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Abstract

Unsupervised learning techniques are widely applied in exploratory analysis as the moti-
vation of further analysis. In functional data analysis, two typical topics of unsupervised
learning are functional principal component analysis and functional data clustering analysis.
In this study, besides reviewing the developed unsupervised learning techniques, we extend
unsupervised random forest clustering method to functional data and detect its shortages
and strength through comparisons with other clustering methods in simulation studies. Fi-
nally, both proposed method and developed unsupervised learning techniques are conducted
on a real data application: the analysis of the accuracy of the U.S. temperature prediction
from 2014 to 2017.

Keywords: Unsupervised Learning, Functional Data Analysis, Unsupervised Random For-
est, Functional Principal Component Analysis, Hierarchical Clustering, K-means Cluster-
ing, Gaussian Mixture Model-based Clustering, Weather Forecast Exploratory Analysis
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Chapter 1

Background

1.1 Literature Review

1.1.1 Overview of unsupervised learning

In statistical analysis and machine learning studies, two main categories of methodologies
are classified as supervised (with outcome or response) and unsupervised (without outcome
or response)[33]. Supervised studies are studies concerning the prediction of one or more
response variables Y1, Y2, ..., Ym through predictor variables X1, X2, ..., Xp [21]. With some
collected data (x1, y1), (x2, y2), ..., (xN , yN ), a model can be trained to estimate the response
variable Y of interest using part of the data as a training set. Then, with the remaining
data as a test set, the precision of the model can be evaluated through some loss function
L(y, ŷ), where y is the real value of the response variable, and the ŷ is the estimated value
from the model. However, in unsupervised studies, one or more variables may be of inter-
est in the data, without a response variable Y , or without a specific idea about what is
the response variable [21]. In this case, unsupervised studies studies are usually conducted
as exploratory analysis, i.e. with N observations and p variables (x1, x2, ..., xN ), an unsu-
pervised study involves detecting the properties or patterns of the joint distribution for
the p variables in the data. Thus, without a response variable, supervised models and loss
function for model evaluation cannot be specified, and the unsupervised methodologies are
developed for further exploratory analysis.

Principal component analysis

The focus of this thesis is on the unsupervised studies with real application. To be more
specific, principal component analysis (PCA) and clustering analysis are two main research
fields with a wide application to data exploratory analysis [18]. In multivariate data, PCA
is a method used for reducing the dimension as well as keeping most of the information
or variation in the original data [27]. It is popularly applied in biology [36] and toxicol-
ogy [26] because the dimension as well as the number of variables in the data are large,
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sometimes even larger than the number of observations. In biology, gene expression data
can be preprocessed by PCA for dimension reduction before further analysis [36]. We will
discuss this example in the section of review of clustering analysis. In toxicology, PCA can
be used in the estimation of the sources and types of some heavy metal contamination
in researches about water or land pollution. For instance, in research for toxic substance
source detection, Poland, Loska and Wiechula 2003 [26] discovered suspicious locations of
toxic substance sources based on the summary and visualization of PCA result.

The main idea of PCA is to reduce high or medium correlation among variables, through
constructing a new coordinate system with a set of transformed linear uncorrelated variables,
which are the so-called principal components (PCs). PCs are ordered by how much variation
of the original data can be explained, and each observation at each PC has a score; therefore,
when the number of PCs is less than the number of variables, all the observations can be rep-
resented in a lower dimensional space through their PC scores. Suppose N observations are
collected from the distribution of a multivariate variable X, {x1, ...,xN}, the classic analysis
obtains these scores from the covariance matrix of X, Σ = E[(X − E(X))(X − E(X))T ],
which is usually estimated using the sample covariance matrix S = 1

N

∑
(xi − x̄)(xi − x̄)T .

The procedure to achieve the PC scores can be decomposed into the following steps:

1. Obtain the eigenvalues and the corresponding eigenvectors of V .

2. Order the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp, and let αk be the eigenvector of Vk
corresponding to the kth largest eigenvalues λk.

3. For an original observation xi = (xi1, ..., xip)T , its kth PC score sik = (xi − x̄)Tαk,
and the observation xi can be reformed as xi = x̄ +

∑p
k=1 sikαk.

The sum of eigenvalues λ1 +λ2 + ...+λp =
∑p
i=1 Var(xi) is the total variability of the data.

For an eigenvalue λk, its proportion of variation explained is λk∑p

k=1 λk
. The eigenvectors

α1, ...,αp are the loadings of the kth PC, and are orthogonal with each other.

Clustering analysis

Clustering analysis, which is usually applied after PCA analysis, is another category of
techniques used in unsupervised learning. Its objective is to identify observed data into ho-
mogeneous groups as well as clusters without knowing their labels in advance. As a typical
exploratory analysis, clustering analysis has been involved in large amount of researches
from biology, meteorology to climatology. In biology, many researchers investigate potential
gene patterns and functions through classical clustering methods such as K-means or K-
centroid clustering, or their modified versions [36][6]. Additionally, in both meteorology and
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climatology, clustering algorithms can be performed on daily weather forecast data or his-
torical measured climate records, detecting possible regions with similar weather patterns,
or tracking change of climate within a wide area partitioned into smaller subregions[11][35].

There are two types of clustering algorithms, hierarchical clustering and non-hierarchical
clustering[18]. The main difference between them is that in hierarchical clustering, once an
observation is assigned to a cluster, it cannot move to any other clusters when the assigned
group is merged during iterations; however, in non-hierarchical clustering, the observations
may be assigned to different clusters before the final clustering decision. Hierarchical clus-
tering is a type of classical clustering method which determines the members of the clusters
through comparing the difference or distance between observations [21]. Under this setting,
with N observation, an N × N distance matrix is formed with distance measurements of
all the pairs of observations. A clustering algorithm is then applied to the distance ma-
trix so that the observations are sequentially clustered together based on the order of their
distance measurements. On the other hand, non-hierarchical clustering algorithms contains
two sub-types of clustering algorithms, partitioning clustering and model-based clustering.
The most famous partitioning clustering algorithm is the K-means algorithm [20]. With a
fixed number of clusters K, the K-means algorithm aims to find K clusters such that the
variances within each cluster are minimized and the variance between clusters is maximized.
In each iteration of the algorithm, the clustering result is re-evaluated for each observation
until all the observations are in the clusters with the mean they are closest to. For model-
based clustering, mixture distributions are fitted to the observations, and the estimation of
the parameters in the probability density functions (PDFs) and the clustering procedure is
obtained through maximizing the likelihood function.

1.1.2 Unsupervised learning on time series and functional data

Time series data is a type of high-dimensional multivariate data, because the dimension of
it can be considered to be the length of the observed time or the number of the observed
time points. The number of time points can be very large with long-term observation or
high frequency records such as stocking data, daily temperature records over years and long-
run machine monitoring[30]. In clustering analysis of unsupervised studies, two procedures
are usually used in the time series data. One is conducting the clustering methodologies
on the raw (or smoothed) discrete time series data directly, and the other is conducting
the clustering methodologies after converting the time series data into functional data [22].
In 2014, Jacques and Preda graphed the following segmentation to summarize clustering
methods for time series or functional data[22].
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Figure 1.1: Categorization Segmentation of Clustering Methods for Functional Data

Clustering on discrete time series data is classified into raw data methods and distance-
based methods in the segmentation in Figure 1.1. The classical idea is to consider each
observation as a multivariate case such that each time point is a variable, and apply multi-
variate clustering methods in section 1.1.1 [22]. According to the research by Aghabozorgi
et al.(2015)[4], two of the most common approaches for discrete time series data clustering
are hierarchical clustering and partitional clustering. Hierarchical clustering in this case
uses dissimilarity to the time series data; and partitional clustering is an extension of K-
means clustering to time series data. Clustering in time series data is more complicated
and challenging due to the high dimensionality of the input space. Two main difficulties are
clustering accuracy and time efficiency[30]. For clustering accuracy, as the noise of the data
has sensitive impact on the time series data clustering, some statisticians suggest smooth-
ing the data first before clustering so as to reduce the noise and capture the main pattern
through time [4]. In addition, when clustering aims at identifying the shapes of time series
data, statisticians introduce a distance called Dynamic Time Warping (DTW) Distance,
which measures the dissimilarity between the shapes of two time series observations. This
distance measure can even handle time series comparison with different time length [7].
However, another challenge of discrete time series data is not solved: time efficiency. In the
DTW distance case, with time series data x with n time points and y with m time points,
their DTW distance time complexity is O(nm). To improve algorithm efficiency, dimension
reduction is recommended and concerned in the second clustering procedure related to time
series clustering, which is described below.

The second clustering procedure treats time series data as functional data during clustering,
and it can solve the expensive computation problem and reduce the noise at the same time.
In functional data, each observation x is defined as a function of time t, i.e., x(t); in other
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words, functional data are considered as a set of curves with infinite dimensions [16]. Data
smoothing is the first step of all the functional data clustering methods, and is done by
fitting each set of time series data to a linear combination of some basis functions, such as
spline functions or polynomials [28]. Clustering procedures can then be conducted on these
smoothed data using the methods for functional data clustering, which are referred to as
filtering methods, adaptive methods and part of distance-based methods in Figure 1.1. The
descriptions and examples of the above clustering methods are listed in the following.

1. Distance-based methods. Similar to the multivariate situation, distance-based meth-
ods in the functional case conduct clustering based on the distance between the func-
tional objects[22]. Given two functional observations, x1(t) and x2(t), the distance or
dissimilarity is usually defined as

dl(x1(t), x2(t)) = (
∫
T

(x(l)
1 (t)− x(l)

2 (t))2)1/2, (1.1)

where x(l)(t) is the l-th order derivative of x(t). Using the distance d0, a robust
K-means algorithm has been developed by Cuesta-Albertos and Fraiman [19]. In
addition, Ferraty and Vieu 2006[16] proposed the extension of hierarchical clustering
to functional data based on the d0 (as well as L2) and d2 distance. Such methods are
approximately the same as distance-based clustering on smoothed discrete time series
data.

2. Filtering methods. Filtering methods are methods that cluster the observed objects
using information after the dimension reduction of the functional data[23]. In filtering
methods, instead of directly clustering on fitted functions after smoothing the time
series data, some feature information with lower dimensions of the data are extracted
to represent the original data and reduce the dimensions for further clustering. The
first approach is to use coefficients of the basis functions to represent the data. In
2003, Abraham et al. selected B-splines as basis functions and applied K-means algo-
rithm on the coefficients of B-splines. They also provide a proof of consistency for this
method. Similarly, Rossi et al [29] developed a self-organised map for curves clustering
through their B-spline coefficients.

