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Abstract

Capture-recapture methods are common in ecological studies when it is impossible to

completely enumerate a population. Instead, individuals are captured, marked, and

released back into the environment. Information about the population is derived by

comparing the ratios of tagged to untagged individuals on subsequent capture occa-

sions. Of primary interest in most capture-recapture studies are parameters governing

the survival rate.

Recent developments have focused on techniques to study the impact of different

covariates on the survival probabilities. Straightforward methods have been developed

for cases where the covariates are either discrete, constant over time, or apply to the

population as a whole, but the problem has not been solved for the case of continuous

time-dependent covariates unique to each individual. Because it is impossible to mea-

sure such variables on occasions where an individual was not captured, estimation can

be considered a missing data problem. In this project, a model was constructed using

a diffusion process to describe changes in a univariate covariate. Logistic functions

were used to link the covariate to capture and survival rates and incorporate the data

into the Cormack-Jolly-Seber model. Two methods of parameter estimation were de-

veloped based on techniques commonly used to handle missing data: a frequentist

approach using the EM-algorithm and a Bayesian approach through MCMC. These

methods were applied to simulated and real data-sets, and comparison of the results

is provided. In short, though both methods yield similar results in most cases, the

Bayesian approach was more reliable, easier to implement, and yielded estimates of

the standard errors more readily than the EM-algorithm.
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Chapter 1

Introduction

The goal of ecological research is to understand the demographic properties of a pop-

ulation by estimating parameters including the population size and birth and death

rates. In most situations, especially those involving large animals or large study areas,

a complete enumeration of the population is impossible and sampling methods must

be used. A popular alternative is to employ a capture-recapture study which involves

capturing samples of individuals, marking them, releasing them back into the wild,

and making inferences based on the captures of marked and unmarked individuals

over the following periods. Many different variations of the basic capture-recapture

experiment have been developed to improve parameter estimates and to handle cases

where the assumptions of simple capture-recapture models cannot be satisfied. Sev-

eral researchers have focused their studies on incorporating extra information from

different variables into capture-recapture methods. This project introduces methods

for studying heterogeneity in capture and survival rates caused by dependence on

dynamic individual continuous covariates.

1



CHAPTER 1. INTRODUCTION 2

1.1 Basic Capture-Recapture and the

Cormack-Jolly-Seber Model

The most basic capture-recapture study is one that includes only two capture events

and identical markers for all individuals. A sample of animals from the population

is trapped on the first occasion, marked, and then released back into the study area.

After allowing time for the tagged animals to disperse, a second sample is collected

that includes both marked and unmarked individuals. Assuming that the population

is closed to births, deaths, and movement the size of the population will not change

between the two capture occasions and is estimated by equating the ratio of tagged

to untagged individuals in the second sample with the ratio in the general popula-

tion. This leads to the Lincoln-Petersen estimator, first used by Laplace in 1878 and

formalized by F. C. Lincoln for studying North-American water-fowl populations circa

1930 (Williams et al., 2002).

Studying survival rates requires more complicated capture-recapture designs with

τ > 2 capture occasions. Researchers must also be able to distinguish individuals,

using unique markers or individual characteristics, in order to generate the capture

histories for each individual, vector’s of 1’s and 0’s that indicate the capture occasions

when each animal was observed. In total, there are 2τ possible capture histories. For

a study involving 5 capture occasions, one possible capture history is 01010 indicating

that this animal was first captured and marked on the 2nd occasion, recaptured on

the 4th occasion, and not observed at times 1, 3, or 5. This example highlights some

of the difficulties that arise in studying open populations (i.e. those that change due

to birth, death, and animal movement). At the 1st and 5th capture occasions it is

impossible to know if this animal was alive or simply went unobserved. On the 3rd

occasion one can conclude that the animal was alive, but it is still not possible to

know if the animal was inside the study area. The capture history for individual i is

denoted by the vector ωi and has tth element ωit.

The dominant model used for studying survival based on capture histories is

the Cormack-Jolly-Seber (CJS) model, developed simultaneously by 3 researchers in

the mid-1960’s (Cormack, 1964; Jolly, 1965; Seber, 1965). To handle the uncertainties
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regarding the status of individuals before their first capture, the CJS model conditions

on each individual’s first release and considers only the events on subsequent occasions.

By nature, this ignores all individuals who were never captured and about whom

nothing is known. It also ignores the processes of recruitment in the population and

concentrates only on animal losses. Ambiguities of the type that occur on the 3rd

occasion of the example are avoided by assuming that all emigration out of the study

area is permanent. To describe the events of each life history, Cormack, Jolly, and

Seber introduce two sets of probability parameters common to every individual in

the population. Capture probabilities, pt, model the probability that an animal alive

in the study area at time t is captured, and survival probabilities, φt, model the

probability that an individual alive at time t is still alive at time t+ 1. For the above

history, the likelihood contribution to the CJS model is:

L01010 = φ2(1 − p3) · φ3p4 · ((1 − φ4) + φ4(1 − p5))

The first two terms in this expression describe the events that were known to occur on

times 3 and 4, and the final term accounts for both the possibility that the individual

died between times 4 and 5 and that it survived but was not observed. No information

is included for either times 1 or 2 because of the conditioning on the release at the

2nd occasion.

Even with conditioning on the first release times for each individual, it is still

not possible to distinguish between animals that die between capture times, those

that leave the study area and do not return, and those that remain alive and in

the study area but simply evade capture. This means that the exact time of death

will never be known for any individual. Because of this confounding effect between

death and emigration, Williams et al. (2002) suggests that the parameter φt be called

the “apparent survival” as it does not reflect the true survival rate of individuals

in the population. Other confounding effects mean that some parameters in the

model are not identifiable. For example, without further capture occasions it is not

possible to estimate the number of animals that remain in the population at capture

time τ , and the final parameters for capture and survival, pτ and φt−1, cannot be

distinguished. In total, the full CJS model with τ capture occasions involves 2τ −
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3 estimable parameters. Traditionally these have been estimated using maximum

likelihood techniques (Lebreton et al., 1992) though Bayesian methods have also been

developed (Poole, 2002).

Implicit in the CJS model are several more assumptions regarding the population.

Williams et al. (2002) list 6 including the assumptions that individual capture events

are independent between individuals and capture times, marks are never lost or mis-

identified, and changes in the population occur only between the capture occasions.

Throughout the 1980’s and early 1990’s different researchers have published papers

that introduced modifications of the capture-recapture design or the CJS model to

account for situations that do not satisfy these assumptions. One area of specific

interest is the development of models that account for differences in the capture and

survival probabilities across the population. A common approach is to allow the

probabilities to depend on different covariates measured from the captured individual

or the environment.

1.2 Previous Models using Covariate Data

In capture-recapture experiments field researchers frequently measure variables that

might be associated with the survival or capture probability of the animals in the

population. In studies of migrating birds, for example, it is common practise for

banders to record a captured bird’s sex, body mass, wing length, fat quantity, and

other pertinent information describing the bird’s health. Environmental variables like

temperature or daily precipitation and even the bird’s location may also be associ-

ated with the likelihood that a bird alive at one occasion is captured or survives until

the next occasion. In their overview of capture-recapture methods, Williams et al.

(2002) initially classify possible covariates into 4 categories by sample space (discrete

or continuous) and by time dependence (static or dynamic). For dynamic variables

they later add the distinction between those which are deterministic and those which

are stochastic in nature. A full treatment must also distinguish between variables

that are unique to the individual, like body mass, and those that are common to

the entire population, like most environmental measurements. Except for the case
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of continuous, dynamic, individual covariates to be discussed in this project, statisti-

cians and ecologists have already developed different models to incorporate all of this

information into capture-recapture analysis.

Surprisingly, little attention was given to incorporating covariates in early capture-

recapture development. One of the first papers to consider using covariate data in

models of closed populations was written by Pollock et al. (1984). In this paper,

Pollock and Nichols consider several types of auxiliary variable including continuous

environmental variables, static individual covariates, and deterministic individual co-

variates. These are the simplest variables to work with because they can be determined

at every time point for the whole population or for each individual provided that the

individual is captured at least once. Information from the variables is incorporated

into the model using a logistic link function:

log

(

p

1 − p

)

= β ′X

where p is the probability of capture, X is the vector of covariates, and β the coef-

ficients. In most cases, the parameters of the logistic model and the corresponding

capture rates can be estimated using maximum likelihood analysis. Survival rates

need not be modelled because the population is assumed to be closed.

One difficulty that arises in the model of Pollock et al. (1984) for individual

covariates is that no information is available for the individuals in the population that

were never captured. In the paper, Pollock and Nichols use a full likelihood approach

that bases inference on the histories of all individuals in the closed population. For

the simplest case where the coefficients of the logistic function are assumed constant

over time, the likelihood in terms of the total population size, N , is proportional to:

L =
N
∏

i=1

τ
∏

t=1

p(xit)
ωit(1 − p(xit))

ωit

In this expression xit represents the vector of the individual covariates for subject i

and the environmental covariates at time t. Many of these values are unknown because

the individuals are never observed, and if any of the covariates are continuous the full

likelihood cannot be used without modification. To overcome this problem Pollock



CHAPTER 1. INTRODUCTION 6

et al. (1984) suggest an admittedly “ad hoc” method (Pollock, 2002) that requires

continuous variables to be discretized, but a more appropriate solution was proposed

by Huggins (1989). Similar to the development of the CJS model, Huggins uses a

model that conditions on the first capture event for each individual and the new

conditional likelihood becomes:

L =

n
∏

i=1

τ
∏

t=1

p(xit)
ωit(1 − p(xit))

ωit

where i = 1, . . . , n indexes only those individuals captured during the study. Once

more, Huggins employs a logistic model to incorporate the covariates into the capture

probability and provides MLE’s for the different parameters. The one drawback of

conditioning in this manner is that the value N no longer appears in the likelihood and

cannot be estimated by likelihood methods. Instead, the population size is estimated

by the method of moments (Pollock, 2002).

Another solution to the problem of missing individual covariates is provided by

Borchers et al. (1998). Borchers considers the problem of analyzing line transect sur-

veys where the number of individuals in the study area is constant, but the probability

of observing each animal depends upon some covariates, most obviously the distance

from the animal to the transect line. While line transect surveys do not exactly

match capture-recapture theory, they are remarkably similar to closed population ex-

periments and the methods developed by Borchers do relate. In order to use the full

likelihood including all individuals in the population, Borchers assumes that the co-

variates are independently and identically distributed according to some distribution

function, π(·), specified up to a set of unknown parameters. Borchers computes the

probability of being observed at least once in the survey, p. =
∫

p(x)π(x)dx, and then

constructs the likelihood using a multinomial distribution over the possible capture

histories where all unobserved individuals fall into a single category to themselves

(Pollock, 2002):

L =

[

N !

n!(N − n)!

