowledge must be forged. Muddying this situation further is the fact that rare

and endangered species are often regulated by stronger governmental restrictions, adding

administrative overhead and further costs to study deployments.

5.1.1 Ecological States

These types of shortcomings give rise to other approaches such as using ecological states.

An ecological state is defined simply as any unique configuration of ecological characteristics

considered important by expert opinion (e.g. Stringham et al., 2003). State-and-transition

type models have gained widespread use in rangeland ecology as an effective way to model

plant communities (Herrick et al., 2006; Bestelmeyer et al., 2009; Knapp and Fernandez-

Gimenez, 2009) and has even gained governmental agency adoption (Stringham et al., 2003).

Within wildlife ecology, a state-based approach has also been gaining traction, with examples

including relative measures of abundance (e.g. occupancy MacKenzie et al., 2002; Tyre

et al., 2003; Royle and Link, 2005), species richness (Wickham et al., 1997) as well as

other indicators of population health (e.g. active breeding Nichols et al., 2007). The use of

ecological states is also compatible with seminal ideas in ecology such as patch dynamics

(Wu and Loucks, 1995; Wu and Levin, 1997)

Ecological states shift the focus to geographical units, often termed sites, as the statistical

“population”. Observations are formed by visiting the site and recording an ecological state.

For example, in presence/absence data the observer records whether or not a particular

species is present. Statistical inference may then be focused on estimating the proportion of

landscape exhibiting a given ecological state or modeling the probability that a given state

is exhibited as a function of covariates. For presence/absence data (usually denoted as a

‘1’ or ‘0’) the proportion of the landscape occupied is often estimated, and can be used as

a surrogate measure for abundance. Monitoring studies would then track changes in the

underlying population size, by tracking the increase or decreases in the proportion of the

landscape occupied.

Compared to methodologies focused on individuals, ecological state variables also can

be more efficient in terms of sampling effort as well as providing a way to model available

knowledge. For example, the presence of a species can be confirmed by only observing one
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member of a species. In contrast, techniques such as mark-recapture need to repeatedly

observe the same individual. Also it can be easier to incorporate available information

(e.g. traditional knowledge) with scientific knowledge using ecological states (Knapp and

Fernandez-Gimenez, 2009).

While there are potential benefits to using ecological states, issues of detection have been

largely overlooked. Detection issues have long been considered to be a common problem

in wildlife abundance data (see Williams et al., 2002), yet it has been largely ignored for

ecological state data (MacKenzie et al., 2002; Tyre et al., 2003; Royle and Link, 2005;

MacKenzie et al., 2006). For example, even our ability to detect even the most basic of

ecological states, the presence or absence of a species, is known to be quite limited (Craig

and Roberts, 2001; Lindenmayer et al., 2001; MacKenzie et al., 2002; Tyre et al., 2003).

Ignoring these issues will bias estimates of ecological processes, even when there are only

small levels of detection error (MacKenzie et al., 2002; Martin et al., 2005).

In this portion of the thesis we build an analysis framework for handling ecological state

data, with special consideration given to handling detection issues. Building on the work

of MacKenzie et al. (2002) and Royle and Link (2005), who proposed the site-occupancy

framework and the single-season mixture multinomial model, we derive a multiple season,

multi-state occupancy framework based on the multievent model of Pradel (2005).

5.2 Motivating Example: The North American Amphibian

Monitoring Program

Our intent is to develop and refine techniques that have real-world applicability. In doing

so it can be instructive to consider a motivating example when constructing the analysis

framework. In our case we have chosen the North American Amphibian Monitoring Program

(NAAMP), which uses call indices (a measure of call frequency) as a surrogate for abundance.

Amphibians have been experiencing world-wide declines (even in relatively pristine en-

vironments) and are considered “bioindicators” for environmental health due their high

sensitivity to contaminants (Blaustein, 1994; Gardner, 2001). Consequently, amphibian

monitoring programs have been initiated across Canada and the United States to gather

baseline data and track changes in anuran populations (frogs and toads). These programs

rely on volunteers to collect abundance data and as a result have focused on the use of sur-

rogate measures of abundance which are easier to obtain and require less training than more
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direct techniques such as mark-recapture. Generally, ponds with higher anuran abundances

have higher vocalization rates (Nelson and Graves, 2004). A call index is simply a standard-

ized categorization of the call frequency (e.g. 0-none, 1-low, 2-medium, 3-high) that was

formalized and standardized with the creation of the NAAMP. Changes in the underlying

abundances is then monitored by tracking changes in the call index. For example, ponds

showing consistently showing lower call indices over time are assumed to be undergoing a

decrease in the underlying population abundance.

For simple presence/absence data, MacKenzie et al. (2002) proposed the occupancy mod-

eling framework as a way to handle detectability, but the occupied/unoccupied dichotomy

for the ecological state is too coarse. Site-occupancy models take an areas of interest are

divided into sites (in the case of the NAAMP, ponds are sites), which are repeatedly sampled

for the observed presence or absence of a species. Observations are then summarized as an

encounter history, for example ‘101’ is a site that was surveyed three times and a species was

observed on the first and third occasions. Site-occupancy models treat the underlying state

of the site as latent (occupied with probability Ψ) with the observation being dependent on

the underlying state. For occupied sites a ‘1’ is observed with probability pt on survey t. If

surveys occur close together in time we can assume the underlying state has not changed

and the probability of observing that encounter history becomes

P (101) = Ψp1(1− p2)p3. (5.1)

The outcome can then summarized in terms of encounter histories, which is modeled as

multinomial with the unique encounter making up the possible outcomes and the encounter

history probabilities as the cell probabilities.

By modelling states (occupied/unoccupied) and observations (detected/undetected) sep-

arately, finely nuanced models can be created to suit a variety of unique biological situations.

For example the probability of observing the species may be defined on a site- and survey-

specific level (e.g. pit), which can then be modeled as a function of site-specific covariates.

In a similar manner a site specific probability of occupancy Ψi can also be modeled as a

function of covariates.

While a flexible framework for presence/absence data, the occupied/unoccupied di-

chotomy for state variable is too coarse for many ecological situations. In the context

of the NAAMP data set, ponds that produce a call index of ‘3’, ‘2’ or ‘1’ would all be
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treated as ‘present’ (e.g. Weir et al., 2005). Areas that consistently produced a call index of

‘3’ would be treated as possessing the same ecological state (occupied) as those producing

an index of ‘1’, even though higher index values are known to be associated with higher

abundances. An ad hoc approach to deal with this multi-state data in the site-occupancy

framework would be to model detection probability p and/or occupancy probability Ψ as a

function of the call index value (e.g. we may expect sites with higher abundance will also

have a higher site-specific value of p). This of course is arguably a backwards approach to

modeling the true nature of the data.

For data sets such as the NAAMP, an explicit multi-state occupancy framework is the

next logical step. Most ecological state variables can be thought of in terms of multiple

states of species occupancy. Examples include relative measures of abundance (ordinal

abundance levels), successful reproduction (occupied and occupied with reproduction) or

even in terms of co-occurrence of one or more species (species A, species A and B, etc).

Similar to the classical site-occupancy models, such a framework should also give special

consideration to issues of detectability. Here the issue of “detectability” becomes more

complex as there is general failure to observed the species in any state (detection) or a site

may be observed as occupied, but is mistakenly classified as exhibiting an ecological state

other than the true state (misclassification). Finally, a multi-state occupancy framework

must also accommodate multiple years or seasons of data, so that expected changes in the

underlying ecological state may be estimated. This will allow trends in the ecological state

(and factors affecting those trends) to be modeled and estimated, giving ecologists and

managers important tools to track and interpret important changes in wildlife populations.

5.3 Hierarchical Models and the Multievent Framework

5.3.1 Hierarchical Models

Hierarchical statistical models are recognized as one of the most promising approaches for

specifying complex ecological models (e.g. Royle and Young, 2008; Bolker et al., 2009; Pon-

ciano et al., 2009). These types of statistical models allow researches a great amount of

flexibility. For example, extra variability may be included in parameters that may other-

wise be treated as fixed. This can correctly address issues such as individual heterogeneity,

survey designs (such as blocking) or to acknowledge the often stochastic nature of environ-

mental processes. However, not all hierarchal models are equally appropriate for ecological
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data.

Central to this issue are the model components and the handling of over-dispersion.

Hierarchical approaches such as generalized linear mixed models (GLMM) have been sug-

gested as a practical approach for creating ecological models (e.g. Bolker et al., 2009), but

oftentimes neglect important considerations such as detectability. GLMM type approaches

do not clearly separate the ecological mechanism from the observation process, instead rep-

resenting observations as being generated from a single process, potentially with random

effects included as an additive effect.

This presents two drawbacks, because we know detection to be an important consid-

eration in ecological data (Craig and Roberts, 2001; Lindenmayer et al., 2001; MacKenzie

et al., 2002; Tyre et al., 2003). Without a clear modeling paradigm that incorporates de-

tection, researchers may under appreciate the relevance of the issue. It makes it easier

to neglect model components representing how observations are obtained and may lead to

models which erroneously view over-dispersion as an outcome of variability in the ecological

mechanism, rather than as a consequence of the ecological mechanism and the inability to

fully observe the system.

Royle and Young (2008) argued for a type of hierarchical modeling approach that has

long been employed in mark-recapture and more recently occupancy models. These types

of models define separate components for ecological mechanism or state and the observation

process, where the expected value (conditional on the underlying state) is used for building

models around the observation process.

For example, in site-occupancy models, the underlying state will either be occupied or

unoccupied (denoted as a 1 and 0 respectively). We let Z represent the latent occupancy

state. When visiting a site we can observe the site as either being occupied or empty (also

denoted as 1 or 0 respectively. We will let Y represent our observed occupancy status. If a

site is occupied, that is z = 1, then we can expect to observe a ‘1’ with probability p (the

detection probability), which we can summarize as [y|z = 1] ∼ Bernoulli(p). More complex

models for the positive detections can then be constructed, by modeling the expected value,

p, as a function of covariates. Generally, if z = 0 only a ‘0’ will be observed, which we

can similarly state as [y|z = 0] ∼ Bernoulli(0). Traditionally, this latter distinction is not

directly stated, since mark-recapture and occupancy models have typically worked directly

with the marginal distribution [y|Z][Z], since their first introduction (Jolly, 1965; Seber,

1965). We will be looking at this latter distinction in more detail shortly.
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Experiments involve multiple sampling occasions, and as such the entire summary of

observations, termed histories, is modeled as using multinomial distributions. Each unique

history capture (mark-recapture) or encounter (site-occupancy) history makes up one of

the multinomial outcomes. Returning to our earlier example, a history of ‘101’ for a site-

occupancy model indicates an experiment where a site was visited on three occasions and

the species observed on the 1st and 3rd sampling occasions only. The biological relevance

of the model is incorporated when we define the multinomial cell probabilities. In this case

we must first define Ψ, the probability that a site is occupied, and pt as the probability of

a positive detection in survey t. Assuming the underlying state of the site has not changed

between the three surveys we get the encounter probability written in (5.1).

Because the species was observed in at least one of the occasions, we know the site was

occupied, simplifying our probability statement. For cases of the all zero history (i.e. ‘000’),

we can’t be certain of the underlying state so we must consider both possibilities. In this

case

P (000) = 1−Ψ + Ψ(1− p1)(1− p2)(1− p3).

which accounts for the possibilities the site was not occupied, or was occupied, but not

detected on any surveys.

In both cases we are directly specifying the marginal probability and have implicitly

accounted for all possible states. While on the surface this may seem straight forward, but

as the number of possible states increase, specifying the marginal probability becomes more

problematic because we need to consider all combinations simultaneously. As a result it can

be easy to overlook implicit assumptions or completely overlook certain outcomes.

Keeping with our first example, the probability statement for P (101) assumes that no

false positives can occur, that is an unoccupied site will only produce observations of ‘0’. We

can make this assumption clearer by defining qt to be the probability that an unoccupied

site produces a ‘0’, thus producing the following,

P (101) = Ψp1(1− p2)p3 + (1−Ψ)(1− q1)q2(1− q3).

This new statement accounts for the possibility that the encounter history ‘101’ was pro-

duced by either an occupied or unoccupied site. By making the explicit constraint qt = 1

(i.e. unoccupied site produces a ‘0’ with certainty) we can retrieve our original probability

statement.
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The problem with the first probability statement (5.1) is that at a glance it is not entirely

self-evident that we have integrated across all states. While such assumption may seem

trivial for simple models like the site-occupancy model, multiple states of occupancy will

creates many more types of misclassification errors. A clear modeling paradigm is needed

to facilitate complex multi-state occupancy models, so that can be readily understood by

practitioners of varying mathematical abilities.

Ideally, focus should be placed on defining the components of the system, rather than

marginal probability statements. For example, what are the latent ecological states of

interest, how are these states related to each other and over time (i.e. can states change

between sampling occasions; can one state transition directly to the next?) and what types

of observations can be produced by a particular state. Once specified, these components

should naturally define the marginal likelihood, without having to define complex probability

statements.

5.3.2 Incorporating the Multievent Framework

Pradel (2005) provided a significant step forward in terms of model formulation with the

multievent framework for the multi-state Cormack-Jolly-Seber (CJS) class of mark-recapture

models. The frameworks attempts to model the true nature of capture histories, by looking

at the observed data in terms of latent states and observations, which are termed events.

On a given sampling occasion an animal exhibits one of a set of possible states, for example

being alive is one obvious state. The state however is not directly observable, instead an

event is observed from a set of possible events that may be associated with a given state.

The use of the term “event” is used to clarify the concept that observations are separate

but related to underlying state of interest. For example, consider an experiment where

the states of interest are alive, alive and breeding and dead. Determining breeding status

directly can be difficult, instead events such as “sitting on an egg” or “standing near a nest”

may give differing insights into the underlying state. For the first event it is clear that the

animal is alive and breeding, but for the second it is only clear the animal is alive, whether

or not it is breeding cannot be determined. As such, the second event should be modeled as

coming from either alive states with appropriate event probabilities, while the former event

would from the alive and breeding state, which would have different event probabilities.

This alone is not a radical departure from multi-state CJS models already in use, the

true strength comes in simplified mathematics used to define the model. More specifically,
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the multievent framework dispenses with the need to explicitly provide overly complicated

marginal probabilities. Instead, model formulation is broken down into component pieces

which include an initial state vector, as well as transition and events probability matrices.

Because both mark-recapture and occupancy models share a number essential characteristics

in their basic formulations, we can easily adapt approach to the occupancy framework.

Returning to our previous occupancy example, where we consider both missed detection

and false positives, we can take a multievent type approach by first defining state and event

components. Our states would be a row vector containing the probability of being either

unoccupied or occupied, [
1−Ψ Ψ

]
.

Next a 2 × 2 event probability matrix needs to be defined to account for all possible

observed events, conditional on the underlying state. In this case we have two events (0

- not observed, 1 - observed as present) which may occur for each of the two states (0 -

unoccupied and 1 - occupied). Using the same notation as before, the resulting event matrix

becomes

event

state 0 1

0

1

[
qt 1− qt

1− pt pt

]
.

Here each row must sum to one as events are mutually exclusive. By arranging the events

in a matrix it is readily apparent that false positives (i.e. observing an ‘1’ when the site is

unoccupied) are possible.

With the state and event components defined, the last task is adapting the multievent

framework is to determine the marginal probability of an encounter history using matrix

algebra. To do so we employ a simple mathematical trick where for each observation we

take the corresponding column from the event matrix and place it on the main diagonal

before taking the product allowing the mathematical statement to resolve correctly. For the

example encounter history of ‘101’ again, the marginal probability is then defined as

P (101) =
[

1−Ψ Ψ
] [ 1− q1 0

0 p1

][
q2 0

0 1− p2

][
1− q3 0

0 p3

][
1

1

]
(5.2)

= Ψp1(1− p2)p3 + (1−Ψ)(1− q1)q2(1− q3).
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The final column vector 1 sums the separate probability statements for each state, making

the overall equation a marginal probability.

This is very similar to the probability statement used in the multievent model, where

the probability of capture history h is determined as,

P (h) = πeD
(
B0
e (oe, ·)

)( T∏
i=e+1

Φi−1D(Bi(oi, ·))
)

1N . (5.3)

Here πe is the initial state probabilities the multievent model (similar in meaning as the

vector containing Ψ in (5.2)), B0
e is a matrix containing the event probabilities on the first

capture (necessary for Cormack-Jolly-Seber mark-recapture models) and Bi is a matrix

containing the event probabilities for subsequent captures. The notation D(B(oe, ·)) is used

to denote taking a row vector of matrix B corresponding to event o and placing it on a

diagonal of a matrix with dimensions the same as B. Note the only difference is that we are

using columns from the event matrix rather than rows, and we have multiple observations for

a given state, which is similar to the robust design in mark-recapture (Kendall et al., 1997).

Finally, Φi is the state transition matrix which includes the probability of survival between

occasions. We will consider state transitions when we formally introduce the multi-state

occupancy model in the next chapter.

While matrix formula in (5.2) may at first glance appear somewhat cumbersome, there

is utility in this approach. Practitioners can focus on defining only the state and event

matrices. The marginal probability is then defined as a byproduct of the state probability

vector and event probability matrix. For example, if to make the assumption that false

positives cannot occur (i.e. an unoccupied site can only produce a ‘0’) we need only redefine

our event probability matrix as

event

state 0 1

0

1

[
1 0

1− pt pt

]
,

and make the appropriate substitutions in the marginal probability statement above.

The strength of a multievent like approach is that it simplifies the model formulation

for researchers, allows for a wide range of models to be defined, while all the while making

assumptions clearer. As was shown, false positives can be handled by simply redefining the



CHAPTER 5. MODELING ECOLOGICAL PROCESSES WITH STATES 56

event matrix, rather than defining a whole new framework as has been the case in the past

(e.g. Royle and Link, 2006). This allows greater ability of practitioners to redefine models to

their specific research needs as well being very scalability in terms of software deployment.

A drawback however is that without careful consideration it may be fairly easy to create

models that produce parameter combinations that are not estimable, leaving practitioners

to assign appropriate restrictions in order for the model to be estimable. That said, there

are a variety of techniques available to identify parameter redundancy (e.g. symbolic algebra

and analytic-numerical, see: Catchpole et al., 2002; Gimenez et al., 2003).

Given the clear advantages of the multievent framework, we generalize this approach to

the problem of multi-state occupancy over multiple seasons in the next section. Models are

built by defining three components, an initial state probability vector, along with transition

and event matrices. These separate components are then combined to define the marginal

likelihood, which can be shown to produced a number of popular occupancy formulations

with the correct model parameterization.



Chapter 6

The Multi-Season, Multi-State

Occupancy Framework

6.1 Introduction

Several authors have considered single-season multi-state occupancy models. Royle and Link

(2005) modeled a single-season of the NAAMP call index data using a mixture multinomial

model which can be viewed as a multi-state extension to occupancy modeling. Each site was

viewed as possessing an unobservable abundance index, capable of producing a maximum

observed call index of the same level (e.g. a site that has an abundance index of ‘3’ can

produce observed indices of ‘3’, ‘2’, ‘1’ and ‘0’). Sites that produced an observed value of

‘3’ were assumed to be a direct observation of the state, while all other observed indices

were assumed to potentially come from a mixture of misclassification and true detection.

Observations were modeled as a mixture of multinomials, with each multinomial being

dependent on the underlying latent state. In addition to relative measures of abundance,

Nichols et al. (2007) expanded the definition of occupancy to include two ordinal states,

with and without reproduction in order to model populations of the Northern spotted owl.

Sites were first model as either being occupied or not, then conditional on being occupied,

further divided depending on whether or not successful reproduction had occurred. Similar

to the mixture multinomial model, observations of occupied and reproduction were assumed

to be situations were the true underlying state had occurred while all other observations

(occupied without reproduction and not occupied) were assumed to come from a mixture
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of correct and missed detection.

While these models represent important progress in developing multi-state occupancy

model, these models may be too specific for a general adoption to a wide variety of problems

and can only be applied to a single-season of data. Most ecological studies with state

variables encompass multiple seasons of data, where the underlying state can be assumed to

change between seasons, and the models are still too specific to be applied to a wider range

of ecological state data. We present a generalized multi-state occupancy model that can be

used on both single season and multi-season data sets. The generalization is based on an

over-parameterized model as the starting point. This model is then reformulated through a

combination of parameter pooling, and a re-parameterization of pooled parameters in terms

of biological relevant processes. This requires great care and consideration on the part of

practitioners, but makes model assumptions very clear.

Also important to this framework is considerations of goodness-of-fit (GOF). Often the

goal is to build models that describe some element of reality, in order to test ecological

hypotheses and predict future observations. Assessing how well these models fits is a cor-

nerstone to such an approach. If the model does not fit the data, testing competing ecological

hypotheses becomes a murky practice. While GOF statistics exist for occupancy models,

and can potentially be extended for multi-state occupancy, these tend to be omnibus mea-

sures and of questionable value because they only test whether or not the entire model fits

and does not allow finer considerations. Further more, these omnibus GOF statistics often

rely on asymptotic results and distributional assumptions that, are not appropriate for many

data sets. As result, computationally intensive methods, such as the bootstrap, are required

in order for these tests to be useable. For larger monitoring data sets such as the NAAMP

this may be all together infeasible due to computational time requirements. Instead, we

present a case specific GOF test for the NAAMP data set, which is less computationally

intensive and provides more insight into where lack of fit may exist.

Finally, we also consider topics of optimal design. At the heart of these approaches is

the notion that sites are repeatedly visited over time in order to estimate detection rates.

What is however unclear, is the optimal number of repeat visits in terms of effort versus

precision. Also in designing long term studies there may be questions whether it is better

to repeatedly sample the same sites over the entire duration or to attempt to sample new

sites each season.
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6.2 Sampling Protocol

Before we delve into the multi-state multiple season model formulation, it is important to

clearly define the sampling protocol associated with occupancy models. Occupancy models

use geographical units, termed “sites,” as the observational unit, where sites may be contigu-

ously connected (e.g. Figure 6.1) or separated by distance. The goal generally is to estimate

proportion of sites that exhibit a certain trait (e.g. being occupied by the study species)

as well as transition rates between traits for multi-season models (e.g. for presence/absence

occupancy models, transitions would simply be colonization and extinction rates). Here a

season is simply an arbitrarily defined unit of time, where we may expect the state to remain

closured to changes. The state/trait may however change between seasons.

For multi-state occupancy, there are K possible occupancy states, resulting in a total

set of K + 1 possible ecological states, denoted as Z = {0, z1, z2, . . . zK}. Note that we

explicitly include ‘0’ in the set of possible occupancy states, because an empty site is always

possible. For multiple seasons, we consider a scenario where individual sites independently

change between a set Z states over S seasons, where transitions occur only between seasons

and sites are closed to changes within a season.

Sampling protocol for multiple season studies occurs on a primary and secondary level,

where randomly selected sites are repeatedly sampled Ts times during state closure of a given

season (Figure 6.1). However, on any given survey the state of the site is assumed to be

unobservable (or latent) and instead one of E+1 possible events (set U = {0, u1, u2, . . . , uE})
are observed in its place. Again ‘0’ is explicitly included in the set of events is interpreted

as “not observed.” While the number of possible events may differ from the possible latent

states, events are assumed to be conditionally dependent on the underlying state. The

relationship between events and states will be more clearly defined when we introduce the

event probabilities (π) shortly.

Sites also do not have to be surveyed for the entire duration of the experiment resulting

in two general types of experimental protocol set ups: temporary and permanent moni-

toring sites. With the temporary sampling protocol practitioners would randomly select

a new sample of Rs sites each season, while with permanent monitoring the same set of

R sites selected at the start of the experiment are followed through time (see Figure 6.1).

Sampling protocols in which sites are only sampled for a subset of seasons can be handled

by the permanent monitoring framework if certain assumptions hold (expanded upon later).
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Temporary monitoring protocol will allow practitioners to estimate state proportions but

not transition rates and may be useful situations where the sampling frame may change be-

tween seasons (e.g. ephemeral sites such as ponds). For comparison purposes, we compare

the power of both protocols to detect changes in state proportions.