The second approach is using functional principle component scores (FPC scores).
This approach is completed through another popular dimension reduction technique,
functional principal component analysis (FPCA). FPCA is an extension of principal
component analysis (PCA) to functional data. Similar to PCA, FPCA detects the
directions that explain the most variation of the data. Those directions amount to
eigenfunctions. Then, FPC scores of each observation can be obtained from the eigen-
functions. Besides representing the data through the B-spline coefficients, FPC scores
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are also recommended for dimension reduction. In 2011, Adelfio, Giada and et al.
selected the scores of the first few FPCs for further K-means clustering, where the
number of FPCs is based on a desired percentage of the explained variance [3].

3. Adaptive methods. Adaptive methods are model-based clustering methods for func-
tional data. In fact, most adaptive methods model cluster-specific probability distri-
butions using the coefficients of the basis functions or FPC scores. From the obtained
distributions of all clusters, the probability of belonging to a specific cluster can be
estimated for every observed object. Two most recent adaptive clustering techniques
are FunFEM [9] and FunHDDC[31], implemented in the package FunFEM and FunHDDC

respectively in the R language. The FunFEM method is developed for analyzing the
bike sharing systems (BSSs) in Europe and exploring patterns of the used rate of
bikes, while FunHDDC is used to deal with the multivariate functional data related
to pollution in French cities[31]. Both FPCA and functional latent mixture models
are applied in both FunFEM and FunHDDC; but the main different between them
is that FunFEM accomplishes clustering in a discriminative functional subspace ob-
tained from modified FPCA with a common dimension d, whereas FunHDDC uses
FPCA directly to fit the data in cluster-specific subspaces with different dimensions.
The models are estimated by EM algorithms in both cases. BIC or integrated com-
pleted likelihood (ICL) are commonly used in determining the number of clusters and
FPCs.

1.2 Motivation

1.2.1 Conducting modern unsupervised machine learning methodologies
on functional data

Besides dealing with the unsupervised analysis through the methodologies reviewed in the
previous sections, some decision tree-based unsupervised learning methods were developed
in early 2000s for dealing with similar analyses. A typical example is the unsupervised ran-
dom forest (URF), which has been developed and applied to clustering of DNA microarray
data [10]. The main contribution of unsupervised random forest(URF) is measuring dissim-
ilarity among the observations through a proximity matrix[37].

URF is developed from the regular supervised random forest for multivariate data used in
classification. In 2001, the random forest model was published by Breiman as an ensemble
learning method of many uncorrelated and weak individual regression or classification deci-
sion trees [18]. A trained random forest for classification can be used to predict the class of
a new observation. Each individual tree in the trained random forest votes one class of each
input, and the trained random forest achieves the final prediction as the class voted by the
most number of trees. Later, through decision trees in classification random forest, Breiman
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obtained a proximity matrix containing all the similarity measurements between each pair
of observations [18]. In addition, Breriman and Cutler suggested that the supervised method
should be able to distinguish synthetic data from the original data when generating syn-
thetic data based on the marginal distribution of each variable in the original data and
mixing them into the original data[10]. Based on this proposal, unsupervised random forest
was put forward with the belief that, with the synthetic data, the unsupervised mode of
the random forest turns into a supervised mode. Then, by distinguishing the original and
synthetic data, the similarity between the original observations and latent patterns in the
original data would be found through the proximity matrix.

Feature information of functional data, such as coefficients of the splines and FPC scores,
can be considered as an regularization of the smoothed data to multivariate case; therefore,
the common procedure of the functional data clustering is first replacing the functional
or time series observations by the feature information, which transform the problem into
multivariate clustering case. Secondly, the observations are partitioned into several groups
through clustering methods for multivariate data, including hierarchical clustering, parti-
tioning clustering and model-based clustering. Using the idea of feature extraction, some
modern unsupervised learning algorithm for multivariate data can also extend to functional
data.
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Chapter 2

Methodology

2.1 Smoothing Splines and Functional Principal Component
Analysis (FPCA)

2.1.1 Non-parametric regression on time series data using B-splines

To reduce the noise and capture the main pattern of time series data, we borrow an idea from
linear regression, and fit the data in each state to a smoothed curve as a linear combination
of several spline basis functions. In this paper, we used the Schoenbergs B-splines as our
basis function family. Consider the time t ∈ [a, b] andM distinct interior points ξ1, ξ2, ..., ξM

that partition [a, b] into M + 1 segments as a (ξ0) < ξ1 < ξ2... < ξM < b (ξM+1); then B-
spline functions with degree d will be fitted on each interval [ξi, ξi+1] with d− 1 continuous
derivatives on the open interval (a, b), where i = 0, 1, ...,M . With degree d and M interior
points ξ1, ξ2, ..., ξM , M + d + 1 B-spline basis functions (B1(t), B2(t), ..., BM+d+1(t)) form
the linear space, and an observed curve x(t) can be approximated as a linear combination
of the basis functions as

s(t) = s(t, β) =
M+d+1∑
l=1

βlBl(t), (2.1)

where β = (β1, β2, ...βM+d+1)′ is the coefficients of the corresponding basis function[14].
Similar to the coefficient estimation in linear regression, to estimate β, we firstly transfer
the observed time points t1, t2, ...., tn to an n × (M + d + 1) matrix B with row vector
Bi = (B1(ti), ..., BM+d+1(ti)). Under the assumption that the B′B is non-singular, β is
estimated using least squared error as

β̂ = argmin
β

1
n

n∑
i=1

(yi − s(ti, β))2 = (B′B)−1By, (2.2)

where y = (y1, y2, ..., yn) is the observation of the response variable at time (t1, t2, ...., tn).
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2.1.2 Functional principal component analysis

Functional principal component analysis (FPCA) is an extension of principal component
analysis to the functional data x(t), where t is a continuous variable[27]. Given a set of
functional data, suppose N smoothing curves {xi(t)|i = 1...N, t ∈ [a, b]}, we sample i.i.d
from the distribution of a random curve variable X(t) with covariance function V (s, t) =
E[(X(s) − E[X(s)])(X(t) − E[X(t)])]. Then, the first step of FPCA is to estimate the
covariance function as

V̂ (s, t) = 1
N − 1

∑
i

[xi(s)− x̄(s)][xi(t)− x̄(t)], (2.3)

where s and t share the same domain [a, b]. Using the Karhunen-Loeve decomposition[27],
the v(s, t) can be decomposed as

V (s, t) =
∞∑
j=1

djξj(s)ξj(t), (2.4)

where ξj(t) are the eigenfunctions. dj is the eigenvalue of ξj(t)usually done with the re-
stricted condition

∫
ξ2(t)dt = 1. Similar to PCA for multivariate data, dj and ξj(t) satisfy

the equation ∫
v(s, t)ξj(t)dt = djξj(s) (2.5)

and dj is proportional to the percentage of variation that ξj(t) explains. Let E[X(t)] = µ(t),
the j-th PC score of functional data Xi(t) can be calculated as

ρij =
∫
ξj(t)[Xi(t)− µ(t)]. (2.6)

The FPCA algorithm has been implemented in the function pca.fd() in the fda pack-
age implemented in R programming language and available on CRAN[27]. In FPCA algo-
rithm, eigenfunctions are considered as the linear combinations of the set of basis function
φ1(t), ..., φm(t), i.e. ξ(t) =

∑m
l=1 blφl(t) [27]. Let φ = (φ1(t), ..., φm(t)) be the vector form

of basis functions, and let each observations be decomposed as xi(t) =
∑m
l=1 cilφl(t), i =

1, ..., N , then N observed curves can be expressed as

x = Cφ, (2.7)

and V̂ (s, t) can be expressed as

V̂ (s, t) = 1
N
φ(s)TCTCφ(t). (2.8)
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Equation 3.5 can then be rewritten in matrix form as

1
N
φ(s)TCTCWb = dφ(s)Tb, (2.9)

where W =
∫
φTφ. Using linear algebra, d and b can be formed by solving eigen-equation

3.9, where the ds are the estimated eigenvalues, and the bs are the estimated coefficients
of the basis function with corresponding eigenfunctions. The estimated eigenfunctions are
then reordered following the size of their eigenvalues from largest to the smallest. The first
P PCs are selected with largest eigenvalues that explain most of the variation (i.e. >90%)
in the curves. Finally, each xi(t) can be rewritten and approximated as

xi(t) = µ(t) +
∞∑
j=1

ρijξj(t) (2.10)

≈ x̄(t) +
P∑
j=1

ρ̂ij ξ̂j(t), (2.11)

where ρ̂ij is the estimated PC score of the j-th PC achieved from equation (3.6) using esti-
mated eigenfunction ξ̂j(t) and sample mean x̄(t). In other word, FPCA provides us with a
group of basis functions {x̄(t), ˆξ1(t), ..., ˆξP (t)}, and reforms the functional data into another
linear combination of the new basis functions, where the coefficient of x̄(t) is always 1, and
the coefficient of the ξ̂p(t) is the estimated score of the j-th PC of the corresponding curve.

2.2 Proposed Method: Unsupervised Random Forest Clus-
tering On Feature Information

Feature information of the functional data can be understood as the different feature values
derived from the data, such as B-spline coefficients or FPC scores. With feature information
from time series data, we introduce another filtering method through combining classical
hierarchical clustering methods and modern machine learning methods, namely, the unsu-
pervised random forest algorithm. The framework of this clustering method is:

1. Obtain feature information;

2. Construct the unsupervised random forest using the original feature information and
synthetic dataset based on the marginal distribution of each "variable" in the feature
information;

3. Calculate the dissimilarity matrix of the time series data from the proximity matrix
of the constructed unsupervised random forest;

4. Conduct hierarchical clustering on the dissimilarity matrix.

10



2.2.1 Algorithm review: random forests for classification

In 2001, random forests were formally published by Breiman as an ensemble learning method
of many uncorrelated and weak individual regression or classification decision trees[18]. The
algorithm used to obtain a random forest predictor with B classification decision trees can
be decomposed into the following steps

1. Split the data into a training set and a test set, and then train B classification decision
trees. For b = 1, ..., B

(a) Draw a sample of size n from the training set using bootstrapping.

(b) Build a tree Tb on the bootstrapped sample recursively by repeating the following
steps on every terminal node of the tree, until reaching the minimum node size
nmin:

i. Randomly select m variables from all p variables,
ii. Pick split points with the least misclassification error among the m variables,

and split that node into two children nodes.

2. Return all B classification decision trees as the trained random forest

The random forest for classification trained from the above algorithm can be used to predict
the class of a new observation. Each individual tree in the trained random forest votes one
class for each observation, and the trained random forest yields a final prediction from the
class voted by the most number of trees. Moreover, a proximity matrix can be measured
from decision trees in classification random forest, containing the similarity measurement
between every two observations. Through the proximity matrix, a dissimilarity matrix can
be calculated from the measured distance or difference among observations, which is one of
the vital input in many clustering methods, such as hierarchical clustering or partitioning
around medoids (PAM).