]

p.n(1 − p.)(N−n)
n
∏

i=1

τ
∏

t=1

p(xit)
ωit(1 − p(xit)

ωit)π(xit)

p.

As before, the capture probability is formed as a logistic function of the covariates.

Modelling the distribution of the covariates does create a more complicated model, of
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course, because the extra parameters that determine the exact distribution must be

estimated along with the coefficients of the logistic regression. In some cases this can

lead to very difficult integration problems when several covariates are used, and some

models may have unidentifiable parameters (Pollock, 2002). However, this method

does allows Borchers to use a model incorporating information from all individuals

in the closed population and to compute the sample size using maximum likelihood

techniques.

The conditioning method proposed by Huggins (1989) bears much resemblance

to the CJS model and is easily extended for use with open populations. Lebreton

et al. (1992) describe an adaptation of the CJS model that uses external variables to

adjust both survival and capture through link functions. While the paper stresses the

logistic model, it also suggests other possibilities like the log link, f(x) = log(x), and

identity link, f(x) = x, that are commonly used in generalized linear models. The

advantage of the logistic function in capture-recapture is that the estimated rates of

survival and capture always remain between 0 and 1, regardless of the covariate and

coefficient values (Lebreton et al., 1992). As with Huggins’s model, Lebreton defines

the likelihood conditional upon the first capture for each individual and uses it to

produce MLE’s for the model parameters. The paper also describes more complex

models with multiple covariates often using dummy variables to introduce categorical

variables and of interaction terms to study how the different groups of individuals to

react to the external variables. Formal tests are also described that can be used to

chose between different models and determine which sets of variables have significant

effect on the survival and capture rates.

More difficult to incorporate into the CJS model are time-dependent covariates

which are determined stochastically for each individual. Even when these variables are

discrete they can be difficult to handle and conditioning on the captured individuals is

no longer sufficient to provide a likelihood from which estimates can be computed. Not

only are some values of the covariates unknown because individuals remain unobserved

during the entire study, but they are also unknown on each capture time that a

previously marked individual is not recaptured. To compensate for this it is necessary

to employ a more complex model like that of Borchers et al. (1998) to describe the
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distribution of the missing covariate values.

For discrete covariates of this nature the distribution can be modelled using a

Markov chain describing the probability of moving from one state to any other. In-

terestingly, this method was first used in modelling open populations by Arnason

(1973) long before the work on closed populations by Borchers et al. (1998). Arna-

son’s method was later modified by Schwarz et al. (1993), and is now known as the

Arnason-Schwarz model (Pollock, 2002). As motivation, Schwarz considers a pop-

ulation living in a study area that is broken into K different areas between which

the animals can migrate. In each area the individuals are assumed to have the same

capture probability though it may vary between capture events. The probability of

survival from time t to t + 1 is assumed to depend only on the animal’s location at

time t as is the probability of moving from location k to l in the same period (Williams

et al., 2002). These three quantities are denoted by pk
t ,φk

t , and ψkl
t respectively. In a

3 stage study, an animal that is captured in location k on the first occasion and then

recaptured on the third occasion in location l, would give the conditional likelihood

contribution:

Li = φk
1

[

K
∑

r=1

ψkr
1 (1 − pr

2)ψ
rl
2 φ

r
2

]

pl
3

Here the likelihood contribution is complicated by the sum that accounts for all moves

the individual could have made between the 1st and 3rd capture events. Combining

the contributions from all captured animals, Schwarz et al. (1993) defines the new

conditional likelihood and derives expressions for the MLE’s of the survival, capture,

and transition parameters.

Since its development, different researchers have used extensions of the Arnason-

Schwarz model to account for different situations. Brownie et al. (1993) introduce

what they term a “memory” model that uses a two-stage Markov chain to describe

the movements between locations. Of course, any number of previous locations could

be used, but the number of transition parameters grows geometrically with the number

of stages and would quickly exhaust the information in the data set. Several studies

have also used the Arnason-Schwarz model in an attempt to incorporate continuous

time-dependent individual covariates into the CJS model. An example of this is
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Nichols et al. (1992) study of the meadow vole, Microtus pennsylvanicus. In this

study, body mass is used as a covariate by breaking the measurements into 4 discrete

classes assuming the effect on capture and survival is the same in each class, and

Nichols does find a significant difference between the classes. This does not represent

a true method for incorporating continuous covariates because information is bound

to be lost when categorizing a continuous variable (Pollock, 2002).

In the same paper, Nichols also introduces an alternative method for handling

multi-state covariates in CJS model. This method is based on the robust capture-

recapture design which combines the techniques for both open and closed populations

(Williams et al., 2002). In the experiment, Nichols arranges the capture occasions

so that several events occur very close together, followed by a larger break, and then

several more very close capture events. The population is assumed to be closed over

the tightly grouped capture occasions, known as secondary periods, and open over

the large time gaps, called primary periods. Using data from adjacent secondary

periods in a single primary period, Nichols estimates the size of the population at

each location, the proportion of individuals that have migrated from each of the other

locations, and the capture rate for these animals. Transition and survival parameters

are then estimated by comparing these numbers across the different primary periods

(Nichols et al., 1992).

One problem that often arises in estimating the parameters for these CJS based

models is that the likelihood expressions can become very complicated making the

estimates very difficult to compute. As an example, consider an Arnason-Schwarz

model with many different states and individuals who remain hidden for long periods

of time. This would result in a likelihood expression with many missing values requir-

ing many sums to account for all possible unobserved transitions. A way to simplify

this is to consider the model as a missing data problem and work instead with the

complete data likelihood. In the case of the Arnason-Schwarz model, the complete

data set constitutes all observed data as well as the unobserved locations for each of

the individuals and knowledge of whether the animal is dead or alive for each occasion

after it is first captured. A common method that takes advantage of the missing data

approach is the expectation-maximization (EM) algorithm originally developed as a
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synthesis of existing methods in the late 1970’s (Dempster et al., 1977) The algo-

rithm uses a two step iterative procedure to solve for the MLE’s and often greatly

simplifies the computations by maximizing a derived likelihood that is usually much

simpler in form (see section 2.3 for more details). Application of the EM-algorithm to

capture-recapture experiments is explored by Van Deusen (2002). Van Deusen focuses

specifically on the model used by Lebreton et al. (1992) to incorporate covariate data

into the CJS model using logistic regression, but in theory the same method could be

applied to any of the extensions discussed.

Several researchers in the area of capture-recapture methodology have also devel-

oped Bayesian methods of parameter estimation in place of the frequentist maximum

likelihood approach. A Bayesian method for estimating the population size of a closed

population as an extension of the Lincoln-Peterson estimator was first published in

1972. For the more complex models described here, the effort to develop Bayesian

methods has been led by French statistician Jerome Dupuis. In 1995 Dupuis described

a Bayesian method for estimating the parameters in the Arnason-Schwarz model that

uses the technique of Gibbs sampling to generate a sample from the posterior distri-

bution of the parameters (Dupuis, 1995). Efforts in this area continue today.

With all of these extensions and estimation techniques, the category of continuous,

individual, time dependent covariates has still been overlooked. Several methods

report to include this type of variable, but further inspection shows that they always

resort to some form of simplification. The classic approaches in the literature are

either to categorize these variables into discrete classes as in Nichols et al. (1992)

or to assume that the variables are constant over time (see the application of Piper

(2002) as an example). In either case, some information is lost and this might mask

the true relationship between the variable and the survival and capture probabilities.

The following chapter describes a new model based on the techniques described here to

include these variables in the CJS model without having to force them into a simpler

form.



Chapter 2

Methodology

2.1 Data Structure and Notation

For simplicity I will assume that the discrete capture times are evenly spaced, denoting

them 1, . . . , τ , and that a total of n individuals are captured on at least one occasion.

The variables t and i will be used throughout to index the capture time and individual

respectively. When discussing a single individual as an example the subscript i will

often be dropped to simplify notation.

All data gathered for a single individual, i, is recorded in three vectors of length τ .

As for the basic CJS, the capture history, denoted ωi, is a vector of indicator variables

such that the tth entry, ωit, equals 1 if the individual was captured at time t and 0

otherwise. The survival history vector, si, records the occasions when the individual

was known to be alive in the study area. If the individual is known to be alive at

time t then sit = 1, and otherwise the missing data marker, ·, is used indicating

that the survival status is unknown. Similarly, the vector zi is used to record the

information about the covariates and has entry zit, possibly vector valued itself, when

the individual was captured at time t and · otherwise. Together, these three vectors

contain all information regarding the capture, survival, and covariate measurements

for the ith individual.

As an example of this notation, consider the capture history discussed in section

11
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1.1. For this individual the 3 data vectors are:

ωi =



















0

1

0

1

0



















, si =



















·

1

1

1

·



















, and zi =



















·

zi2

·

zi4

·



















To aid with notation, I also introduce two summary statistics to index the first and

last time an individual is captured: ai = min{t : ωit = 1} and bi = max{t : ωit = 1}.

For this individual ai = 2 and bi = 4. Further, parameters relating to the model of

the covariates, survival, and capture will be introduced as they arise in the following

sections.

2.2 CJS Drift Model

The model I will use to include continuous, time-dependent, individual covariates in

the CJS model builds on many of the concepts discussed in section 1.2. As with

the case of discrete time-dependent individual covariates it is necessary to model the

covariate distribution to account for the unobserved values. To define this distribution,

I develop a drift process similar to Brownian motion that leads to a Markov chain

with continuous state space, the logical extension of the Arnason-Schwarz model.

Following the example of (Lebreton et al., 1992) and (Huggins, 1989) the capture

and survival rates are linked to the covariate values through logistic regression. This

type of model is suggested as future work by Pollock (2002), but specifics of how to

model the change in the covariate over time and how to produce estimates are not

considered.

To keep things simple I will work only in the univariate case, though the re-

sults should easily extend for use with multiple continuous covariates. As motivation

consider the obvious examples of a time-dependent, individual, continuous covariate:

body mass. Imagine also a population of individuals all of whom have reached matu-

rity and all living in the same area subject to the same external forces. In good years
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with plentiful food and little competition all animals gain mass and in poor years

all animals lose mass. Animals in the population are expected to react in a similar

manner, though some variation about the mean is bound to occur due to individual

differences.

To describe the dynamics of this process of gain and loss I use a model based

on the Weiner process. This process is an extension of the simple random walk to

continuous time and was first used to describe the random movement of particles.