A summary of the survey data collected for a site summarized as row vector of events hi,

termed the encounter history. For example the encounter history hi = 021 000 12 11 would

be a four season design with three surveys per season during the first two seasons and two

surveys per season for the remaining seasons. During season two, all surveys resulted in no

observations, resulting in three 0’s. Missing data can be specified with a ‘-’, for example

hi = 021 --- 12 11 has a similar meaning as before except no surveys were performed in

the second season. Individual events are denoted with y, or more specifically yi,st for the

observed event observed during survey t of season s on site i.

It should be noted that while primary sampling occasions are termed “seasonal,” the

definition is strictly up to the investigator. Multiple primary sampling occasions could be

defined as occurring within a year, or across multiple years, the context depends on study

objectives and the type of occupancy states investigated. The only major assumption is

that there is population closure during the secondary sampling occasions (i.e. the state does

not change). Between seasons however the population is open to the usual demographic

processes (birth, death, immigration, emigration).

6.3 Model Formulation

We consider a scenario where individual sites move independently through a set of K + 1

finite population states Z = {0, z1, z2, . . . zK}, and through a finite number of seasons S.

States may be be both nominal, ordinal and/or a combination therein. For example, a

site-occupancy model may be implemented by using the nominal categories of 0=“none”

and z1=“present,” while an ordinal approach could be implemented by specifying the states

as 0 =“none,” z1=“low,” z2=“medium” and z3=“high.” Combination of both ordinal and

nominal approaches are also possible, for example “breeding and at low abundance.” The

implication in using nominal as ordinal states comes in how the event and transition dis-

tributions is parameterized. Surveys (secondary sampling occasions) occur during state

closure and produce an event from U possible events, which is assumed to be conditionally

dependent on the underlying state.



CHAPTER 6. MULTI-STATE OCCUPANCY FRAMEWORK 61

Figure 6.1: Sampling scheme for temporary and permanent monitoring protocols. Each
season a new set of sites are chosen and repeatedly survey for temporary monitoring sites,
while for permanent monitoring sites sites are repeatedly sampled over multiple seasons.
Sites in this example are contiguously arranged, but this is not required.

6.3.1 Event Probabilities

In formulating the event probabilities, each state may produce any of the possible events from

U , but that the individual event probabilities may differ by state. For example, events that

not expected to occur can be modeled as occurring with probability zero. This probabilities

may be modeled in an K + 1 by E + 1 matrix, where each row represents a state, and each

column an event. Furthermore, these probabilities may be expected to vary by site and

survey occasion.

As such, let πe|ki,st be the probability of observing event ue (for e = 0, 1, . . . , E) on survey

t of season s, we assume the probability also dependent on the underlying state zk. As

such the detection process can be described as a set of conditional probabilities, which we
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deliberately start with the most general case. Let πe|ki,st be the conditional probability of

observing event ue at site i in season s on occasion t, given that site i is of state zk, that

is P (Yi,st = ue|Zi,s = zk) = π
e|k
i,st. We can represent the event probabilities for site i on

occasion t of season s as a K + 1× E + 1 matrix,

Events

u0 u1 . . . uE States

πi,st =



π
0|0
i,st π

1|0
i,st · · · π

E|0
i,st

π
0|1
i,st π

1|1
i,st · · · π

E|1
i,st

...
...

. . .
...

π
0|K
i,st π

1|K
i,st · · · π

E|K
i,st



z0

z1

...

zK

where each row represents a state and each column an event. Because events are treated as

being mutually exclusive, πi,st will be row stochastic (i.e. π0|k
i,st = 1−∑E

e=1 π
e|k
i,st for all i, s, t

and k). When the number of events equals the number of states, the diagonal represents

correct classification and the off diagonal represents the various forms of misclassification.

We assume that the event distribution will be a multinomial [yi|Zi] ∼ multinomial({πe|ki }),
where {πe|ki } are the multinomial cell probabilities corresponding to the appropriate row in

πi,st corresponding to Z.

For most practical applications the site, survey and season specific event probabilities

πi,st will produce an over-parameterized model that contains more parameters that can

be estimated. This is intentional as the πe|ki,st’s are intended to be a flexible place holder

which will be redefined, through a combination of parameter pooling, re-parameterization

and covariate models. By deliberately starting with the most general case practitioners are

forced to consider how the event probabilities may change (or remain the same) across sites,

seasons and occasions. For example, event probabilities may be assumed to be relatively

constant across sites, suggestion a practitioner may want to pool across sites (e.g. πe|ki,st = π
e|k
st

for all i). Similarly a practitioner may want to pool across sites and surveys within a season

(e.g. πe|ki,st = π
e|k
s for all i and t).

In other situations event probabilities can be expressed as a function of site-specific

covariates. Site-specific models could be created on either on a per survey basis (i.e. the

full πe|ki,st parameterization would be used) or even on a per season basis by first pooling

over surveys then modeling (i.e. modeling πe|ki,s instead of πe|ki,st). However, covariate models
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will be more complex to implement than for simple site-occupancy models given the row

constraint in πi,st.

Initial over-parameterization may be solved by a re-parameterization of the event prob-

ability matrix. Often event probabilities are too general to possess biologically relevant

meaning. By introducing parameters and parameter combinations with biological meaning,

the event matrix can be re-parameterized in terms of biologically relevant processes. Once

re-parameterized these new parameters can then be modeled as functions of site-specific

covariates tools such as logistic or multinomial regression models, depending on the form of

the re-parameterization. We provide examples of both approaches in the example section.

6.3.2 Initial State Distribution and Transition Probabilities

Permanent Monitoring Protocol

For the permanent site monitoring protocol, we need to consider the initial latent state

distribution and state transition probabilities. Here we are assuming that sites may transi-

tion between states only between seasons and process obeys a Markov chain (that is future

occupancy states only depends current occupancy states and not past occupancy states).

For the initial state distribution, if Zi,s is the latent state of site i at season s, then let

Φi,0 =
[

Pr(Zi,0 = z0) Pr(Zi,0 = z1) · · · Pr(Zi,0 = zK)
]

(6.1)

be the initial state probability vector and Zi,1 ∼ Multinomial(1,Ψi,0). Note that Φi,0 is a

stochastic vector and sums to one. The elements of Φi,0 have been specified in a general

manner to accommodate a variety of formulations. For example, in relatively simple case, if

Ψk
i is the probability that site i has the initial state zk prior to the start of the experiment,

then we may choose to specify the initial state vector as

Φi,0 =
[

1−∑K
k=1 Ψk

i Ψ1
i . . . ΨK

i

]
.

More complex formulations are presented in the example section.

For the permanent monitoring protocol state transitions are assumed to be memory-less

(and hence Markovian). Let Φjk
i,s be probability that site i transitions from abundance state

zj in season s to abundance state zk in season s + 1. The transition probabilities for a
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particular site and season can be expressed as a K + 1×K + 1 matrix,

Φi,s =


Φ00
i,s Φ01

i,s · · · Φ0K
i,s

Φ10
i,s Φ11

i,s · · · Φ1K
i,s

...
...

. . .
...

ΦK0
i,s ΦK1

i,s · · · ΦKK
i,s


K+1×K+1

, (6.2)

where Φj0
i,s = 1−∑K

k=1 Φjk
i,s for all states, seasons and sites.

Temporary Monitoring Protocol

For the temporary monitoring protocol we have made no assumptions about state transitions

because each site is only observed during one of the seasons, during state closure. As such,

we must estimate the latent state distribution for each season and each site, that is for site

i in season s, the latent occupancy state distribution will be:

Φi,s =
[

Pr(Zi,s = z0) Pri(Zi,s = z1) · · · Pr(Zi,s = zK)
]
. (6.3)

Similar to the conditional detection probabilities both the latent state distribution and

the transition probabilities are over-parameterized.

6.3.3 Likelihood Formulation

Permanent Monitoring Protocol (Markov Transitions)

For permanent monitoring sites the initial latent occupancy state distribution and the tran-

sitions between states must be explicitly modeled. Because between seasons changes in

states obey a Markov chain, the probability of any multi-season encounter history can then

be expressed as

P (hi) = Φ0
i

[
S−1∏
s=1

Pi,sΦi,s

]
Pi,S · 1. (6.4)

In this expression Pi,s is a diagonal matrix with the elements equal the product of within-

season event probabilities for each state. The final component 1 is a column vector withK+1

elements, ensures the matrix algebra resolves correctly producing a marginal probability.

The matrix Pi,s can be viewed as containing the within season event probabilities for
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each possible state. Formally it is defined as

Pi,s =
Ts∏
t

D (πi,st(oi,st)) , (6.5)

where D (πi,st(oi,st)) is the column vector of πi,st, corresponding to event o, placed on the

diagonal.

For example consider a system with K = 3 states and E = 3 events, with three secondary

sampling occasions performed in season s. If the within-season encounter history for site i

was ‘313’ then Pi,s would be structured as

Pi,s =


π

3|0
i,s1 0 0 0

0 π
3|1
i,s1 0 0

0 0 π
3|2
i,s1 0

0 0 0 π
3|3
i,s1




π

1|0
i,s2 0 0 0

0 π
1|1
i,s2 0 0

0 0 π
1|2
i,s2 0

0 0 0 π
1|3
i,s2




π

3|0
i,s3 0 0 0

0 π
3|1
i,s3 0 0

0 0 π
3|2
i,s3 0

0 0 0 π
3|3
i,s3



=


π

3|0
i,s1π

1|0
i,s2π

3|0
i,s3 0 0 0

0 π
3|1
i,s1π

1|1
i,s2π

3|1
i,s3 0 0

0 0 π
3|2
i,s1π

1|2
i,s2π

3|2
i,s3 0

0 0 0 π
3|3
i,s1π

1|3
i,s2π

3|3
i,s3

 .

Depending on how the event probabilities are formulated the expression produced by

(6.5) may simplify greatly. For example, suppose it is impossible for a site with state z0, z1

or z2 to produce a ‘3’. In that case there would only be one non-zero element, π3|3
i,s1π

1|3
i,s2π

3|3
i,s3.

We explore this further in our example section.

The marginal likelihood of h, the matrix of all encounter histories, can be specified if all

sites are assumed to have independent fates, that is

L ({Ψi}, {Φi,s}, {πi,s},θ|h1, . . . ,hR) =
R∏
i=1

Pr(hi). (6.6)

Temporary Monitoring Protocol and the Single-Season Likelihood

In the temporary monitoring protocol a new set of sites is sampled on each primary sampling

occasion, and there is no information available for individual state transitions, and we model

the data as series of independent single year likelihoods. Such an approach may be useful if
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the goal to simply understand factors affecting distribution of a states across a landscape,

rather than to monitor or model transitions in occupancy states over time.

Because we do not know the true underlying state of the site we can compute the

marginal probability of an encounter history for a given site and season as

Pr(hi,s) = Φi,sPi,s · 1, (6.7)

where Φi,s is the latent state distribution (6.3) and Pi,s is a diagonal matrix defined by

(6.5). Again 1 is a column vector with K + 1 elements that allows the matrix algebra to

resolve correctly. Assuming the all sites are independent of one another, a single-season

likelihood can be formed as a product of the individual encounter histories across sampled

sites,

Ls ({Ψk,s}, {πs}|h1,s, . . . ,hRs,s) =
Rs∏
i=1

Pr(hi,s), (6.8)

where Rs is the number of sites sampled in season s. Finally, multiple seasons are handled

by taking the product of the individual seasonal likelihoods,

L ({Ψs}, {πs}|h1, . . . ,hR) =
S∏
s=1

Ls, (6.9)

we have now assumed seasons observations from different are also independent of one an-

other.

6.3.4 Dealing with Missing Data

Missing observations can be handled fairly easily under either multi-season formulation if

the missingness of the data is not related to either the underlying state or the parameter

values. Then, current formulations can be used by making a simple substitution in (6.5).

For any missing observation we replace D (πi,st(oi,st)) with D (1), where 1 is a vector of 1’s

of length K + 1.

For example, returning to our previous example of a system with E = K = 3 and a

history of ‘313’ in season s, suppose the second history is missing (i.e. hi,s = 3-3) then the
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four entries of Pi,s would be

Pi,s =


π

3|0
i,s1 0 0 0

0 π
3|1
i,s1 0 0

0 0 π
3|2
i,s1 0

0 0 0 π
3|3
i,s1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




π

3|0
i,s3 0 0 0

0 π
3|1
i,s3 0 0

0 0 π
3|2
i,s3 0

0 0 0 π
3|3
i,s3

 .

This approach can be extended to handle complete season’s worth of observations that

are missing on a site (for example data loss), or if sites are not sampled every season. The

end result is that the missing value is essentially ignored when computing the likelihood

value. The only caveat with the latter approach (missing primary or secondary surveys) is

that missingness is assumed not to relate to the underlying occupancy state. For example,

of a site is not sampled in the second season due to the fact occupancy was not confirmed in

the first season one, then the missing data cannot be handled in this manner as sites with

state z0 in the first season are more likely not to be surveyed in season two than other sites.

A special likelihood would have to be formulated in this circumstance.

6.4 Model Parameterization Philosophy

Thus far we have deliberately presented an over-parameterized model that allows for sepa-

rate event probabilities for each and every event and underlying state combination, across

all sites, surveys and seasons. Such a model will not be estimable even with the richest of

data sets. Instead, the parameterization is intended to provide place holders that may be

restricted or re-paramaterized to suit a particular situation. Before estimation is attempted,

we envision a three step process to redefine the general model to one more specific for the

situation at hand:

1. parameter pooling;

2. model re-parameterization and constraints; and

3. the inclusion of linear functions of covariates.

Starting with an overly general model forces practitioners to carefully consider their

model before proceeding with data fitting. In the first step, parameters are pooled together
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to reflect only the key features of heterogeneity in the system. This has the additional

benefit of providing an easy framework to define and test important features of the system.

For example, if the conditional event probabilities are believed to be roughly similar

across sites, then a practitioner may want to drop the i subscript from π
e|k
i,st thereby using the

same values of {π} for all sites but different values depending on the season, the survey and

the underlying state. We would state this restriction as πe|ki,st = π
e|k
st . A further restriction

of {π} could be to constrain the event probabilities across surveys within a season (e.g.

situations where secondary samples are close together in time), but different values between

seasons. We could state the restriction as πe|ki,st = π
e|k
s . Assuming the models are estimable

we could then examine which these two purposed parameter pooling better describes the

data by either likelihood ratio tests or information theoretic approaches such as Akaike

Information Criterion (AIC) ranking or evidence ratios (see Burnham and Anderson, 2002).

Once parameters have been pooled, the next step is to re-parameterize the event and

state probabilities in terms of biological processes as well as setting any appropriate param-

eter constraints. The {π} and {Φ} parameters should seen as place holders that can be

re-expressed in terms of biologically meaningful parameters. As we will see in the example

section, observed events are often the result of one or more biological processes occurring

on the site. By re-parameterizing π and φ in terms of these processes, we can build very

specific models for each component separately. Furthermore, the re-parameterization allows

each biological process to be modeled further using linear functions of covariates, the final

step in the process.

We outline all of these procedures in our examples section.

6.4.1 Goodness-of-fit

By building models that emphasize plausible ecological mechanisms first and foremost, the

topic of goodness-of-fit presents an interesting challenge. Ideally, the models in this context

represent scientific hypotheses (Royle and Young, 2008) and favouring approaches such as

multiple hypothesis testing to assess support for various ecological hypotheses (Burnham

and Anderson, 2002). While arguably a better approach to understanding complex systems

than simple hypothesis testing (although see Stephens et al., 2005), assessing model fit

becomes a somewhat overlooked component to building ecologically relevant models. If

none of the models in the model set adequately fit the data, then their appropriateness in

critiquing underlying scientific hypotheses is unclear. If models are to carry the meaning of
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scientific hypotheses, the issues of fit need to be properly considered.

To date only omnibus goodness-of-fit tests are available for occupancy models (e.g.

MacKenzie and Bailey, 2004). Based on a Pearson chi-squared statistic, the proposed tech-

nique compares the observed and expected frequencies of the unique encounter histories

and can accomodate site-specific covariate models. Typically, covariate models can create

problems due to the potential of continuous covariate values to create a large number of out-

come classes. However, by basing the goodness-of-fit classes on unique encounter histories

(rather than a combination of covariate values and encounter histories), we limit the number

of possible classes and we can calculate the expected frequency of each unique history by

pooling over sites all sites in the experiment. Because the test statistic will no longer follow

a chi-square distribution a parametric bootstrap procedure is now required to determine

whether an observed observed encounter history frequency is too large.

Adapting this approach to the proposed multi-state occupancy model is fairly straight

forward. The Pearson chi-squared statistic can be computed as

χ2 =
H∑
h=1

(Oh − Eh)2

Eh

where H is the number of unique encounter histories and Oh and Eh are the observed

and expected frequencies of encounter history h. The expected number of sites exhibiting

encounter history h can be determined by pooling over all sites, that is

Eh =
R∑
i=1

P (Xi = h)

where R is the number of sites sampled and P (Xi = h) is determined by (6.4) for permanent

monitoring designs and by (6.7) for the temporary monitoring protocol. With the temporary

monitoring protocol it would likely be advantageous to consider each season independently

and then combine the χ2 values from each season.

To assess the adequacy of the fitted model, we determine the probability of the observed

χ2 statistic using a parametric bootstrap (Buckland and Garthwaite, 1991). Following from

MacKenzie and Bailey (2004), the parametric bootstrap proceeds as follows:

1. Fit the model to observed data and derive parameter estimates for the event proba-

bilities π̂e|ki,st, the initial state probabilities Φ̂i,0 and the transition probabilities Φ̂i,s.
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2. Using the parameter estimates to compute the test statistic χ2
obs.

3. Then for each site, denoted as i, do the following:

(a) Assign an initial state from Z to site i using a multinomial draw with cell prob-

abilities Φ̂i,0. We will denote this state as zi,1.

(b) Next for s = 1 . . . S each seasons do the following

i. Make repeated multinomial draws from U , using the row probabilities from

π̂
e|k
i,st associated with state zi,s and assign Ts events to site i in season s.

Record these values as the observations for season s and ensure it is of the

same structure as the observed data (e.g. same number of surveys, missing

values, etc).

ii. Next, if s < S, assign a new state to i for season s + 1, by making a multi-

nomial draw using the row probabilities from Φ̂i,s associated with being in

state k in season s. Denote this new state as zi,s+1.

The observed events from Steps 3a-3b will make up the encounter history of site i.

4. Fit the same structural model as in Step 1, except using the data from Step 3. Cal-

culate χ2
b and store the results.

5. Repeat Steps 3-4 a large number of times, B, to approximate the distribution of the

sampling statistic, assuming the fitted model is correct.

6. Compare χ2
obs to the approximate distribution (χ2

B) and determine the probability of

observing χ2
Obs or a more extreme value. This will be the p-value for the goodness-of-fit

test.

As suggested by MacKenzie and Bailey (2004) an estimate of over-dispersion ĉ may be

obtained by following formula suggested by White et al. (2002),

ĉ =
χ2

obs

1/B
∑B

b χ
2
b

.

The over-dispersion estimate ĉ can then be used adjust our model selection procedures and

standard errors (Burnham and Anderson, 2002). If the model adequately fits then ĉ should
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be close to one. Values of ĉ greater than one suggest there is more variability in the data

than expected by the model, while values less than one suggest less variability.

While this approach does allow for a goodness-of-fit, shortcomings are present. Calculat-

ing GOF in this manner can be problematic for large data sets because it is computationally

infeasible (we explore this problem further in our example section). Furthermore omnibus

tests provide little information about what portion of the model does not adequately fit;

and only indicates that the whole model does not adequately describe the data - we will not

broach the topic of what defines adequacy.

We agree with other authors (e.g. Gelman et al., 2004) that graphical methods for

assessing fit should also be considered. As such we have also developed a formulation-

specific GOF procedure that is less computationally intensive than the bootstrap procedure

outlined above. It is outlined in our numerical examples section.



Chapter 7

Special Cases

7.1 Site-occupancy Modeling, Single Species (K = 2)

MacKenzie et al. (2002) introduced site-occupancy modeling as a way to model species

occurrences across a landscape, where there are two underlying states z0=“absent” and

z1=“present” and two observed events are u0=“not observed,” and u1=“observed as occu-

pied”. This represents a special case where K = 1 and E = 1.

In the original formulation it is a assumed that only an occupied site may produce a

sighting, as such we can expect the following events to be associated with the underlying

states,

z0 → u0

z1 → u0 or u1.

Let pit representing the probability of observing the species on site i on occasion t, resulting

in the following event probability matrix:

Events

u0 u1 States

πi,st = πi,t =

[
1 0

1− p1
i,t p1

i,t

]
z0

z1

.

Note that the first row of πi,st contains a zero, this restriction is imposed because it is

assumed only the event u0 may be observed when the site is unoccupied z0.

72
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Because this is a single-season model we only need to define the initial latent state

distribution. Let Ψi representing the probability that site i was occupied, which gives the

following initial state distribution

Φi,0 =
[

1−Ψi Ψi

]
.

To estimate parameters the temporary monitoring protocol likelihood (6.9) can be used

with S = 1. The pit and Ψi parameters can further modeled with covariates.

For a multiple seasons occupancy model we need to adjust the detection probabilities

to include seasonality and include transition probabilities. Let pi,st be the probability of

observing the species if the site is occupied, for site i in season s on survey t. The event

probabilities will then be defined as

πi,st =

[
1 0

1− pi,st pi,st

]
.

Following the multiple season site-occupancy formulation of MacKenzie et al. (2006), γs
and εs are used to represent the probability of colonization (a site transitioning from unoc-

cupied to occupied) and extinction (the reverse) in season s. Here we will assume all sites

have the same probability of extinction or colonization. The state transition probabilities

for season s will be defined as

Φi,s = Φs =

[
1− γs γs

εs 1− εs

]
.

The probability of an encounter history is then computed with (6.4) with the likelihood

for all the observed histories specified by (6.6). If the population of sites were located in

a region that experiences roughly the same environmental conditions, it could be possible

model γs or εs in terms of regional factors to gain a better understanding of the extinction

and colonization processes.
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7.2 Site-occupancy with Multiple Species, Including Biolog-

ical Interactions

In addition to abundance and distributional information about a single species, ecologists

and managers often wish to understand the how a variety of species interact with each

other. A variety of biological interactions exist from neutralism, where species interact but

do not affect each other, to more severe forms such as predation and parasitism (one gains

while the other loses) or commensalism where the interaction benefits both. Because all

types of interactions, beside neutralism, has the potential to affect both the distribution of

both species, multi-state occupancy can be used to gain insight into these processes.In the

simplest scenario we can use multi-state occupancy to model the presence or absence of two

species (denoted as A and B), producing four possible states and events (Table 7.1).

Table 7.1: The underlying states and events for a two species co-occurrence model.
State Event

z0 - Neither species is present u0 - Neither species is observed
zA - Only species A is present uA - Only species A is observed
zB - Only species B is present uB - Only species B is observed
zAB - Both species are present uAB - Both species are observed.

If we are willing to assume that false positives are not possible, that is trained observers

may miss a species but will not falsely observe species, then each state can only produce a

subset of events:

z0 → u0

zA → u0 or uA

zB → u0 or uB

zAB → u0, uA, uB or uAB.

7.2.1 Event Probabilities

This application differs somewhat from previous multi-state examples as the underlying

state of sites is the result of two separate biological processes, the presence and/or absence

of the individual species. As such, not all events can be produced by all states. For example,

state zA can only produce the events u0 and uA, since species B is not available, while the
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state zAB can produce all possible events. This will produce the following general pattern

for the event probabilities:

Events

u0 uA uB uAB States

πi,st =


1 0 0 0

π
0|A
i,st π

A|A
i,st 0 0

π
0|B
i,st 0 π

B|B
i,st 0

π
0|AB
i,st π

A|AB
i,st π

B|AB
i,st π

AB|AB
i,st


z0

zA

zB

zAB

.