Proximity matrices and dissimilarity matrices from random forests

With a classification-type random forest trained from N observations, all the observations
reach the leaves of some terminal nodes in every classification tree. Therefore, for the i-th
and j-th observations with i, j = 1, ..., N and i 6= j, the proximity (or similarity) is defined
as the fraction of the trees that the i-th and j-th observations are finally split to the same
terminal child node as

Pij = 1
B

B∑
b=1

I(ith and jth observations in the same final child node|Tb) (2.12)
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After measuring the proximity between all of the observations, an N ×N proximity matrix
P = (Pij)N×N is formed. According to the definition of Pij , the proximity matrix is a sym-
metric matrix where all entries are between 0 and 1. To be more specific, the values on the
diagonal of the matrix are all 1, and the values off the diagonal are in 0 to 1.

To further our purposes towards clustering, we define the dissimilarity (or distance) matrix
as

D = 1N×N − P (2.13)

= (1− Pij)N×N . (2.14)

The dissimilarity matrix measures the degree of difference between observations, which
can be directly input into hierarchical clustering methods or partitioning around medoids
(PAM).

2.2.2 Unsupervised random forests: extension of classification random
forests

The implement of unsupervised random forest can be considered as an extension of classi-
fication random forest under an assumption that when the data contain some correlation
between the variables or some distinguished patterns between existing but unknown classes,
we should be able to separate the original data from the mixture of its randomly generated
version and itself. Under this assumption, the algorithm of unsupervised random forests can
be described in the following steps:

1. Generate a synthetic dataset with the same size N as the original dataset such that
each predictor variable in the synthetic dataset follows the marginal distribution of
the corresponding variables in the original dataset, but the relationship between the
variables are removed. Two main methods to generate such a synthetic dataset are:

(a) For each predictor variable, generate N observations from the corresponding
marginal distribution in the original dataset, and

(b) Permute the order of rows for each predictor in the original dataset.

2. Merge the generated dataset and original dataset together, and label the generated
rows as ‘Synthetic’ and the original rows as ‘Original’.

3. Apply the random forest training algorithm for a regular supervised two-class classi-
fication on the merged dataset, aimed at identifying whether an entry in the merged
dataset is from the original or the generated dataset.

4. Calculate the proximity matrix only for the observations from original dataset, and
obtain the dissimilarity matrix from the proximity matrix.
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2.2.3 Hierarchical clustering using dissimilarity matrices

Given a dissimilarity matrix for N observations, hierarchical clustering method are cluster-
ing methods that can sequentially partition the data into n groups, where n = 1, ..., N [21].
The observations partitioning process from 1 to N groups can be visualized as a tree di-
agram. One of the algorithms used to implement hierarchical clustering is called the ag-
glomerative nesting method[18]. The basic idea of this method is described by the following
algorithm:

1. Consider each observation as its own cluster at the beginning

2. Agglomerate stepwise

(a) Join the two clusters that are closest together into one cluster. In this step, some
linkage measure must be proposed to define the intergroup distance as well as
the closeness of two clusters based on the dissimilarity matrix D = (Dij)N×N :

• Single-linkage. The distance between cluster C1 and C2 is defined as

DC1,C2 = min
i∈C1,j∈C2

(Dij) (2.15)

and clusters C1 and C2 are merged together if DC1,C2 is smallest compared
to the intergroup distance of all other pairs of clusters.
• Complete-linkage. The distance between cluster C1 and C2 is defined as

DC1,C2 = max
i∈C1,j∈C2

(Dij) (2.16)

and C1 and C2 are merged together if DC1,C2 is smallest compared to the
intergroup distance of all other pairs of clusters.
• Average-linkage. The distance between cluster C1 and C2 is defined as av-
erage distance between all pairs of observations in C1 or C2. Suppose C1

and C2 contains n1 and n2 respectively, then the average-linkage distance
between two groups is

DC1,C2 = 1
n1n2

n1∑
i=1

n2∑
j=1

Dij (2.17)

and C1 and C2 are merged together if DC1,C2 is smallest compared to the
intergroup distance of all other pairs of clusters.
• Ward’s Minimum Variance Method. Instead of working on the distance be-
tween clusters, Ward’s method chooses to merge the two clusters whose sum
of the squared distance between observations and the centroids is minimized
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after merging. In other word, C1 and C2 in C groups are selected to be
merged if they can minimize

W =
C−1∑
c=1

nc∑
i=1
||xi − x̂c||2 (2.18)

Lance and Williams (1967)[24] discovered the connection between the dis-
similarity matrix and Ward’s method, and rewrote formula 2.18 using a sum
of dissimilarities to update the dissimilarities after merging. This improves
efficiency of the implementation of Ward’s method.

(b) Repeat (a) until all the data is grouped into one cluster

The hierarchical clustering method with above four types of linkage are implemented in R
function hclust(), and users can specify the type of linkage through method argument.

2.2.4 Problems in unsupervised random forest clustering

Similar to the supervised random forest algorithm, two parameters in an unsupervised ran-
dom forest, the number of randomly selected variables m and the minimum terminal node
size nmin should be chosen through tuning. As no actual response classification variable
exists in the original dataset, the criterion for choosing the tuning parameters changes from
minimizing a loss function such as misclassification rate to minimizing the inner-cluster dif-
ference. That is, given a cluster numberK, we must pick tuning parameters that can produce
a minimum average of inner-cluster variance over K clusters.However, tuning parameters
are usually computationally expensive. During the real application with only 50 functional
data, the partitioning 4 clusters through unsupervised tuning random forest spent about 20
minutes. However, the clustering procedure of other clustering methods, which were filtering
methods (K-means clustering on B-spline coefficients or FPC scores) and adaptive methods
(funFEM and funHDDC), only used about 5 minutes.

Another crucial problem in clustering analysis is to determine the number of clusters. The
general process of selecting the number of clusters is that given a set of cluster number
candidate and a trusted criterion such as CH or Cindex[13], the value of the criterion for
each number candidate is calculated, and the candidate number with the best performance
under the criterion is selected. Due to the computational expensiveness, unsupervised tuning
random forest is not recommended on this problem, and the number of the clusters are
suggested to be decided using other clustering methods. Further discussion about the study
of the number of clusters is discussed in section 2.3.3 and 2.4.3.
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2.3 Filtering Methods: K-means Clustering on Feature In-
formation

The following two clustering methods are extensions of K-means clustering to time series
data. To summarize, both methods form time series data into a linear combination of k basis
functions φ1, ..., φk, and conduct K-means clustering method to the estimated coefficients
of the basis functions.

2.3.1 K-means clustering on B-spline coefficients

The first method clusters curves by applying K-means clustering to the coefficient vectors
β of all smoothed curves. The framework of this clustering method is

1. Suppose we are given n group of time series data with ni observations in the ith group,
i = 1...n. In ith group for any i, we approximate the observations {(yj , tj)|j = 1..ni}
with a smooth curve yi(t) expressed as a linear combination of B-spline.

2. Cluster the data into K groups by applying K-means clustering to the estimated
B-spline coefficients {β̂i|i = 1...n}.

In the step 2, to cluster the estimated coefficients {β̂i|i = 1...n} into K groups through K-
means clustering, the main procedure is to search for K partitions, {C1, C2, ..., CK}, with
center vectors {c1, c2, ..., ck} which minimize

1
n

K∑
j=1

∑
β̂i∈Cj

‖β̂i − cj‖2 (2.19)

where ‖ · ‖ is defined as the Euclidean norm(Hartigan,1975). Given K, the general schema
of K-means algorithm is

1. Initially, randomly pick K observations as the center of K clusters,

2. Assign the observations to a cluster, and update its center sequentially through alter-
nating the following two step until the algorithm converges

• Assign each observation to the cluster whose center has the least Euclidean dis-
tance to the observation,

• Based on the cluster result from previous step, update means as well as the center
of all K clusters.

A strong consistency property has been proved for this method, indicating that with an ap-
propriate function basis space, such as b-spline basis, the calculated center of the clusters,
{c1, c2, ..., ck}, will converge to the unique {c∗1, c∗2, ..., c∗k} when number of curves within each
cluster increase (Abraham, Cornillon and et al., 2003)[2].
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2.3.2 K-means clustering on FPC scores

We consider a method in which K-means is used with the PC scores of the curves. The
framework of this clustering method is

1. Conduct the FPCA on the curves,

2. Obtain the PC scores of the curves from the first few PCs, explaining more than 90%
of the variation of the curves,

3. Cluster the curves through the K-means method on the obtained PC scores.

Similar to the K-means clustering on estimated coefficients of B-spline basis functions,
this clustering method applies K-means clustering to the coefficients of eigenfunctions.
Therefore, this clustering method may also have a strong consistency property as the K-
means clustering method on B-spline coefficients. The consistency of this method has been
verify through the simulation study.

2.3.3 Selecting the number of clusters

To accomplish the procedure of the hierarchical and k-means clustering, one of the the
requirements is to give the number of clusters to the algorithm. However, it is usually an
unknown and challenging problem in real applications. To determine the optimal cluster
number, the general idea is to provide a set of possible cluster numbers and select the num-
ber with the best clustering results.

In clustering analysis, a criterion to evaluate the clustering result is sometimes called an in-
dex. Since 1960s, statisticians have proposed various indices. In 2014, the package NbClust

was developed for the propose of cluster number determination in hierarchical and K-means
clustering[13], including 30 different indices to help users decide the cluster number. Given
a specific index, the value of the index for each cluster number candidate is calculated; the
optimal cluster number is selected based on the index evaluations for each cluster number
candidates. For K-means clustering in filtering methods, 26 indices are involved in the clus-
ter number selection, and the final decision of the cluster number is the number that has
been suggested by the most indices.