Cox and Miller (1965) define the Weiner process as a stochastic process, X(t) for

0 ≤ t ≤ τ , which satisfies two properties:

i) for any t1 < t2, X(t2) −X(t1) ∼ N (µ(t2 − t1), σ2(t2 − t1))

ii) for any t1 < t2 < t3 < t4, X(t2) −X(t1) and X(t4) − x(t3) are independent

The variable µ in these expressions is called the drift and determines the general trend

in the process. If µ = 0 then the process will oscillate randomly about 0 whereas if

µ > 0 the process will, on average, result in increasing values ofX(t) as time progresses

and vice-versa for µ < 0. How similarly different instances of the chain behave is de-

termined by the variance, σ2. In application to capture-recapture experiments one can

imagine that body mass is constantly fluctuating and this process runs continuously

for all animals. The observations on the capture times form discrete snapshots for

each individual defining a new process Zt = X(t) for the discrete times t = 1, . . . , τ .

From property (i) it follows that the distribution of the values in this process are

determined by the differences between subsequent capture occasions. Under the as-

sumption that all intervals have unit length Zt − Zt−1 is normally distributed with

mean µ and variance σ2. A special case of property (ii) is that for each t = 1, . . . , τ

the difference Zt − Zt−1 is independent of the differences for all previous intervals.

Writing Zt = Zt−1 + (Zt − Zt−1) it follows that Zt|Zt−1, . . . , Z0 ∼ Zt|Zt−1 and hence

the process forms a Markov chain. To allow for different conditions between each pair

of capture occasions I introduce separate drift parameters, µ1, . . . , µτ−1, such that:

Zt|Zt−1 = zt−1 ∼ N(zt−1 + µt−1, σ
2)
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From this distribution the conditional likelihood contribution for an individual cap-

tured once and then on all remaining occasions is simply a product of univariate

normal density functions.

The model becomes more complicated when we consider the possibility that an

individual evades capture on some occasions. First, consider the situation for an

individual which is last captured at time b < τ . For each ∆ = 0, . . . , τ − b the

conditional distribution of Zb+∆|Zb = zb is defined by writing Zb+∆ as a sum of

independent normal random variables:

Zb+∆ = zb +
∆−1
∑

r=b

(Zr+1 − Zr)

As expected, this shows that Zb+∆ ∼ N(zb+
∑∆−1

r=b µr,∆σ
2). In order to build the joint

density of the unobserved values it is necessary to consider the correlation between

the variables. From 2.2 it follows that the random vector Z∗ = (Zb+1, . . . , Zτ)T can

be written in terms of linear combinations of independent N(0, 1) random variables,

W1, . . . ,Wτ−b:

Z∗ =















Zb + µb

Zb + µb + µb+1

...

Zb +
∑τ−1

r=b µr















+ σ















1 0 0 · · · 0

1 1 0 · · · 0
...

...
...

...
...

1 1 1 · · · 1





























W1

W2

...

Wτ−b















(2.1)

By definition the distribution of W∗ given Zb is multivariate normal with mean:

E(Z|Zb = zb) =
(

zb + µb, zb + µb + µb+1, . . . , zb +
∑τ−1

r=b µr

)T

and variance-covariance matrix:

V ar(Z∗|Zb = zb) = σ2



















1 1 1 · · · 1

1 2 2 · · · 2

1 2 3 · · · 3
...

...
...

...
...

1 2 3 · · · τ − b
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When several missing observations occur in the middle of the history it becomes

necessary to condition not only on the previous observation but also on the observation

directly following. Suppose an individual is observed at times t and t+s+1 but not on

the s occasions between. Using the same argument as in equation 2.1 the distribution

of Z∗∗ = (Zi,t+1, . . . , Zi,t+s)
T conditional on both Zit and Zi,t+s+1 is again multivariate

normal with mean:

E(Z∗∗|Zt = zt, Zt+s+1 = zt+s+1) =
1

s+ 1















(s)(zt + µt) + (zt+s+1 −
∑t+s

r=t+1 µr)

(s− 1)(zt + µt + µt+1) + 2(zt+s+1 −
∑t+s

r=t+2 µr)
...

(Zt +
∑t+s−1

r=t µr) + s(zt+s+1 − µt+s)















and variance-covariance matrix:

V ar(Z∗∗|Zt = zt, Zt+s+1 = zt+s+1) =
σ2

s+ 1



















s s− 1 s− 2 . . . 1

s− 1 2(s− 2) 2(s− 3) . . . 2

s− 2 2(s− 2) 3(s− 3) . . . 3
...

...
...

...

1 2 3 . . . s



















.

In general, I will refer to the probability density function of a set missing covariate

values conditional on observed information simply as f(·|·). In most cases it is clear

from context which random variables are being considered and only when necessary

for clarity will they be included as subscripts.

As in the methods described in section 1.2 involving simpler covariate types,

modelling the capture and survival follows a GLM strategy. As in (Lebreton et al.,

1992) I use a logistic model such that given the covariate value for individual i at time

t, zit, the survival and capture probabilities are:

φit = φ(zit) =
exp(βs0 + βs1zit)

1 + exp(βs0 + βs1zit)

pit = p(zit) =
exp(βc0 + βc1zit)

1 + exp(βc0 + βc1zit)
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In the GLM framework it is common to write these functions as inverses:

µs = βs0 + βs1zit = log

(

φit

1 − φit

)

µc = βc0 + βc1zit = log

(

pit

1 − pit

)

where µs and µc are the linear predictors of survival and capture. The parameters βs

and βc are of primary interest since they describe how the individual behaviour varies

with the covariate.

Modelling in this manner assumes that both survival from t to t+ 1 and capture

at time t are dependent only upon the value of the covariate at time t. This is highly

plausible for the capture events which are assumed to be instantaneous, but it seems

likely that survival depends at least on all values of the covariate between the two

capture times. However, a model that incorporates the exact path is impossible in

capture-recapture because individuals can only be observed on the discrete capture

occasions. Instead, I view the quantity φit as an expected survival probability ac-

counting for all paths starting at the value zit at time t. Apart from the assumption

of homogeneity of the capture and survival rates the other assumptions of the basic

CJS model are maintained. In particular, I assume that capture occasions are instan-

taneous, marks are never lost or mistakes made in recording data, trap deaths do not

occur, and individual histories are independent of one another.

Estimation of the parameters in this model using maximum likelihood methods

similar to those used for the basic CJS model would require manipulating the likeli-

hood contribution for each individual conditional on first capture times. Analogous

to the Arnason-Schwarz model, the conditional likelihood is formed by considering all

possible transitions between the observed weights to replace the missing data. Instead

of summing over discrete classes the continuous covariate case requires integration

over the continuous state space. Using the example capture history ωi = (0, 1, 0, 1, 0)

again, the likelihood contribution conditional on the first capture is:

Li = φ(zi2) ·

∫ ∞

−∞

(1 − p(z3))f(z3|zi2)φ(z3)f(zi4|z3)dz3 (2.2)

·p(zi4) ·

(

(1 − φ(zi4)) +

∫ ∞

−∞

(1 − p(z5))f(z5|zi4)dz5

)
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The functional forms of φit and pit have been used here to emphasize the dependence

of the different parameters on the unknown values. For this individual alone it can

be seen that maximization is not straightforward, even though in this simple case the

multivariate distribution is avoided because the missing observations occur singly. In

cases where an animal has not been captured on several subsequent occasions all paths

must be considered giving rise to multiple integrals of arbitrary dimension. For this

problem, maximizing the likelihood using standard techniques becomes impossible.

Instead, I turn first to the EM-algorithm and follow the approach of Van Deusen

(2002), and then I consider a Bayesian approach to the problem.

2.3 Estimation via EM-algorithm

One method used by many statisticians for estimation in complex missing data prob-

lems is the Expectation-Maximization (EM) algorithm, a frequentist technique that

provides an iterative solution to finding the MLE’s. The EM was first formalized by

Dempster et al. (1977) in which the authors develop the algorithm as a generalization

of several existing methods and demonstrate it’s use in a variety of problems. They

also provide theory showing that estimates from the EM-algorithm are guaranteed

to converge to the MLE’s as the number of iterations increases, provided that a few,

weak regularity conditions are satisfied.

The basic problem considered by Dempster et al. (1977) is estimation of a set

of parameters, θ, in situations where the observed data is in some way incomplete.

The general structure of the problem involves a set of observed data, y, and a set of

unobserved data, z, whose combination forms the complete data-set, x = y ∪ z. It

is assumed that a one-to-many mapping exists between the observed and complete

sample spaces such that that the observed data does not uniquely define the complete

data set. In the simplest form, this includes problems where data from a set of

individuals is missing at random and can take many different true values, exactly as

in the capture-recapture situation. More complex situations, like problems involving

latent variables which are inherently missing for all observations but whose knowledge

simplifies the data structure, also fall under the general framework.
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Rather than working with the likelihood based on the observed data, inference

from the the EM-algorithm relies on the complete data log-likelihood (CDLL). Letting

p(x; θ) be the density of the complete data, the CDLL is simply l = log(p(x; θ))

considered as a function of the parameter values. Of course, based on the observed

data it is impossible to know the true value of the CDLL for any set of parameters. To

overcome this the EM-algorithm iterates between two steps; conceptually these involve

constructing an estimate to the CDLL based on the current parameter estimates

and then updating these estimates by maximization. In the first step, called the

Expectation or E-step, the value of the CDLL is approximated by computing its

expected value conditional on the observed data and the current parameter estimates.

On the kth iteration with the previous parameter estimates denoted by θ(k−1) this

yields a function of the parameter values:

Q(θ|θ(k−1)) = E(log p(x; θ)|y, θ).

In the Maximization or M-step, new estimates are computed by treating Q(θ|θ(k−1))

as if it were the true CDLL and maximizing to find the MLE’s. Iteration provides a

sequence of estimates for the parameters, θ(k), which converge to the true MLE values

as k → ∞. In practise, the algorithm is iterated many times until some convergence

criterion is met and the final parameter values are used as estimates.

The obvious advantage of the EM-algorithm in the capture-recapture problem

incorporating continuous covariates is the substitution of the CDLL for the complex

observed likelihood. In this scenario completing the data set involves two steps:

filling in the missing covariate values and determining the survival status. Since all

estimation is performed conditional on the first capture occasion, this is only done for

t > ai for each individual. Combining the notation developed above and in section

2.1, I will denote the complete data-set involving full records of the capture, survival,

and covariate status for all individuals by x, and the full set of parameters by θ. The

full data likelihood is:

L(θ; x) =

n
∏

i=1

τ
∏

t=ai+1

[

f(zit|zit−1) ·
(

φsit

it−1(1 − φit−1)1−sit
)sit−1

(

pωit

it (1 − pit)
1−ωit

)sit
]

.