Next we may re-parameterized the {π} parameters in terms of appropriate biological

processes. MacKenzie et al. (2006) proposed a single-season multiple species formulation,

where the conditional event probabilities (termed “detection probabilities”) were modeled

separately depending on whether a single both species occupied the site. For example, if

vocalization is used to detect the presence of species A and the occurrence of species B causes

species A to vocalize less (and therefore be more elusive to observers) then we may expect

π
A|A
i,st > π

A|AB
i,st and πAB|ABi,st < π

A|AB
i,st ×πB|ABi,st . The proposed parameterization (assuming all

sites share the same event probabilities and extending for S season) is as follows:

pAst - the probability of detecting A, given it is present and species B is absent in survey

occasion t of season s,

pBst - the probability of detecting B, given it is present and species A is absent in survey

occasion t of season s,

rABst - the probability of detecting both species simultaneously, given that both are present

in survey occasion t of season s,

rAbst - the probability of detecting only detecting species A, given that both are present in

survey occasion t of season s,

raBst - the probability of detecting only detecting species B, given that both are present in

survey occasion t of season s.
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The conditional event probability matrix then take the form

πi,st = πst =


1 0 0 0

1− pAst pAst 0 0

1− pBst 0 pBst 0

1− rABst − rAbst − raBst rAbst raBst rABst

 .

By using different event probabilities for each of the possible underlying states, inter-

actions between species detection and species presence may be estimated. However, there

may also be little or no effect such effect present, in this case we would expect πA|Ai,st = π
A|AB
i,st

and π
AB|AB
i,st = π

A|AB
i,st × πB|ABi,st . As such, we may want to reformulate the conditional event

probabilities as

πi,st = π∗st =


1 0 0 0

1− pAst pAst 0 0

1− pBst 0 pBst 0

(1− pAst)(1− pBst) pAst(1− pBst) (1− pAst)pBst pAstp
B
st

 .

Note that use the ∗ notation to indicate an alternate, species independent form of πst. We

may even consider going a step further and use the same conditional event probabilities for

all surveys in a season,

πi,st = π∗s =


1 0 0 0

1− pAs pAs 0 0

1− pBs 0 pBs 0

(1− pAs )(1− pBs ) pAs (1− pBs ) (1− pAs )pBs pAs p
B
s

 .

Investigators may then select between the potential conditional event models (e.g. πst, π∗st
and π∗s) by using standard tools such as likelihood ratio tests and AIC rankings.

7.2.2 Initial States

States are defined as in terms of the presence or absence of species A and B (Table 7.1).

Let ΨA be the probability that species A occurs on a site, regardless of species B, and ΨB

the probability that species B occurs regardless of species A, which can be interpreted as
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the marginal probabilities of observing each of the respective species. If the occurrences

of species A and B occurs independently, then the probability of co-occurrence will be

the product of the marginal probabilities ΨA × ΨB. Species however often do not occur

independently, instead they may interact with each other through a variety of mechanisms

(e.g. competition, mutualism; see Table 7.2). As a result, we can expect we must estimate

the probability of co-occurrence separately. Let ΨAB be the probability that species A and

B co-occur, which may differ from ΨA × ΨB depending on the type of interaction (Table

7.2).

Because ΨA represents the marginal we can compute the probability that site i only

contains species A at the start of the experiment as P (zA) = ΨA − ΨAB (the marginal

minus the intersection). This same arguments can be used for species B resulting in the

following latent state probabilities,

P (z0) = 1−ΨA −ΨB + ΨAB

P (zA) = ΨA −ΨAB

P (zB) = ΨB −ΨAB

P (zAB) = ΨAB

and the following initial state vector,

Φi,0 = Φ0 =
[

Pr(z0) Pr(zA) Pr(zB) Pr(zAB)
]

which has been generalized to all sites. In this case we are willing to make the assump-

tion that all sites posses the same probability of occurrence so that we may estimate the

proportion of sites across the landscape that are occupied by either or both species.

7.2.3 State Transitions

There has been little work exploring, a multi-season formulation for the multi-species site-

occupancy mode. However, it is fairly straightforward to specify transition probabilities for

the Markov model assuming either independent or dependent colonization and extinction

process. Similar to the initial state and event probabilities, we need to consider the pos-

sibility that species A may have an association with species B which may be antagonistic,

neutral, commensal or mutualistic relative to species B.
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Table 7.2: Potential biological interactions between two species (A and B) and the potential
effect on the probability of co-occurrence. Note that ‘0’ represents no effect, ‘+’ a positive
effect and ‘−’ a negative effect.

Type Effect on A Effect on B ExpectedΨAB

Neutralism 0 0 ΨAB = ΨA ×ΨB

Amensalism − 0 ΨAB < ΨA ×ΨB

Commensalism + 0 ΨAB > ΨA ×ΨB

Competition − − ΨAB < ΨA ×ΨB

Mutualism + + ΨAB > ΨA ×ΨB

Predation or Parasitism + − ΨAB ≤ ΨA ×ΨB

In terms of site-occupancy modeling this potential for competition can be expected to

affect extinction and colonization probabilities, depending on the nature of the competition.

Assuming a Markovian process, the probability of a species colonizing or going extinct

in season s + 1, will depend on whether one of the competing species occupies the site in

season s. If colonization and extinction processes can be viewed as occurring instantaneously

between seasons, the following parameterization can be used

γAs - the probability that a site is colonized by species A in season s+1, given

neither species are present in season s

γBs - the probability that a site is colonized by species B in season s+1, given

neither species are present in season s

γAbs - the probability that a site is colonized by species A in season s+1, given

species B is present in season s.

γaBs - the probability that a site is colonized by species B in season s+1, given

species A is present in season s.

εAs - the probability that a site goes extinct for species A in season s + 1,

given that species B is not present in season s

εBs - the probability that a site goes extinct for species B in season s + 1,

given that species A is not present in season s

εAbs - the probability that a site goes extinct for A in season s+ 1, when when

species B is present in season s.

εaBs - the probability that a site goes extinct for B in season s+ 1, when when

species A is present in season s.

Because the colonization and extinction process is viewed as instantaneous all transitions
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from the state z0 will be identical to the independent formulation (first row of Φ∗s). All

other transitions depend on the presence or absence of the competing species. The resulting

Markov transition probability matrix will be

Φi,s = Φs =


(1− γAs )(1− γBs ) γAs (1− γBs ) (1− γAs )γBs γAs γ

B
s

εAs (1− γaBs ) (1− εAs )(1− γaBs ) εAs γ
aB
s (1− εAs )γaBs

(1− γAbs )εBs γAbs εBs (1− γAbs )(1− εBs ) γAbs (1− εBs )

εAbs εaBs (1− εAbs )εaBs εAbs (1− εaBs ) (1− εAbs )(1− εaBs )

 .

For a neutral relationship, we can expect species A and species B to experience colo-

nization and extinction rates independently of one another, which can be modeled using the

following parameters,

γAs - the probability that a site is colonized by species A in season s+ 1, given it is

not currently occupied by species A in season s, regardless of species B.

γBs - the probability that a site is colonized by species B in season s+ 1, given it is

not currently occupied by species A in season s, regardless of species B.

εAs - the probability that a site goes extinct for species A in season s + 1, given

species A was present in season s, regardless of species B.

εBs - the probability that a site goes extinct for species B in season s + 1, given

species B was present in season s, regardless of species A.

Any transition between states will simply be the product of the appropriate processes. For

example, the transition z0 → zAB will occur with probability γAs γ
B
s , because both species

must colonize simultaneously. For transition z0 → zB to occur between season s and s+ 1,

species A must not colonize, but species B does, resulting in a transition probability of

(1− γAs )γBs . The transition matrix may be specified as

Φ∗s =


(1− γAs )(1− γBs ) γAs (1− γBs ) (1− γAs )γBs γAs γ

B
s

εAs (1− γBs ) (1− εAs )(1− γBs ) εAs γ
B
s (1− εAs )γBs

(1− γAs )εBs γAs ε
B
s (1− γAs )(1− εBs ) γAs (1− εBs )

εAs ε
B
s (1− εAs )εBs εAs (1− εBs ) (1− εAs )(1− εBs )

 .

We use the notation Φ∗s as independent colonization and extinction processes represent a

special case that is not likely to occur in multi-species studies.
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Similar to the conditional event probabilities, tests for species interaction in the colo-

nization and extinction processes may be assessed by comparing the models using either

Φ∗s or Φs formulations by employing standard tools such as a likelihood ratio tests or AIC

ranking.

Finally, it should be noted that by clearly separating the observational process from the

underlying state transition process, allows for great flexibility in hypothesis testing. For

example, it is possible to model independent species detection probabilities, but dependent

colonization and extinction processes.

7.3 Site-occupancy with Successful Reproduction

The Northern Spotted Owl (NSO) has been steadily declining for the last four decades,

due to a combination of habitat loss and competition with barred owl. Despite decades

of mark-recapture studies, there have been difficulties relating individual measurements to

survivorship and to overall population declines (Anthony et al., 2006).

Nichols et al. (2007) took a different approach to the problem by providing a specific

multi-state extension to the single-season site-occupancy model that accounted for successful

reproduction. The formulation uses to three possible states along with three possible events

(Table 7.3).

Table 7.3: The underlying states and events of the site-occupancy with reproduction model.
State Event

z0 - The site is unoccupied u0 - Species not observed
z1 - Occupied with no production of young uA - Species observed
z2 - Occupied with successful reproduction uB - Species observed with young

Similar to the site-occupancy formulation false positives were considered not to occur.

As such we get the following association between states and events,

z0 → u0

z1 → u0 or uA

z2 → u0, uA or uB.

In modeling the events it was assumed that species detection was the result of two different

processes (dependent on whether or not young were present) and as well as a conditional
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process of determining whether or not reproduction had occurred. As such events were

modeled using the following parameters,

p1
i,t - the probability of detecting the species, given it is present and without young,

p2
i,t - the probability of detecting the species, given it is present and with young,

δ1
i,t - the conditional probability of detecting evidence of reproduction, given the site is

occupied with young.

producing the following event probability matrix,

Events

u0 uA uB States

πi,st = πi,t =


1 0 0

1− p1
i,t p1

i,t 0

1− p2
i,t p2

i,t(1− δi,t) p2
itδit


z0

z1

z2

.

Notice that the event of observing reproductive evidence (e.g. young) can only occur if the

site is occupied with successful reproduction (i.e. state z2). This assumes that experienced

field observers are collecting the data (a justified assumption in this case), and other studies

may wish to consider these types misclassifications more thoroughly. Also note we have

excluded the s subscript for clarity because this was a single-season model.

Similar to the multispecies model states can be viewed as the result of two separate

processes. The parameter Ψ1
i denotes the probability site i was occupied regardless of

reproductive state, while Ψ2
i represents the probability of successful reproduction, given an

occupied site. The initial state distribution for site i will then be

P (z0) = 1−Ψ1
i

P (z1) = Ψ1
i (1−Ψ2

i )

P (z2) = Ψ1
iΨ

2
i ,

producing the following initial state vector,

Φi,0 =
[

1−Ψ1
i , Ψ1

i (1−Ψ2
i ), Ψ1

iΨ
2
i

]
.
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7.3.1 Extending to Multiple Seasons

It is relatively straight forward to extend the formulation to multiple seasons following

the multi-season site-occupancy example. Since a primary concern of researchers is to

understand the factors affecting successful reproduction, it is important to consider the

role site-specific factors may play on site colonization and the ability of sites to support

reproduction. To do so will a require site-specific parameterization.

Following the logic of the initial state distribution we can model transitions as the

independent process of colonization or extinction and followed by reproduction if the site is

colonized. This leads to the following site and season-specific parameters,

γi,s - the probability that site i is colonized in season s

εi,s - the probability that site i goes extinct in season s

αi,s - the probability that site i is suitable for reproduction in season s, given that

a site is occupied,

which in turn will produce the following state transition matrix,

Φi,s =


1− γi,s γi,s(1− αi,s) γi,sαi,s

εi,s (1− εi,s)(1− αi,s) (1− εi,s)αi,s
εi,s (1− εi,s)(1− αi,s) (1− εi,s)αi,s

 .
Logistic regression can then be used to model any of the transition parameters. For example

suitability could be modeled as a function of site-specific covariates thought to be important

to facilitating reproduction.

7.4 Relative Measures of Abundance (Ordinal Abundance

Classes)

Among ecologists and managers there is a growing interest in the use of indirect abundance

measurements to track changes in population size over time. Leaving aside debates on

the appropriateness of different surrogate measure, we will focus on how to incorporate

detection, a topic which there is still much debate (e.g. MacKenzie and Kendall, 2002;

Royle and Link, 2005). The North American Amphibian Monitoring Program (NAAMP)

provides a very useful example of this type of approach.
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Since 2001, the NAAMP uses as standardized ranked categorical calling index to estimate

anuran abundance. Currently, the protocol is deployed across 17 states and provinces in the

United States and Canada and monitors about 22 anuran species. The ranked categorical

call index is based on male anuran vocalization frequencies, both of which have been shown

to be correlated with true underlying abundance of a site, including both males and females

(Nelson and Graves, 2004).

The ranked call index would then be considered the observed event in this system and

takes on four possible levels: no calls (0), discrete non-overlapping calls (u1 or 1), discrete

overlapping calls (u2 or 2) and full chorus (u3 or 3; Table 7.4, for a full description see

Weir and Mossman, 2005). (Table 7.4). The difficulty comes in relating the events to an

underlying state. Higher call indices are generally associated with higher abundance, but

the association is clouded by issues of detection; while on average a site may produce a high

call index, on any given occasion a lower call index may be observed.

Royle and Link (2005) proposed a model where the underlying states are formulated in

terms of the maximum possible call index a site can produce (termed the abundance class;

Table 7.4). On any given survey a site will produce a call index the same value as or lower

than its abundance class. For example a site that possesses an abundance class of ‘2’ could

produce call a call index of ‘0’, ‘1’ or ‘2’. The possible events produced by each state can

be summarized as:

z0 → u0

z1 → u0 or u1

z2 → u0, u1 or u2

z3 → u0, u1, u2 or u3.

The abundance class formulation can be viewed as a multi-state occupancy problem.

Royle and Link (2005) viewed the problem in terms of mixture of multinomial distributions

of differing sizes depending on the underlying state. An abundance class of ‘1’ had a binomial

outcome (i.e. a call index of either ‘0’ or ‘1’), while an abundance class of ‘2’ or ‘3’ had

multinomial outcomes with three and four outcomes respectively. A marginal likelihood,

integrating over states, was then used to generate parameter estimates.
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Table 7.4: The underlying states and events for the NAAMP abundance class model.
States Events

z0 - The site is unoccupied u0 - no calls
z1 - An abundance level capable of producing

a call index of 1 or lower
u1 - discrete non-overlapping

calls
z2 - An abundance level capable of producing

a call index of 2 or lower
u2 - discrete overlapping calls

z3 - The site possesses an abundance capable
of producing a call index of 3 or lower

u3 - full chorus

7.4.1 Event Probabilities

Although technically each abundance class can produces number of possible outcomes, we

can be generalize all outcomes as coming from the same set of possible categorical outcomes,

with unobservable categories having a cell probability of probability zero. As such each of

these of the multinomial cell probabilities will make up the rows in the event probability

matrix. Using a notation akin to that of Royle and Link (2005), the general event matrix

will be formulated as

Events

u0 u1 u2 u3 States

πi,st = π =


1 0 0 0

π0|1 π1|1 0 0

π0|2 π1|2 π2|2 0

π0|3 π1|3 π2|3 π3|3


z0

z1

z2

z3

.

where the diagonal probabilities (πk|k for k = 1, 2, 3) represent a correct classification, while

πj|k for j < k represents the possible types of misclassification, that is an observed call index

lower than the true abundance class. Note that we have excluded the site and time specific

subscripts for clarity and the upper diagonal is zero because observing call indices greater

than the underlying abundance class is assumed not to occur.

The general parameterization doesn’t convey the ordinal nature of the data, for example

the probability of observing a call index matching the true abundance class will likely be

higher than a lower call index. In this case we may also want to investigate factors that effect

these probabilities. While it is possible to estimate each of the individual event probabilities,

it is more conducive to view events as a processes of correct detection and misclassification,
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where factors affecting each can be independently investigated.

Royle and Link (2005) provided a re-parameterization that viewed events in terms sep-

arate process of correct classification (i.e. pk = πk|k) and conditional misclassification (βkj

for j < k). The conditional misclassification βkj represents the probability of observing

call index j, or lower, given that the correct classification of call index k was not made

first (e.g. π2|3 = (1 − p3
it)β

32). The original analysis also considered single-season with a

site and survey specific correct classification probability pki,t but common misclassification

probability shared across all sites. As such, the single-season event matrix is redefined as

Events

u0 u1 u2 u3 States

πi,st = πit =


1 0 0 0

q1
it p1

it 0 0

(1− β21)q2
it β21q2

it p2
it 0

(1− β31)(1− β32)q3
it β31(1− β32)q3

it β32q3
it p3

it


z0

z1

z2

z3

where qkit = 1− pkit is the complement. Note that the correct classification pkit and misclas-

sification βkj probabilities are used as a type of continuation ratio. Using a continuation

ratio also ensures that each row in πit automatically sums to one as long as pkit and βkj are

probabilities.

Direct estimates pit will not be possible, because the model will be over-parameterized;

instead an additive model of the form

logit(pkit) = αk +
L∑
l=1

blxl,it for k = 1, 2, 3

was used to model correct detection. A separate αk intercept is used for each of the k

correct classification parameters, but with the same additive effect shared across classes.

This assumes that although the base line detection of each class of correct classification

probability may differ, covariates have the same additive effect (on the logit scale).

The NAAMP protocol recognizes three well defined sampling windows, within which

different species of anuran are expected to have their peak breeding activity and highest

vocalization rate. Each survey t was conducted in a separate survey window producing the
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following additive model

logit(pki1) = αk + b1

logit(pki2) = αk (7.1)

logit(pki3) = αk + b3

where a separate intercept αk is used for each of the three possible classes (i.e. k = 1, 2, 3).

The second survey window is treated as the baseline, while all other survey windows have

the same additive effect for all three classes. Other potential covariates such as survey

window were also investigated by Royle and Link (2005), but have not been included here.

We will be re-examining the NAAMP data set in our numerical examples section.
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Numerical Example: The NAAMP

Data Set

8.1 Introduction

The NAAMP data set represent a complex challenge and a good test case for the flexibility of

the proposed framework. While the survey protocol attempts to standardized on a number

of parameters, anuran detection rates can vary substantial from one sampling occasion

to the next, across years, sites and geographically (e.g. by region) and may be affected

large number of factors (Grant et al., 2005; Royle and Link, 2005; Weir et al., 2005). Of

three studies analyzing the NAAMP call data specifically, two gave careful consideration to

potential factors affecting detection (Table 8.1). All studies to date have been in one region,

Maryland, and used observations from trained staff.

Table 8.1: Summary of the characteristics of previous NAAMP call index analyses.

Study Survey Years Framework Event Covariates Study Region
Weir et al. (2005) 2002 Site-occupancy Yesa,b Maryland
Royle and Link (2005) 2001 Abundance Class Yesa,c Maryland
Mackenzie et al. (2009) 2001-2005 Abundance Class No Maryland
aThe effects of survey temperature on call events were investigated.
bCall event seasonality was modeled as a sinusoidal day-of-year function.
cCall event seasonality was modeled via survey window blocking.

87
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Using a site-occupancy framework, Weir et al. (2005) presented the most exhaustive

investigation into the environmental factors effecting calling events of ten anuran species.

Factors included seasonality (i.e. day-of-year), ambient temperature, time after sunset, wind,

cloud cover, moon illumination, rain fall, type of habitat and anthropomorphic sources such

as observer experience and proximity to human activity. Of these seasonality and temper-

ature appeared to be among the strongest effects. However, the site-occupancy approach

treats all observable call indices (i.e. ‘1’, ‘2’ or ‘3’) as a single response category (i.e. occu-

pied or a ‘1’). As such, additional abundance related information is discarded and potential

heterogeneity that may exist between detection rates for different ecological states is left

unmodeled. In addition, a site-occupancy approach provides no consideration of how envi-

ronmental factors may affect the misclassification rates (e.g. observing a ‘1’ at a site that

has an latent occupancy state of ‘3’).

The analyses by Royle and Link (2005) and Mackenzie et al. (2009) took a multi-state

occupancy approach, but examined the effects of environmental factors in a simpler fash-

ion. Royle and Link (2005) provided the foundation of the multi-state formulation for

the NAAMP call indices and considered the effects of seasonality and temperature on the

probability of correct classification. Misclassification probabilities were however modeled as

being constant. The multi-year analysis of Mackenzie et al. (2009) was strictly focused on

estimating the latent occupancy state proportions (i.e. the proportion of the landscape that

had an abundance class of 0, 1, 2 and 3) and did not consider any covariate factors. Instead,

a general event, initial state, and transition probability structure was used.

Of the two studies that investigated the effect of covariates on detection, the manner

in which seasonality was handled differed substantially. Weir et al. (2005) used a fairly

complicated approach, modeling baseline detection probabilities with a sinusoidal day-of-

year function on the logit scale with additive effects of other factors. By contrast Royle

and Link (2005) took a simpler approach modeling seasonality in terms of survey window

block effect. The NAAMP protocol defines three possible survey windows to cover the

calling phenology (the annual timing of when a species calls) of monitored species. While

we may expect detection to be changing on per day basis, peak detection for any given

species is likely to occur in one of the three survey windows and depending on how rapidly

detection changes across and within survey windows, blocking adequately describe changes

in detection due to seasonality.

Our goal in analyzing the NAAMP data set will be to provide a further investigation
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the factors effecting event probabilities by comparing and contrast the two previous ap-

proaches used to model seasonality. In our analysis we will also include additional regional

areas (ten states in total as opposed to one) and focusing on volunteer data, rather than

observations obtained from trained staff. Our preliminary analysis of the NAAMP data set

includes observations from a six year period (2001 - 2006) for two species, Hyla versicolor

(Gray Treefrog) and Bufo fowleri (Fowler’s Toad), which have traditionally demonstrated

lower detection probabilities (Weir et al., 2005). We also be focusing our attention on how

seasonality and temperature effect both correct classification as well as misclassification

probabilities. In doing so we will be employing an information theoretic approach whereby

we rank and compare a set of a priori models based on our objectives (see Burnham and

Anderson, 2002).

8.2 Model Formulation

In designing the models we have focused on modeling event probabilities, with minimal

structure on the initial occupancy states and intermediate structure on the state transitions

(Figure 8.1). Our goal is simply to demonstrate how potential biological processes may be

modeled under our multi-state occupancy framework.

8.2.1 Event Probabilities

Although standardization exists we may still expect event probabilities may change on a per-

survey basis, and we will need a site, season, and survey specific event formulation. Starting

with the alternate event probability formulation provided by Royle and Link (2005) and

modeling all parameters as being survey-specific, the following event probability matrix is

obtained:

πi,st =


1 0 0 0

q1
i,st p1

i,st 0 0

(1− β21
i,st)q

2
i,st β21

i,stq
2
i,st p2

i,st 0

(1− β31
i,st)(1− β32

i,st)q
3
i,st β31

i,st(1− β32
i,st)q

3
i,st β32

i,stq
3
i,st p3

i,st

 , (8.1)

where qki,st = 1−pki,st is the complement of the correct classification probability pki,st and βkji,st
is the conditional misclassification probability as defined by Royle and Link (2005). Note
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Figure 8.1: Summary of the NAAMP example analysis model formulation, re-
parameterization and parameter regressions. The over-parameterized fundamental param-
eterized were first pooled according to end modeling goals. Event probabilities were site-,
season- and survey-specific, while initial state probabilities were pooled across all sites and
transitions were pooled across sites but left season-specific. After parameter pooling, fun-
damental parameters were then re-parameterized in terms of relevant biological processes
at which point further regression type modeling was used on event probabilities.
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that unlike previous formulations which modeled the conditional misclassification as being

constant, we will be treating it similarly to correct classification by making it site, season

and survey specific.

Primarily we are interested in further understanding how seasonality and temperature

may effect event probabilities. To do so we will be have to develop two sets of general

regression equations, one for modeling seasonality in terms of survey windows and the

second for modeling seasonality as a day-of-year function.