Twenty-six indices are involved in the cluster number selection in filtering methods. Table
2.1 lists the indices and their criterions of optimal cluster number selection.
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Name of In-
dex

Optimal number of clus-
ters

Name of In-
dex

Optimal number of clus-
ters

KL Maximum value of the index CH Maximum value of the index
CCC Maximum value of the index Scott Maximum diference between

hierarchy levels of the index
Marriot Max. value of second differ-

ences between levels of the
index

Tracew Max. value of second differ-
ences between levels

Trcovw Maximum difference be-
tween hierarchy levels of the
index

Friedman Maximum dffierence be-
tween hierarchy levels of the
index

Rubin Minimum value of second
differences between levels

Cindex Minimum value of the index

DB Minimum value of the index Silhouette Maximum value of the index
Duda Smallest number of clusters

such that index > critical-
value

Pseudot2 Smallest number of clusters
such that index < critical-
Value

Beale Number of clusters such that
critical value >= α

Ratkowsky Maximum value of the index

Ball Maximum difference be-
tween hierarchy levels of the
index

Ptbiserial Maximum value of the index

Frey Cluster level before index
value < 1.00

McClain Minimum value of the index

Dunn Maximum value of the index Hubert Graphical method
SDindex Minimum value of the index Dindex Graphical method
Hartigan Maximum difference be-

tween hierarchy levels of the
index

SDbw Minimum value of the index

Table 2.1: Indices Summary for Cluster Number Selection in Filtering Methods
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2.4 Adaptive or Model-based Clustering: FunFEM and Fun-
HDDC

FunFEM [9] and FunHDDC [31] are two model-based clustering methods. The FunFEM is
refered to the functional discriminative model estimated through Expectation Maximization
(EM) algorithm, while the FunHDDC is refered to the functional High-Dimensional Data
Clustering. The first step of the funFEM and funHDDC methods is to smoothen the func-
tional data, which is the same as the previous two clustering methods. Then, the functional
data are fitted into a functional latent mixture model with lower dimensional subspaces F .
After specifying a cluster number K, inference of the latent mixture model is estimated by
the expectation maximization (EM) algorithm. The final cluster result for an observation
x(t) is obtained by estimating its probability of belonging to the kth cluster through the
latent mixture model, where k = 1, ...,K.

2.4.1 FunFEM: clustering functional data using a discriminative func-
tional mixture model

Discriminative functional model (DFM)

Instead of directly grouping the observed functional data {x1(t), x2(t), ..., xn(t)} intoK clus-
ters, the funFEM introduces an unobserved random variable Z = (Z1, ..., ZK) ∈ {0, 1}K .
For each functional data observationX(t), Zk = 1 if X(t) belongs to kth group, and Zk = 0
otherwise. Therefore, the clustering amounts to predicting the value of zi = (zi1, ..., ziK) for
each observed functional data xi(t).

We remark that the data have been smoothed as a linear combination of basis functions
φ1(t), ..., φp(t), i.e. xi(t) =

∑p
a=1 biaφa(t), and the coefficient matrix is written as B = (bia).

In funFEM, the functional data is then represented in terms of basis functions ϕ1(t), ..., ϕd(t)
with d < K and d < p, where ϕj(t) is the linear combination of φl(t) as ϕj(t) =

∑p
l=1 ujlφl(t)

with a constraint that u′jluil = 0 if j 6= i for 1 ≤ j, i ≤ d. In other word, the data are
expressed in a lower dimension subspace whose orientation is the orthogonal matrix Up·d =
(ujl). Finally, the functional data x1(t), ..., xn(t) is transformed into xi(t) =

∑d
b=1 λibϕb(t).

Define the latent expansion coefficients matrix Λd·n = (λib), the relationship between Up·d
and B is then expressed as

B = UΛ + ε (2.20)

where ε ∈ <p is random and independent noise, which is assumed to be distributed following
a multivariate Gaussian density as
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ε ∼ N(0, E). (2.21)

The latent expansion coefficients Λ are assumed to be n random vectors. Conditionally on
Zk = 1, Λ is assumed following a multivariate Gaussian distribution as

Λ|Zk=1 ∼ N(µk,Σk) (2.22)

where µk and Σk are the mean and the variance-covariance matrix of the k-th group.
Under the above assumptions, the marginal distribution of B follows a mixture of Gaussian
distribution as

p(b) =
K∑
k=1

πkΦ(b;Uµk, U tΣKU + E) (2.23)

where b is the coefficients of the original basis functions φa(t), a = 1, ..., p for a curve X(t),
Φ is the standard Gaussian density, and πk = P (Zk = 1) is the prior probability of the kth
group.

Finally, given V as the orthogonal component of U such that UTV = 0, the noise covariance
matrix E conditional on Zk = 1 as EZk=1 = cov(W tB|Zk = 1) = W tΣkW can be assumed
in the following form:

To understand the noise covariance matrix form, it can be said that within the k-th cluster,
the noise variance is modeled as Σk; and outside the cluster, the variance is modeled by
the β parameter. This way of modeling the noise covariance matrix of basis functions co-
efficients EZk=1 is called discriminative functional model (DFM), and we denote this type
of the DFM as textDFM [Σkβ].Fraley and Raftery(1999)[17] introduced a family of DFM
models including of this EZ=k type. This is also summarized by Bouveyron, Come and
Jacques(2015)[9]. Some model selection criterions can assist us in selecting which DFM
model to use, the number of clusters K and the number of basis functions d.
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FunFEM algorithm on model inference

The EM algorithm is applied in maximizing the likelihood of the above model because the
variable zi of each curve xi(t) is unknown. Bouveyron, Come and Jacques(2015) proposed
a FunFEM algorithm that first estimates the matrix U to obtain the most discriminative
subspace, and then conducts the EM algorithm to maximize the model log-likelihood[9].
The FunFEM algorithm obtain the maximum likelihood iteratively; in the q-th iteration,
the algorithm alternates over the following three steps:

1. F step. Conditional on the posterior probabilities estimated in the (q − 1)-th itera-
tion, t(q)ik = E[zik|bi, θ(q−1)], the F step determines the matrix U , which represents the
orientation of the discriminative latent subspace F where the data are best separated
into K clusters. Such a functional subspace F is desired as it maximize the variance
between clusters, while minimizing the variance within clusters.

In Bouveyron, Come and Jacques’ paper, they show that finding the subspace F is
equivalent to finding the discriminative functions u such that

argmax
u

Var(E[Φ(X)|Z])
Var(Φ(X)) (2.24)

where Φ(X) =
∫

[0,T ]X(t)u(t)dt is the projection of X on the discriminative function
u. The solution of equation (4.13) is the eigenfunction u associated with the largest
eigenvalue η of the following eigen-equation:

Du = ηCu, (2.25)

where C is the covariance operator of X as C(t, s) = E[(X(t) − E[X(t)])(X(s) −
E[X(s)])], andD is the integral between-cluster covariance operatorD(t, s) = E[E[X(t)−
E[X(t)]|Z]E[X(s)− E[X(s)]|Z]].

Numerically, C is estimated by Ĉ(t, s) = 1
nφ
′(t)B′Bφ(s), where B is the n × p ma-

trix of basis function coefficients and φ(t) is the p-vector of basis functions φj(t), j =
1, ..., p. D is estimated iteratively conditional on the posterior probabilities t(q−1)

ik by

D̂(q)(t, s) = 1
nφ
′(t)B′TT ′Bφ(s), where T = ( t

(q−1)
ik√
n

(q−1)
k

)i,k is an n × k matrix with

n
(q−1)
k =

∑n
i=1 t

(q−1)
ik .
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Assume that the discriminative function u can be smoothed with the same basis
functions as the observed curved u(t) =

∑p
j=1 vjφj(t) = φ′(t)v. By substituting the

D̂(q) and Ĉ to the eigen-equation Du = ηCu, the problem converts to solve the v such
that

(B′BH)−1B′TT ′BHv = ηv (2.26)

where H =
∫

[0,T ] φ(s)φ′(s)ds. Thus, the final problem is equivalent to finding the first
d eigenvectors vs as vj = (vj1, ..., vjp), j = 1, ..., d for the matrix (B′BH)−1B′TT ′BH.
The d discriminative functions u1(t), ..., ud(t) are obtained as the linear combination
of basis functions φ(t) with the coefficient vectors v1, ..., vd, and the p× d orientation
matrix U (q) = (v(q)

jl )p×d.

2. M step. Conditional on the orientation matrix U obtained from the F step, the M
step follows the classical scheme of the EM algorithm to maximize the conditional ex-
pectation of the full log-likelihood Q(θ; θ(q−1)) = E[l(θ;B, z1, ..., zn)|B, θ(q−1)]. where
θ = (πk, µk,Σk, β)k for k = 1, ...,K. By maximizing the conditional expectation, the
following model parameters are updated: π(q)

k , µ
(q)
k ,Σ(q)

k and β(q). The updates are as
follows

• π(q)
k = n

(q−1)
k /n,

• µ(q)
k = 1

n
(q−1)
k

∑n
i=1 t

(q−1)
ik U (q)

• Σ(q)
k = U (q)tC

(q)
k U (q)

• β(q) = (trace(C(q))−
∑d
j=1 v

(q)t
j C(q)v

(q)
j /(p− d)

where Ck = 1
n

(q−1)
k

∑n
i=1 t

(q−1
ik (bi − µ(q−1)

k )(bi − µ(q−1)
k )t. The updated formula varies

with different forms of the noise covariance matrix in the DFM family. These forms
are obtained by Bouveyron and Brunet in 2012 (2012).

3. E step. Conditional on the updated model parameters from the M step, the E step
updates the posterior probabilities t(q)ik = E[zik|bi, θ(q)], as well as the posterior proba-
bility that the curve xi(t) belongs to the kth cluster under the current model. Note that
θ

(q)
k = (π(q)

k , µ
(q)
k ,Σ(q)

k , β(q)). Through the Bayes theorem, the posterior probabilities
are

t
(q)
ik = π

(q)
k φ(bi, θ(q)

k )∑K
l=1 π

(q)
l φ(bi, θ(q)

l )
. (2.27)
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2.4.2 FunHDDC: a functional extension of the high-dimensional data
clustering (HDDC) algorithm

FunFEM v.s. FunHDDC

FunHDDC is another functional data clustering algorithm developed by Schemutz, Jacques,
Bouveyron, etc.(2017)[31], which allows the clustering algorithms to be applied to multi-
variate functional data. Similar to FunFEM, FunHDDC also reforms the functional data to
a lower dimension subspace and then clusters the data through fitting a functional latent
mixture model using EM algorithm.

The main difference between FunFEM and FunHDDC is that FunFEM fixes a common
d over all K clusters with d < K, whereas the FunHDDC applies FPCA more straight-
forwardly and allows various lower dimension numbers dk among K clusters, where dk is
not necessarily less than K. Although the FunHDDC develops more flexibility on lower
dimension number selection, its within-cluster covariance matrix has to be in a diagonal
form.