(2.3)
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This expression follows directly from the EM implementation of Van Deusen (2002)

for the use of discrete covariates with one change. Van Deusen (2002) includes an

extra exponent on the covariate terms, f(zit|zit−1)sit, so that only values of zit before

each animals death affect the likelihood. The likelihood in equation 2.3 includes values

of zit for ai < t ≤ τ for all individuals. While this may seem peculiar, I regard these

extra covariates as values that might have been realized if the animal had continued

to live. In truth, this simply represents a larger completion of the data set and has

no effect other than to simplify some of the calculations here in the EM and later in

the Bayesian approach.

Along with removing the complex multi-dimensional integrals, completing the

data allows me to break the likelihood into three components each containing pa-

rameters from only one part of the model. Taking the logarithm of equation 2.3,

the CDLL can be written as the sum of separate log-likelihood contributions for the

models of the covariate drift, survival, and capture:

lz =

n
∑

i=1

τ
∑

t=ai+1

log f(zit|zit−1) (2.4)

ls =

n
∑

i=1

τ
∑

t=ai+1

sitsit−1 log φit + (1 − sit)sit−1 log(1 − φit) (2.5)

lc =

n
∑

i=1

τ
∑

t=ai+1

sitωit log pit + sit(1 − ωit) log(1 − pit). (2.6)

By splitting the likelihood like this the E and M steps can be divided into three parts

each operating on only one of the model components.

Unfortunately, while the expression of the CDLL as the sum of these three contri-

butions is much simpler than the observed data likelihood, computation of the E-step

in this problem turns out to be very cumbersome. Consider first computing the ex-

pected value of the covariate contribution, lz. By linearity the expected value can be

simplified into a sum of univariate expectations:

E(lz|Y, θ) =
n
∑

i=1

τ
∑

t=ai+1

logE(f(zit|zit−1)|Y, θ).

However, each of these univariate quantities is in fact quite complicated to compute.
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Depending on the exact pattern of missing data, E(lz|Y, θ) can have many different

forms based on properties of the MVN distribution discussed in section 2.2. Particu-

larly difficult to handle are the expressions arising from long strings of missing values.

On top of this, computing the expected values of the other contributions requires

finding the expectation of sit on occasions when zit was not observed. Exactly as

before, this requires high dimensional integrals to account for all possible values of

zit for t > bi for each individual. These integrals also involve combinations of lo-

gistic functions, through φit and pit, and the MVN density, through f(zit|zit−1), and

analytic solutions do not exist. Because of these difficulties the EM cannot be used

directly and instead I consider a variant of the EM designed to simplify the E-step

using numerical integration.

2.3.1 Numerical Integration via MCMC

From the work in the previous section it may appear that the EM algorithm has

returned to the same problem that motivated its use, how to work with expressions

involving complicated integration. In truth, the situation is greatly improved. Recall

that in computing the MLE’s directly from the observed data it is necessary to solve

derivatives of the integral equations. In the E-step of the EM algorithm, similar

integrals arise but they need only be evaluated for the specific parameter values given

on the previous M-step. This is a much simpler operation than differentiation and

while there are no analytic solutions, the integrals can be evaluated numerically using

Monte Carlo integration. In particular, I will make use of Markov Chain Monte

Carlo (MCMC) techniques through the Metropolis-Hastings (MH) algorithm and its

derivatives.

The driving idea behind Monte Carlo integration is quite simple. Suppose that

we are interested in computing the expected value of some function, g(X), where X is

a random variable or vector with density p(·). Assuming that it is possible to simulate

observations x1, . . . , xM from p(·), the intuitive estimate is:

̂E(g(X)) =
1

M

M
∑

m=1

g(xm)
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This estimator is unbiased and also consistent by the weak law of large numbers. In

the words of Gilks et al. (1996): “Monte Carlo integration draws samples from the

required distribution, and then forms sample averages to approximate expectations”.

Of course, how the sample is generated from the arbitrary distribution p(·) is not so

obvious.

One set of methods that has been developed to generate such samples is MCMC.

Simply put, the goal in MCMC is to construct a Markov chain, Xt, whose stationary

distribution matches the desired target, p(·). To do this one must find an appropriate

transition kernel, P (A|Xt = xt), defining the probability that Xt+1 ∈ A given that

Xt = xt. One method of finding such a transition kernel leads to the MH algorithm.

Following the development of Chib and Greenberg (1995), suppose that the kernel is

dissected into two components such that:

P (A|Xt = x) =

∫

A

q(y|x)dy + r(x)I[x ∈ A]

Here q(y|x) is the conditional density of the kernel at y 6= x, with the stipulation that

q(x|x) = 0, and r(x) = 1 −
∫

q(y|x)dy is the probability that the chain remains at

x. The Markov chain generated from this kernel will have invariant distribution p(·)

if it satisfies the reversibility (Chib and Greenberg, 1995) or detailed-balance (Gilks

et al., 1996):

p(x)q(y|x) = p(y)q(x|y) (2.7)

If one is lucky enough to find such a function, q(·|·), then the problem is solved im-

mediately, but this is unlikely for complex models. Instead, the MH algorithm begins

with an arbitrary conditional density and modifies it to satisfy equation 2.7 by intro-

ducing a new probability function that regulates how often the possible transitions

occur. Suppose that for some pair x and y reversibility is not satisfied because the

left-hand side of equation 2.8 is too large:

p(x)q(y|x) > p(y)q(x|y) (2.8)

Heuristically, this is interpreted as indicating that moves from x to y occur too often

relative to transitions in the opposite direction (Chib and Greenberg, 1995). To



CHAPTER 2. METHODOLOGY 22

balance this, the left side is multiplied by 0 ≤ α(y|x) ≤ 1 and the right by 0 ≤

α(x|y) ≤ 1 to generate the equation:

p(y)q(y|x)α(y|x) = p(x)q(x|y)α(x|y).

This equation has an infinite number of solutions and is constrained by settings

α(x|y) = 1 which yields the unique solution:

α(y|x) =
p(x)q(y|x)

p(y)q(x|y)
(2.9)

Starting from the opposite inequality in expression 2.8 one reaches the same result

with x and y interchanged. In the terminology of the MH algorithm, q(·|·) is called the

proposal (Gilks et al., 1996) or candidate (Chib and Greenberg, 1995) distribution,

α(·|·) is called the acceptance probability, and equation 2.9 is called the Hastings ratio.

The Markov chain generated from the kernel combining the chosen proposal distri-

bution and the Hastings ratio is guaranteed to converge to its invariant distribution,

the target, under further weak conditions (Chen et al., 2000).

Execution of the MH algorithm to generate a sample from the target distribution

can be summarized in three steps. Starting from the kth iteration the next element

in the chain is generated by:

1. Selecting a proposal y from q(y|xk).

2. Computing Hastings ratio for y and xk.

3. Setting xk+1 = y with probability α(y|xk), and xk+1 = xk otherwise.

These steps are then repeated until the chain converges and effects due to the choice

of the initial values, x0, are filtered out. At this point, observations from the Markov

chain will be distributed according to p(·) (Carlin and Louis, 2000).

A common method of simplifying the MH algorithm is to work separately on

different blocks of variables. If X is a vector quantity then it may be possible to divide

it into a set of components {X1, . . . , XB}, not necessarily all scalars, and update the

components one at a time. Making use of the notation of Gilks et al. (1996) I will
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denote the set of all components excluding Xb as X−b. Component Xb is updated by

drawing a sample from a proposal distribution conditional on the current values of all

other components, q(y|Xb = xb, X−b = x−b), and accepting or rejecting based on the

component-wise Hastings ratio. From the previous argument it follows that for each

component the Markov chain converges to the stationary distribution p(xk|x−k), but

it can also be shown that the full vector X updated in this manner also converges

to the target distribution (Chib and Greenberg, 1995). This modification is called

the block-at-a-time algorithm by Chib and Greenberg (1995) or the single component

MH by Gilks et al. (1996).

Choosing the proposal distribution appropriately can also greatly simplify the

algorithm. A common choice is to use a proposal that does not depend on the current

value of the component being sampled so that q(y|xb, x−b) = q(y|x−b). This type

of chain is referred to as an independence sampler (Gilks et al., 1996; Chib and

Greenberg, 1995). Gilks et al. (1996) notes that a convenient independence sampler

often used is the normal distribution chosen to match p(·) in both spread and location.

Another popular method of generating proposals is to sample directly from the full

conditionals of each component (Gilks, 1996). For component Xb the full conditional

is defined as p(xb|x−b) and can be found in most cases simply by isolating the terms of

p(·) involving xk. When using the full conditional as the proposal, all terms in equation

2.9 cancel leaving α(y|xb, x−b) = 1 for all y so that no proposal is ever rejected.

In the specific case where it is possible to sample from the full conditionals for all

components of X the algorithm is known as Gibbs sampling and has been explored

extensively. Otherwise, it is common practise to sample from the full conditionals

when possible and use other proposal distributions for the more complex components.

This is commonly termed the MH-within Gibbs algorithm, though reversing this name

gives a much more accurate description of its true nature (Chib and Greenberg, 1995;

Carlin and Louis, 2000).

Choice of the proposal distribution should also be motivated by how well the

resulting chain samples from the target distribution. Poor choices can result in chains

that become stuck at some values in the sample space while entirely missing others.

Particularly important in determining how well the chain mixes is the variance of the
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proposal distribution relative to the target (Chen et al., 2000). If the variance of the

chosen distribution is too large then many values will be proposed that have small

density under p(·) and the chain will move slowly. Similarly, if the relative variance

is too small then many iterations will be needed reach the values where the density is

low, usually in the tails of the distribution. Both of these situations lead to inefficient

chains that must be run for longer periods in order to compute accurate estimates.

Along with choosing an appropriate proposal several other considerations must

be accounted for in any implementation of MH. Most critical are determining the

number of samples required to cover the entire distribution and the burn-in period

needed to reach convergence (Gilks et al., 1996). Sampling can also be improved by

thinning the chain and keeping only observations at evenly spaced steps. This limits

the dependence between observations caused by the correlation structure inherent in

the construction of the Markov chain. These issues are discussed in depth by Raftery

and Lewis (1996) along with introduction of the program gibbsit which uses a sample

chain to suggest appropriate values for the chain length, burn-in, and sampling step

size. Further concerns arise in choosing appropriate starting values and deciding

on the optimal order for updating the components in the block-at-a-time algorithm

(Gilks et al., 1996). In both the proceeding simulations and data analysis these issues

are dealt with very simplistically. Convergence of the chain and burn-in time are

both judged visually using trace plots of the iterations and starting values are chosen

arbitrarily with little concern for efficiency. These matters should be addressed with

more concrete solutions in serious applications.