Modeling Seasonality With Survey Windows

Modeling seasonality in terms of survey windows is a straightforward implementation of

standard logistic model approaches, with the exception that we must accommodate differ-

ences in baseline detection rates that may occur between between parameter classes and

between seasons (i.e. years in the context of the NAAMP). We follow the approach taken by

Royle and Link (2005) whereby we use different intercept terms to specify different different

baseline probabilities for distinctions we view as important, such as the parameter class and

seasons. The covariate effect is then modeled as providing consistently the same effect across

these various baseline probabilities (e.g. see equation 7.1 in the example formulations). As

such we are assuming that the covariate effect acts identically across classes or season, but

that we must accomodate basic differences between these classes and seasons.

In our case we wish to accommodate different baseline probabilities for the different

classes within a fundamental parameter (e.g. the different correct classification probabilities)

and study year (i.e. season). Because we will be believe covariates effect will most likely differ

between fundamental parameter groupings we will separately consider regression equations

for correct classification and misclassification fundamental parameter groupings. This results

in two general regression equations:

logit
(
pki,st

)
= µps,k +

Lp∑
l=1

bpl x
p
l,i,st for k = 1, 2, 3; s = 1, 2, . . . , 6 (8.2)

logit
(
βkji,st

)
= µβs,kj +

Lp∑
l=1

bβl x
β
l,i,st for k = 1, 2, 3, j < k and s = 1, 2, . . . , 6, (8.3)

where µps,k and µβs,kj are class and season specific intercepts for correct and conditional

misclassification probabilities respectively. These allow different baseline probabilities to
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be assigned based on fundamental parameter class and by season (in this context year).

Onto these baseline probabilities the additive covariate effect by fundamental parameter

are added. Covariates values for the correct classification and misclassification regressions

are designated by xpl,i,st and xβl,i,st, with bpl and bβl representing the respective regression

coefficients.

Exploring seasonality in terms of survey windows with the added effect of survey tem-

perature produces following regression models,

logit
(
pki,st

)
= µps,k + b1Win1i,st + b3Win3i,st + c1Tempi,st + c2Temp

2
i,st (8.4)

logit
(
βkji,st

)
= µβs,kj + d1Win1i,st + d3Win3i,st + e1Tempi,st + e2Temp

2
i,st, (8.5)

where Win1i,st = 1 and Win3i,st = 1 if the Julian date of survey t that occurred on site i

in season s is within the range [45, 110) and [150, 200) respectively, otherwise both are zero.

Tempi,st and Temp2
i,st represent the linear and quadratic temperature values for a given

survey. Note that, the date ranges are slightly larger than those specified in the NAAMP

protocol.

Modeling Seasonality Using A Day-Of-Year Function

While survey windows provide a straightforward approach, it may not provide a sufficiently

realistic approximation of the changes that may occur in detection rates over time. Instead,

we may expect event probabilities to change steadily and predictably on a per day basis.

Weir et al. (2005) modeled these types of changes using a sinusoidal regression (also known

as “harmonic regression” see Bloomfield, 1976), as a way to model these potential changes.

Similar to the survey windows approach, we have designed the regression model pa-

rameterization to allow different baseline probabilities based on the fundamental parameter

class and the season (i.e. year). However, we take a slightly different approach by defining

a separate day-of-year detection curve rather than different constant baseline probability.

Again we wish to consider correct and misclassification probabilities separately producing

the following set of general regression curves,

logit
(
pki,st

)
= µpk + αpk · cos

(
2πdi,st

365
+ δps

)
+

Lp∑
l=1

bpl x
p
l,i,st for k = 1, 2, 3

and s = 1, 2, . . . , 6 (8.6)
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logit
(
βkji,st

)
= µβkj + αβkj · cos

(
2πdi,st

365
+ δβs

)
+

Lp∑
l=1

bβl x
β
l,i,st for k = 2, 3, j < k

and s = 1, 2, . . . , 6 (8.7)

where µpk and µβkj are the class specific intercepts, αpk and αβkj characterize the class specific

amplitudes and δps and δβs are the season specific phases within a 365 day cycle. The Julian

day a specific survey occurred on is specified by di,st and the additional covariate values.

Directly interpretation of the individual parameters (e.g. µpk, α
p
k and δps) can be awkward

as the µpk represents the baseline detection rate at one quarter of a cycle from either the min

or max detection and the cosine wave form occurs on the logit scale. Instead, it is best to

view this component as providing a baseline detection rate on to which other environmental

effects are added. It should also be noted that we have made the simplifying assumption

that for a fundamental parameter class (e.g. p3) all seasonal curves share the same curve

profile with the exception of phase. The intensity of the detection probability can change

between parameter classes. Finally, we have also allowed Julian day corresponding to peak

detection to change between seasons.

In the context of our analysis, seasonality and temperature is modeled using the following

regression equations,

logit
(
pki,st

)
= µpk + αpk · cos

(
2πdi,st

365
+ δps

)
+ c1Tempi,st + c2Temp2

i,st (8.8)

logit
(
βkji,st

)
= µβkj + αβkj · cos

(
2πdi,st

365
+ δβs

)
+ e1Tempi,st + e2Temp2

i,st. (8.9)

8.2.2 States and Transitions

Initial State Distribution Ψk
i

Goals of a specific analysis will dictate whether the initial latent state distribution should

be modeled as site specific or pooled across sites. The research objective requires estimates

of the proportion of the landscape exhibiting a given latent abundance state, the pooled

parameterization is required. Otherwise a covariate model can be used to specify a site-

specific initial state distribution.

Depending on the goals of a specific analysis it may or may not be of interest to model

the initial state distribution as being site specific or pooled across sites. If the goal is

estimation of the proportion of sites across the landscape that exhibit a given occupancy
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state then pooling sites will be necessary. For predictive goals (i.e. understanding what

factors are associated with a given occupancy state) site-specific initial state probabilities

will be a prerequisite. Note than an exception exists if a site specific model and the covariate

distribution across the landscape is known then the latent state distribution across the

landscape may also be estimated.

In our case an argument can be made for both approaches. As a monitoring study the

NAAMP is primarily interested in understanding changes in the proportion of the landscape

used (i.e. occupied) and changes in the level of occupancy. However it would also be näıve

to suggests all sites share the same state distribution. The NAAMP data set spans 17 states

(of which we analyzed 10), it is unlikely that all states have the same latent abundance class

distribution nor the same transition probabilities.

That said, the presented analysis only is focused on modeling the event probabilities to

simplify the analysis as much as possible. We are therefore making the simplifying assuming

that Ψk
i = Ψk for all i and k.

Abundance Class Seasonal Transitions Φs

Given the monitoring objective of the NAAMP likely there is interest in understanding

transitions in terms of aggregate statistics. We will be modeling all sites using common

transition probabilities (i.e. Φi,s = Φs), and we will re-parameterizing the Φs matrix in

terms of processes that are believed to be biologically meaningful. As the abundance class

model is a form of multi-level occupancy, we turn to site-occupancy framework for inspira-

tion.

The multi-season site-occupancy model proposes that changes in occupancy results from

two separate processes that occur between season. These processes are colonization (proba-

bility γs) and extinction (probability εs; MacKenzie et al., 2006). While highly applicable to

a strict site-occupancy framework, these processes are somewhat broad from a multi-state

occupancy context. Sites may experience decreases in abundance without local extinction,

and likewise increases in abundance without colonization. In a monitoring context, both of

these changes would be of interest to researchers, with priority placed on detecting declines.

(Most monitoring programs are put in place because of concerns over the continued survival

of a particular species.)

For multi-state occupancy we can break down changes in the occupancy state into the

process of decline (roughly akin to the extinction process in site-occupancy, but defined as a



CHAPTER 8. NUMERICAL EXAMPLE: THE NAAMP DATA SET 95

decrease in the abundance class), and then given a decline has not occurred the conditional

process of an increase. The probability of no change, becomes the complement of these two

processes. Formally, we use the following parameters,

λs - The probability a site decreases by one or more abundance levels between

seasons s and s+ 1, given a decrease is possible (i.e. Z 6= 0).

γs - The conditional probability of an increase in the latent abundance class be-

tween seasons s to s+ 1, given an decrease has not occurred and an increase

is possible (i.e. Z 6= K).

ν1,s - Given an decrease in abundance has occurred, ν1,s is the recursive continuation

ratio, that is the probability of selecting the next lowest abundance class.

ν2,s - Given an increase in abundance has occurred, ν2,s is the recursive continuation

ratio, that is the probability of selecting the next highest abundance class.

Given that we are assuming all sites are subject to the same transition probabilities between

season Φs is now re-expresses as,

Φi,s = Φs =


(1− γs) γsν2,s γs(1− ν2,s)ν2,s γs(1− ν2,s)(1− ν2,s)

λs (1− λs)(1− γs) (1− λs)γsν2,s (1− λs)γs(1− ν2,s)

λs(1− ν1,s) λsν1,s (1− λs)(1− γs) (1− λs)γs
λs(1− ν1,s)(1− ν1,s) λs(1− ν1,s)ν1,s λsν1,s (1− λs)

 .

8.2.3 Multi-model Inference and Compact Model Syntax

In ecology, it is becoming more common place to investigate multiple competing hypothe-

ses when interpreting natural phenomenal (Burnham and Anderson, 2002; Johnson and

Omland, 2004). Within the context of our example analysis we have multiple competing

hypotheses about the way event probabilities can be affected by day-of-year and temperature

effect.

For example, does a more simple approach such as survey window blocking adequately

describe seasonality compared to a more complex approach such as a sinusoidal regression?

Furthermore, do we need to include further restrictions within any one of these approaches

(e.g. across season)? In the most general form, both seasonality formulations allow for dif-

ferences in the baseline probabilities by functional class (i.e. correct and misclassifications

probabilities) as well as subclass (e.g. p3
i,st versus p2

i,st) and by year. We may wish to explore
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scenarios were these baseline probabilities are restricted across subclass (e.g. misclassifica-

tion: β31
i,st = β21

i,st) or across years (e.g. β31
i,1t = β31

i,2t = . . . = β31
i,6t).

With these goals in mind we have developed a compact model syntax to represent the

various models and constraints. The syntax uses a general structure with an indicator for the

fundamental model parameter (e.g. ‘p’ for the correct detection class pki,st) followed by further

indicators (optional) then class and seasonal constraints. For example, the model syntax

p{cos}{1, 2, 3}{.} would indicate the correct detection regression that uses the sinusoidal

day-of-year function for seasonality and has a differing baseline probability based on class,

but is shared across seasons (i.e. pki,1t = pki,2t = · · · = pki,6t for all values of i, t and k).

In this case pki,st is defined by a sinusoidal day-of-year function (8.8) and the restriction

is accomplished by the constraint δp1 = δp2 = · · · = δp6 . For the survey window regression

(8.4) the equivalent model (denoted as p{win}{1, 2, 3}{.}) is accomplished by constraining

µp1,k = µp2,k = · · · = µp6,k for all k.

While the manner in which constraints are enacted differ, both result in a roughly

equivalent outcome. For the survey windows regression a constant baseline probability is

defined across seasons for each class, while for the sinusoidal regression each class has a

separate curve which is shared across seasons. In both cases the compact model syntax

relates these concepts without detailing how the constraints were executed.

Finally, noting that the model syntax deals with class and season constraints only. We

do not consider constraints across either the i or t indices because covariate values (i.e. day

of observation and temperature) will change by site and survey occasion. For the analysis

we used a fairly flexible state transition model so that we could focus finding the best event

model formulation.

8.3 Goodness-of-fit for the NAAMP Ordinal Abundance Class

Model

Using the omnibus goodness-of-fit measure provided in Section 6.4.1 may be computationally

infeasible for large data, due to the time taken to numerically maximize the models after

each bootstrap sample is generated. Model adequacy however can still be assessed in this

scenario by employing a similar approach to Bayesian posterior predictive checking.

If the model fits, then replicate data generated under the model (using MLE’s from

the model as parameter values) should be similar to the observed data. Lack-of-fit tests
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can be formulated to test various underlying assumptions of the model by comparing the

arrangement of the observed data to the relevant empirical distribution generated from the

bootstrap sample. For example, the probability of observing a given encounter history,

or a site-specific encounter history (for site-specific covariate models) could be compared.

These potentially, “test statistic” would be akin, in concept to the Bayesian posterior p-

value (Meng, 1994) and may allow for the incorporation of other techniques such as a model

adequacy distance statistical as proposed by Lindsay (2004).

While this approach offers promise, computational short comings may also exist for com-

plex data sets such as the NAAMP. Long encounter histories (either through large numbers

of within season surveys and/or many seasons) present a large number of possibilities that

bootstrap samples may not adequately cover without being prohibitively large. This prob-

lem can however be reduced for multi-state occupancy models that use the latent abundance

class formulation, an ordinal occupancy states formulation.

In the latent abundance class formulation (and potentially with other similar ordinal

occupancy formulations) the length of the encounter histories can be reduced by considering

the maximum observed index within a season. During this period the information about the

underlying state has not changed, and multiple surveys can be condensed into a univariate

summary. For example, the true underlying state could be theoretically determined by

infinitely resampling the site during a state of closure (i.e. within a season) and taking the

maximum, that is

lim
Ts→∞

max{hi,st : t = 1, 2, . . . , Ts} = zi,s for s = 1, 2, . . . , S, (8.10)

if the probability of the correct classification event is non-zero. That is, the maximum

observed index converges in probability to the true underlying state, if and only if the

probability of a correct classification event is non-zero. Since this assumption can be ex-

pected to be true in most cases, the maximum index within a season effectively summarizes

all the available information on the underlying state and will be used as the basis of our

goodness-of-fit statistic.

Building off of this, a number of lack-of-fit criteria can be created by following a general

procedure:

1. Fit the model to observed data and derive parameter estimates for the event proba-

bilities π̂e|ki,st, the initial state probabilities Φ̂i,0 and the transition probabilities Φ̂i,s.
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2. Using the parameter estimates compute for each site, denoted as i, do the following:

(a) Assign an initial state from Z to site i using a multinomial draw with cell prob-

abilities Φ̂i,0. We will denote this state as zi,1.

(b) Next for s = 1 . . . S each seasons do the following

i. Make repeated multinomial draws from U , using the row probabilities from

π̂
e|k
i,st associated with state zi,s and assign Ts events to site i in season s. Once

Ts events have been assigned record the maximum index as the observation

for season s.

ii. Next, if s < S, assign a new state to i for season s + 1, by making a multi-

nomial draw using the row probabilities from Φ̂i,s associated with being in

state k in season s. Denote this new state as zi,s+1.

The observed events from Steps 2a-2b will make up the maximum index encounter

history of site i. Record the row vector as row i in Xb.

3. Repeat Step 2 a large number of times, B, this is the bootstrap sample which will

be used to approximate the distribution of lack-of-fit metrics based on the maximum

index.

4. Using the observed data for each site, denoted as i, do the following:

(a) For s = 1, 2, . . . , S determine the maximum observed occupancy index in season

s and record this as the observation for season s.

(b) Record these observed maximum indices for site i as row i in Xobs.

Xobs will be used in the calculation of any lack-of-fit metric.

5. Generate a lack-of-fit metric using Xobs and compare to the lack-of-fit empirical dis-

tribution derived from the Xb sample.

Within the context of our NAAMP example, we use the bootstrap distribution to as-

sess whether the top selected model adequately predicts the transitions of states between

seasons. While we cannot fully assess this due to issues of detectability, we can compare

observed and expected changes between maximum indices between seasons. Note that we

have deliberately substituted the word “change” for transition, since we cannot assess the

true rate of state transitions.
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8.4 Results

Call chorus data for Hyla versicolor and Bufo fowleri from 2001 to 2006 in 10 states was

obtained from the online from the United States Geological Survey website1. For H. ver-

sicolor there were a total of 28,613 surveys recorded at 2,867 sites over 6 years, while for

22,282 total surveys for B. fowleri were recorded at 2,257 sites.

The analysis was approached in stages, where we considered eight event model scenarios

each with additional possible multiple parameter restrictions based on parameter class and

season. Each scenarios contained used either a sinusoidal or survey window approach to

define baseline probabilities. Models for a temperature effect included, effects on correct

detection only, or effects on both correct and misclassification. The remaining scenarios

use either a survey windows or sinusoidal regression approach for the correct classification

probabilities, with a constant misclassification probability. These scenarios are intended

to provided a frame of reference to the Royle and Link (2005) analysis which modeled a

constant misclassification probability.

Within each event scenario we also consider an equivalent set of parameter restric-

tions. In its most general form all regressions have differing baseline probabilities based on

fundamental parameter classes and season. Such a high degree of parameterization could

potentially represent an over-parameterized model. We also developed an a priori a set of

biologically relevant class and season restrictions for the correct and misclassification prob-

abilities (Table 8.2). These restrictions can be applied within any of the event scenarios

and represent different ways to define the baseline correct or misclassification probabilities

in terms of either class or season.

In total we consider two season restrictions (either {s} or {.}) and three class restrictions

for correct classification and four class restrictions for misclassification. There are 48 possible

event model restrictions within any given event models scenario. Within each scenario all

models were ranked by AIC, and we present only the top three models from each scenario

for each of the two species (see Tables 8.3 and 8.4 for the top Bufo fowleri sinusoidal and

survey windows models and Tables 8.5 and 8.6 for the top Hyla versicolor sinusoidal and

survey windows models).

Support for the different event model scenarios was evaluated by comparing the AIC

values of the top baseline restriction model within each of the event scenarios (Table 8.7).

1http://www.pwrc.usgs.gov/naamp/index.cfm?fuseaction=app.dataDownload

http://www.pwrc.usgs.gov/naamp/index.cfm?fuseaction=app.dataDownload


CHAPTER 8. NUMERICAL EXAMPLE: THE NAAMP DATA SET 100

Table 8.2: Summary of the various tested restrictions placed on the correct and misclassifi-
cation probabilities baseline probabilities. All combinations of class and season restrictions
where used the different event scenarios tested. for example p{k}{s} would be a model that
uses different baseline probabilities for each class and season.

Fundamental
Parameter

Class Season
Restriction Syntax Restriction Syntax

Correct
Classification

− p{1, 2, 3} − {s}
p2
i,st = p3

i,st p{1, 23} pki,1t = pki,2t = · · · = pki,6t {.}
p1
i,st = p2

i,st = p3
i,st p{.}

Misclassification

− β{21, 31, 32} − {s}
β21
i,st = β31

i,st β{21|31, 32} βkji,1t = βkji,2t = · · · = βkji,6t {.}
β31
i,st = β32

i,st β{21, 31|32}
β21
i,st = β31

i,st = β32
i,st β{.}

While the top baseline restrictions within each event scenario were generally close in terms

of AIC support (e.g. 0-10 AIC units, see top ranked models in each scenario in Tables 8.3

and 8.4 for Bufo fowleri, and Tables 8.5 and 8.6 for Hyla versicolor) the differences between

event scenarios was startlingly large, on the order of hundreds of AIC units (Table 8.7). As a

rule of thumb models within 10 AIC units of one another are generally considered plausible

(Burnham and Anderson, 2002).

The top scenario for both Bufo fowleri and Hyla versicolor used the day-of-year (sinu-

soidal) regression approach, with separate baseline probabilities for each season for both

correct and misclassification probabilities. Both top models also included survey specific

temperature effects for both correct and misclassification probabilities.

For Bufo fowleri the next closest scenario was 112 AIC units away and used survey

windows to model within-season changes, had separate baseline probabilities for each season,

and included temperature effects for both correct and misclassification probabilities. In fact

of top five scenarios, three used the sinusoidal regression to model within season changes,

while two used survey windows and most included some form of temperature effects (Table

8.7). Finally, the top models in each scenario had used differing baseline probabilities for

each season.

For Hyla versicolor the sinusoidal regression approach was used in all of the top three
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ĉ 1
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scenarios. For correct detection the baseline probabilities were constant across season, while

for misclassification the top models included seasonality effects. The remaining scenarios

that used survey windows also favoured the inclusion of temperature effects on both correct

and misclassification probabilities. Finally, the top models in these remaining scenarios also

had a mixed support for the inclusion of seasonality in baseline probabilities.

Table 8.7: Bufo fowleri and Hyla versicolor event scenarios rankings by AIC. Within each
event scenario various parameter restrictions were compared via AIC ranking and only the
top restriction model from each event scenario are displayed below. The column np is the
number of model parameters.
A) Bufo fowleri

Event Model
Correct Classification Misclassification np AIC ∆AIC
p{cos}{1, 23}{s}{temp} β{cos}{21|31, 32}{s}{temp} 39 10458.6 0
p{win}{1, 2, 3}{s}{temp} β{win}{21, 31|32}{s}{temp} 53 10570.5 111.9
p{cos}{1, 2, 3}{s}{temp} β{cos}{21, 31, 32}{s} 41 10592.8 134.2
p{win}{1, 2, 3}{s}{temp} β{win}{21|31, 32}{s} 45 10754.5 295.9
p{cos}{1, 23}{s} β{cos}{21|31, 32}{s} 39 10896.1 437.5
p{win}{1, 23}{s} β{win}{21|31, 32}{s} 43 11150.0 691.4
p{win}{1, 2, 3}{s}{temp} β{21, 31|32}{s} 43 11227.1 768.5
p{win}{1, 2, 3}{s} β{21, 31|32}{s} 35 11679.7 1221.1

B) Hyla versicolor

Event Model
Correct Classification Misclassification np AIC ∆AIC
p{cos}{1, 2, 3}{.}{temp} β{cos}{21, 31, 32}{s}{temp} 38 21762.1 0
p{cos}{1, 2, 3}{.}{temp} β{cos}{21, 31, 32}{s} 36 21834.3 72.2
p{cos}{1, 2, 3}{.} β{cos}{21, 31, 32}{s} 34 22049.9 287.8
p{win}{1, 2, 3}{s}{temp} β{win}{21|31, 32}{.}{temp} 43 22692.0 929.9
p{win}{1, 2, 3}{s}{temp} β{win}{21, 31|32}{.} 41 22791.7 1029.6
p{win}{1, 2, 3}{.} β{win}{21, 31, 32}{.} 25 22960.3 1198.2
p{win}{1, 23}{s}{temp} β{21|31, 32}{.} 33 23768.7 2006.6
p{win}{1, 23}{s} β{21|31, 32}{.} 34 23958.7 2196.6

Figure 8.2 plots the day-to-day changes in the estimated correct classification and mis-

classification probabilities over the final study year (2006) for both species based on the

model with the greatest support. For both species correct detection and misclassification

probabilities are virtually zero in the first survey window. For Hyla versicolor both correct
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and misclassification probabilities peak in the third survey window (Figure 8.2a and 8.2b).

For Bufo fowleri correct detection probabilities peaked between the second and third sur-

vey windows (Figure 8.2c), while misclassification peaked in third survey window (Figure

8.2d). For both species misclassification peaked later in the year than correct classification

probabilities.

The timing of the peak of correct classification curves also matched estimates by Weir

et al. (2005), however the probability of correctly identifying higher latent abundance indices

(i.e. p2
i,st and p3

i,st) was higher noticeably higher that the overall detection probabilities in

their site-occupancy approach.

The effects of changes in ambient temperature, on the correct and misclassification

probabilities can also be seen (Figure 8.3). Because the top models for both Hyla versicolor

and Bufo fowleri include a quadratic temperature effect we can look at the optimal survey

temperature for each species by Julian date (Figure 8.3). For the 10 regions analyzed

the optimal survey temperature for observing Hyla versicolor is very close to the expected

temperature, while for Bufo fowleri the optimal temperature appears to be much higher.

Finally, as a demonstration of our proposed goodness-of-fit procedure (Section 8.3) we

assessed the support for the top Hyla versicolor using a graphical approach to look at

changes in the underlying abundance states between seasons. In total there are
(
S
2

)
(K + 1)

possible pairwise comparisons that can be investigated. We selected the 16 possible changes

in maximum index frequency between the first to second season (Figure 8.4). The change

frequency observed in the data is indicated with an arrow against the empirical distribution

provided by the bootstrap sample.

Of the 16 possible transitions between seasons one and two, three potential transitions

appear to be of concern. The frequency of the observed 0→ 0 change is much higher than

predicted by the model. Also of potential concern are the 0→ 3 and 3→ 0 changes, where

the observed frequency appears to be much lower than expected.