Generative model for the functional HDDC (FunHDDC) algorithm

In a way similar to FunFEM, given clusters number K, the FunHDDC algorithm defines a
latent variable Zik such that Zik = 1 if Xi(t) belongs to cluster k and Zik = 0 otherwise.
With the observed curves x1(t), ..., xn(t), if all Zik are given by zik for i = 1, ..., n and
k = 1, ...,K, then the number of the curves in the k-th cluster is nk =

∑n
i=1 zik. Given

the original P basis functions φ1(t), ..., φP (t) we form xi(t) =
∑P
a=1 βiaφa(t). For a specific

cluster k, the curves are restricted to a dk dimensional functional subspace such that dk < P

for k = 1, ...,K. Through the numerical application of FPCA, the first P eigenfunctions
ϕ

(k)
m (t) can be estimated by a linear transformation of φj(t) such that

ϕ(k)
m (t) =

P∑
l=1

w
(k)
ml φl(t),m = 1, ..., P (2.28)

Then we can define the orthogonal P×P matrixWk = (wlk) as a matrix of eigenfunction co-
efficients. Therefore, the first dk eigenfunctions form the dk dimensional functional subspace.
The direction of the k-th cluster on the subspace is Uk, and constructed by splitting the Wk

into two parts such thatWk = [Uk, Vk] with Uk a P×dk matrx, and Vk a P×(P−dk) matrix.

Moreover, for all nk curves in cluster k, the FPCA scores (δik)1≤ik≤nk
are assumed to follow

a Gaussian distribution as
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δik ∼ N(µk,∆k) (2.29)

where µk ∈ <P is the mean and ∆k is the covariance matrix. Similar to DFM model family,
∆k can be modeled in different forms. One of the forms is the following:

Finally, the FPCA scores δ of functional data X(t) is distributed following a Gaussian
mixture model with density

p(δ) =
K∑
k=1

πkN(δ;µk,∆k), (2.30)

where N(·) is the Gaussian density function and πk = P (Zk = 1). We use the EM algorithm
to conduct the parameters estimation in the model and the zik prediction sequentially.

The EM algorithm on funHDDC model inference

A standard EM algorithm is applied directly to FunHDDC which in turn calculates the ex-
pectation of the complete log-likelihood of zik (E step) using the model with the parameters
estimated from the previous iteration. The parameters are then re-estimated by maximizing
the log-likelihood expectation (M step) calculated in the E step. Specific for this FunHDDC
method, in the q-th iteration, the algorithm alternatives over the following two steps:

1. E step. In this step, the posterior probability of observed curve xi(t) being assigned
to the k-th cluster is computed as

t
(q)
ik = E[Zik|ci, θ(q−1)] = 1/

K∑
l=1

exp[12(H(q−1)
k βi)−H(q−1)

l (βi))] (2.31)

where θ(q−1) are the model parameters generating from qth iteration with θ = (πk, µk, akj , bk, wkj)kj
for 1 ≤ k ≤ K, 1 ≤ j ≤ dk, and wkj is the jth column of Wk, where H

(q−1)
k (β) is the

defined as the cost function for β ∈ <P , and the β is the coefficient vector of the P
original basis functions φi(t).
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2. M step. In this step, the parameters in the model are estimated by maximizing the
expectation of the complete log-likelihood conditional on tik achieved from the E step.
The update for the parameters is

• π(q)
k = η

(q)
k
n

• µ(q)
k = 1

η
(q)
k

∑n
i=1 t

(q)
ik ci where η

(q)
k =

∑n
i=1 t

(q)
ik

• a(q)
kj is set to the dk largest eigenvalues of H1/2C

(q)
k H1/2

• b(q)k = 1
P−dj

[tr(H1/2C
(q)
k H1/2)−

∑dk
j=1 â

(q)
kj ]

where H =
∫ T

0 φ′(t)φ(t) and C(q)
k = 1

η
(q)
k

∑n
i=1 t

(q)
ik (ci − µ(q)

k )t(ci − µ(q)
k ).

2.4.3 Model selection and choosing the number of clusters

Two crucial parameters in FunFEM and FunHDDC are the dimension of the subspaces
and the number of clusters. These parameters should be selected during the clustering
procedure. In FunFEM, the number of clusters, common intrinsic dimension d and the
model form in the DFM family are selected simultaneously. Akaike information criterion
(AIC)[5], Bayesian information criterion (BIC)[32] and Integrated Completed Likelihood
(ICL)[8] are recommended for parameter and model selection and implemented by the R
package FunFEM. Given a fitted model M , the details of these criteria are as follows

• AIC(M) = l(θ̂)− ξ(M), where l(θ̂) is the log-likelihood of the estimated parameter θ̂,
and ξ(M) is the number of free parameters in the models;

• BIC(M) = −l(θ̂) + ξ(M)
2 log(n), where n is the number of observations;

• ICL = BIC -
∑K
k=1

∑n
i=1 Zik × log(zik), where Zik is the indicator for the cluster of

the i-th observation such that Zik = 1 if the ith observation belongs to the kth cluster
and 0 otherwise.

Compared to BIC, ICL determines the number of cluster through the final allocation re-
sults of the observations; moreover, it has been observed to choose the model and cluster
number with more separated cluster patterns[31]. Before selection, the set of models and
cluster number candidates are established respectively. Then, the values of the criterion are
computed for all combinations of model and cluster number. We will determine the model
type and number of clusters from the combination with the smallest criterion value.

Similar to FunFEM, FunHDDC chooses the model type and number of clusters using AIC,
BIC or ICL. Moreover, Cattell’s scree-test[12] is applied for choosing the intrinsic dimensions
dk for each cluster. This test selects a dimension for which subsequent eigenvalues have
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smaller differences than the thresholds selected from AIC, BIC or ICL. The algorithm and
criterions for model and cluster number selection for FunHDDC are implemented in R
package FunHDDC.
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Chapter 3

Simulation Study

In this chapter, a simulation study is set up to validate the performance of the clustering
methods that we have described in this work. Two main interests in validation are the
accuracy of cluster exchangeability selection and the precision of clustering results. Four
clusters of curves with four different mean function respectively are generated. Moreover,
the clustering performance under different scenarios, such as different number of curves in
the each clusters and different patterns of within-cluster variance, is discussed.

3.1 Overall Simulation Setup

In the simulation study, we fix a real number of clusters K = 4, and let each cluster contain
an equal quantity of curves. The curves in each cluster are in the following form:

• Group 1: X(t) = sin(2t) + ε1(t),

• Group 2: X(t) = 2sin(2t) + ε2(t),

• Group 3: X(t) = 1
4sin(2t) + ε3(t),

• Group 4: X(t) = sin(t) + ε4(t),

where the range of t is t ∈ [0, 10], and εk(t) is white noise in the k-th cluster. In addition,
we consider four different scenarios of εi(t) of i = 1, ..., 4 such that

• Scenario 1: the variance of εi(t) is the same over time and clusters,

– i.e. εi(t) ∼ N(0, σ) for all i = 1, ..., 4 and t ∈ [0, 10] where σ is a constant respect
to the size of the overall variation;

• Scenario 2: the variance of εi(t) varies over clusters and is proportional to the range
of the mean curve in each cluster,

– i.e. ε1(t) ∼ N(0, σ), ε2(t) ∼ N(0, 2σ), ε3(t) ∼ N(0, 1
4σ), ε4(t) ∼ N(0, 1

2σ) for
t ∈ [0, 10];
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• Scenario 3: the variance of εi(t) varies over time and proportional to the absolute value
of the sin(at) at time t, where a = 1 for clusters 1,2,3 and a = 2 for cluster 4, i.e.
εi(t) ∼ N(0, σi(t)) with

– σi(t) ≈ σ · |sin(2t)| for t ∈ [0, 10] and i = 1, 2, 3,

– σi(t) ≈ σ · |sin(t)| for t ∈ [0, 10] and i = 4;

• Scenario 4: the variance of εi(t) varies over clusters and time as a combination of 2
and 3,

– ε1(t) ∼ N(0, σ · |sin(2t)|), ε2(t) ∼ N(0, 2σ · |sin(2t)|),

– ε3(t) ∼ N(0, 1
4σ · |sin(2t)|), ε4(t) ∼ N(0, 1

2σ · |sin(t)|).

During data simulation under each scenario, each curve is generated pointwise with 1001
equidistant observed time points, t = 0, 0.01,...,9.99,10, and then is smoothed by 13 cubic B-
splines with 9 equally spaced interior points t = 0.1, 0.2,...,0.9. Additionally, we examinate
the performance of clustering methods with different number of curves n in each cluster
with n = 20, 50, 100, and different constant σ in every variation scenario with σ = 1.25, 2.5.

Figure 3.1: Smoothed Simulated Data for Four Different Scenarios with n = 20 and σ = 1.25
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Figure 3.2: Smoothed Simulated Data for Four Different Scenarios with n = 20 and σ = 2.5

3.2 Simulation Study for Selecting the Number of Clusters

The simulation study in this section assesses the ability of filtering and adaptive methods
to choose the correct number of cluster. In this study, for each scenario, 200 simulated
data sets have been generated through repeating the simulation setup. For each generated
dataset, the number of clusters are determined through

• 26 indices from R package NbClust for filtering methods, K-means clustering on B-
spline coefficients and FPC scores;

• BIC and ICL criterion from the R package FunFEM and FunHDDC for adaptive methods,
FunFEM and FunHDDC.

Given the set of cluster number {2, 3, 4, 5, 6}, each filtering method suggest one optimal
candidate cluster number from the candidate for each simulated data set. Table 3.1 lists
the proportion of each number being selected using different clustering methods and under
various situations.
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Scenario Clustering Methods Number K of clusters (n=20/50)
2 3 4 5 6

1

K-means on B-spline Coefficients 51.5/71 20/19.5 8.5/9.5 -/- -/-
K-means on FPC Scores -/- 97.5/99.5 2.5/0.5 -/- -/-
FunFEM (BIC Criterion) -/- -/- 83/39.5 17/36.5 -/24
FunFEM (ICL Criterion) -/- 1/- 92/22.5 6.5/31 0.5/36.5
FunHDDC (BIC Criterion) -/- 91/86 9/10 -/3 -/1
FunHDDC (ICL Criterion) 5/- 91.5/82 3.5/10.5 -/5 -/2.5

2

K-means on B-spline Coefficients 1.5/- 98.5/100 -/- -/- -/-
K-means on FPC Scores -/- 100/100 -/- -/- -/-
FunFEM (BIC Criterion) -/- -/- 73/31 26/35.5 1/33.5
FunFEM (ICL Criterion) -/ -/ 73.5/20.5 23.5/34 3/45.5
FunHDDC (BIC Criterion) 74/32 9/1 9.5/25.5 3.5/12.5 1/29
FunHDDC (ICL Criterion) 83.5/40.5 4/8 6.5/16.5 4.5/17.5 1.5/17.5

3

K-means on B-spline Coefficients 73/99.5 20/0.5 7/- -/- -/-
K-means on FPC Scores -/- 85.5/67.5 8/32.5 -/- 6.5/-
FunFEM (BIC Criterion) -/- -/- 79/0.5 21/66.5 -/33
FunFEM (ICL Criterion) -/- 3.5/- 65.5/3.5 27/37 4/59.5
FunHDDC (BIC Criterion) 66/34.5 27/65.5 7/- -/- -/-
FunHDDC (ICL Criterion) 72.5/43 24/42.5 3/10 0.5/4 -/0.5

4

K-means on B-spline Coefficients 51.5/44 40/56 8.5/- -/- -/-
K-means on FPC Scores -/- 97.5/100 2.5/- -/- -/-
FunFEM (BIC Criterion) -/- -/- 83/7.5 17/40.5 -/54
FunFEM (ICL Criterion) -/- 0.5/- 59.5/3.5 32.5/47.5 7.5/47
FunHDDC (BIC Criterion) -/76.5 91/0.5 9/7.5 -/14 -/1.5
FunHDDC (ICL Criterion) 64.5/78.5 17/3 10.5/5.5 4/7.5 4/5.5

Table 3.1: Percentage of Number of Cluster Selection over 200 Simulations using Different
Clustering Methods in 4 Different Scenarios under the Overall Variation σ = 2.5. Real
Number of Clusters is 4.