2.3.2 Monte Carlo Integration and the EM-algorithm

Using the MH algorithm to approximate the expected values in the E-step results in

a Monte Carlo EM (MCEM) algorithm. This approach originated from work by Wei

and Tanner in the early 1990’s and has specific application in problems where the

E-step is too complex to compute (Deltour et al., 1999). In a problem similar to this,

Ibrahim et al. (1999) use the MCEM to introduce continuous covariates into logistic

regression models when some covariate values are missing. The capture-recapture
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scenario is distinguished by the fact that for individuals with missing covariates, the

response variable is also missing.

In application to the CJS drift model, the MCEM is very simple to implement.

Recall that parameters are updated on the M-step and assumed to be known constants

on the E-step. To estimate the expected CDLL, I use the MH algorithm to sample

complete data sets consistent with both the observed data and the current parameter

values and compute the average likelihood. Before proceeding the CDLL is simplified

by introducing the statistic di = max{t = ai, . . . , τ : sit = 1} for each individual.

This statistic represents the last time that individual i was alive and forms a sufficient

statistic for the vector si conditional on the first capture. The new complete data

likelihood is:

 L(θ; x) =
n
∏

i=1

[

τ
∏

t=ai+1

f(zit|zi,t+1) ·

di−1
∏

t=ai

φit(1 − φidi
) ·

d
∏

t=ai+1

(pωit

it (1 − pωit

it ))

]

(2.10)

and the new CDLL contributions for the models of the covariate, capture, and survival

are:

lz =

n
∑

i=1

τ
∑

t=ai+1

log f(zit|zit−1)

ls =

n
∑

i=1

di
∑

t=ai+1

log φit + log(1 − φidi
)

ls =
n
∑

i=1

di
∑

t=ai+1

(ωit log pit + (1 − ωit) log(1 − pit))

From these expressions the likelihood splits so that sampling can be performed in-

dependently for each individual. I also use the block-at-a-time algorithm separating

the data for each animal into the three basic components: zi, ωi, and si. Because

ωi is completely known this vector does not need to be sampled. Moreover, on each

iteration of the MH algorithm sampling the entire vector si is replaced by sampling

the single value di.

In equation 2.10 some element of zi occurs in every term of L(θ; x) and it follows

that the full conditional of zi is proportional to the entire complete data likelihood.
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This expression does not correspond with a known distribution and it cannot be

sampled directly, so I use an independence sampler instead. Following the recom-

mendations of Gilks et al. (1996), values for the missing covariates are proposed from

the multivariate normal distribution conditional on the observed covariate values with

mean and variance determined by the current parameter estimates. This approach

also seems highly sensible because the proposal matches exactly with the assumed

model of the covariate values. Given that the drift parameters found in the previous

M-step are µ1, . . . , µτ−1 and σ2, the proposal distribution for z is multivariate normal

with mean vector and variance matrix exactly as described in section 2.2. The corre-

sponding Hastings ratio for a proposed value of the covariates, z′, given the current

value, z, is:

α(z′|z) =
[
∏d−1

t=a φ(z′t) · (1 − φ(z′d))] · [
∏d

t=a+1 p(z
′
t)

ωt(1 − p(z′t))
(1−ωt)]

[
∏d−1

t=a φ(zt) · (1 − φ(zd))] · [
∏d

t=a+1 p(zt)ωt(1 − p(zt))(1−ωt)]

Perhaps surprisingly, this expression has a very simple interpretation. The new co-

variate values generated from the model of covariate drift will be accepted with higher

probability if they fit more closely with both the current estimates of d and the pa-

rameter values as compared with the old values in z. If the new values result in a

capture or survival event with very low probability then z′ will be rejected.

Sampling the values of d for each individual is simpler in that d is a discrete ran-

dom variable. This allows me to sample from the full conditional simply by computing

the probability that d takes each value from 1 to τ . For an individual whose current

complete covariate vector is z, the full conditional probability P (d = t|ω, z) for each

t is defined as:

P (d = t|z, ω, θ) =















0 t < b
1−φb

χb
t = b

� t
r=b+1(φt−1(1−pt))·(1−φt)I[t<τ ]

χb
b < t ≤ τ

The value χb in this expression is the probability of not being observed after time b

and is simply the sum of the numerators for t ≥ b. To sample d I generate a value

from a U(0, 1) random variable and match it with the correct value of t. Because
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it is possible to sample from the full conditional of d, this is considered as a Gibbs

sampling step within MH.

The biggest drawback in using the MCEM is that the asymptotic properties of the

EM are not maintained. Estimates produced will no longer converge point-wise to the

MLE’s due to the stochastic error introduced in the sampling process. Instead, the

algorithm may converge in probability (McLachlan and Krishnan, 1997) or produce a

chain whose stationary distribution covers the MLE’s (Diebolt and Ip, 1996). For this

reason, estimates are usually computed by averaging the results from many iterations

after the algorithm appears to have converged in distribution. Once again, the number

of E and M-steps required for convergence and the number of iterations needed to

provide accurate estimates are dealt with simplistically in the examples. Following

the suggestions of McLachlan and Krishnan (1997) trace plots are used to monitor

the convergence until the process has stabilized within a certain range of values.

More complex methods of monitoring convergence could be incorporated in future

applications.

A final difficulty encountered in using the MCEM is calculation of the variance

of the parameter estimates. Some techniques have been developed that estimate the

variances from a single pass through the algorithm but these are much more involved

and instead bootstrapping is often used to estimate the standard errors (McLach-

lan and Krishnan, 1997). In a non-parametric bootstrap approach, many bootstrap

samples are generated by resampling the original dataset, and parameter values are

computed for each by repeating the MCEM. Under the assumption that the original

data set represents a true random sample from the population, the empirical distri-

bution of the bootstrap estimates can be used to approximate the true distribution.

This is the method I use in the following examples.

2.4 A Bayesian Approach

The approach in a Bayesian analysis is fundamentally different to the classical view of

statistics. In the classical approach, parameters are viewed as fixed constants unknown

to the experimenter; only the data are considered to be random and modelled using
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probabilities. Bayesian statistics works on the alternative premise that parameters are

random variables no different from data. In the Bayesian paradigm, information from

the experiment is used to construct a distribution, called the posterior, that describes

how possible values of the parameter rank in plausibility given the observed data.

Inference about the parameters involves computing different statistics to determine

which parameters or sets of parameters have the highest probability given the observed

data. This perspective provides a completely different approach to estimating the

parameters in the CJS drift model.

Regardless of the exact problem, Bayesian analysis follows a strict recipe com-

bining two ingredients. The first is the prior distribution which describes the exper-

imenter’s knowledge about the parameter values before the experiment begins. This

distribution can be chosen in many different ways, as will be discussed, but in general

it is up to the experimenter to choose a distribution that ranks the values in the

parameter space according to her subjective knowledge about the system. Extend-

ing the notation of the previous sections, θ will denote the set of all parameters and

π(θ) the prior distribution. Data gathered during the experiment, denoted by x, is

incorporated into the analysis through the second ingredient, the likelihood function,

L(θ; x). Conditioning on the parameter values, these two functions can be multiplied

to define a joint distribution for both the data and the parameter values:

p(x, θ) == p(x|θ)π(theta)L(θ; x)π(θ) (2.11)

To determine the posterior distribution of the parameters conditional on the data,

π(θ|x), Bayes’ theorem is used to reverse the conditioning in expression 2.11 (Carlin

and Louis, 2000):

p(θ|x) =
p(θ,x)

∫

p(θ,x)dθ
=

π(θ)L(θ; x)
∫

π(θ)L(θ; x)dθ

In most cases, the normalizing constant in the denominator can be dropped and the

posterior is uniquely defined by the proportionality statement:

p(θ|x) ∝ π(θ)L(θ; x)

This statement also summarizes very nicely the fundamental idea behind all Bayesian
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analysis. In essence, previous knowledge from the prior is combined with new informa-

tion gained during the experiment using Bayes’ theorem to condition on the observed

data. As more experiments are performed, the process can be repeated starting with

the updated prior, leading to a succession of more informative posterior distributions.

The single step that is often the most difficult in a Bayesian analysis is construc-

tion of a reasonable prior distribution before conducting the experiment. This process

is also strongly criticized by frequentists who challenge that the prior distribution rep-

resents subjective views about the parameters and that different priors may lead to

very different conclusions. In most situations the prior distribution is actually built

from information gained during previous studies or pilot projects, and reflects expert

knowledge about the underlying physical or biological system. Moreover, in cases

where no previous information is available it is common to use a non-informative

prior distribution to limit the effects on the final inference (Carlin and Louis, 2000).

This can be done by choosing a distribution which varies widely over the parameter

space without considerable mass or density at any specific point and in the extreme

case produces a flat prior with equal probability on each point in the parameter space.

For continuous parameter spaces such distributions are called improper priors because

it is impossible to construct a density equal at all points which integrates to 1. How-

ever, setting π(θ) = c for any c ∈ R in equation 2.4 results in a cancellation such that

the posterior is simply proportional to L(θ; x).

Another method used for constructing priors is to choose distributions that sim-

plify the calculations needed to make inference. One way of doing this is to choose

a prior distribution that results in a well known posterior distribution. Particularly

appealing are the classes of conjugate priors for which the prior and posterior both

belong to the same distributional family (Carlin and Louis, 2000). While choosing

the prior for computational simplicity rather than to reflect the experimenter’s true

beliefs is frowned upon by strict Bayesian statisticians, using conjugate priors is a

very common practise.

In the simulations and analysis presented in chapter 3, I assume that no previous

information is available about any of the parameters and use non-informative priors.

The prior distribution is also broken into three independent components for the models
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of covariate drift, capture, and survival. In total, the drift model contains τ different

parameters, µ1, . . . , µτ−1 and σ2 which I also assume to be independent. For the drift

mean, µt, I use a normal prior with mean 0 and large prior variance, σ2
µ so that the

density is spread as widely and evenly as possible:

π(µi) ∝ exp

{

−
µ2

t

2σ2
µ

}

This distribution is also the conjugate prior for the drift means. Similarly, the conju-

gate family for σ2 is the inverse gamma distribution with parameters ασ and βσ:

π(σ2) ∝

(

1

σ2

)ασ+1

exp

{

−
1

βσσ2

}

The hyper-parameters ασ and βσ are chosen so that the mean of this distribution is

1 and variance is again very large. The remaining parameters in the model are the

coefficients in the logistic regression equations for capture and survival and compu-

tations are greatly simplified if improper flat priors are used such that π(α0, α1) and

π(β0, β1) are uniformly equal to 1. Following the assumption of independence between

the three sets of parameters the complete prior distribution is specified by:

π(θ) =
τ−1
∏

t=1

π(µt) · π(σ2) · π(βs)π(βc)

∝ exp

{

−

∑τ−1
t=1 µ

2
t

2σ2
µ

−
1

βσσ2

}

·

(

1

σ2

)ασ+1

(2.12)

Of course, any information that is available about these parameters should be incor-

porated to make priors specific to each application. The likelihood does not change

from the frequentist approach and remains exactly as in 2.10.