8.5 Discussion

While event probabilities can be viewed as nuisance parameters, a better understanding

the factors affecting calling events may help in the understanding of calling phenologies,

an important component of conservation and management efforts (Hocking et al., 2008).
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Knowledge on the optimal environmental conditions for maximizing correct detection prob-

abilities can help tailor survey efforts for particular species of interest or help to best direct

survey efforts for multi-species monitoring. A better understanding of calling event timing

can also lend potentially lend insight into calling and reproductive phenologies, but cau-

tion is needed as there is not always a direct association between calling and reproduction

(Donnelly and Guyer, 1994).

While we found strong support for modeling seasonality using a sinusoidal day-of-year

approach in both Hyla versicolor and Bufo fowleri, this may not be appropriate for all anuran

species. Some species (e.g. tropical) may have more prolonged reproductive periods with

periods of calling bouts followed by periods of relative quiescence (Green, 1990; Donnelly and

Guyer, 1994; McCauley et al., 2000). If quiescence is not associated with known covariates

(e.g. temperature), then the sinusoidal structure will be inappropriate. Furthermore, the

sinusoidal day-of-year approach suggests that calling events smoothly increase and decrease

over time. For species that exhibit explosive calling or single sustained calling bouts, it is

possible that true calling pattern may be abrupt and may not as smooth as suggested by

the sinusoidal function.

For both species, models that included a temperature covariate in both correct and mis-

classification probabilities were also strongly supported. This is not surprising as tempera-

ture been found to be an important factor in the timing of both anuran breeding (Beebee,

1995; Reading, 1998; Blaustein et al., 2001; Gibbs and Breisch, 2001) and anuran calling

(Tryjanowski et al., 2003; Blaustein et al., 2001; Weir et al., 2005; Royle and Link, 2005).

While we noted this effect on event probabilities, temperature has only been found to be

important to the timing of Hyla versicolor breeding (Gibbs and Breisch, 2001), but not Bufo

fowleri (Blaustein et al., 2001).

Excluding tropical species (which tend to have prolonged breeding periods that may not

be as tightly associated with temperature) there is conflicting evidence over the importance

of temperature on anuran breeding timing within the temperate-zone anuran literature, as

well as general trends towards earlier breeding due to global warming (e.g. Beebee, 1995;

Reading, 1998; Blaustein et al., 2001). Interestingly, a direct association between breeding

date and temperature was not found in Bufo fowleri (Blaustein et al., 2001), but an indirect

association was found for Hyla versicolor (Gibbs and Breisch, 2001).

It is hard not to re-evaluate this conflict within the context of detectability. To date

most, of these studies, use a “first day of breeding” metric to measure the commencement
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of reproduction, but none have considered the incorporation of missed classification. It is

completely plausible for short term environmental conditions to affect when the first day

of breeding is observed, without actually affecting the true biological breeding period. In

this case the noise added to the observation process may make it more difficult to detect

subtle shifts of global climate change. Instead, approaches that attempt to isolate the true

biological breeding period from other sources of noise may clear up these types of conflicts.

Thus, it may be better to measure peak reproductive timing for episodic temperate-zone

breeders rather than less clearly defined concepts such as “commencement.” What defines

commencement is open to interpretation, it could be defined by the first observed call or

breeder, or once a certain (presumably low) number of calls or breeders has been surpassed

(i.e. to avoid observer mistakes). Both are set at an an arbitrary level by an investigator.

In contrast by defining the timing of breeding in terms of a peak activity, there is a clear

defined metric that is also biologically important, the only requirement is that activity can

be modeled using a smooth change point function, as we have done in the current study.

For temperate-zone breeders if we are willing to concede that calling rates and breeding

activity are related, then derived parameters such as tmax, from the sinusoidal regression

framework, may provide a plausible metric. If we define peak breeding by peak calling

periods, then peak detection rates (which are affected by calling) will also indicate peak

breeding. In addition, the estimate will also incorporate other factors (e.g. temperature) as

affecting detection rates and should therefore be less sensitive to short term environmental

changes.

While there is clear support for the inclusion of temperature effects in all event probabil-

ities, future studies may want re-examining the manner in which temperature is modeled.

Generally, the NAAMP protocol allows for sampling across a five month period, a time

interval in which the average temperature can be expected to change in temperate-zone

areas such as the ones in the study. As such, the day-of-year effect (defined by sinusoidal

function) may be confounded with the temperature effect if the timing of anuran breeding

is triggered by changes in temperature or a temperature threshold, as has been suggested

for some anuran species (e.g. Reading, 1998).

If this is the case temperature could be instrumental in the timing of breeding and

by extension the timing of calling and calling event probabilities. While temperature may

effect the phenology of breeding and calling, temperature could also play an additional role

in the intensity (and calling event) heard on any given sampling occasion. In order to
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get at this latter temperature effect, while decoupling the temperature and timing effect,

future studies may wish to consider centering the temperature covariate on the expected

temperature for a given Julian day. This new temperature covariate would become a way

to define unseasonably higher or lower temperatures.

Finally, in specifying the model we assumed all 10 states from which the experiment was

conducted possessed the same initial occupancy proportion Φi,0 = Φ0. However, if we look

at the distribution of the maximum observed indices by region (Figures C and C for Hyla

versicolor and Bufo fowleri respectively) it is evident that different regions likely posses

different initial occupancy state distributions. For example, for Hyla versicolor states such

as Delaware Virginia, West Virginia appear to have a higher proportion of zero sites than

states such as Maine, Massachusetts and New Hampshire. Potentially, this represents a

model misspecification which may be produce parameter estimates that under estimate the

proportion of zero sites in these areas. If so, then the observed data would have a higher

0→ 0 transition, because there are more zero sites than predicted.
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Figure 8.2: Estimated seasonal correct classification and misclassification probability curves
for Hyla versicolor and Bufo fowleri in 2006, using the highest ranked day-of-year sinusoidal
regression model (Table 8.7). Correct and misclassification probabilities has been also been
adjusted for temperature, by using the expected mean temperature for a given Julian date.
The current NAAMP suggested survey windows are indicated with dashed lines. In all
cases the correct detection misclassification probabilities has been also been adjusted for
temperature, by using the expected mean temperature for a given Julian date and NAAMP
survey windows are indicated with dashed lines.
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Figure 8.3: The effect of ambient temperatures, above and below the expected mean tem-
perature by Julian date, on the estimated probability of correct classification p̂kd,2006 condi-

tional misclassification β̂kjd,2006 for Hyla versicolor and Bufo fowleri in 2006, using the highest
ranked day-of-year sinusoidal regression model (Table 8.7). Estimated probability for the
expected ambient temperature by Julian date is displayed with a thicker line weight, while
ambient temperatures above and below are displayed with a thinner line weight. NAAMP
survey windows are indicated with dashed lines.
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Figure 8.4: Example lack-of-fit transition graph for the top Hyla versicolor model for pos-
sible changes maximum indices observed from season one to season two. Arrows indicate
the frequency observed in the data, while the histogram shows the empirical distribution
generated from the parametric bootstrap.



Chapter 9

Power Analysis: Contrasting

Permanent and Temporary

Monitoring Protocols

Our proposed multi-state occupancy formulation provides for two types of sampling proto-

cols: permanent and temporary sampling protocols. Both are intended to handle different

types of monitoring situations, but will also differ in their power to detect changes in un-

derlying occupancy state proportions. The differences in power between these two sampling

protocols is unknown. Furthermore, there are other design considerations, such as whether

to partition total survey effort into sampling additional sites or number of repeat samples.

As a guide, we have conducted a power analysis to investigate the trade off between number

of repeat samples and total sampling effort using the abundance class formulation proposed

by (Royle and Link, 2005) for both sampling protocols using real world event probabilities.

The abundance class formulation (see Section 7.4) represents a potentially useful formu-

lation for long term monitoring studies, making it a prime candidate for further investiga-

tion. As the basis of our power analysis we wish to consider designs that minimize effort

for potential experimenters. For the sake of the analysis, we will assume that each survey,

whether a repeat sample of an existing site, or the inclusion of a new site as having equal

cost. We look to minimize the total survey effort, that is number of sites multiplied by

number of repeat samples that still provides the same power to detect changes.

For the purposes of this analysis we will be using estimated event probabilities from both
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studies on both anuran (Royle and Link, 2005) and rockfish (Marliave and Challenger, 2009).

While the two studies have a different interpretations of what constitute a latent abundance

class represents, they do provide a useful starting point for the types real-world parameter

values that may be encountered. Both are single year studies, and as a possible extension

to these studies we consider the ability to detect changes in the underlying abundance class

distribution between the first and second season in a two season study (here we equate years

to seasons).

Power is interpreted as the ability to detect changes in univariate summaries statistics

suggested by Royle and Link (2005); the average abundance class N̄ , and probability of

occupancy 1−Ψ0.

9.1 Deriving Univariate Summary Statistics for Multiple Sea-

sons

For the latent abundance class formulation Royle and Link (2005) purposed two univariate

summary statistics, the average latent abundance distribution, N̄ and the probability of

occupancy 1 − Ψ0. Within a multi-season context the average latent abundance class for

season s is defined as,

N̄s = E[Z] =
K∑
k=0

kΨk,s,

where Ψk,s is the expected proportion of sites with latent abundance class k in season s.

Because we are interested in detecting changes in the latent abundance class distribution

between years we can define

∆N̄s→v = E[N̄v − N̄s] = N̄v − N̄s (9.1)

as the expected difference between the average latent abundance class of seasons s and

seasons v, where s < v. Similarly, managers may be interested in tracking changes in the

proportion of sites occupied between any given season. Since the expected proportion of

sites occupied for season s is 1−Ψ0,s, we can define

∆(1−Ψ0)s→v = Ψ0,s −Ψ0,v (9.2)
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as the change in expected proportion of sites occupied between season s and season v for

s < v.

In both cases the functional invariance property of maximum likelihood estimators allows

estimates of the summary measure be obtained by by substituting in the appropriate MLE’s.

For the temporary sampling protocol the Ψ0,s and Ψ0,v will be estimated directly, however

for the permanent sampling protocol this will be a derived parameter. Let be Ψs be a row

vector such that Ψs = [Ψ0,s,Ψ1,s, . . . ,ΨK,s] , then

E [Ψs] = Φ0

s−1∏
j=1

Φj for s = 2, 3, . . . , S, (9.3)

where Φ0 is the initial latent abundance state distribution and Φj are the transition prob-

abilities from season j to season j + 1. Estimates are again obtained by substituting the

appropriate MLE’s in (9.3). All sites are also assumed to share the same transition proba-

bilities.

9.2 Methods

As a test scenario we consider in a two season study where the study area experiences 30%

drop in the average latent abundance N̄ between seasons (Figure 9.1). In the first season

the initial latent abundance distribution was Φ0 = [0.1, 0.2, 0.3, 0.4], N̄1 = 2, decreased

to N̄2 = 1.399846 in the second season with a latent abundance distribution of Ψ2 =

[0.3569, 0.159575, 0.2103037, 0.2732213].

This scenario was based on the λ-γ-ν transition structure (see Section 8.2.2), where the

probability of a decrease in latent abundance was λ1 = 0.35, with a conditional probability

of increase being γ1 = 0.035, and a continuation ratio of ν1,1 = ν2,1 = 0.15. Note that for

the temporary monitoring design the state distribution Ψs will be estimated directly each

year. Overall, this scenario results in a ∆N̄1→2 = −0.6001537 and an occupancy change of

1 − Ψ0,1 = 0.9 in the first season to 1 − Ψ0,2 = 0.6431 in the second season, for an overall

change of ∆(1−Ψ0)1→2 = −0.2569, a 28.5% decrease in the probability of occupancy.

We considered designs that used Ts = 2, 3, 4, 5, 6 surveys each season, but with a fixed

number of total surveys each season. The number of sites surveyed is a then function of

the protocol, the number of repeat surveys, and the total survey effort. For the permanent

sampling protocol, the total number of sites surveyed is determined by taking the number
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Figure 9.1: Change in the latent abundance distribution from the first to second season for
both test scenarios involving anuran and rockfish event probabilities. Overall the change
results in a 30% decrease in the average latent abundance and a 28.5% decrease in occupancy.

of total surveys performed in any season dividing it by the number Ts. For the temporary

protocol this was the number of sites surveyed each season. In the case where this produced

a non-integer result, the number of sites was rounded to the nearest integer and the total

sampling effort was adjusted accordingly.

For each experimental setting 2500 runs were completed based on either anuran (Table

9.1a) or rockfish event probabilities (Table 9.1b) and the corresponding statistical hypotheses

tested were,

H0 : ∆N̄1→2 = 0

H1 : ∆N̄1→2 6= 0,

for the change in average latent abundance class and

H0 : ∆(1−Ψ0)1→2 = 0

H1 : ∆(1−Ψ0)1→2 6= 0,

and for change in occupancy. The number of times the null hypothesis was rejected at the
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α = 0.05 level was used to calculate power. For computational efficiency, hypotheses were

tested using Wald-type test statistic with variance estimates derived from the Delta method.

Table 9.1: Estimated event probabilities from the best supported model for A) North Amer-
ican Amphibian Monitoring Program (Royle and Link, 2005) and B) the Vancouver Aquar-
ium rockfish dive surveys (Marliave and Challenger, 2009).

A) NAAMP Call Data (2001)

P (U = 0|Z) P (U = 1|Z) P (U = 2|Z) P (U = 3|Z)
Z = 0 1.000 0 0 0
Z = 1 0.758 0.242 0 0
Z = 2 0.772 0.149 0.078 0
Z = 3 0.647 0.125 0.149 0.078

B) Aquarium Rockfish Dive Surveys (2006)

P (U = 0|Z) P (U = 1|Z) P (U = 2|Z) P (U = 3|Z)
Z = 0 1.000 0 0 0
Z = 1 0.690 0.310 0 0
Z = 2 0.310 0.380 0.310 0
Z = 3 0.018 0.093 0.579 0.310

9.3 Results

Generally, the permanent sampling protocol produced more powerful, in some cases re-

quiring less than half the total effort to detect changes in the average latent abundance or

occupancy. This difference in efficiency was similar for both univariate summaries. However,

the optimal design differed greatly depending on the event probabilities used.

For anuran event probabilities the most powerful design involved Ts = 6 repeat samples

per season, which held for either sampling protocol and for both univariate statistics (Figure

9.2). For ∆N̄1→2 80% power was achieved with 390 and 690 total surveys per season for

permanent and temporary sampling protocols, while for ∆(1 − Ψ0)1→2 350 and 540 total

surveys were required respectively. In this case ∆(1−Ψ0)1→2 produced slightly more power

full designs and the temporary protocol requires approximately 1.5-1.7 times as much effort

as the permanent sampling protocol. It should be noted that higher Ts > 6 designs may be

more powerful, but were not tested.
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For rockfish event probabilities however, Ts = 2 tended to produce more powerful designs

for both sampling protocols and univariate summary statistics. The only exception was for

detecting changes in ∆(1 − Ψ0)1→2 with the temporary sampling protocol, where Ts = 3

appears to produce equivalent or slightly more powerful designs that Ts = 2 repeated samples

per season. For ∆N̄1→2 80% power was achieved with 75 and 150 total surveys per season

for the permanent and temporary protocols respectively, while for ∆(1−Ψ0)1→2 80% power

was achieved with 75 and 210 total surveys per season respectively. For the permanent

sampling protocol both univariate sampling statistics had comparable power, while for the

temporary design ∆N̄1→2 was slightly more efficient.

In terms of sampling efficiency in all cases the permanent sampling protocol produced

designs that were 1.5 to 2.8 times more efficient at the 80% power level in terms of total sur-

veys performed (Figure 9.4). For all the tested scenarios the univariate summary statistics

performed fairly comparably, with the notable exception that for the anuran event proba-

bilities combined with the temporary sampling protocol, the ∆N̄1→2 univariate summary

required about 1.3 times as much effort for 80% power as ∆(1−Ψ0)1→2.

9.4 Discussion and Conclusions

While the optimal number of repeat surveys design differed depending on whether rockfish

or anuran event probabilities were used, the permanent sampling design showed a strong

advantage over the temporary sampling designing in all the scenarios investigated. Within

the scenarios tested a permanent sampling approach showed anywhere from a 1.5 to 2.8

times higher efficiency in terms of total sampling effort required to reach a power of 80% to

detect change. As such, practitioners should focus on implementing a permanent monitoring

scheme whenever possible. However, for situations where this is not possible, practitioners

should be prepared to adjust their total survey effort accordingly.

Interestingly, anuran and rockfish event probabilities produced a fairly large divergence

in the optimal repeated sampling effort. For a given total effort (surveys per season) the

optimal design for both permanent and temporary protocols used Ts = 6 and Ts = 2

repeated samples per season for anuran and rockfish event probabilities respectively. This

equates to a three times difference in the number of sites sampled for the same given total

effort. Note that, Ts = 6 was the highest number of repeat samples tested and in the case of

the anuran analysis a higher value of Ts may have produced a slightly more powerful design.
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Figure 9.2: Power curves for the anuran event probabilities (Table 9.1) for designs using
Ts = 2, 3, 4, 5, 6 repeat surveys per season in a two season experiment. Power was judged as
the ability at the α = 0.05 level to detect changes in average latent abundance ∆N̄s using A)
temporary and B) permanent sampling protocols as well as to detect changes in occupancy
∆(1 − Ψ0)s using C) temporary and D) permanent sampling protocols. Horizontal dotted
line indicates 80% power to detect a change and vertical dotted line indicates the total
survey effort for the most powerful design tested. Total survey effort is the number of sites
multiplied by the number of repeat surveys per season.
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Figure 9.3: Power curves for the rockfish event probabilities (Table 9.1) for designs using
Ts = 2, 3, 4, 5, 6 repeat surveys per season in a two season experiment. Power was judged as
the ability at the α = 0.05 level to detect changes in average latent abundance ∆N̄s using A)
temporary and B) permanent sampling protocols as well as to detect changes in occupancy
∆(1 − Ψ0)s using C) temporary and D) permanent sampling protocols. Horizontal dotted
line indicates 80% power to detect a change and vertical dotted line indicates the total
survey effort for the most powerful design tested. Total survey effort is the number of sites
multiplied by the number of repeat surveys per season.
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Figure 9.4: Power curves for the ability of permanent (solid line) and temporary (dashed
line) sampling protocols to detect differences in ∆N̄1→2 using A) anuran and B) rockfish
event probabilities as well for differences in ∆(1 − Ψ0)s using C) anuran and D) rockfish
event probabilities. The most powerful design for each protocol is displayed. Horizontal
dotted line indicates a power of 80% to detect a change, while horizontal lines indicate the
total survey effort required.
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Also note, that designs of Ts = 1 would require some sort of additional modeling structure,

such as covariates, in order to make the model estimable.

For the site-occupancy formulation detection probability is known to be an important

factor for determining the optimal number of repeat samples (MacKenzie and Royle, 2005).

In this case the relationship is fairly straightforward due to the structural simplicity of the

model. Generally, low levels of detection result in higher repeat samples being optimal. The

abundance class multi-state occupancy formulation likely also follows this rule of thumb,

however it is harder to critically assess due to the complexity of event probabilities. The

anuran event probabilities generally showed lower correct detection probabilities, and a

higher probability of observing a zero compared to the rockfish event probabilities. It was

not surprising that the optimal number of repeat samples was also higher. However, it would

be advisable for practitioners to conduct their own power analysis before implementing

designs, as optimal design may also depend on univariate summary being used, the type of

changes in the latent state distribution and the overall event probability structure. We only

considered a very narrow range of possible configurations.

Of particular interest may be further comparisons between univariate statistics and

simpler models such as the site-occupancy formulation. In our analysis we chose a scenario

where the percent changes in average latent abundance N̄ and occupancy 1 − Ψ0 where

roughly equivalent (30 and 28.5% declines respectively) and it is not a surprise that the

power of these two univariate summaries were comparable. However, it is unclear how

both of these univariate summaries would perform under different changes in the latent

state distribution. For example, a general decline in the average latent abundance, without

changes in the underlying proportion of sites occupied would likely favour the use of ∆N̄ . As

such, it would be highly recommend that practitioners wishing to monitor changes in wildlife

population using the abundance class formulation should consider using both univariate

summaries simultaneously.

The power analysis also considered a very specific transition structure for changes in

occupancy states over time. The transition formulation used for the permanent monitoring

protocol was relatively sparse compared to a more general transition formulation (i.e. 3

versus 12 free parameters). This was done purposefully to ensure the power results for the

permanent and temporary formulations were as directly comparable as possible. For each

formulation there were three free parameters used to model either the transition probabilities

between season one and two or the latent abundance class distribution in the second season.
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Differing numbers of free parameters could affect the power calculations due to the extra

variance introduced by having to estimate additional parameters and we may expect the

performance difference between protocols to lessen. In addition, it is also unclear what the

potential effect of misspecifying transition probabilities will have on the ability to detect

changes in the latent state distribution.

A potential benefit of the temporary sampling protocol is that it makes no assertions on

the underlying transition structure between seasons. As such, it makes fewer assumptions

and may be preferable for situations where there is little scientific significance in estimating

transition probabilities. If this is true, but permanent sampling protocol is more cost effi-

cient (e.g. adding new sites is more costly than sampling existing sites), then practitioners

should use a completely free state transition structure accepting a potential loss of power.

Further investigation into the power differences between a the permanent protocol with a

free transition matrix and the temporary protocol is needed.

Investigators may also may wish to explore the differences in power between between a

simpler site-occupancy model and the more complex multi-state models such as the abun-

dance class models. Generally, it is believed that more complex models, such as the abun-

dance class model, make better approximate of reality as they discard less information. For

example, the abundance class model will better describe possible heterogeneity in detection

probabilities, caused by larger populations being more easier to detect (Royle and Nichols,

2003). The logic then carries that these models are therefore more applicable to monitoring

applications. However, to date these types of assertions have not been tested and it is pos-

sible that more complex models may be no better at detecting basic changes in ecological

states, than simpler models that make fewer overall assumptions.

Such assumptions may be investigated using a technique called Model Structural Ade-

quacy (MSA) analysis (Taper et al., 2008). MSA analysis is a simulation-based methodol-

ogy than assesses the ability of statistical models to answer scientific questions. Candidate

models are repeatedly fit to data simulated by a complex process model (CPM; a proxy

for reality) which contains more structure than can be described by any of the candidate

models and is based on available expert opinions. The ability of candidate models to an-

swer scientific questions (e.g. changes in the underlying abundance state distribution) are

then assessed allowing for the affects of structural errors on scientific outcomes to be ap-

proached. While highly dependent on the formulation of the CPM, this methodology would

allow for the investigation of suspected factors. For example, detection heterogeneity is a



CHAPTER 9. POWER ANALYSIS 124

well documented problem in both mark-recapture and occupancy models (Huggins, 1989;

Coull and Agresti, 1999; Pledger, 2000; Royle and Nichols, 2003). Various forms of detec-

tion heterogeneity could be included (e.g. population dependent) in the CPM as well other

potential violations such as different functional relationships between true population size

and the underlying ecology state. Under these scenarios, the ability of site-occupancy and

abundance class models to detect changes in the true population could be assessed. This

would allow practitioners to choose the most powerful and robust framework, for a given

scientific goal.



Chapter 10

Monitoring and Evaluating

Rockfish Conservation Areas in

British Columbia1

The use of abundance indices can have broad application within ecological studies. Off the

coast of British Columbia, Canada there are about 35 species of rockfish, all of which have

been experiencing declines in recent years, especially within the Howe Sound. Due to the

tendency of rockfish to be long live with a relatively long 22-year generation time (Yamanaka

et al., 2004), Fisheries and Oceans Canada initiated a Rockfish Conservation Areas (RCA)

as part of the Rockfish Conservation Strategy to address concerns the decline observed in

the Howe Sound. To assess the efficacy of the RCA designation the Vancouver Aquarium

performed rockfish point counts at various locations within and outside the designated

RCAs. However it was not clear how to best analyze the data.

The choice of point counts provided implementation benefits, but also brought analysis

drawbacks. Because of the conservational status of rockfish, surveying can be difficult. Point

counts were ideal because sampling is not invasive and can be performed easily at a low

cost. However from a statistical stand point counts also suffer from a number of issues, such

as detectability and double counts (individuals are not uniquely identified).