Table 3.1 is the result of cluster number selection from 200 simulated data sets under
σ = 2.5. It shows that the FunFEM algorithm has a dominant advantage for detecting the
real number of clusters compared to the other three methods. When the number of curves
in each cluster is smaller (i.e. 20), the accuracy of cluster number detection in FunFEM
reaches over 70% under the BIC criterion and over 60% under the ICL criterion; however,
when the number of curves increases to 50, FunFEM begins to overestimate the number
of clusters. On the other hand, under small number of curves, the other three clustering
methods usually underestimate the number of clusters, such that over 70% of selected cluster
numbers are 2 and 3 in all 4 scenarios. After the curves number increases to 50, the only
conspicuous improvement of the detection rate of correct cluster number 4 is observed with
K-means clustering on FPC scores in scenario 3, which is 32.5% and much higher than the
rate of FunFEM, 0.5% under BIC and 3.5% under ICL.
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Scenarios Clustering Methods Number K of clusters (n=20/50)
2 3 4 5 6

1

K-means on B-spline Coefficients -/- 99/98.5 1/1.5 -/- -/-
K-means on FPC Scores -/- 100/100 -/- -/- -/-
FunFEM (BIC Criterion) -/- -/- 99/38.5 1/33 -/28.5
FunFEM (ICL Criterion) -/- -/- 80.5/23 18/40.5 1.5/36.5
FunHDDC (BIC Criterion) 1.5/1.5 95.5/65 2/23 -/7.5 1/3
FunHDDC (ICL Criterion) 9/- 76/72.5 13/19.5 1/5 1/3

2

K-means on B-spline Coefficients -/- 100/100 -/- -/- -/-
K-means on FPC Scores -/- 100/100 -/- -/- -/-
FunFEM (BIC Criterion) -/- -/- 88/33.5 9.5/18 2.5/48.5
FunFEM (ICL Criterion) -/- -/- 73/25.5 22/34.5 5/40
FunHDDC (BIC Criterion) 8.5/- 36/0.5 22.5/20 21.5/47 11.5/50.5
FunHDDC (ICL Criterion) 14.5/- 41/21 19.5/41 13/19.5 12/18.5

3

K-means on B-spline Coefficients 3/- 80/96 17/4 -/- -/-
K-means on FPC Scores -/- 97.5/99.5 2.5/0.5 -/- -/-
FunFEM (BIC Criterion) -/- -/- 77.5/0.5 21/36.5 1.5/63
FunFEM (ICL Criterion) -/- -/- 65/2.5 30.5/43 4.5/54.5
FunHDDC (BIC Criterion) 12/2 77.5/60 7.5/30 3/0.5 -/7.5
FunHDDC (ICL Criterion) 14/2 68.5/73 12.5/18.5 4/4 1/2.5

4

K-means on B-spline Coefficients -/- 100/100 -/- -/- -/-
K-means on FPC Scores -/- 100/100 -/- -/- -/-
FunFEM (BIC Criterion) -/- -/- 76/8.5 24/56.5 -/35
FunFEM (ICL Criterion) -/- -/- 60.5/3 33/20 6.5/47
FunHDDC (BIC Criterion) 44/23 23.5/9 13/11 14/25 5.5/32
FunHDDC (ICL Criterion) 40.5/19.5 20/9.5 14.5/12 12/27 13/32

Table 3.2: Percentage of Number of Cluster Selection over 200 Simulations using Different
clustering methods in 4 Different Scenarios under σ = 1.25. Real Number of Clusters is 4.

Table 3.2 is the result of cluster number selection from 200 simulated data sets under
σ = 1.25. With this smaller σ value, the simulated curves in the same cluster should be
closer to each other, which means the patterns of all four clusters are more obvious and
distinctive to each other. In this case, FunFEM still performs the best when the number of
curves is small. When the number of curves is larger (i.e., 50 per cluster), FunFEM still has
the overestimation problem. In this case, FunHDDC performs slightly better than FunFEM.
However, the detection rate of the correct cluster numbers can only attain at most 40%. In
this case, increase of detection rate of the correct cluster number in scenarios 1 and 2 are
observed in FunFEM and FunHDDC, in contrast to table 3.1. This phenomenon does match
the expectation because both methods should be good at detecting the clusters with differ-
ent patterns of variance; and more distinctive clusters should be easier to detect the real
unknown number of clusters in reasonable clustering methods. However, in scenario 3 and 4
which involve the overtime changing patterns in variance, the detection rate has no appar-
ent improvement or even a decrease in all the clustering methods. The non-improvement
may imply that clustering methods are not good at dealing with the situation such that the
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variance changes over time.

To conclude, when the number of curves in each cluster is about 20, FunFEM using BIC or
ICL criterion is the best tool for cluster number detection based on the simulation result. In
this case that detection rate can reach above 60% (ICL) or 70% (BIC). When the number of
curves increases to around 50, the FunFEM algorithm has an over-estimation problem and
FunHDDC then becomes the best algorithm. However, the FunHDDC in the large curves
number case can at most detect 40% of the correct cluster number from 200 simulated data
sets; in other word, with a large amount of curves, none of the methods can detect the exact
cluster number very well.

3.3 Validation of Clustering Results

In this section, the aim of the simulation study is to evaluate the result of the clustering
through different methods when the real number of clusters is given. Inspired by Tibshirani
and Walther (2005)[34], the idea of the evaluation is to consider the clustering problem as
supervised classification problem. By considering the assigned cluster labels in the original
simulated data as the "true" class labels and the cluster labels produced by the cluster-
ing methods as the "predicted" class labels, a 2 × 2 confusion table can be constructed for
the further analysis, such as calculation of sensitivity or specificity. Unlike the supervised
classification problem, the assigned labels in a clustering study do not have an actual numer-
ical or categorical meaning. Thus, during the construction of the confusion table, instead
of judging whether the simulated curves have been assigned to the same class labels, the
"true positive" (TP),"true negative" (TN), "false positive" (FP) and "false negative" (FN)
are redefined based on the relationship between the curves. For a confusion table with the
following form,

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Table 3.3: General Form of Contingency Table

the entries in the table are redefined as

• True Positive(TP): the number of observed curve pairs where both curves have the
same class label in both the "true" clusters and "predicted" clusters.

• True Negative(TN): the number of observed curve pairs where two curves have differ-
ent class labels in both the "true" clusters and "predicted" clusters.
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• False Positive(FP): the number of observed curve pairs where two curves have different
class labels in the "true" clusters, but have the same class label in the "predicted"
clusters.

• False Negative(FN): the number of observed curve pairs where two curves have the
same class label in the "true" clusters, but have different class labels in the "predicted"
clusters.

Then, the performance of the clustering methods can be evaluated through obtaining the
following derivations[15]:

• Sensitivity = TP
TP+FN , which represents the proportion of pairs of curves that have

been detected in the same cluster during the clustering procedure over all same-cluster
pairs of curves in the original simulated data;

• Specificity = TN
TN+FP , which represents the proportion of pairs of curves that have been

detected in different clusters during the clustering procedure over all different-cluster
pairs of curves in the original simulated data;

• Precision = TP
TP+FP , which represents the proportion of pairs that are exactly in

the same cluster in the original simulated data over all same-cluster pairs of curves
detected from the clustering procedure;

• Negative Precision = TN
TN+FN , which represents the proportion of pairs that are exactly

in different clusters in the original simulated data over all different-cluster pairs of
curves detected from the clustering procedure;

• Accuracy = TP+TN
TP+TN+FP+FN , which represents that overall pairs of generated curves,

the proportion of the pairs that their clustering relationships are estimated "correctly"
as the same as the ones in the original simulated data.

According to these definitions, the clustering methods are evaluated as having better perfor-
mance when they can obtain higher value of derivations. The goodness of estimated mean
curve of each cluster is another interest in the simulation study. The main idea of the assess-
ment of the mean curve estimation is measuring the difference between the estimated mean
curves and the original mean curves. A within-cluster mean squared error is defined to assess
the mean curve estimations. Given K clusters and N discrete time observations t1, t2, ..., tN ,
as well as the real and estimated mean curves of each cluster, say C1(t), C2(t), ..., CK(t) and
Ĉ1(t), Ĉ2(t), ..., ĈK(t) respectively, the within-cluster mean squared error (WCMSE) is then
defined as

WCMSE = 1
K

1
N

K∑
j=1

N∑
i=1

(Ĉj(ti)− Cj(ti))2 (3.1)
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When WCMSE is smaller, the average difference between the estimated and real within-
cluster mean curves is smaller among all observed time points, which indicates that the
clustering method performs better in the view of better estimation of mean curve within
each cluster. An essential difficulty in WCMSE measurement is how to match the estimated
clusters to the original ones; due to the meaninglessness of the cluster label, i.e. the cluster
with label "n" in original data may refer to the cluster with a label "m" produced by the
clustering algorithm. To solve this matching problem, in each produced cluster, the propor-
tion of every original cluster label is calculated; then the produced cluster is consider as the
estimator of the original cluster whose label has the largest proportion.

Tables 3.4 and 3.5 are the summary tables of the clustering result validation for 6 clustering
methods, unsupervised random forest clustering on B-spline coefficients or FPC scores,
K-means clustering on B-spline coefficients or FPC scores, funFEM and funHDDC. The
average of sensitivity, specificity, precision, negative precision and WCMSE are calculated
for each clustering method in all the combinations of four different scenarios of variation and
three numbers of curves in each cluster, under σ = 2.5 and real number of cluster K = 4.
Because the average of sensitivity, specificity and negative precision are very close in every
clustering methods, we only list the summary result of the sensitivity in this section. Table
3.4 contains the average of sensitivity and precision, and Table 3.5 contains the average of
accuracy and WCMSE. The highlighting in the table indicates the best clustering methods
based on the value of the corresponding derivations for every scenario.