While the posterior distribution contains all information about the parameters,

it is usually too complicated to interpret directly. Instead, summary statistics are

used to describe the posterior and indicate which parameter values have the highest

probability. Carlin and Louis (2000) suggests a summary involving 3 important com-

ponents. First, point estimates are given for each parameter to indicate the centre of

the posterior distribution. Commonly either the mode or the mean of the posterior
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are given as point estimates. I have chosen to use the mean because it minimizes

the posterior variance with respect to θ̂(x), V = Eθ|X [(θ̂(X)− θ)2] over all estimators

θ̂(X) (Carlin and Louis, 2000). Interval estimates are used to judge the precision of

these estimates and the variance of the posterior distribution. In Bayesian statistics

these are called credible sets, and a (1 − α)100% credible set is any subset C ∈ Θ

satisfying:

P (θ ∈ C) ≥ 1 − α

Ideally, C should be chosen so that it contains the values most probable under π(θ|x),

i.e. those with the highest posterior density (HPD), but this can be difficult to compute

and equal tail intervals are used instead (Carlin and Louis, 2000). Finally, Carlin and

Louis (2000) suggest providing plots of the posterior density to convey the major

features of the distribution.

In reporting the conclusions of the simulations and analysis in sections 3.1 and

3.2 I have included point estimates, interval estimates, and plots where appropriate.

Plots of the distributions are somewhat revealing for the CJS drift model, but the high

dimensionality and correlation between some of the parameters make them difficult

to interpret. As in the majority of Bayesian analyses, evaluation of the point and

interval estimates is completely impossible (Gilks et al., 1996). Exactly as in the EM

algorithm, problems arise in computing expected values that involve high dimensional

integrals and can only be computed numerically. For this, I turn again to MCMC

methods and the MH algorithm.

2.4.1 Monte Carlo Estimation for the Bayesian Approach

To sample from the Bayesian posterior distribution I again use the block-at-a-time

MH method. Because parameters behave as random variables, several more blocks

must be updated on each iteration. Along with the data components for each individ-

ual described in 2.3.2, the parameters are broken into components for the covariate

drift means, drift variance, and the regression coefficients of the capture and survival

models. In total, each iteration of the MH algorithm requires 6 separate updates.
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Solving for the full conditionals of the missing data variables from the Bayesian pos-

terior distribution shows that they are exactly as described in section 2.3.2, and hence,

the methods of sampling z and d for each individual are unchanged. It remains to

define steps to simulate the model parameters.

After generating a complete data-set for each individual the drift means and vari-

ance are the first to be updated. For the vector of drift means, µ, the full conditional

isolated from the posterior distribution is given by:

π(µ|X, θ−µ) ∝
n
∏

i=1

τ
∏

t=ai+1

f(zit|zit−1) · π(µ)

=

τ−1
∏

t=1

[

n
∏

i=1

f(zit+1|zit)
I[ai<t] · π(µt)

]

The assumption of independence made in defining the prior has carried over to the

posterior so that each µt can be generated independently. Moreover:

µt|X, θ−µ ∼ N





∑

(zit+1 − zit) + σ2

σ2
µ
µt0

n+ σ2

σ2
µ

,
σ2

n+ σ2

σ2
µ





a univariate normal distribution that is easily simulated using any statistical package.

For σ2 the full conditional distribution is given by the expression:

π(σ2|X, θ−σ2) ∝

(

1

σ2

) � n
i=1(τ−ai)

2
+α0+1

exp

{

−
1

σ2

(

1

β0
+

∑n

i=1

∑τ−1
t=ai

(zit+1 − zit − µt)
2

2

)}

This shows that conditional on the other variables, the variance follows an inverse

gamma distribution:

σ2|X, θ−σ2 ∼ IG





∑n
i=1(τ − ai)

2
+ ασ ,

(

1

βσ

+

∑n
i=1

∑τ+1
t=ai

(zit+1 − zit − µt)
2

2

)−1




Again, samples from this distribution are easily generated either directly or by in-

verting a simulated value from the corresponding gamma distribution. Both of these

cases illustrate the advantage of using conjugate priors. Carefully choosing the priors

has led to convenient full conditionals.
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Sampling the coefficients of the regression models is not so simple. The full

conditional distributions that result are quite complicated and cannot be used directly.

As with the missing covariates I turn to an independence sampler approach based on

a MVN proposal distribution. For the model of the capture process, the location

and spread of the proposal distribution are chosen by conducting a logistic regression

using the current complete capture indicators for each individual as the response

and the completed covariate data as the dependent variable. The resulting vector of

coefficients is used as the multivariate normal mean and the spread is determined by

the associated inverse information matrix. For an experiment involving only a single

covariate this defines a bivariate normal distribution from which a new proposal for the

coefficients is selected and accepted or rejected based on the Hastings ratio. Letting

βc represent the current coefficients, β̂ the coefficients resulting directly from the

logistic regression with observed information matrix I(β̂), and β ′
c the new proposal,

the Hastings ratio is for the new proposal is:

α(β ′
c|βc) =

∏n

i=1

∏di

t=ai+1

[

(p′it)
ωit(1 − (p′ωit

))1−ωit
]

· exp
{

−1
2
(β ′

c − β̂c)
T I(β̂c)(β

′
c − β̂c)

}

∏n

i=1

∏di

t=ai+1
[pωit

it (1 − pωit
)1−ωit ] · exp

{

−1
2
(βc − β̂c)T I(β̂c)(βc − β̂c)

}

Here p′it = p(zit; β
′
c) and pit = p(zit; βc). Once again, the Hastings ratio has a very

intuitive interpretation. Both the numerator and denominator can be broken into

two terms; the first of these is the likelihood for the capture events, and the second

measures the distance between the proposed or current parameters and the mean of

the normal distribution. If the proposed coefficients do not fit well with the data such

that the likelihood is small or have low density under the proposal distribution, then

they will be rejected with high probability. Similarly, if the magnitude of β − β̂ is

large then the proposal will be accepted almost always. Exactly the same procedure

is used to sample the coefficients of the survival model. In sampling the regression

coefficients for both capture and survival it is important that the vector of coefficients

is simulated in a single step and not broken into smaller components. Within the

two logistic models, the regression parameters are highly correlated and sampling one

coefficient conditional on the other will lead to a chain that moves slowly taking many

more iterations to sufficiently cover the sample space.
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Using this MCMC setup the important Bayesian summary statistics can now

be computed. Alternating between the 6 steps, the Markov chain is iterated until

convergence. Point estimates are provided by the posterior means of each parameter

approximated by averaging over many observations from the tail of the chain. Interval

estimates are also computed using the observed quantiles of the tail to approximate

equal-tailed credible sets.



Chapter 3

Applications

3.1 Analysis of Simulated Data

In the course of this project I analyzed many different data sets in order to compare

and validate the estimation techniques. I have included the results from two specific

examples. The first demonstrates the use of the CJS drift model under ideal condi-

tions, and both methods produce very good estimates of the underlying survival and

capture processes for this data set. In contrast, the second data set has a change in

the capture coefficients that results in a much larger proportion of missing data and

poses a much bigger challenge. Full data MLE’s are used as a benchmark to judge

the performance of the two methods.

Both simulations described used exactly the same model of the covariate drift.

A total of n=200 individuals were included in each data set with τ = 5 different

capture occasions. For each individual the value of the covariate at time t = 1 was

randomly selected from a normal distribution with mean 100 and variance 5 and

the remaining values were generated from the MVN drift model with mean vector

µ = (10,−1, 1,−10). Keeping with the analogy of body mass, I chose these values to

suggest a population with a very good initial year in which the average animal gains

10% of its body mass, followed by a weakly poor year, a weakly good year, and a

very poor year. The constant drift variance was σ2 = 5. This value allowed some

animals to go against the trend in the weak years, but in the very good year it was

35
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Figure 3.1: Sample covariate values for 4 individuals from the first simulation, each
with a different first capture occasion. Solid points represent occasions when the
animal was captured and the covariate was recorded, open circles represent occasions
when the animal was not captured. The broken line shows the mean trend in the
covariate value.

unlikely for an individual to lose weight and in the very poor year it was unlikely to

gain weight. In an attempt to maintain a fairly constant sample size across all capture

periods I arranged the animals so that 50 were first captured on each of t = 1, 2, 3, 4.

This avoided problems that arose in some simulations when very few animals were

captured on the final occasions because no new animals had been introduced into the

population since the first capture. Sample histories for 4 individuals from the first

simulation are shown in Figure 3.1.

The exact formulation of the MCEM and Bayesian MH estimation schemes was

also common to both simulations. The Bayesian analysis ran for a total of 5000

iterations and the parameter estimates from the final 500 were kept as a sample from
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Figure 3.2: Trace plots of the estimates of selected model parameters for each iter-
ation of the MCEM (top) and the Bayesian MH algorithm (bottom) from the first
simulation.

the posterior distribution. The MCEM ran for 25 EM iterations and each E-step

consisted of 50 MCMC iterates. Parameters produced on the final 5 EM iterations

were averaged to compute the parameter estimates. To check the convergence of the

algorithm, I produced trace plots of the parameter estimates for each iteration of the

MCEM and Bayesian methods, and these are included for selected parameters for

the first simulation (Figure 3.2). From these plots it is evident that the parameter

estimates converged quickly for both methods reaching a stable distribution in the

given number of iterations. Finally, for the MCEM 50 bootstrap simulations were

used to compute the variance estimates.
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Full Data MLE Bayesian MH MCEM

µ1 = 10.00 9.86 9.77 9.76
(9.13,10.5) (9.38,10.17) (9.19,10.38)

µ2 = −1.00 -0.99 -1.14 -0.96
(-1.46,-0.50) (-1.20,-0.77) (-1.49,-0.45)

µ3 = 1.00 0.94 0.88 0.892
(0.56,1.32) (0.71,1.05) (0.40,1.32)

µ4 = −10.00 -9.70 -9.78 -9.71
(-10.05,-9.36) (-9.98,-9.56) (-10.16,-9.49)

σ2 = 5.00 4.63 4.72 4.68
(3.84,5.70) (4.05,5.50) (3.93,5.10)

βs0 = −10.00 -15.25 -9.70 -14.28
(-21.23,-6.31) (-26.19,-6.77) (-30.64,-3.90)

βs1 = .115 0.150 0.165 0.155
(.079,.220) (.080,0.268) (.053,.276)

βc0 = −10.00 -8.83 -11.12 -10.59
(-13.80,-3.85) (-17.14,-5.89) (-20.31,-6.00)

βc1 = .115 0.103 0.126 0.112
(0.055,0.151) (0.073,0.184) (0.063,0.202)

Table 3.1: Results of the first simulation experiment. The first column gives the true
parameter values followed by the estimates from the different estimation methods.
Below each estimate are provided 95% confidence intervals for the full data MLE’s
and MCEM estimates, and 95% credible intervals for the Bayesian estimates.