As part of their natural behaviour most rockfish are cavity hiders and may take shelter

or hide in deep rock piles depending on the conditions and time of year. Although the

1Published as Marliave and Challenger (2009).
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underlying abundance of rockfish in an area may not change substantially between surveys

(the species is long lived) there can be substaintial changes in the number observed or

counted due to detectability. Furthermore, under certain circumstances the available density

of rockfish may be higher that can be enumerated by divers, leading to either under counts

or potentially double counts, depending how individual divers react to the situation.

That said, point counts do provide some useful information about the underlying latent

abundance level. In barren areas without fish, point counts will always produce zero. As

abundance increases we can expect the average count to also increase. This relationship

should hold assuming factors affecting detection can largely be treated as random; we gen-

erally believe this to be the case. Furthermore, we may choose group point counts into

classes. This will help reduce observation repeatability, yet should still retain most of the

biological meaning. For example, from a biological perspective it may not be important to

distinguish between 100 or 150 individuals, but instead it may be more crucial to distin-

guish the difference between 100, 1000 or 10000 individuals. As such we developed, in the

accompanying paper, a relative abundance index that uses orders of magnitude differences

in point counts.

Finally, this paper also provides a good example of how to use a conditional odds to model

the latent abundance distribution. We modeled the underlying abundance class distribution

as a linear combination of site specific factors such as boulder coverage, whether or not the

site belonged to an RCA or control area, and accounted for potential regional area effects

within the Howe Sound. Below is a copy of the manuscript published in the Canadian

Journal of Fisheries and Aquatic Sciences, Volume 66 in 2009 (pages 995-1006).

10.1 Introduction

Howe Sound, one of North America’s southernmost fjords, is located northwest of Vancouver

and extends from West Vancouver north to Squamish, adjoining the Strait of Georgia at

its southern entrances (Fig. 10.1), and the area incorporates many islands and clusters of

islands. Most of the shoreline in Howe Sound is steep rock or mud slopes.

About 35 species of rockfish live off the coast of British Columbia (BC) (Hart, 1973;

Love and Thorsteinson, 2002). Howe Sound was one of the first regions in BC to exhibit

serial depletion of rockfishes on nearshore reefs after the live fishery for rockfish and lingcod

was initiated in the late 1970s (Love and Thorsteinson, 2002). Research and monitoring
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indicate that the populations of five inshore rockfish species (copper – Sebastes caurinus,

quillback – S. maliger, China – S. nebulosus, tiger – S. nigrocinctus and yelloweye – S.

ruberrimus) are now at low levels, and a sixth, S. melanops (black rockfish), is depleted in

the vicinity of Vancouver. Although scientific estimates of inshore rockfish abundance are

not available for Howe Sound, recent research estimates that lingcod biomass (Ophiodon

elongatus, a species of groundfish that is ecologically similar to rockfish) in Howe Sound is

less than 1% of the historic biomass (Logan et al., 2005). This is in contrast to other parts of

the Strait of Georgia where lingcod biomass is generally 7-20% of historic levels. Similarly,

inshore rockfish abundances in Howe Sound are likely to be relatively more depleted than

elsewhere along the BC coast. Monitoring of quillback rockfish suggests that the population

in the Strait of Georgia region (that encompasses Howe Sound) has been reduced by over

75% in less than one 22-year generation (Yamanaka et al., 2004).

In 2004, Fisheries and Oceans Canada (DFO) initiated a Rockfish Conservation Strat-

egy to address concerns about inshore rockfish/lingcod fisheries along the coast of British

Columbia. One component of the strategy was the designation in 2004 of Rockfish Con-

servation Areas (RCAs), areas closed to hook-and-line fishing and designed to halt rockfish

population decline (4 RCAs were in Howe Sound). Additional RCAs were established in

2007, with one rescinded and eight added for a total of 11 RCAs in Howe Sound (Fig. 10.1).

Since establishment of RCAs, Vancouver Aquarium research divers have done scuba dive

census work on inshore rockfishes both inside and outside RCAs in Howe Sound.

In 2004/2005 the Vancouver Aquarium conducted a pilot study to compare adult rockfish

densities inside and outside the original four Howe Sound RCAs, partly in order to enable

data submission to the public process toward final RCA selections. Because of the ongoing

RCA selection process, these 2004/2005 dives were focused on known sites of high rockfish

abundance outside the original RCAs, and were thus biased. Some of the highest observed

densities of adult rockfish remained outside those four RCAs (e.g. Passage Island reefs

exhibited 110 adult quillback rockfish per hour effort), with one RCA exhibiting the lowest

densities (Millers Landing, on Bowen Island, exhibited 0.3 adult quillback rockfish per hour;

unpublished data). In 2007 the Millers Landing RCA was deleted, and Passage Island RCA

established. Despite the RCA modifications, the pilot study suggested further evaluation of

RCAs in Howe Sound was needed in order to establish a clear basis for future monitoring

throughout BC of this conservation management regime.

The present study compares the adult rockfish abundances between RCA and non-RCA
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Figure 10.1: Randomly selected dive sites for RCAs (gray circles) and for adjacent control
areas (white circles) that are outside the DFO rockfish habitat model predicted areas. Hor-
izontal lines indicate preliminary 2004 RCAs; final RCAs are gray (Millers Landing RCA
was rescinded in 2007).
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areas in Howe Sound and relates these differences to habitat substrate. Through a sequence

of activities and analyses, we verified our methods, documented the substrate associations

of the rockfish, and evaluated the utility of the government predictive model and public

process for RCA designations (cf. Ardron and Wallace, 2005), in terms of the rocky fjord

environment of Howe Sound.

We also introduce and expand on a new type of model used to quantify non-invasive mea-

sures (e.g. point counts) of population abundances (see MacKenzie et al., 2002; Royle and

Link, 2005). The technique uses a relative measure of abundance (i.e. none, low, medium

and high), allows for misclassifications and requires no direct interaction with the study

species. We expand the model to allow for direct comparisons of abundance between areas,

which we use to compare abundances between RCA and control areas as well as between

areas with differing habitat substrate. As such, the model serves as an independent evalua-

tion of the rockfish habitat model currently used by DFO and by other fisheries researchers

(Ardron, 2003). Our work also represents a novel application of the technique of occupancy

modeling in fisheries science. Finally, a combination of this model with simple telemetry

and dive surveys will enable unbiased, non-invasive monitoring of rockfish abundance inside

and outside RCAs in BC.

10.2 Materials and Methods

10.2.1 Dive Technique Overview

Dives were conducted in 2005-2006, including paired point count dives at known sites (2005),

simultaneous visual/video point count dives (2005) and a series of paired point count dives at

randomly selected dive sites (2006). In 2005 the paired point count dives and simultaneous

visual/video point count dives were employed to compare different counting techniques and

to make preliminary observations about the relationship between rockfish abundance and

substrate, including sites of known high rockfish abundance. In 2006, paired point count

dives at random sites were used to test the DFO predictive model in terms of rockfish

occurrence. In 2007 and 2008, sidescan sonar was used to predict microscale occurrence of

piled boulders and associated rockfish abundance within RCAs, and tested by means of dive

surveys.

The rockfish species monitored in this study include the quillback (Sebastes maliger),

copper (S. caurinus), yelloweye (S. ruberrimus), tiger (S. nigrocinctus), black (S. melanops),
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yellowtail (S. flavidus), vermilion (S. miniatus) and Puget Sound (S. emphaeus). The first

five species are managed together in Canada as inshore rockfishes and are important compo-

nents of the live fishery aimed at Asian markets, a fishery that originated in Vancouver, BC

(Love and Thorsteinson, 2002). The other rockfish that is managed as an inshore species

in BC, the China rockfish (Sebastes nebulosus), does not occur in protected, inland marine

waters like Howe Sound (Lamb and Edgell, 1986), so was not encountered in this study.

Divers used the roaming diver technique (Martell et al., 2000), investigating any suitable

habitat within the depth range for that dive. Divers would swim as a pair, each directing

attention in the opposite direction, up-slope versus down-slope; hand signals were used to

avoid any double-counts. During these dives, rockfish were identified to species and life stage

(adult, juvenile < 20cm, “prejuvenile” or early juvenile with color pattern distinct from that

of adult). The prejuvenile color pattern was usually seen on fish up to 14-17 months age.

To judge juvenile size, divers would landmark a fish against substrate features (line fish

up against background) and then judge their hand against those features, the gloved hand

having been measured against a 20cm scale. Dives encompassed all seasons in 2005 and

summer/fall of 2006. At certain sites the suitable rockfish habitat did not extend deeper

than 10-15m, whereas at other sites (notably Passage Island reefs), all rockfish habitat was

at 15-35m depth. In 2006 dives were limited to < 20m.

10.2.2 Technique Verification by Video Survey

The comparison of videotape versus direct diver counts in 2005 consisted of one diver video-

taping along a depth transect (roaming diver technique) while the dive partner conducted a

direct visual count. The visual diver had to remain on the offshore side and slightly behind

the videographer, using only lighting from the camera, in order to provide advantage to the

videotaping in terms of any flight responses by fish.

A total of 24 video/visual dives was conducted in four areas, six dives per area. The

areas were Popham Island (49◦ 21.45N, 123◦ 28.99W), Bowyer Island (49◦ 25.78N, 123◦

16.48W), Whytecliff Park MPA (49◦ 22.62N, 123◦ 17.17W), and Passage Island (49◦ 20.44N,

123◦ 18.88W). For 17 such video dives, a second dive was conducted on the same date, at

the same location, with both divers teaming on a direct visual count, using dive lights to

investigate crevices.

In all these dives, rockfishes were identified to species and life stage, as for regular paired

dives, with the video tapes scored for total counts of different species and life stages after the
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dive. Tukey’s Honestly Significant Difference (HSD) was used to control experimental-wise

error in the multiple pairwise comparisons of log transformed count per unit effort (CPUE)

data, with CPUE equal to number of rockfish recorded per hour diving time.

10.2.3 Video Surveys by Substrate Category

Habitat covariates and count rates within specific dive tracks from the 2005 dives were also

scored. The videos were broken down into one-minute segments in which rockfish occurrence

was recorded together with habitat type by the methods of Krieger and Ito (1999). Krieger

and Ito (1999) evaluated submersible videos of deepwater rockfishes, scoring minute-by-

minute segments according to slope, substrate and rockfish abundance. For this study, the

substrate of crushed shell was added to Krieger and Ito’s mud, sand, pebble, cobble (60-250

mm), boulders and bedrock. Both primary (50-100%) and secondary (10-50%) substrates

were recorded. Boulders were recorded by abundance category (B1 – scarce, B2 – scattered,

B3 – always in view, B4 – piled). Slope categories were 1 = 0-5◦, 2 = 6-20◦, 3 = 21-45◦,

and 4 = 46-90◦.

10.2.4 Abundance Class Study Design

Since the 2004/2005 dive sites were not randomly selected, a second study was conducted in

2006. Three regional areas containing one RCA were chosen (Lions Bay, Bowyer Island and

West Bay; Fig. 10.1). Within each regional area, a control area was chosen to be as close

as possible to the respective RCA, but outside of the DFO predicted rockfish abundance

areas designated by DFO’s rockfish habitat model (pers. comm., L. Lacko, Pacific Biological

Station, 3190 Hammond Bay Road, Nanaimo, BC V9R 5K6 Canada). Within each RCA

and control area a 5 km stretch of shoreline was divided into 200m sectors, for a total of

25 potential sites per area. Within each RCA and control area three sites were chosen at

random and each site was visited three times over several months. If the first dive of a site

yielded a zero-count of rockfish, an additional randomly selected dive site was added to that

area. In total 69 dives were conducted at 11 RCA sites and 12 control sites.

On each dive the rockfish point counts, bottom substrate types and active search time

(bottom time) were recorded using timed segments. Once divers reached depth, dive time

was noted along with substrate type and rockfish counts commenced. When a new substrate

type was encountered, the time was recorded and the next timed segment began. This
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process continued for the duration of the dive. Within each timed segment all rockfish

species were counted according to life history stage (prejuvenile, juvenile and adult) by the

roaming divers. In addition to the point counts, divers also recorded the presence/absence of

macroscopic plant and animal species, however these data were not included in the analysis.

The predominant species in this region are copper and quillback rockfish; since other species

were observed in trivial numbers, the analysis was restricted to these two species. The

relatively shallow dive depths were expected to yield relatively more copper rockfish, since

quillbacks prefer greater depths than coppers (Love and Thorsteinson, 2002)

For the analysis, point counts were first standardized to counts per hour and the rate was

used to designate the observed abundance index (y = 0, 1, 2, 3) of a site on a specific sampling

occasion. Abundance indices were separated roughly by orders of magnitude (Table 10.1).

Orders of magnitude were chosen since observed count rates spanned approximately three

orders of magnitude and it was felt that distinguishing between orders of magnitude would

result in a more repeatable index.

Finally, the first dives were on June 27, 2006 and the final dives on October 24, 2006,

all within the period of the seasonal thermocline and abundant food when copper rockfish

tend not to hide (Patten 1973). None of the sites had been surveyed previously, although

for the Bowyer Island RCA (one of the original 2004 RCAs) other parts of that RCA had

been investigated extensively. It took about a month to complete initial dives at all 23 sites,

and the final dives at the different sites were completed over a period of nearly two months.

Dives were at < 20m depth.

Table 10.1: Observed abundance index (y) in relation to count rate.

Observed Count Rate Abundance index Interpetation
no fish observed y = 0 None

0 < fish · h−1 ≤ 10 y = 1 Low
10 < fish · h−1 ≤ 100 y = 2 Medium

100 < fish · h−1 ≤ 1000 y = 3 High
Note: Rockfish count per unit effort (CPUE) are standardized to a per-hour count.
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10.2.5 Use of Side-scan Sonar to Predict Rockfish Occurrence

Following the various surveys described above, a brief series of dives was guided in 2007/2008

by use of side-scan sonar for identifying isolated, small patches of piled boulders. The initial

side-scan survey was conducted at NW Bowyer Island, outside the random dive sites for

2006, described above, where results in 2004/2005 had yielded isolated patches of high

abundance of copper rockfish along the shoreline. Six potential patches were located in a

1 km stretch of shoreline and then divers explored these sites for verification of substrate

type and rockfish occurrence. The same method was used in 2008 on the central reefs in

the West Bay RCA (again, outside the 2006 shoreline random dive sites) and at another

RCA in Howe Sound, Dommett Point RCA. Iterative dive verifications enabled perfection

of interpreting side-scan images for identifying piled boulder habitat at the shoreline. The

shoreline throughout the area for random site selection at Bowyer Island was surveyed by

side-scan sonar in 2008 as well.

10.2.6 Multilevel Occupancy Model

Modeling point counts directly poses difficulties due to the detectability issues often associ-

ated with ecological measures (see MacKenzie et al., 2006). As such we treat point counts

as general index of abundance (none, low medium and high) on a site. Each site is assumed

to possess an underlying and unobservable latent abundance class, which gives rise to the

observed abundance index. In doing so we are able to separate the observation process from

the underlying abundance state, thereby making allowances for detectability. The model

used for analyzing the data was based on the mixture multinomial model proposed by Royle

and Link (2005). Here we modify the approach by using the log-odds to model the effect of

covariates on the latent abundance class distribution.

Latent Abundance Class Distribution

Each site is assumed to have an unobservable (i.e. latent) abundance class Ni = 0, 1, 2, 3

that is fixed for the duration of sampling and is treated as being ordinal (i.e. 0 < 1 < 2 < 3).

Let Ψi,k be the probability that site i is of abundance class k for k = 0, 1, 2, 3. The latent

abundance class distribution will be multinomial [Ni] ∼ Multinomial (1, {Ψik}).
To investigate potential ability of factors such as belonging to an RCA, regional area
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within Howe Sound and the average boulder coverage to affect latent abundance class dis-

tribution, a conditional odds model was formulated, where the log-odds is of the form

ln
(
P (Ni = k)
P (Ni < k)

)
= θk + a1Ri + b1B̄i + c1A1i + c2A2i + d1RiB̄i (10.1)

+e1RiA1i + e2RiA2i + f1B̄iA1i + f2B̄iA2i for k = 3, 2, 1.

Here Ri indicates whether site i is located in an RCA, B̄i is the average percent boulder

coverage of the site and A1i, A2i indicates whether the site belongs to either the West Bay,

Bowyer Island regions respectively. The Lions Bay effect will be picked up in the intercept

and the regional area effects (c1, c2) are then interpreted relative to Lions Bay. Finally, in

addition to the main effects, all two-way interactions were also considered.

The conditional odds model considers the odds that a site belongs to the highest abun-

dance class (N = 3) versus a lower class to be a function of covariates. For lower classes

(i.e. N = 2, 1), the odds are conditional on the site not belonging to a higher abundance

class. A property of this formulation is that by constraining to a single intercept for all

abundance classes (i.e. θ3 = θ2 = θ1 = θ) the constraint Ψ3 > Ψ2 > Ψ1 will be imposed.

This could represent a scenario where habitat may be considered as either suitable or not

suitable, and depending on the scale of sampling (i.e. the size of a site), the abundance

classes N = 1, 2 could represent a situation where only part of the site is suitable rockfish

habitat (the alternative being that the site has suboptimal substrate like bedrock).

Conditional Detection Probabilities

Upon each sampling occasion, the observed abundance index (the event) {y : y = 0, 1, 2, 3}
may occur where the observed index y will be either equal to or lower than the true latent

abundance class N . As such it is implied that the observation y > N will never occur. For

example, a site with the latent abundance class N = 3, may produce observations such as

y = 0, 1, 2, 3, but for sites where N = 1 we may only observe y = 0, 1.

Let πit,ke be the conditional probability of observing event yit = e for site i on occasion

t, given that Ni = k. Therefore, for site i on occasion t the correct detection occurs with

probability πit,kk, while the misclassifications (yit < Ni) occur with probability πit,ke, since

the misclassification yit > Ni occurs with probability 0, πit,ke = 0 for e > k. Furthermore,

for sites where Ni = 0, the event yit = 0 occurs with probability 1, that is πit,00 = 1 for

all t. Finally, note that the constraint
∑3

e=0 πit,ke = 1 for all k = 0, 1, 2, 3 for all sites and
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occasions exists, and that the distribution of the observed indices is multinomial, conditional

on Ni, [Yit|Ni = k] ∼ Multinomial (1, {πit,ke}), where {πit,ke} are ith site’s multinomial cell

probabilities.

Royle and Link (2005) suggested an alternate formulation for conditional detection prob-

abilities, wherein correct classification and misclassification are considered separate pro-

cesses. We adapt this approach using a correct detection probability that is both site and

occasion-specific (πit,kk = pit,k), but with a conditional misclassification probability that is

shared across all sites and all occasions (i.e. πit,ke = βke for e < k; see Table 10.2). Note, the

βke parameters represent a conditional misclassification probability. For example, if N = 3,

β32 is the probability of observing y = 2, given that y 6= 3, while β31 is the probability of of

observing y = 1, given y 6= 2, 3.

Lastly, there may be concern that an association between rockfish and boulders could

affect the probability of a correct detection (pit,k). As such, the following correct detection

model was used:

logit (pit,k) = αk + γBit for k = 1, 2, 3, (10.2)

where Bit is the percent boulder coverage encountered on site i during sampling occasion

t. This allows for the probability of a correct classification to vary by site and occasion in

response to the amount of boulder coverage encountered during a dive.

Marginal Likelihood

The joint likelihood of {πit,ke} and Ni produces a hierarchical model in the form [y|N ][N ],

where [y|N ] is the condition detection multinomial and [N ] could be interpreted as a random

effect. As indicated by Royle and Link (2005) a marginal likelihood of y may be obtained

by integrating out the effect of the latent parameter N producing the following likelihood,

L (θ,π,Ψ|Y) =
R∏
i=1

{
3∑

k=0

[
3∏
t=1

P (Yit = yit|Ni = k; {πit,ke})
]
·Ψik

}
. (10.3)

Parameter estimates may then be obtained by maximum likelihood. Note that R is the

total number of sites.
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Model Selection and Submodel Parameterization

The fully parameterized model described in (10.3) could potentially represent an over-fit

of the data. Thus we may wish to consider sensible a priori parameter constraints on the

conditional detection probabilities as well as the factors affecting the latent abundance class

distribution. Four models were considered for both correct classification and misclassifica-

tion giving a total of 16 possible conditional detection models (Table 10.3). In addition to

these models, we also consider a possible 12 models describing the effect of factors on the

latent abundance class distribution (Table 10.4). Finally, if we also consider restricting the

intercept of the log-odds model to be equal for all abundance classes, this brings the total

to 384 possible models.

Table 10.3: A priori models used for the analysis the conditional correct classification prob-
ability.

Model Description of pit,k and βkj structure.
Correct Classification

p(.) No boulder effect (i.e. γ = 0) with the a single intercept for all classes
(i.e. α1 = α2 = α3 = α)

p(k) No boulder effect, but separate intercept for each class.
p(.+B) Occasion specific boulder effect on pi,k, but a single intercept for all

classes.
p(k +B) Occasion specific boulder effect on pi,k, with separate intercept for each

class.
Misclassification

β(.) A single probability for all misclassification probabilities (i.e. β21 =
β31 = β32 = β).

β(31 = 21) Separate probability for β32 and the constraint β31 = β21 = β.
β(32 = 31) Separate probability for β21 and the constraint β32 = β31 = β.
β(k) Separate probabilities for each type of misclassification.

Rather than consider all models, we have employed a two stage model selection process

using a small sample corrected Akaike Information Criterion (AICc) to rank and select

models (see Burnham and Anderson, 2002). First the conditional detection model was

chosen by fitting all possible conditional detection models with the Ψ(R,B,A,RA) model

both with and without the intercept constraint. Afterwards the top conditional detection

model was used to fit and rank the various effect models.
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Table 10.4: A priori models used to assess factor effects on Ψi,k.

Model Description of Ψi,k structure
Ψ(R,B,A, I) Full model with RCA (R), boulder (B), region (A) and all two-way

interactions.
Ψ(R,B,A) RCA, boulder and regional main effects only.
Ψ(R,B) RCA and boulder main effects.
Ψ(R,B,RB) RCA and boulder main effects with an RCA*boulder interaction.
Ψ(R,A) RCA and regional main effects.
Ψ(R,A,RA) RCA and regional main effects, with an RCA*region interaction.
Ψ(B,A) Boulder and regional main effects.
Ψ(B,A,BA) Boulder and area main effects, with a boulder*region interaction.
Ψ(R) RCA main effect.
Ψ(B) Boulder main effect.
Ψ(A) Regional main effects.
Ψ(.) Null model with no main effects.

Support for model i in the model set R was assessed using the ∆i value (read Delta

AICc), where ∆i = AICci −minR(AICci). In general, models with a value of ∆i ≤ 2 have

strong support, while models with 2 < ∆i < 7, 8, 9 are considered plausible. However, mod-

els with ∆i > 10 are generally considered to have little to no support. Finally, model weights

were determined using the ∆i values, which allowed for model averaged effect estimates and

standard errors to be calculated (Burnham and Anderson, 2002). This attempts to reduce

potential spurious effects that a single model-based approach can produce.

10.3 Results

10.3.1 Video Survey/Method Verification

Log transformed CPUE for adults and all age classes of rockfish were compared between

video/visual and paired visual surveys for 17 dates in 2005 to see if detection rates differed

for the different survey techniques (Fig. 10.2). A global comparison showed all survey

methods to be significantly different (p < 0.05) for comparisons between adults or all age

classes combined. For those 17 pairs of dives, the overall average count (number of rockfish

per hour) was 102 from videotape, 142 for direct visual count (alongside videographer), and

199 for paired diver counts. The method of paired diver counts therefore achieves a more
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complete census than can be obtained from videotaping.

Figure 10.2: Log transformed CPUE (count per hour) for adults and all age classes of
rockfish between survey types (Paired = paired visual, Visual = visual alongside videog-
rapher, and Video =counts from videotape) for 17 dive dates. Different letters indicate
pairwise significant difference (p < 0.05) for comparisons between adults or all age classes
combined. Tukey’s Honestly Significant Difference was used to control experimental-wise
error. Unshaded bars for adults and shaded bars for all ages. Bars indicate standard error.
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10.3.2 Video Surveys by Substrate Category

The substrate counts for the minute-by-minute scoring of the 2005 videotapes revealed no

trend in rockfish abundance according to bottom slope, whereas adult rockfish appeared to

strongly prefer piled boulders (> 80 adults per hour for copper and quillback) compared to

other substrates (Fig. 10.3a). Adult copper rockfish are more likely than adult quillbacks to

be found around scattered boulders or mud (rarely on mud, associated with hard objects like

logs). Juvenile coppers and quillbacks also appeared to prefer piled boulders (Fig. 10.3b).