33



Sensitivity Precision
(Curves Number/Cluster) (Curves Number/Cluster)

Scenario Methods 20 50 100 20 50 100

1

URF on B-spline Coefficients 0.998 0.997 0.997 0.998 0.996 0.997
URF on FPC Scores 0.982 0.990 0.988 0.979 0.989 0.987
K-means on B-spline Coefficients 0.953 0.953 0.950 0.880 0.879 0.876
K-means on FPC Scores 0.951 0.940 0.950 0.860 0.827 0.853
FunFEM 0.998 0.998 0.998 0.997 0.997 0.997
FunHDDC 0.898 0.913 0.916 0.773 0.796 0.794

2

URF on B-spline Coefficients 0.980 0.977 0.966 0.975 0.975 0.965
URF on FPC Scores 0.974 0.975 0.956 0.969 0.960 0.920
K-means on B-spline Coefficients 0.918 0.928 0.924 0.776 0.804 0.791
K-means on FPC Scores 0.936 0.939 0.930 0.819 0.827 0.802
FunFEM 0.988 0.990 0.990 0.974 0.975 0.972
FunHDDC 0.921 0.948 0.959 0.792 0.873 0.908

3

URF on B-spline Coefficients 0.964 0.968 0.957 0.960 0.967 0.956
URF on FPC Scores 0.932 0.943 0.931 0.918 0.933 0.920
K-means on B-spline Coefficients 0.923 0.945 0.941 0.876 0.916 0.905
K-means on FPC Scores 0.953 0.967 0.971 0.908 0.933 0.949
FunFEM 0.959 0.967 0.970 0.952 0.954 0.960
FunHDDC 0.839 0.866 0.873 0.740 0.778 0.788

4

URF on B-spline Coefficients 0.907 0.912 0.901 0.871 0.894 0.887
URF on FPC Scores 0.880 0.861 0.865 0.848 0.779 0.687
K-means on B-spline Coefficients 0.863 0.868 0.878 0.728 0.723 0.743
K-means on FPC Scores 0.904 0.907 0.905 0.788 0.798 0.795
FunFEM 0.968 0.977 0.973 0.946 0.964 0.949
FunHDDC 0.843 0.847 0.852 0.689 0.690 0.699

Table 3.4: Summary Table of Average Sensitivity and Precision from the Clustering Results
over 200 Simulations in 4 Different Scenarios under σ = 2.5 and Number of Clusters K = 4.

The two best clustering methods suggested by Table 3.4 are the unsupervised random
forest clustering algorithm on B-spline coefficients and FunFEM model-based clustering
algorithm. In Table 3.4, all 6 methods have best performance with higher sensitivity and
precision in both scenarios 1 and 2, the scenarios without the time-varying pattern in
variance. In scenarios 1 and 2, the overall average sensitivity and precision reaches 90% and
80% respectively, and the average sensitivity and precision of two best clustering methods
reach 99% and 97%. However, when the variance changes over time in scenarios 3 and 4,
the average sensitivity and precision in most methods decrease, to no more than 96%.
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Accuracy WCMSE
(Curves Number/Cluster) (Curves Number/Cluster)

Scenario Methods 20 50 100 20 50 100

1

URF on B-spline Coefficients 0.999 0.998 0.998 0.009 0.007 0.006
URF on FPC Scores 0.991 0.995 0.994 0.009 0.007 0.006
K-means on B-spline Coefficients 0.949 0.948 0.946 0.027 0.024 0.024
K-means on FPC Scores 0.941 0.926 0.937 0.024 0.024 0.020
FunFEM 0.999 0.998 0.999 0.010 0.007 0.006
FunHDDC 0.902 0.911 0.910 0.045 0.041 0.042

2

URF on B-spline Coefficients 0.989 0.988 0.983 0.012 0.008 0.007
URF on FPC Scores 0.986 0.986 0.965 0.012 0.009 0.016
K-means on B-spline Coefficients 0.905 0.916 0.910 0.042 0.036 0.036
K-means on FPC Scores 0.924 0.924 0.914 0.034 0.031 0.033
FunFEM 0.989 0.989 0.988 0.014 0.011 0.011
FunHDDC 0.910 0.944 0.960 0.037 0.022 0.022

3

URF on B-spline Coefficients 0.982 0.984 0.978 0.011 0.008 0.007
URF on FPC Scores 0.963 0.969 0.963 0.012 0.009 0.008
K-means on B-spline Coefficients 0.945 0.961 0.956 0.026 0.018 0.019
K-means on FPC Scores 0.960 0.970 0.977 0.019 0.013 0.010
FunFEM 0.978 0.979 0.981 0.013 0.010 0.008
FunHDDC 0.883 0.897 0.901 0.050 0.041 0.038

4

URF on B-spline Coefficients 0.944 0.951 0.947 0.024 0.014 0.012
URF on FPC Scores 0.932 0.902 0.865 0.032 0.048 0.067
K-means on B-spline Coefficients 0.881 0.877 0.885 0.052 0.047 0.040
K-means on FPC Scores 0.909 0.911 0.909 0.038 0.033 0.031
FunFEM 0.976 0.984 0.977 0.019 0.012 0.013
FunHDDC 0.863 0.862 0.865 0.056 0.049 0.044

Table 3.5: Summary Table of Average Accuracy and WCMSE from the Clustering Results
over 200 Simulations in 4 Different Scenarios under σ = 2.5 and Number of Clusters K = 4.

Table 3.5 provides the same suggestion for the best clustering methods in Table 3.4. In
Table 3.5, unsupervised random forest clustering and FunFEM model-based clustering have
the highest accuracy and lowest WCMSE among all 6 methods. The overall average accu-
racy reaches 90% in the scenarios 1 and 2, while that of the two best methods achieves
99%. The overall accuracy reduces by about 3% or 4% in scenarios 3 and 4, while the two
best methods can still maintain an accuracy about 98%. In addition, the overall average
WCMSE is larger in scenarios 3 and 4 than in scenarios 1 and 2. The WCMSE is about
0.007 for the two best methods in scenarios 1, 2 and 3, and is about 0.015 in scenarios 3 and 4.

To conclude, both Table 3.4 and 3.5 demonstrate that dealing with the clustering methods
on curves with within cluster variance varies over time with lower derivations and larger
WCMSE. Unsupervised random forest clustering and FunFEM based clustering are the
two competitive methods with the best clustering results in terms of sensitivity, precision,
accuracy and WCMSE. A simulation study with the same set-up except with a smaller
variance as σ = 1.25 is also conducted. The conclusion show the same trend, and the
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summary tables for σ = 1.25 have no obvious difference compared to Table 3.4 and 3.5.
Details for the simulation with σ = 1.25 are given in the Appendix.
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Chapter 4

Real Data Application

In this chapter, we apply existing and proposed unsupervised learning methods to the eval-
uation analysis of U.S. temperature forecast data. The goal of the analysis is to investigate
potential covariates correlated to weather prediction performance in the U.S, especially to
explore the spatial and time effects in prediction accuracy. The data involved in the analysis
come from the Data Expo Case Competition in the Joint General Meeting (JSM) in 2018,
which contain 3-year weather forecast and historical measurements records across 113 U.S.
cities in 50 states from September 2014 to August 2017[1]. Further details of the data are
described in the following section 4.1.

4.1 Data Description

The U.S. temperature forecast data are formed in three parts: forecast weather records,
historical weather measurement records and geographical information records[1]. Forecast
weather records consist of different measures of weather that the forecast was for over the
3-year period, including minimum temperature, maximum temperature, and the probabil-
ity of precipitation, and specify the date that was forecast and the date that the forecast
was made on. Historical weather records comprise different weather measures in each city,
such as maximum and minimum temperature, humidity and sea level pressure, etc. The ge-
ographical information of the cities for which the forecast was made is also available. Each
city is documented with its corresponding state, geographical coordinates (i.e. longitude and
latitude) and airport code (AirPtCd). AirPtCd provides information regarding the airport
closest to the city, as well as the place that the historical data was measured. Details of the
variables are summarized in Table 4.1.
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4.2 Objectives

To evaluate the prediction performance, we defined our response variable as the absolute
value of the prediction error for the minimum temperature:

εt = |T real
t − T fore

t |,

where T real
t and T fore

t are the real and forecast temperatures at time point t, respectively.
According to survey about Americans’ interests of weather forest, people are most inter-
ested in short-term weather forecasts as it provides direct guidance on planning day-to-day
activities ([25]); therefore we only evaluated the overall accuracy of 1-day forecast in this
study. Furthermore, with the geographical and temporal information in the collected data,
the goals of our analysis are:

1. Explain how prediction performance changes over time.

2. Explore variations in weather forecast accuracy across different geographical locations
in the U.S., and identify the most and least predictable regions.

4.3 Exploratory data analysis

Before conducting unsupervised learning methods, we first perform exploratory data anal-
ysis (EDA), which helps empirically detect trends in data and plays a foundation for our
further studies. The following sub-sections explore variation of prediction error from two
different aspects, supported by data summary statistics and plots. These explorations mo-
tivate us to find potential methods to explain and model the discovered phenomena in the
data.

Seasonal Patterns

The reason for studying the first objective is because time usually plays an important role
in determining future climate expectations, so the error that εt may also be affected by
time and seasons. Intuitively speaking, cold seasons may cause significant uncertainty in
forecast guidance and are expected to be less predictable than the warm seasons. This is
well illustrated in Figure 4.1, which shows that the performance of weather prediction varies
over time from September 2014 to August 2017. The red and blue regions represent Winter
(December to February) and Summer (June to August) period, respectively. The variation
of εt shows periodicity within each year; specifically, the prediction is more variable in Win-
ter compared to Summer.
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Figure 4.1: Absolute prediction error (F) vs Forecast date

Geographical regional pattern

To investigate our second objective, we generated the following graph to compare the fore-
cast accuracy of different geographical locations across the U.S. We consider the prediction
to be accurate if εt < 4 (i.e. the prediction error is within 4 Fahrenheit), and the accuracy is
evaluated as the percentage of predictions satisfying this condition within each state. More
blue represents regions with higher prediction accuracy and less blue represents regions with
lower prediction accuracy.

Figure 4.2: Prediction accuracy of minimum temperature (F) for each state

In general, neighbouring states tend to have similar prediction performance. However, for
those states which are not close to each other, such as Washington, California, Hawaii
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and Florida, there is similar prediction accuracy because they can share similar weather
conditions with respect to temperature. Therefore, the pattern similarity of prediction per-
formance among the U.S. states may not only relate to geographical locations, but also to
the similarity of climate conditions. For example, coastal states with mild climate are more
likely to be clustered together and have better forecast performance than the inland states
with more extreme weather.