To gauge the performance of the different methods I calculated the full data

MLE’s for both simulated data sets. These values are simply the estimates of the

drift parameters and regression coefficients computed using full knowledge of the data

including the unobserved covariates and actual survival indicators. These estimates

provide a target for the two new methods and gauge how accurate and precise a good

estimate could possibly be.

In the first simulation I chose the regression coefficients for the survival and

capture curves specifically so that the curves would be easy to recover. Both sets of

coefficients were the same, βc = βs = (−10, 0.115) and the resulting curves, shown in

Figures 3.3 & 3.4, share two important characteristics. First, the curves show a very
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strong trend over the observed range of the covariate that I hoped would be easily

detected and differentiated from a constant rate. Further, the values of both curves

remain above 0.5 throughout the entire range coming very close to 1 at the upper

limit. This meant the majority of animals were likely to survive and to be captured

on several occasions, and in fact those at the upper limit would be captured almost

surely. In total, 551 captures occurred out of a possible 1000.

Point estimates and interval estimates for the first simulation are reported in Ta-

ble 3.1. Plots of the estimated curves with approximated 95% confidence/credible

envelopes are shown in Figures 3.3 & 3.4. Both methods yielded very accurate esti-

mates and the point estimates lie close to the true values for all parameters both in

absolute value and relative to the full data MLE’s. Moreover, with the exception of a

single case the interval estimates all cover the true parameter values and in general are

well balanced on either side. The only interval that fails to do so is the Bayesian 95%

credible interval for µ4. However, 9 credible intervals were generated simultaneously

and so with probability possibly as low as 1− 0.959 = 0.37 at least one true value will

fall outside of the associated interval estimate. This failure is likely due to chance,

and the interval does in fact come very close to covering the true value of µ4, missing

by only 0.02 in the lower limit.

Precision of the estimates is gauged by the width of the corresponding intervals.

In all cases, the intervals are sufficiently narrow to show that the parameters are

significantly different from 0 at the 5% level, without correction for multiple compar-

isons. From this one would conclude that there is significant effect of the covariate

on both capture and survival and that the drift is different in each of the 5 years.

The intervals produced from the MCEM and Bayesian MH were relatively narrow

in comparison to the interval estimates for the full data MLE’s indicating little loss

in precision due to the missing data. This is also visible in the plots of the final

curves where the confidence/credible envelopes easily cover the true curves and are

only slightly wider than the confidence envelopes for the full data MLE’s. Not sur-

prisingly, the methods performed particularly well at the upper limit of the observed

covariate values where most captures occur. Unfortunately, even though it does give

some indication of the performance, comparing the intervals and envelopes for the
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Figure 3.3: Estimated survival curves for the first simulation using the three estima-
tion methods: full data MLE’s (left), MCEM (centre), and Bayesian approach (right).
The solid line in each plot shows the actual survival curve and the dashed line the esti-
mated curve. The dot-dash lines in the figures give the 95% confidence/credible inter-
vals for the value of φ(z). The observed range of covariate values was 86.5 ≤ z ≤ 122.7.
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Figure 3.4: Estimated capture curves for the first simulation using the three estimation
methods: full data MLE’s (left), MCEM (centre), and Bayesian approach (right). The
solid line in each plot shows the actual capture curve and the dashed line the estimated
curve. The dot-dash lines in the figures give the 95% confidence/credible intervals for
the value of p(z) for each z in the range of observed values.
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Bayesian method with those of the full data MLE’s is not strictly appropriate be-

cause of the different interpretation for confidence intervals and credible intervals. A

more appropriate comparison would use the Bayesian estimates from the full data in

place of the frequentist MLE’s.

To complete the steps of Bayesian inference recommended by Carlin and Louis

(2000) I have included plots of the posterior marginals. Histograms of the sampled

drift parameters for σ2 and µ1 are shown (Figure 3.5) with the fitted full conditional

curve. In both cases, the full conditional fits the histogram very well providing more

evidence that the algorithm has indeed converged. Plots of the marginals for the

three other drift means were very similar. Histograms of the sampled values of the

coefficients of the survival curve are also shown (Figure 3.6). These plots indicate that

both of these parameters had skewed distributions. Also important is the very strong

correlation between the two coefficients, visible in the centre plot. This correlation is

not surprising and was what necessitated sampling (βs1, βs2) as a single component

in the MH algorithm. Plots for the components of βc were very similar and are not

included.

In the second simulation I modified only the capture parameters. The new vector

of coefficients for capture was Bc = (0.10,−0.0011) and the effect of this change is

visible in Figure 3.8. The capture curve is almost flat, reaching a maximum near

0.51 and minimum of 0.49 over the observed range of covariates and is also turned so

that the capture probability actually decreases as the covariate increases. The major

result of this change is to lower the overall capture rate so that less information was

available for estimation; only 390 captures occurred in this simulation. Trace plots

showed again that the MCEM and Bayesian MH converged using the given schemes

and the resulting parameter estimates are shown in Table 3.2. Not surprisingly the

estimators did not perform as well as in the first simulation. While the point estimates

are reasonably close to the true parameter values and the interval estimates do cover

the true values in all but one case, the confidence/credible intervals for the MCEM

and Bayesian MH are very wide. I did not expect that either method would show a

significant effect of the covariate on capture because the full data MLE’s of βc1 is not

significantly different from 0. However, both methods do fail to detect the effect on
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Figure 3.5: Histograms of the sampled values of µ1 (left) and σ2 (right) for the
Bayesian MH method. The curves indicate the normal full conditional density for µ1

and inverse Gaussian for σ2.
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Figure 3.6: Histograms of the sampled values of βs0 (left) and βs1 (right). The centre
panel plot βs1 vs. βs0 for each of the 500 samples.
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Full Data MLE Bayesian MH MCEM

µ1 = 10.00 9.85 9.75 9.67
(9.13,10.6) (9.31,10.16) (8.64,10.67)

µ2 = −1.00 -0.98 -0.80 -0.77
(-1.46,-0.50) (-1.23,-0.36) (-1.31,-0.30)

µ3 = 1.00 0.94 0.91 0.94
(0.56,1.32) (0.54,1.30) (0.34,1.40)

µ4 = −10.00 -9.70 -9.83 -9.85
(-10.05,-9.36) (-10.21,-9.48) (-10.48,-9.19)

σ2 = 5.00 4.63 4.39 4.36
(3.84,5.70) (3.64,5.29) (3.43,4.78)

βs0 = −10.00 -13.77 -8.91 -8.03
(-21.23,-6.31) (-22.13,3.92) (-21.04,0.64)

βs1 = .115 0.150 0.100 0.090
(.079,.220) (-0.023,0.224) (-0.104,0.205)

βc0 = 0.100 1.50 2.80 3.55
(-1.85,4.85) (-1.05,7.07) (-4.55,10.57)

βc1 = −0.0011 -0.015 -0.026 -0.03
(-0.047,0.016) (-0.066,0.010) (-0.104,0.025)

Table 3.2: Results of the second simulation experiment. Below each point estimate
are provided 95% confidence intervals for the full data MLE’s and MCEM estimates,
and 95% credible intervals for the Bayesian estimates.

survival which is recovered by the full data MLE’s. This result is also evident in the

plots of the estimated survival curves (Figure 3.7) which have very large envelopes

that easily fit lines with constant probability.

From the plots and the results of the simulations shown in Tables 3.1 & 3.2 it

appears that the MCEM and Bayesian methods perform very similarly. Both produce

point estimates that are closer to the true value or have higher precision than the other

for some parameters, but neither performs uniformly better. There is, however, one

very major advantage to the Bayesian method: the algorithm does not have to be

repeated to produce variance estimates. The MCEM on the other hand has to be

repeated once for each bootstrap sample. This was very time consuming and limited
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Figure 3.7: Estimated survival curves for the second simulation using the three estima-
tion methods: full data MLE’s (left), MCEM (centre), and Bayesian approach (right).
The solid line in each plot shows the actual survival curve and the dashed line the
estimated curve. The dot-dash lines in the figures give the 95% confidence/credible
intervals for the value of φ(z) for each z in the range of observed values.
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Figure 3.8: Estimated capture curves resulting for the second simulation using the
three estimation methods: full data MLE’s (left), MCEM (centre), and Bayesian
approach (right). The solid line in each plot shows the actual capture curve and
the dashed line the estimated curve. The dot-dash lines in the figures give the 95%
confidence/credible intervals for the value of p(z) for each z in the range of observed
values.
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both the number of EM iterations and the number of MCMC iterations on each E-

step. In fact, in order to generate accurate estimates of the variances far more than

50 bootstrap samples should have been used, but this was simply not practical. With

only 50 samples the precision of the order statistics is very low and the bounds of the

95% confidence intervals should be treated as rough approximations.

3.2 Analysis of Snow Goose (Chen Caeruslescens)

Weight Data

The sample data set was provided by Dr. Evan Cooch of the Department of Natural

Resources, Cornell University. This data contains capture records for 31,240 individ-

ual snow geese (Chen Caeruslescens) observed over a 19 year period. In total, there

are 40,457 captures, an average of 1.30 per individual. Also provided for some recov-

eries are records of the bird’s body mass; length of the culmen, the exposed portion

of the beak; and the length of the tarsus, the lower part of the bird’s leg.

As an index of the bird’s overall health, Cooch recommends the ratio of body

mass to culmen length. If the index is based only on body mass then some birds

will have a higher index not because they are actually healthier but because they are

simply larger individuals. Most notably, the distribution of body mass is markedly

bimodal because of a difference in the mean weight of males and females, but this does

not mean that the larger males are healthier animals. Culmen length is a measure

of the size of the bird’s skeleton and remains virtually constant throughout it’s adult

life. The ratio of body mass to culmen length measures each bird’s fatness instead of

the absolute size, with the assumption that fatter birds are healthier. For this data

set the distribution of the ratio is both very symmetric and unimodal with a mean

value near 35 g/mm over all captures.