In addition, prejuvenile coppers had newly recruited to both piled boulders and bedrock,

whereas prejuvenile quillbacks occurred (at high densities averaging counts over 220 per
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hour) almost exclusively on cobble (a few in adjacent piled boulders). It should be noted

that, aside from the video surveys, equally patchy and abundant prejuvenile coppers were

seen at a number of boulder and bedrock reefs covered with the seaweed Agarum fimbriatum.

Examining deeper video dives where quillback rockfish dominated, a trend was evident

for quillbacks to cluster at high density in larger areas of piled boulders (ten 4-6 min.

segments averaged 19.4 (SD 14.3) adult quillbacks per segment), whereas 1 min. boulder

segments (n = 17) averaged 1.8 (SD 2.7) quillbacks. Since the 2-3 min. segments (n = 20)

averaged 7.8 (SD 6.2) adult quillbacks, the quillbacks were roughly twice as dense (3.1-3.9

fish per min.) in all longer segments than fish in single-minute segments, where zero counts

were five times more frequent. For adult copper rockfish at shallower dive sites, however, no

such trend was evident, with slightly higher densities of coppers in single-minute segments

(n = 9, mean 4.1 (SD 4.5) fish), versus ca. 2 per minute in segments of 2-19 minutes

(n = 31). All of these video segments were classified as piled boulders, though, whereas

the boulder substrate classification in the 2006 random dives included scattered boulders as

well as piled boulders.

Figure 10.3: CPUE (count per unit effort - 1hr) according to primary substrate type in
minute-counts from 2005 videotapes for (a) adult and (b) juvenile copper versus quillback
rockfish abundance.White bars for adult copper, black for adult quillback, gray for juvenile
copper, wide hatching for juvenile quillback. Note that B3 is monolayer boulders, and B4
is piled boulders.
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10.3.3 Abundance Class Model

In the 69 dives conducted at randomized sites in 2006 a total of 2,440 rockfish of all life stages

was counted, including 1,881 copper (in 74 dive segments by substrate) and 527 quillback

(in 47 dive segments). The next most abundant species was the Puget Sound rockfish, for

which 26 fish were counted in two dive segments. Only two juvenile yelloweye rockfish were

counted (in two dive segments) and single individuals of tiger, vermilion, yellowtail and black

rockfish. All of these dives were shallow dives at < 20m depth (for a summary of counts by

site see Table 10.5). In terms of habitat 1,821 fish were counted over piled boulders (CPUE

= 197.22 fish · h−1), 554 on bedrock (92.59 fish · h−1), 49 on cobble (41.41 fish · h−1), 16 on

mud (4.75 fish · h−1) and 0 on sand. The fish sighted over mud were hovering under sunken

logs or moorage buoy anchor blocks.

Prior to the main analysis, the 16 potential detection models (Table 10.3) were assessed

and ranked using the Ψ(R,B,A,RA) effects model. The top detection model was p(.)β(.)

model for both the constrained and separate intercepts log-odds model sets. In both cases

the next closest was the p(.)β(31 = 21) model with a ∆i of 1.8 and 4.3. The highest ranked

detection model with a boulder effect on correct classification was the p(B)β(.) model,

which only had a ∆i of 4.9 and 7.1 respectively indicating very little support. Therefore the

p(.)β(.) model was chosen as it had the highest rank with strong overall support (Akaike

model weights of 52 and 82% for the constrained and separate intercept models respectively;

note that the top model always has ∆i = 0), in addition to having the simplest structure.

This detection model was used for the remainder of the analysis.

Next, to test whether being located in an RCA has any effect on the abundance class dis-

tribution, a subset of models was fit. Only the Ψ(.), Ψ(R), Ψ(A), Ψ(R,A) and Ψ(R,A,RA)

effect models were considered, since habitat differences between RCA and control sites may

exist, potentially confounding an RCA effect. Fitting both the constrained and free inter-

cept models produced nearly identical model rankings with the Ψ(.) model as having the

highest support, followed by the Ψ(A) model (Table 10.6). The top model with an RCA

effect had ∆i values of 2.55 and 3.07 respectively, suggesting very weak support for an RCA

effect, considering the top model was the null model. Furthermore, the model averaged

estimate was −0.42 (SE 0.85) and −0.65 (SE 0.82) respectively, which is in the opposite

direction of a beneficial RCA effect, but the estimate has a large standard error. The 95%

confidence interval includes zero, also indicating no effect. Finally, there was some support
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for a regional area effect (∆i = 1.41 and 1.52 respectively) with highest log-odds estimated

for the Lions Bay region, although effect estimates were again indistinguishable from zero.

As such there is little evidence that being located in an RCA or a regional area in Howe

Sound has any effect on the underlying abundance class.

The effect of changes in the average percent boulder coverage was investigated by fitting

and ranking all possible effect models (Table 10.7). Here a strong effect was found. Both the

constrained and free intercept log-odds models produced nearly identical model rankings,

with strong support for the boulder only model Ψ(B). In addition, the next closest model

Ψ(R,B) was over 3 AICc units away, suggesting little support for the predictive ability of

any other factors. In fact each of the top five models included a boulder effect, suggesting

support for these models is primarily due to the boulder term. As such it appears that, of the

factors investigated, the only real factor predicting the latent abundance class distribution

was boulder coverage.

Boulder coverage also had a large and positive effect on the latent abundance class

distribution. The model averaged estimate for the boulder effect was 0.039 (SE 0.016)

and 0.06 (SE 0.023) on the log-odds scale for the constrained and free intercept models

respectively. Using the model averaged estimates from the fixed intercept model, if the

boulder coverage of a site increased by 10 percentage units, the odds of the site belonging

to the highest abundance class (N = 3) increase by a factor of 1.5 (95% CI 1.1, 1.9). For an

increase of 50 percentage units, the odds would increase by a factor of 7 (95% CI 2.0, 24.8).

Keep in mind this is a multiplicative increase of the odds, not the odds itself. As such this

demonstrates a markedly positive effect of boulder coverage. By comparison, being located

in an RCA or one of the regional areas had no such discernible effect.

It is worth noting that the constrained intercept log-odds model consistently had an

AICcvalue 2.5 to 12 units lower than the comparable free intercept model (Table 10.7).

Since the same data set was fit for all models, the AICcvalue can be used to select between

the constrained and freed intercept log-odds models; the AICcvalues suggest using the

constrained intercept log-odds model. The premise behind the constrained intercept model

was that habitat was either suitable for rockfish or not. As such the lower abundance classes

(i.e. N = 2, 1) could be the result of sampling artifacts, where only a portion of the site is

suitable (for example a mud bottom site that includes the edge of an adjacent boulder pile).

Finally, model averaged estimates of correct classification and misclassification proba-

bilities were also investigated. Using the constrained intercept model, the model averaged
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(â

1
)

an
d

re
gi

on
al

ar
ea

(ĉ
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ĉ 1
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95% confidence interval for the correct classification probability p. was (0.21, 0.6), while

for β. it was (0.52, 0.86). Since this is markedly different from one, it was appropriate to

account for detectability during the analysis. Lastly, it should be noted that the model set

containing all possible factor models was used in the model averaged calculations.

10.3.4 Side-scan Sonar for Locating Piled Boulders

The first side-scan exploration was at NW Bowyer Island in October 2007, where six appar-

ent rock piles were detected, five of which were verified by diving to consist of piled boulders

inhabited by copper rockfish. The sixth, however, proved to be large boulders resting on

bedrock or embedded in sand, with no rockfish associated (Fig. 10.4). These sites where the

boulder piles were detected corresponded to the general area where high counts of rockfish

had occurred in 2004.

The center of West Bay RCA was explored with side-scan sonar, and only one rock

pile was detected on extensive, high relief bedrock reef. That rock pile yielded the only

rockfish sighted on that entire reef in verification diving, only six copper rockfish being

seen, all at that small, isolated, cluster of boulders. Similarly, at the Dommett Point RCA,

one small area was detected by side-scan with evidence of rock piles. A high density of

quillback rockfish was found at the deeper end of that strip, then numerous copper rockfish

in the shallower boulders. It should be noted that a high complexity bedrock area, lacking

boulders, in that same RCA also had abundant copper rockfish.

The area from which random sites were selected at the Bowyer Island RCA was surveyed

in its entirety by side-scan, and no boulder piles were detected. The boulder area which had

been seen by divers was a very shallow rock slope with relatively sparse boulders in very

shallow depths.

10.4 Discussion

The predictive model used by DFO did not isolate the areas in Howe Sound where higher

abundances of rockfish occurred. The DFO model uses complexity of bathymetry patterns

to identify potential rockfish habitat, as defined as high level of changing slope of substrate

(Ardron, 2003), which tends to identify bedrock reef with ledges and ridges, but not piled

rocks, which require a finer scale of telemetry, as with side-scan sonar . Similarly, the catch

records used in the DFO model could not be summarized on as small a spatial scale as exists
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Figure 10.4: Sidescan image at northwest Bowyer Island for which two areas of satisfactory
rockfish habitat were predicted: Divers verified that (a) the upper cluster of rocks consisted
of multilayered, piled boulders inhabited by copper rockfish, whereas (b) the area at the
bottom of the image consisted of bedrock with large boulders embedded in sand or resting
on bedrock, without any deep crevices for rockfish to hide in.
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for isolated rock piles. Thus, the degree of fine-scale habitat affinity by rockfish for piled

boulders, and the spatial scale at which that boulder habitat occurs, is on a smaller order

of spatial magnitude than the size scale of RCAs, which themselves are at the lower limit of

management practicality. It must therefore be anticipated that in many areas there will be

patchy abundance of rockfish both inside and outside of designated RCAs, as documented in

this study. The real challenge will be to determine whether significant differences in average

fish size and density emerge through time within the confines of RCAs, in comparison with

fish in areas outside the RCAs.

Nearly all of the shoreline in Howe Sound is rocky, and rockfish were observed in all but

one of the randomly selected sites, both RCA and control (one control site in the West Bay

area was mud bottom, with no sunken logs or moorage blocks, and thus with no rockfish).

Other soft bottom sites had hard structures that harbored isolated rockfish.

We used the roaming diver technique, which is a search technique. We knew piled boul-

ders were preferred habitat so we looked for boulders. The explanation for the contradictory

results from sites classed as “boulder” at two of the areas (West Bay and Bowyer) results

from concentration of dive effort on the limited, shallow boulder habitat patches that we

were able to locate (for example a mud bottom site that includes the edge of an adjacent

boulder pile). The most striking difference between major areas is that the boulders we

found at Lions Bay were extensive and deeply layered, and ranged from shallow water to

deeper than our dive limit of 20m. At the other sites we found boulders primarily at the

shoreline, in depths as shallow as 5m, where fewer rockfish (only coppers occur shallow)

were found, and the boulders were usually scattered rather than piled.

For the random site study we anticipated that different RCAs and control areas would

vary in quality, as they had in our 2004/2005 surveys. Irvine (2008) discusses the necessity

of accounting (via public process) for legitimate social and economic factors that need to be

traded off in assessing risk management, as with RCA selection. Ardron and Wallace (2005)

had shown that final RCA selections for the initial designation series in 2004 reflected

the public process in addition to scientific modeling, and therefore were not as equally

representative of optimal rockfish habitat and abundance as the original proposed RCAs

based on the model only. We furthermore knew from 2004/2005 results that the Bowyer

RCA, for example, had particular spots of high abundance that had been excluded from the

random dive site selections in 2006 in order to avoid bias. In 2008 we used side-scan sonar to

determine the extent to which site selection within an area affected CPUE. The very patchy
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occurrence of boulders affects results within any small sampling site more than larger area

effects. Nevertheless, whereas discrete areas of very high abundance of piled boulders are

known to exist at Bowyer Island, our side-scan results failed to reveal any such hot spots

for the West Bay RCA or within the shoreline strip used for random selections at Bowyer

Island RCA. Without using telemetry to examine all the shoreline of Howe Sound, we can

only assume that the areas we used for random site selections represented the diversity of

habitat quality across Howe Sound. Also note that both video and sidescan results yielded

low to intermediate rockfish abundance on bedrock away from piled boulders.

It is not a surprise then that we were not able to demonstrate any differences between

RCA and control sites. While we cannot rule out power issues when interpreting the lack

of an RCA effect, the approach used was able to detect other factors, such as the strong

association between boulder piles and rockfish. Furthermore, the positive association is also

in agreement with the data from the 2005 minute-counts from videotapes and divers who

observed a close association of rockfish with piled boulders. Although the affinity of rockfish

for piled boulders had been known, and has been described in the literature (Love et al.

2002), the abundance class model verified this habitat association without the necessity of

any risky assumptions about true detection rate being one.

Interestingly, the support for a fixed intercept log-odds model is also consistent with

the observation that piled boulders are an important habitat type for rockfish. By fixing

the intercept we imposed the following constraint Ψ3 > Ψ2 > Ψ1. That is, the estimated

frequency of N = 3 sites is restricted to be greater than the frequency of N = 2 sites,

which again will be greater than the frequency of N = 1 sites. If boulder piles are the

defining habitat for high density rockfish, then we may expect that most boulder piles will

be capable of supporting roughly the same density of fish. As such the classes N = 2

and N = 1 may represent an artifact of sampling, where a site only contains an edge of a

boulder pile. Alternatively, N = 2 and N = 1 could also represent suboptimal substrate

like bedrock. Note that video analyses showed differing tendencies between copper and

quillback rockfish in terms of relative extent of rock piles and rockfish densities, quillbacks

tending less to aggregate at the smallest boulder patches. We believe our approach could

be extended further to deal with such intricacies.

The model used also represents a departure for fishery science as it directly approaches

the issue of detectability, a phenomenon inherent to most ecological measures (MacKenzie

et al., 2006). While there may be concern that converting point counts to abundance indices
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(rather than using a general linear model with Poisson errors) discards valuable information,

we do not feel this is the case. Raw point counts become uninterpretable if detectability of

individuals changes between sampling occasions. Even though our indices were separated

by orders of magnitude in the CPUE (ensuring a high degree of repeatability compared to

straight point counts), the probability of a correct classification was still estimated to be

substantially lower than 1; in fact it was estimated to be between 0.21 and 0.60. From our

perspective the issue of detectability needs to be addressed more by fisheries scientists.

While with classical count models, such as the Poisson model, it is possible to account

for factors like bottom time (i.e. how long you are counting), the best approach for han-

dling detectability is not clear. It is not hard to imagine situations (like hiding behavior)

where animal availability changes between sampling occasions. If the factors causing the

detectability are known then they can be handled in a way similar to bottom time; however,

if the factors are not well known, or even known at all, then inferences about the count

rate will become inseparably confounded with issues of detectability. As such, it would only

take small changes in detectability to introduce biases into such analyses. In these types of

situations, mixture models, such as the abundance class model, tend to represent the best

approach (Martin et al., 2005).

The issue of detectability aside, the approach taken also has other benefits that may make

it an ideal candidate for long term monitoring studies. By using indices of abundance, rather

than the point counts, the error between observers of differing skill set will be reduced as the

measure is much easier to repeat. Since long term monitoring studies can have personnel

changes, this would also help to ensure consistency across years. Furthermore, the method

is relatively easy to employ, represents a non-invasive approach to monitoring and does not

have to be restricted to measures of relative abundance. Other relevant biological states

(e.g. reproduction, multiples species occurrences, risk effects) could potentially be modeled.

A key assumption of the model, however, is that the abundance class of sites is closed to

changes during sampling. While such assumptions are likely to be violated by many species

of fish, homing and site fidelity have been demonstrated in a number of rockfish species

(Carlson and Haigh, 1972; Markevich, 1988; Matthews, 1990b). The home ranges for both

copper and quillback rockfishes have been shown to occur on a scale of < 30m2 (Matthews,

1990b,a), which is smaller than the 200m sampling scale used. Finally, small changes in site

specific population levels may occur as long as the underlying latent abundance class does

not change. Since orders of magnitude were used to differentiate between observed index
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levels, a rather substantial change in the underlying population level would be required

before a site’s underlying latent abundance class could be expected to change. Lastly, it

should be noted that a type of adaptive sampling was used in the field to include 5 additional

sites into the study design. An accommodation was not made for this sampling structure

in the analysis due to the already small sample size of the study.

Howe Sound represents fjord geography, and does not have the extensive shallow soft

bottom areas typical of the continental shelf, so the DFO model should be of greater utility

for coastal areas without steep, glaciated shorelines. Note, however, that the DFO model

was only used to reveal high complexity (rocky) bottom, at spatial scales that cannot be of

utility for determining presence of boulders, much less boulders in multilayered deposits. In

addition to high complexity, deposits of boulders from glacial retreat or from debris torrents

or landslides are needed to create optimum habitat for these inshore rockfishes. As sonar

telemetry methods increasingly permit remote detection of rock piles, direct confirmation

of rockfish demography by diving or remote video will be required for determining the finer

scale of rockfish distribution within a region. Yoklavich et al. (2007) have successfully used

remote seabed habitat classification, based on side-scan, multibeam and seismic mapping of

georeferenced seafloor substrata, together with manned submersible line-transect methods,

to estimate rockfish abundance in the Cowcod Conservation Areas of southern California.

Similar manned submersible observations had been used for determining habitat associations

of rockfishes on Hecata Bank in Oregon (Stein et al., 1992) and in Monterey Bay in California

(Yoklavich et al., 2000).

In the present study, diver counts yielded superior results compared to counts from

videotape. It is also likely that the lack of maneuverability of a submersible limits the ability

of observers to peer under ledges or behind rocks in the manner that divers can accomplish.

When manned submersible observations are being conducted over habitat including rockfalls

at the base of canyon walls (Yoklavich et al., 2000), the results of this study suggest that

it may be reasonable to calculate up to twice the abundance observable from videotapes

in that type of complex seabed habitat. It may, however, remain feasible only for scuba

divers in shallow depths <40m to detect winter hiding behavior in rock piles (Patten, 1973;

Carlson and Barr, 1977).

All of the 2007 RCAs in Howe Sound that we have studied encompass rockfish pop-

ulations that may prosper under protection from fishing pressure. The present data will

afford a baseline for comparison with the future that will enable determination of how well
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enforcement succeeds in protecting rockfish survival and abundance within these closed ar-

eas. Similarly, these baseline data will enable determination of whether rockfish abundance

trends diverge between the protected and the unprotected portions of the Howe Sound

shoreline. The success of Rockfish Conservation Areas as a management and conservation

tool will depend on whether changes of demography can be documented inside the RCAs,

relative to demography in outside areas. A higher future abundance of mature adults of

inshore rockfish species can only be predicted for the RCAs if enforcement results in signifi-

cant reduction of fishing mortality (especially poaching) in those areas. Side-scan telemetry

for locating suitable rock piles within randomly selected study areas, inside and outside

RCAs, can be used as a basis for documentary census work by divers, ROV or manned

submersible that, analyzed with the abundance class model, will enable unbiased evaluation

of the conservation impact of RCAs in British Columbia or of fishery closures elsewhere.



Chapter 11

Framework Discussion

The introduced framework is intended to provide flexible and robust statistical method

for modeling ecological states. One of the key aspects is the formal handling of detection

and classification errors. We accomplish this by following Pradel (2005) and explicitly

separating the ecological state from the observation process, termed events. Researcher are

then required to explicitly define both the relationship between the underlying ecological

states and the observed events as well as how states change over time using a straightforward

matrix formulation. This approach differs from the common approach of assuming the state

of interest can be observed without any type of classification error (e.g. Petersen et al.,

2009). Violations of this assumption can bias estimates of ecological processes, limiting its

usefulness. In developing this aproach we also provided a comprehensive framework to help

define these relationships, estimate parameters and assess overall model fit.

The underlying premise of our approach is that ecological processes can be abstracted in

terms of states and transitions. We defined ecological states as any unique configuration of

ecological characteristics, which is consistent with other approaches (e.g. Stringham et al.,

2003). This type of reductionist approach has a number of advantageous when describe

complex ecological systems. For example, multiple ecological characteristics may be con-

sidered simultaneously without the need to make direct assumptions about the structure of

the association and can be useful for acknowledging the limits in available knowledge.

Simplifications are often needed in order to make hypothesis tests for key ecological

processes tractable and to account for limits in available knowledge. For example, there

would be little utility in formulating hypotheses about absolute changes in abundance for a

species, if abundance estimates are known to be problematic. That said, there may still be

153



CHAPTER 11. FRAMEWORK DISCUSSION 154

enough information available to reformulate a hypothesis in terms of a relative increase or

decrease in abundance. This requires a pragmatic approach to knowledge, instead of blind

drive towards the goal of building models that closely matches the “truth” as possible.

The motivation behind abundance class formulation provides a good example of this

type of thinking. The difficulties in obtaining direct estimates of abundance (e.g. due to

issues of scarcity, financial constraints, lack of manpower, etc.) necessitated the use of proxy

measures (i.e. the anuran call index), which can be interpreted as ordinal states of abun-

dance. Depending on the management and/or research objectives, this less detailed proxy

measure may still provide sufficient information for management decisions. For example, if

the management goal is to monitor the effect habitat policies have on anuran abundance

absolute measures of abundance may not provide much more practical information than is

already attainable with realtive measures of abundance.

The use of ecological states to represent more complex underlying structure can also

provide other benefits such as reducing observed variability and providing an easier way

to amalgamate differing types of information. If we return to the example of abundance,

the cost of obtaining abundance estimates may result in small sample sizes and high degree

of error in the subsequent estimates. However, the easier nature of obtain state measures

may provide a more precise estimates of change due to sheer differences in sample size. In

addition, ecological state measures may also be more reproducible in the field, providing

another mechanism to reduce variability. Finally, ecological states provide a straightforward

way to incorporate normally incompatible types of information (e.g. local or traditional

knowledge with scientific knowledge; Knapp and Fernandez-Gimenez, 2009).

Our main contribution to this modeling approach was to formalized issues of state detec-

tion via a hierarchical modeling structure that should not be confused with other hierarchi-

cal approaches used in ecology such as GLMMs. GLMMs attribute the often over-dispersed

nature of in ecological data sets to variability in the ecological process itself and not the

observation process, such as we have modeled. While it is possible to incorporate addi-

tional variation attributable to the observation process using a type GLM approach, it is

not straightforward to relate this variability directly to the underlying ecological state such

as we have done. And with our approach, it is possible to have some states produce more

observational variation than others. For example, a high abundance sites may produce less

variability in an observed index than a low or marginal abundance sites, due to issues of

scarcity.
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Furthermore, it is fairly straightforward to add additional hierarchal structure such as

random effects to our modeling framework. The primary difficulty will be parameter esti-

mation, but can be accomplished using data cloning (Ponciano et al., 2009) or by employing

a Bayesian methodology (see Gelman et al., 2004). That said, we believe the outlined

framework provides a lot of utility for describing biological processes. Practitioners should

prioritize investigating the interplay between events and states before adding additional

hierarchies to the overall model.

Our adherence to state-and-transition models also brings drawbacks in terms of model

assumptions. Our framework has two distinct levels of abstraction, both of which may be

difficult for model practitioners to verify. On the basic level is the assumption that the

assemblages of characteristics we define as states carry relevant biological meaning and that

changes in these assemblages can be modeled as transitions. This shortcoming is true of

all state-and-transition models. The second level of abstraction is the relationship between

observed events and the underlying states. Potentially verifying either of these relationships

will not be possible or at least very difficult. The abstraction also places additional emphasis

on the model build strategy and the available tools to assess goodness-of-fit.

We agree with Burnham and Anderson (2002) that careful consideration should always

be given to the a priori set of questions and goals before specifying models. Ideally, the

state, transition and event structures should be based on the best available expert opinion

and past knowledge. Afterwards, all available tools for assessing goodness-of-fit should be

used to verify any shortcomings of the specified models. This can be accomplished in a

variety of methods including using the general omnibus goodness-of-fit test we provided, as

well as the ad hoc visualization technique we derived for the abundance class formulation.