To run the analysis I found it necessary to remove many records from the data set.

Relatively few records contained values for both body mass and culmen length because

the researchers often failed to measure these values when the birds were captured. I

assumed that these values were missing purely at random and removed the entire
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Drift Parameters
µ4 µ5 µ6 µ7 µ8 σ2

0.24 1.25 0.41 -0.58 -0.12 2.40
(-0.29,0.66) (0.79,1.75) (0.10,0.82) (-0.88,-0.30) (-0.28,0.13) (2.08,2.72)

Survival and Capture Parameters
βs0 βs1 βc0 βc1

1.13 0.011 -6.20 0.118
(-2.75,7.77) (-0.16,0.12) (-7.99,-4.29) (0.06,0.17)

Table 3.3: Parameter estimates computed using the Bayesian MH algorithm. 95%
credible intervals for each parameter are given below the point estimates. The data
was chosen from years 4-9 of a much larger study. Hence, µ4 refers to the mean change
between years 4 and 5 in the original study, but between the 1st and 2nd years in the
selected data.

φ1 φ2 p1 p2

0.763 0.924 0.068 0.166
(0.581,0.883) (0.678,0.986) (0.045,0.101) (0.122,0.221)

Table 3.4: Estimated parameters for the Arnason-Schwarz model. The survival and
capture rates for strata k are denoted by φk and pk. 95% confidence intervals appear
below each estimate.

records without any adjustment. Several birds also had repeated captures in single

years with different values for either the body mass or the culmen length. When this

occurred I decided to keep only the final record and discard all others. To restrict the

size of the data set I also focused on 6 years of data, years 4 through 9. The reduced

data set contains a total of 1760 full records for 1511 individuals captured between

years 4 and 9. The average number of captures per individual in this subset is 1.17

and no individual has more than 4 complete records.

Based of the results from the simulations I decided to use the Bayesian method

first and postpone the MCEM. As in section 3.1, I ran the MH algorithm for a total

of 5000 iterations and retained the values from the last 500 as a sample from the
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posterior distribution. Trace plots suggest that the algorithm still converged very

quickly even with this larger data set (Figure 3.9). Estimates based on the sample are

given in Table 3.3 and plots of the resulting capture and survival curves are shown in

Figure 3.10.

The most significant result from the analysis is the strong relationship between

the health index and capture. Figure 3.10 shows that the capture rate increases with

the health of the bird starting near 0.01 for the least healthy and reaching a maximum

near 0.25 for the most healthy. Unfortunately, this result must be interpreted in light

of the fact that many records were removed from the data set; the capture rate is

much more reflective of the rate at which the researchers recorded both measurements

than the rate of capture. However, if the measurements in the data set are missing

purely at random then this result would still suggest that healthier birds were captured

significantly more often. The analysis also reveals that some years showed a significant

change in the populations overall health. In particular, years 5 and 6 produced overall

gains in health while year 7 produced a significant decline. I have contacted Cooch and

hope that he will be able to suggest reasons for these trends. Finally, the estimated

survival curve does show increasing rates with increasing health, as expected, but the

trend is not significant. In Figure 3.10 the credible envelope is very wide at all points

and a constant rate near 0.8 could very plausibly fit all animals. Once again, this

might be a result of thinning the data. Unlike the capture rate, if the records truly

are missing at random then the interpretation of the survival rate does not change.

It is simply as if many fewer capture occurred decreasing the amount of information

available to estimate the survival parameters, driving up the standard error of these

estimates, and making it more difficult to detect significant trends.

For validation I compared these results with estimates from a 2 strata multi-state

Arnason-Schwarz model. Without a priori knowledge of snow goose biology, I divided

the health index simply so that the same number of observations occurred in both

strata. Estimates of the survival and capture rates for this model were produced

using the package MARK developed for capture-recapture analysis by Dr. White of

the Department of Fishery and Wildlife Management at Colorado State University.

To match the assumptions of the CJS drift model, transition rates were allowed to
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Figure 3.9: Trace plots of the estimated model parameters for each iteration of the
Bayesian MH algorithm.
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Figure 3.10: Estimated survival (left) and capture (right) curves for the snow goose
data. The solid line on each plot shows the estimated curve and the dot-dash lines
give 95% credible envelopes for each value of the health index. The two dots in each
plot give the estimated rates with 95% confidence intervals for the 2 strata used in
the Arnason-Schwarz model and are centred at the middle of each strata.
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vary over time while the capture and survival parameters were held constant. The

resulting estimates of the survival and capture probabilities, given in Table 3.4 and

also visible in Figure 3.10, match very well with the results for the CJS drift model.

The capture rates centred at the middle of the two strata lie almost exactly on the

estimated continuous curve and confirm the significant increase in rate with increasing

health. Although the estimated survival rates do not match as well with the contin-

uous survival curve, the 95% confidence intervals indicate that these estimates are

very variable and do easily cover the curve at both locations. Better comparisons and

stronger validation might come from a model using more strata, but even a model

with 3 strata and constant transition rates could not be estimated by MARK because

of problems with parameter identifiability.

As for the simulated data sets I did repeat the analysis using the MCEM method,

but this yielded very peculiar results. While most of the parameters converged to

stable limits consistent with the Bayesian estimates, the coefficients of the survival

curve converged to very different values. Final parameter estimates were well outside

of the 95% credible intervals of the Bayesian estimates and the curve produced did

not match either the Bayesian estimated logistic curve or the point estimates of the

2 strata Arnason-Schwarz model. Even more peculiar was the fact that exactly the

same behaviour resulted when analyzing simulated data sets with similar parameter

values. In view of the performance on the simulated data sets in section 3.1, I do not

believe that this is the result of an error in the implementation. It is possible that

this method of estimation suffers from the same model identifiability problems of the

more flexible multi-strata models, but at the moment I am not able to present a clear

reason for these results.
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Conclusion

I believe that this project presents a significant contribution to capture-recapture

methodology. As noted in the introduction, previous methods for incorporating co-

variates into the CJS model require that the covariates be discrete, static, or common

to the entire population. Continuous time-dependent covariates have to be categorized

and forced into a multi-state model, and some information about the true relation-

ship between the covariate and survival is bound to be lost. Another disadvantage of

these multi-state models is that the number of parameters grows very quickly as more

states are used. As seen in the example, dividing a continuous variable into only a

few strata might not adequately describe the relationship between the covariate and

survival rates, but models with more strata can introduce confounding between the

different parameters. The CJS drift model solves these problems by imposing distri-

butional constraints so that continuous variables can be included as single covariates.

The number of parameters required is relatively small, and the logistic function linking

the covariates and the survival rate is flexible enough to fit most monotonic relation-

ships.

Many models of the covariate distribution could have been used, but I feel that the

drift model based on the Weiner process provides a very intuitive model capturing both

common trends and individual variation. I also envision many different adaptations

of this model to account for a variety of different situations. Possibly the most useful

adaptation would be a model in which magnitude and direction of drift is linked to the

50
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value of the covariate itself. In its simplest form, the drift parameter on each occasion

could take two values through a function like µt(zit) = µ1t + µ2tI[zit > z0]. Here

z0 might represent a cutoff between juveniles and adults so that young animals are

not subject to the same forces as mature animals. Depending on the amount of data

available, complex growth curves could also be incorporated so that µt(zit) takes a

continuum of values. Similar models could also be used to allow for differences between

male and female animals, animals living in different locations, or treatment groups in

a controlled experiment. Modelling in this manner would allow researchers to use the

CJS model not only to study capture and survival rates but also to understand much

more about the complex relationships between different covariates.

Along with variations in the model of the covariate distribution there are many

possible ways to link the covariates to the survival and capture rates. As noted by

Lebreton et al. (1992), logistic regression has many nice properties for describing

probabilities, but many other link functions could be used. One possibility is to

use a link function based on the proportional hazards model of survival analysis.

This model is designed to allow the extra flexibility of time dependent survival rates

while assuming that the ratio of the instantaneous death rate for any two sets of

covariates z1 6= z2 is a constant (Kalbfleisch and Prentice, 1980). The advantage is

that time-dependence is introduced with only one extra parameter for each capture

event. Exactly the same model could be used for the capture rates.

I would also like to see the application of these methods to more complex data

sets. Models using two or more continuous, time-dependent, individual covariates

should extend easily from this work by employing separate drift processes to describe

the changes in each variable, perhaps with covariance terms linking each pair. As

in Lebreton et al. (1992) indicator variables and interaction terms could be used

to study the associations between the covariates and the capture and survival for

different groups in the population. Discrete and continuous variables could be handled

simultaneously by mixing the CJS drift and Arnason-Schwarz models. In using any

of these more complex models, a researcher would need to develop suitable criteria for

selecting between different subsets of the variables. The most promising measure of

model fit is the Akaike Information Criterion which attempts to balance the desire for
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a close fitting model as measured by the likelihood value with the need for parsimony.

This is the criterion used by Lebreton et al. (1992). Other criteria might be based

solely on the likelihood of different models, the deviance statistic used in the study of

GLM, or Bayesian methods of model selection.

One concern that would definitely arise in using multiple covariates is that esti-

mation seems to require very large amounts of information. This is even visible in the

second simulation in which more than 300 captures occur over the 5 occasions, and

yet the strong trend in survival cannot be detected. In truth, the amount of informa-

tion in a data set depends on much more than just the number of captures because of

the interplay between the survival and capture events. Some strange situations might

arise where many captures occur but the observed covariates are grouped so that the

estimated curves have very low precision except perhaps in a very small region. In

higher dimensions this problem would be much worse and might prevent application

of these methods except in the most ideal situations.

Another major concern is the performance of the MCEM. While the theory be-

hind Bayesian analysis is well developed, the MCEM has not been so well explored.

Theories concerning the convergence and asymptotic properties of MCEM estimates

have been developed but rely on regularity conditions that may not be satisfied or

more complicated sampling schemes then the one used here (Tanner, 1993). I present

no guarantee that the estimates produced by averaging over several iterations of the

MCEM even satisfy simple properties like consistency and unbiasedness. These issues

are particularly pressing in light of the poor performance of the MCEM in analyzing

the sample data set. For now, I strongly recommend use of the Bayesian estimation

and feel that those unwilling to accept the Bayesian paradigm risk producing severely

flawed estimates of the survival and capture rates.
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