Other model fit assessments may also be built off our general approach depending on the

type of predictions the model can make. This puts a strong emphasis on the practitioner to

think about ways the appropriateness of model structure may be tested, which is an often

overlooked component of statistical ecology.

Another promising route for assessment is the Model Structural Adequacy (MSA) anal-

ysis framework (Taper et al., 2008). The simulation-based methodology assesses the ability

of statistical models to answer scientific questions by fitting candidate models to data simu-

lated by a complex process model (CPM; a proxy for reality). The CPM is based on the best

available expert opinion and is designed to produced features either thought or suspected

to occur in reality. Variations to the CPM may be produced to test the ability of candidate
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models to answer scientific questions. For example if we return to anuran abundance class

formulation, a CPM could track real changes in abundance, while indices could be produced

based on various density assumptions. The ability for the abundance class framework to

track changes over time under various assumptions could then be tested.

The MSA analysis does an end-run around the issues of goodness-of-fit by directly testing

the model robustness to answer scientific questions given a set of plausible circumstances.

Arguably, most important aspect of ecological models is their ability to adequately answer

purposed scientific questions. This perspective differs from many other statistical applica-

tions where the ability to make predictions tends to be preferred. In this way ecological

models may also be better suited to an MSA analysis and may be a more appropriate

way to assess complex ecology models than more traditional goodness-of-fit tests, which

are primarily concerned with assess whether the observed data originates from a particu-

lar distribution, a fact we know to be false. The caveat with this type of approach is its

heavy dependence on the quality of the CPM and the ability to ask the right kinds of ques-

tions. However, by combining a number of approaches, for example graphical, traditional

goodness-of-fit measures and MSA analyses, it should be possible to verify many of the

underlying model assumptions in states, transitions and the state to event structure.

Finally, in terms of employing the multi-state occupancy framework, the temporary

and permanent sampling protocols were intended handle the two most common sampling

situations. The main purpose of the temporary protocol is to handle situations where the

sampling frame is expected to change from season to season, for example ephemeral ponds.

In this situation the permanent sampling protocol is nonsensical. For situations where sites

may be sampled in all possible seasons can be handled by the permanent sampling protocol,

seasons that are missed are assumed to be missing completely at random. Ideally, this

means that related to either the underlying state, event or underlying model parameter.

We currently do not provide for other types of “missingness.”



Part III

Summary
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Chapter 12

Discussion

The topic of heterogeneity has been a defining theme of this thesis. In the super-population

extension in order to account for capture heterogeneity caused by sexes, the problem of how

to handle uncertainty in strata assignments needed to be solved. In the ρ-CJS work, capture

heterogeneity caused by mating pairs sharing fates was handled by directly modeling the

mating pair association (the first such effort in mark-recapture methodology). Finally, the

driving force behind the multi-state occupancy work was the need to account for detection

heterogeneity caused by differences in underlying site abundances.

Another other unifying theme was the compartmentalization of statistical models in

terms of an underlying an ecological process of interest (which is not always observable)

and a process generating the observation that is a function of the underlying state. This

perspective was embodied in the use of the multievent framework to define the multi-state

multi-season occupancy framework and the state-space formulation used in the ρ-CJS work.

This type of explicit separation is relatively recent development in ecological statistics and

will likely become the de facto method for modeling ecological experiments in general as it

more closely approaches the true nature of the observed data.

Together these themes underly the general difficulty in analyzing ecological data. The

underlying biological process of interest is difficult to observe and observations tend to be

highly variable due to problems of detection. In addition to this problem, statistical models

are also tasked with job of carrying the meaning of science. The combination of these factors

makes the task of adequately assessing model fit crucial, yet the complexities of model makes

this task difficult. Currently, our methods for assessing fit have not kept pace with the rise

in complexity.
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The Model Structure Adequacy (MSA) approach, mentioned in Chapters 9 and 10,

presents an interesting perspective for future work whereby we worry more about testing

the impact assumptions have on the ability to answer scientific questions rather than a

particular statistical definition of fit. In terms of the multi-state occupancy more work is

needed understanding the impact of using ecological states as proxies for not being able to

observe numerical abundances. Using the MSA approach as a guiding philosophy, I would

like to reconsider the power analysis using a known abundance distributions with different

choices in the cut-points used generate the observed abundance indices. The idea would be

get a better understanding of the impact differing field protocols may have on the ability

to detect changes in the true numerical abundance. While not a direct application of the

MSA type approach it is in keeping with it’s pragmatic view that the ultimate worth of a

statistical model is the ability to correctly answer scientific questions.

Other interesting extensions to the use of relative abundance data would be the inclusion

of observer error in the observation itself. For example it would be interesting to consider

abundance observations in terms of a ranges. A field observer on a given sampling occasion

could record that somewhere between 50 and 100 individuals were observed rather than

attempt a “precise” count. If we assume an underlying true abundance distribution exists,

then it should be possible to assign a probability to the observation.

By presenting count data in a range the data would also more closely represent the types

of data collected in the field. Often field staff are forced to create the illusion of precision

counts. For example, it is fairly unlikely a technician could accurately count 225 birds on

a given sampling occasion, but it should be possible of a technician to accurately produce

a count range. By allowing abundance to be recorded in terms of a range, field technicians

would be encouraged to communicate uncertainties in their assignments. Similar to the ρ-

CJS work a state-space type approach would likely be used, due to its flexibility and ability

to simplify model specification

Lastly, we have just scratched the surface with the innovative ρ-CJS model. The next

step will be to make an allowance for mate switching, which will require a number of consid-

erations from re-imagining the data structure of a mark-recapture experiment to including

a process in the model that represents how individuals form mating pairs. Once these ad-

ditions are complete, the model will be able to handle the original motivating data set and

should be ready for peer-reviewed publication.

Afterwards, the next step will be extend to the overall approach to Jolly-Seber models.
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While the Cormack-Jolly-Seber framework was a useful place to start, Jolly-Seber models

will allow for the consideration all uncaptured individuals. This could provide great utility,

especially if we continue using a state-space approach. For example, one potential benefit

will be an improved ability to handle partial knowledge of mating pairs. By using state-

space approach the entire population will be “known” at each occasion opening up the

possibility to assign potential matches based on suitability. If, for example, we know all

the single individuals that are alive on a given occasion, we can assume that these are the

available matches. If a Bayesian approach is taken it would be trivial to assign posterior

probabilities to a selection of potential mates. I can see such a feature being of great utility

to behavioural ecologists.
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Appendix A

Appendices for Jolly-Seber with

Uncertainty

A.1 Computing N s
i when Removals are Present

If removals or losses occur, then the {N s
j } estimates need to be adjusted using

E
[
N s
j+1

]
=

 Nβ0π
s
0 j = 0

E
[
N s
j

]
φsj +Nβjπ

s
j − Ls∗j φsj j > 0

for s ∈ {M,F} (A.1)

where Ls∗j are the sex-specific removals/losses at time j and the term −Ls∗j φsj represent the

number of losses expected to have have survived to time j + 1 if they were not removed

from the population at time j. The value of Ls∗j may be known if all losses can be sexed,

otherwise the sex ratio of removals and/or losses must be estimated.

Let αsj be the expected proportion of unknown captures that are of sex s, for s ∈ {M,F}.
An estimate of αsj can be found as

E [αsi ] ≈
E
[
N s
j

]
psj(1− δsj )

E
[
N s
j

]
psj(1− δsj ) + E

[
N sc

j

]
ps

c

j (1− δsc

i )
for s ∈ {M,F} (A.2)

where sc is the complement sex and N s
j p

s
j(1 − δsj ) represents the expected number of

animals, at time j, of sex s, caught, but whose sex remains unidentifiable. The expected
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number of sex-specific losses for time j can then be determined as

E
[
Ls∗j
]

= Lsj + Lui E
[
αsj
]

for s ∈ {M,F} (A.3)

where Luj is the number of losses with unknown sex and Lsj is the number of losses whose

sex is known. The estimated value Ls∗j is then used in (A.1).

A.2 Walleye Data Set
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Table A.1: Mille Lacs Lake walleye data set analyzed in the example section. Data repre-
sents six sampling occasions over three consecutive years (2002-2004). Sampling occurred
twice a year, once in the spring and once in the summer (see Table 3.1). Counts are provided
for unique tag histories with counts with negative counts reflecting a loss on capture during
the last capture. For a given tag history: 0 - no capture; U - capture, with unknown sex
designation; M - capture, with a male sex designation; and F - capture, with a female sex
designation.

Tag History Count Tag History Count Tag History Count Tag History Count
00000F 3 00M00U -16 0U0UM0 1 M000M0 -190
00000F -365 00M0F0 13 0UF000 70 M000U0 6
00000M 1 00M0F0 -13 0UF000 -49 M000U0 -11
00000M -133 00M0M0 1814 0UF00U -1 M00U00 17
00000U 752 00M0M0 -1155 0UF0F0 4 M00U0U 1
00000U -648 00M0MM -1 0UF0F0 -2 M00UM0 3
0000F0 4646 00M0MU 2 0UFU00 4 M00UM0 -3
0000F0 -1949 00M0MU -2 0UM000 106 M00UMU -1
0000FF -9 00M0U0 12 0UM000 -145 M0F000 7
0000FU 15 00M0U0 -53 0UM0M0 12 M0F000 -7
0000FU -5 00MM00 -6 0UM0M0 -8 M0F0M0 2
0000M0 11637 00MU00 87 0UMU00 4 M0M000 1213
0000M0 -9052 00MU00 -31 0UMUM0 1 M0M000 -526
0000MF -2 00MUM0 12 0UU000 1 M0M00M -1
0000MM -1 00MUM0 -5 0UU000 -6 M0M00U 1
0000MU 14 00MUU0 -1 F00000 3347 M0M00U -2
0000MU -22 00U000 164 F00000 -1751 M0M0F0 1
0000U0 120 00U000 -633 F0000F -1 M0M0F0 -1
0000U0 -497 00U0F0 -1 F0000U 4 M0M0M0 274
000F00 -333 00U0M0 7 F000F0 28 M0M0M0 -64
000M00 -193 00U0M0 -6 F000F0 -10 M0M0MU 2
000U00 3710 00U0U0 -1 F000M0 7 M0M0MU -2
000U00 -808 00UU00 1 F00F00 -2 M0M0U0 1
000U0F -2 0F0000 71 F00U00 12 M0M0U0 -1
000U0M -1 0F0000 -462 F00UF0 -1 M0MM00 -1
000U0U 13 0F00F0 -1 F0F000 56 M0MU00 9
000U0U -5 0FM000 1 F0F000 -12 M0MU00 -2
000UF0 34 0FM000 -1 F0F00U 1 M0MUM0 1
000UF0 -38 0M0000 48 F0F0F0 3 M0U000 14
000UFU 1 0M0000 -277 F0F0F0 -2 M0U000 -16
000UM0 38 0M00M0 1 F0FU00 2 M0U0M0 2
000UM0 -49 0MM000 1 F0FUF0 1 M0U0M0 -1
000UU0 1 0MM000 -2 F0M000 9 MM0000 -5
000UU0 -4 0U0000 10796 F0M000 -3 MU0000 110
00F000 5042 0U0000 -865 F0M0M0 1 MU0000 -12
00F000 -1631 0U000F -4 F0M0M0 -1 MU00M0 5
00F00U 7 0U000M -2 F0U000 2 MU00M0 -2
00F00U -1 0U000U 15 FF0000 2 MUM000 15
00F0F0 83 0U000U -3 FF0000 -3 MUM000 -9
00F0F0 -29 0U00F0 41 FF00M0 -1 MUM0M0 5
00F0FU 1 0U00F0 -61 FM0000 1 U00000 129
00F0M0 9 0U00M0 43 FU0000 53 U00000 -728
00F0M0 -5 0U00M0 -84 FU0000 -1 U0000U 1
00F0U0 -3 0U00MF -1 FUF000 -1 U000F0 1
00FF00 -2 0U00U0 1 FUM000 1 U000M0 1
00FU00 59 0U00U0 -7 M00000 12944 U0M000 8
00FUF0 2 0U0F00 -5 M00000 -16310 U0M000 -1
00FUF0 -1 0U0M00 -1 M0000M -2 U0M0M0 4
00FUM0 1 0U0U00 135 M0000U 2 U0U000 1
00M000 18928 0U0U00 -1 M0000U -2 UF0000 -1
00M000 -12299 0U0U0U 1 M000F0 4 UU0000 -1
00M00M -5 0U0UF0 5 M000F0 -1
00M00U 10 0U0UF0 -1 M000M0 487
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Chapter 3 Appendices

B.1 Derivation of Joint Capture Probability

Let Y F and YM be two random variables representing the Bernoulli capture outcomes of

a male and female in a mating pair on a given capture occasion. Y F and YM will have

expected values of pF and pM , and standard deviations of σF and σM respectively. By

definition, the correlation coefficient ρF,M between Y F and YM will be

ρF,M =
cov(Y F , YM )

σFσM
=
E
[
(Y F − pF )(YM − pM )

]
σFσM

.

Using the definition of variance for a Bernoulli experiment, if we expand and take the

expectation we can show that,

ρF,M =
E
[
Y FYM − Y F pM − YMpF + pF pM

]√
pF (1− pF )

√
pM (1− pM )

=
E
[
Y FYM

]− pF pM√
pF (1− pF )

√
pM (1− pM )

=
pfm − pF pM√

pF (1− pF )
√
pM (1− pM )

. (B.1)

Note we have simply defined pfm as being E
[
Y FYM

]
, the joint capture probability. Next

we can use (B.1) to define the joint capture probability directly in terms of the individual
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marginal capture probabilities and the correlation coefficient, giving

pfm = ρF,M
√
pF (1− pF )

√
pM (1− pM ) + pF pM . (B.2)

This allows us to then define the possible joint capture probabilities (Table 4.1), since

we know the marginal probability of capture must be pF and pM for females and males

respectively.

B.2 WinBUGS Code for Fitting ρ − CJS Models using the

Individual State-space Formulation

########################################################################
# MODEL #
# State-space formulation of the rho Cormack-Jolly-Seber (rho-CJS) #
# observations = 0 (non-encountered), 1 (female encounter only), #
# 2 (male encoutner only), 3 (both encounted) #
# states = 0 (dead) and 1 (alive) #
########################################################################

model {
#-----------------
# SPECIFY PRIORS
#-----------------

#--- Survivorship ---
cphi ~ dbeta(1,1)
for(t in 2:T){
phi[t-1] <- cphi

}

#--- CAPTURE COMPONENT ---
# correlation coefficient [-1.0, 1.0]
ws ~ dbeta(1,1)
rho <- 2*ws - 1.0

# Additive Male Effect
b1 ~ dnorm(0, 0.5)

# Intercept
ctheta ~ dnorm(0, 0.5)

# Compute Occasion specific capture probability
for(t in 1:T){
theta[t] <- ctheta # Capture intercept on logit scale
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# Sex and occasion specific capture probabilities (without non-independence)
logit(pf[t]) <- theta[t]
logit(pm[t]) <- theta[t] + b1

# Joint Capture probabilities for paired individuals
p00[t] <- 1 - pf[t] - pm[t] + pfm[t]
pf0[t] <- pf[t] - pfm[t]
pm0[t] <- pm[t] - pfm[t]
pfm[t] <- rho*sqrt(pf[t]*(1-pf[t]))*sqrt(pm[t]*(1-pm[t])) + pf[t]*pm[t]

}

#-------------------------
# STATE PROCESS
#-------------------------
# Model Assumes independent survival
for (i in 1:n){
# After First Encounter
for(t in (e[i] +1):T){

PrX[i,t] <- phi[t-1] * X[i,t-1]
X[i,t] ~ dbern(PrX[i,t])

}
}
#-------------------------
# OBSERVATION PROCESS
#-------------------------
# Observation model assumes a linear pairwise dependence
# occurs in capture outcomes between paired animals.
# Capture outcomes are modeled as multinomial for all types
# (i.e. single only and both alive) using the appropriate
# cell probabilities.

# For each pair/individual by occasion
for (j in 1:nx) {

# First encounter for a pair. This represents a bit of a work
# around (at the moment) we the entrances for a pair will be the same.
epair[j] <- min(e[D[j,2]], e[D[j,3]])

# Indicator for whether current occasion is first encounter
f[j] <- equals(epair[j], D[j,1])

# Overall Conditioning Indicator (occasion <= epair[j])
# Necessary in case we have obs (i.e. 0’s) before entrance.
c[j] <- step(epair[j] - D[j,1])

# Indicators for the capture outcome
obs00[j] <- equals(D[j,4], 1)
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obsF0[j] <- equals(D[j,4], 2)
obsM0[j] <- equals(D[j,4], 3)
obsFM[j] <- equals(D[j,4], 4)

# Prob obs 00 - 1
Pr0[j,1] <- f[j]*obs00[j] +

(1-f[j])*(1-sum(Pr0[j,2:4]))

# Prob obs F0 - 2
Pr0[j,2] <- c[j]*(1-f[j])*obsF0[j] +

c[j]*f[j]*X[D[j,2],D[j,1]]*X[D[j,3],D[j,1]]*pf0[D[j,1]]/(1-p00[D[j,1]]) +
c[j]*f[j]*X[D[j,2],D[j,1]]*(1 - X[D[j,3],D[j,1]]) +
(1-c[j])* X[D[j,2],D[j,1]]*X[D[j,3],D[j,1]]*pf0[D[j,1]] +
(1-c[j])* X[D[j,2],D[j,1]]*(1 - X[D[j,3],D[j,1]])*pf[D[j,1]]

# Prob obs M0 - 3
Pr0[j,3] <- c[j]*(1-f[j])*obsM0[j] +

c[j]*f[j]*X[D[j,2],D[j,1]]*X[D[j,3],D[j,1]]*pm0[D[j,1]]/(1-p00[D[j,1]]) +
c[j]*f[j]*(1-X[D[j,2],D[j,1]])*X[D[j,3],D[j,1]] +
(1-c[j])*X[D[j,2],D[j,1]]*X[D[j,3],D[j,1]]*pm0[D[j,1]] +
(1-c[j])*(1 - X[D[j,2],D[j,1]])* X[D[j,3],D[j,1]]*pm[D[j,1]]

# Prob obs FM - 4
Pr0[j,4] <- c[j]*(1-f[j])*obsFM[j] +

c[j]*f[j]*X[D[j,2],D[j,1]]*X[D[j,3],D[j,1]]*pfm[D[j,1]]/(1-p00[D[j,1]]) +
(1-c[j])*X[D[j,2],D[j,1]]*X[D[j,3],D[j,1]]*pfm[D[j,1]]

# Draw Observed as Multinomial Outcome
D[j,4] ~ dcat(Pr0[j,1:4])
}

}
############################################################
# DATA
# ‘T’ is the number of encouter occassions
# ‘n’ is the number of entities (individuals and/or mating pairs)
# ‘nx’ total number of observations in ‘D’, typically ‘T’ times ‘n’
# ‘e’ is the vector of first encounters (‘n’ components). Entry ‘n’+1
# is set to T+1 as a workaround for no mates.
# ‘X’ is a matrix with dimensions ‘n’+1 times ‘T’ containing known
# alive/dead states for all ‘n’ individuals in the experiment with
# ‘0’ values for elements before entrance (i.e. e[i]) and ‘NA’ values
# for alive/dead states after last capture/last known alive status.
# The final row ‘n’+1 is a workaround for no mates and is set to all 0’s
# ‘D’ is a matrix with dimensions ‘nx’ times 4 where
# - the first column specifies the current encounter occasion (1,...,‘T’),
# - the second column specifies the row index in ‘X’ for the female
# (alone or paired) if present, otherwise the row index ‘n’+1 is
# specified to indicating no mate.
# - the third column specifies the row index in ‘X’ for the male
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# (alone or paired) if present, otherwise the row index ‘n’+1 is
# specified to indicating no mate.
# - the fourth column provides the observation as a categorical response
# 1 - No detection,
# 2 - Female only capture
# 3 - Male only capture
# 4 - Both female and male were captured
############################################################
list(
T = 8,
n = 1470,
nx = 5876,
e = c(
1, 2, 1, ..., 9
),
X = structure(
.Data = c(

1, 1, 1, 1, 1, 1, 1, NA,
0, 1, NA, NA, NA, NA, NA, NA,
1, NA, NA, NA, NA, NA, NA, NA,
.
.
.
0, 0, 0, 0, 0, 0, 0, 0

),
.Dim = c(1471, 8),
),
D = structure(
.Data = c(

1, 1, 702, 4,
1, 2, 703, 4,
1, 3, 704, 4,
.
.
.
8, 1471, 1345, 1

),
.Dim = c(5876, 4)
)

)
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Figure C.1: Empirical summary of maximum observed call indices for Hyla versicolor by
season and region. Within each season the maximum observed call index was determined
and summarized for one of the 10 surveyed regions (states). Ordinal call indices are ranked
from lowest (0 - dark grey) to highest (3 - white).
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Figure C.2: Empirical summary of maximum observed call indices for Hyla versicolor by
season and region. Within each season the maximum observed call index was determined
and summarized for one of the 10 surveyed regions (states). Ordinal call indices are ranked
from lowest (0 - dark grey) to highest (3 - white).


	Approval
	Abstract
	Dedication
	Quotation
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	I Mark-Recapture Models
	Introduction to Part I of the Thesis
	Jolly-Seber with Classification Uncertainty
	Introduction
	Survey Protocol
	Notation
	Statistics and Indicator Variables
	Fundamental Model Parameters
	Functions of Parameters

	Model Development
	Assumptions
	Likelihood
	Model Constraints, Link Functions and Covariates
	Parameter Redundancy
	Parameter Estimation
	Goodness of Fit
	Model Selection

	Example
	Model Constraints
	Model Selection and Best Model Estimates

	Discussion

	The -CJS Framework
	Introduction
	Motivation

	Model Development
	Modeling Pairwise Captures
	Observation and State Equations
	-CJS Observation Process
	Likelihood Formulation
	Model Assumptions
	Example Probability Statement of a Capture History
	Contrasting -CJS and Standard CJS Models

	Numerical Example
	Discussion


	II The Multiple Season Multi-State Occupancy Framework
	Modeling Ecological Processes with States
	Introduction
	Ecological States

	Motivating Example: The North American Amphibian Monitoring Program
	Hierarchical Models and the Multievent Framework
	Hierarchical Models
	Incorporating the Multievent Framework


	Multi-state Occupancy Framework
	Introduction
	Sampling Protocol
	Model Formulation
	Event Probabilities
	Initial State Distribution and Transition Probabilities
	Likelihood Formulation
	Dealing with Missing Data

	Model Parameterization Philosophy
	Goodness-of-fit


	Special Cases
	Site-occupancy Modeling, Single Species (K=2)
	Site-occupancy with Multiple Species, Including Biological Interactions
	Event Probabilities
	Initial States
	State Transitions

	Site-occupancy with Successful Reproduction
	Extending to Multiple Seasons

	Relative Measures of Abundance (Ordinal Abundance Classes)
	Event Probabilities


	Numerical Example: The NAAMP Data Set
	Introduction
	Model Formulation
	Event Probabilities
	 States and Transitions
	Multi-model Inference and Compact Model Syntax

	NAAMP Goodness-of-fit
	Results
	Discussion

	Power Analysis
	Deriving Univariate Summary Statistics for Multiple Seasons
	Methods
	Results
	Discussion and Conclusions

	Monitoring Rockfish Abundance
	Introduction
	Materials and Methods
	Dive Technique Overview
	Technique Verification by Video Survey
	Video Surveys by Substrate Category
	Abundance Class Study Design
	Use of Side-scan Sonar to Predict Rockfish Occurrence
	Multilevel Occupancy Model

	Results
	Video Survey/Method Verification
	Video Surveys by Substrate Category
	Abundance Class Model
	Side-scan Sonar for Locating Piled Boulders

	Discussion

	Framework Discussion

	III Summary
	Discussion
	Bibliography
	Appendices
	Appendices for Jolly-Seber with Uncertainty 
	Computing Nis when Removals are Present
	Walleye Data Set

	Chapter 3 Appendices
	Derivation of Joint Capture Probability
	WinBUGS Code for Fitting -CJS Models

	NAAMP Observed Maximum Call Index Frequencies