From the result of the exploratory analysis, we suspect that the absolute prediction error
of daily minimum temperature is affected by the joint effect of geographical location and
climate in weather forecasts, which we refer as the "spatio-climate effect". To illustrate this
spatio-climate effect in the further analysis, we utilize the FPCA to investigate the general
pattern of the variation of εt over time and divide the U.S. into different regions based on
weather prediction performance through different clustering methods to. We then identify
the most and least predictable U.S. states.

4.4 Results

In this section, the unsupervised analysis result of the U.S. temperature prediction data
is presented. We first describe the discrete absolute prediction error time series data εt

for every state as the average of daily absolute prediction error. Then, εt for all 50 U.S.
states are transformed into functional data using cubic B-spline. Furthermore, we obtain the
overtime pattern of variation across the U.S. through FPCA. Finally, all clustering methods
are applied to detect the patterns of εt and to group the states with similar εt patterns.

4.4.1 Smoothing Splines and FPCA

During the smoothing procedure, we used 17 distinct interior quantile points to divide the
3-year period into 18 time intervals with the same amount of data, so each time interval
contains about 2 months of data. Fifty smoothed curves of εi(t), i = 1, ..., 50 for all U.S.
states are obtained and plotted in Figure 4.3.
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Figure 4.3: Smoothed Curves of Absolute Prediction Error for 50 U.S. States

In Figure 4.3, we observe that the curves vary most during the winter time around the
beginning of every year. To further understand the curves variation pattern, we estimate
PC functions which explain 90% of the variation through FPCA, which is shown in Figure
4.4.

Figure 4.4: First 5 PC Functions of U.S. states Absolute Prediction Error Data

In Figure 4.4, the 5 plots in the first row are the raw eigenfunctions corresponding to the
first 5 PCs explaining 91% the variation of the original functional data. The 5 plots in the
second row are the mean function x̄(t) plus or minus the same proportion of the correspond-
ing PC’s eigenfunction. The curves plotted with plus signs are the new curves produced by
the mean function plus a proportion of the corresponding PC function, and the same idea is
used to plot the curves with the minus signs. The sign of the PC functions has no meaning,
so the interpretation explains only the pattern of the change of the absolute value in the
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PC functions. The first 3 PC function explain most of the variation, about 85%, but the
fourth and fifth PCs only explain 3%. Therefore, we conclude the main features of the first
3 PC functions.

The first 3 PC functions explain 61.4%, 11.5% and 10.7% of the variation respectively.
From the plot of the first PC function explaining most of the variation, we observe that
all the PC function values are positive, and three local maximums appear at every mid
winter time from 2015 to 2017; moreover, the local maximums are decreasing over years.
This phenomenon shows that the absolute prediction error mainly varies at the mid winter
time, but such variation decreases over year. Similarly, the second and third PC functions
demonstrate that part of the variability exists at the mid summer and mid-winter.

4.4.2 Clustering

The next aim of the study is to find groups of states that have a similar patterns of over-
time absolute prediction error and rank the performance of the prediction based on the
patterns of the curves. We first determine the number of the clusters from the candidate
set {2, 3, 4, 5, 6, 7, 8}. The result of cluster number selection are stated in Table 4.2.

Algorithm Criterion Selected Cluster Number
K-means on B-spline Coefficients 26 Indices in NbClust 3
K-means on FPC Scores 2

FunFEM BIC 4
ICL 5

FunHDDC BIC 2
ICL 2

Table 4.2: Cluster Number Selection for Smoothed Absolute Prediction Error Curves among
50 U.S. States

The total observed curves number is small (50), which means the average number of curves
in each cluster is no more than 25 when the number of clusters no less than 2. Based on the
result of the simulation study, the K-means algorithm on feature information usually under-
estimates the number of clusters, whereas the number selected by the FunFEM algorithm
and the BIC criterion is more valid for a small numbers of observations. Therefore, further
clustering procedures is conducted with K = 4, the cluster number selected by FunFEM
and the BIC criterion.

Given K = 4, 50 smoothed curves are then clustered into 4 groups through 6 methods:
unsupervised random forest clustering on B-spline coefficients or FPC scores, K-means
clustering on B-spline coefficients or FPC scores, FunFEM and FunHDDC. To make the
curves within each cluster as close as possible, eight different seeds (8, 88, 888, 8888, 88888,
888888, 8888888, 88888888) are tested for each method. Then, the clustering result with
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the smallest integral of the average within-cluster standard derivation (SD) function is
considered as the final clustering result. Table 4.3 shows the smallest integral value of the
average within-cluster SD function that each clustering method obtained.

Algorithm Integral of Average Within-cluster SD Function
URF on B-spline Coefficients 739.3
URF on FPC Scores 717.6
K-means on B-spline Coefficients 692.7
K-means on FPC Scores 710.1
FunFEM with BIC criterion 714.1
FunFEM with ICL criterion 714.1
FunHDDC Diverge on both BIC and ICL criterion

Table 4.3: Integral Value of Average Within-cluster SD Function from the Result of Each
Clustering Method

For these data, the FunHDDC algorithm fails due to divergence of the EM algorithm.
The clusters obtained by K-means algorithm on B-spline coefficients achieves the smallest
integral value of the average within-cluster SD function, while URF clustering on B-spline
coefficients achieve the largest integral value. In the view of minimizing overall within-cluster
variance, the clustering result from the K-means algorithm on B-spline coefficients achieves
the best result, while the result from URF clustering on B-spline coefficients performs most
poorly. However, some clusters may contain curves that have large variance, so determining
the final clusters by comparing the overall within-cluster variance is insufficient. Thus, we
should also look into the patterns of the curves to determine the quality of the cluster
results. Figure 4.5 and 4.6 plot the 4 obtained clusters from k-means and URF clustering
respectively.

Figure 4.5: Cluster Result from K-means Clustering on B-spline Coefficients

44



Figure 4.6: Cluster Result from Unsupervised Random Forest Clustering on B-spline Coef-
ficients

In both Figure 4.5 and 4.6, the plots in the first row visualize smoothed curves within each
cluster, and the plots in the second row are the 95% pointwise confidence interval of each
cluster. Through the comparison of the two figures, we can observe more obvious cluster
patterns from URF than from K-means. Figure 4.5 shows that in the result of K-means
algorithm, the third and the fourth clusters are very similar, but some curves in the first
cluster are visibly flatter than the other curves. This is probably due to misclustering. How-
ever, the URF method does detect the flatter curves and produce the second cluster in
Figure 4.6; also, it discovers similar first and third clusters as K-means algorithm and dis-
covers the fourth cluster whose pattern is an increasing trend over a year. Consequently, we
prefer the clustering result from URF more than the result from K-means. However, some
potential misclustered curves still exist in the URF clustering result, such that one curve
in cluster 1 has a much higher peak than the other curves in 2015. Following this logic, we
should look into the clustering the results from the other four methods to determine the
most reasonable clusters.

However, the comparison of the cluster curves plot for four more methods simultaneously
are complicated. Also, we remark that the goal of this study is not only to find the main
pattern of each cluster but also to find both the geo-correlation of these clusters. Therefore,
one shortage of the cluster curve plots like Figures 4.5 and 4.6 is that we cannot visualize
the geographic information about the curves. This means we cannot confirm whether the
similar patterns between two clustering methods is due to similar states. In this case, in
Figures 4.7 to 4.12, the U.S. maps partitioned by different clustering methods are shown to
display the result as the complements of Figures 4.5 and 4.6.
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Figure 4.7: U.S. Map Partitioned by Un-
supervised Random Forest Clustering on
B-spline Coefficients

Figure 4.8: U.S. Map Partitioned by Un-
supervised Random Forest Clustering on
FPC Scores

Figure 4.9: U.S. Map Partitioned by K-
means Clustering on B-spline Coefficients

Figure 4.10: U.S. Map Partitioned by K-
means Clustering on FPC Scores

Figure 4.11: U.S. Map Partitioned by
FunFEM (Model Selected by BIC)

Figure 4.12: U.S. Map Partitioned by
FunFEM (Model Selected by ICL)

The clustering results from FunFEM using either BIC or ICL are exactly the same, and
they are very similar to the results of URF clustering on B-spline coefficients and K-means
clustering on FPC scores. FunFEM clusters Alaska, Wyoming and Colorado in cluster 1
while URF clustering on B-spline coefficients assign them to cluster 2. Besides, FunFEM
clusters the South Carolina to cluster 1 while the K-means on FPC scores assigns it to
cluster 3. However, the partitions of the U.S. map produced by k-means on B-spline coeffi-
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cients and by URF clustering on FPC scores are very different from the ones by FunFEM
and other two methods. Based on the comparison of the maps and the previous conclusion
that the partitions by URF on B-spline coeffcients is better than that by K-means on B-
spline coefficients, we determine the final cluster result by firstly electing one result from the
FunFEM, K-means clustering on FPC scores and URF clustering on B-spline coefficients,
and then selecting the final result by comparing the result from URF clustering from FPC
scores and the selected one from the previous step.

Figure 4.13: Cluster Result from K-means Clustering on FPC Scores

Figure 4.14: Cluster Result from FunFEM

Figure 4.13 and 4.14 are the curve plots of the clustering result for K-means clustering
on FPC Scores and FunFEM. Compared to the clustering result of URF clustering on B-
spline plotted in Figure 4.6, the cluster results are better because there are fewer potential
misclustered curves in cluster 1, and the states with flatter pattern in cluster 4 are detected.
The difference between Figure 4.13 and 4.14 is not obvious, but we choose the result from
K-means on FPC scores as it has smaller average within-cluster variance.
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Figure 4.15: Cluster Result from URF Clustering on FPC Scores

By comparing the clustering result plotted in Figure 4.14 and 4.15, we suggest the results
from K-means on FPC scores because, in the results from URF clustering on FPC scores,
cluster 1 in Figure 4.15 has more potential misclustered curves with different patterns such
as apparent increasing trends over time or higher peaks in the Winter time.
Therefore, our final selected result is from K-means on FPC scores who are plotted in
Figure 4.10 and 4.13. The results divide the U.S. into the following four regions based on
the pattern overtime of the absolute prediction error of minimum temperature, which are

1. states near the west coastline and east south coastline,

2. states in middle inlet, west of Great Lakes, south of U.S and Alaska,

3. states in the north of U.S,

4. states near the east and northeast coastline.

Finally, we ranked the prediction accuracy of four regions through ordering the integration
of the mean curves from smallest to largest. The higher ranking represents that the states
in that region are more predictable for cold temperatures.

Rank Cluster Overall Integral Representative States
1 Cluster 4 3397.3 California, Florida
2 Cluster 1 4284.2 Alaska, Texas
3 Cluster 2 5248.2 Oregan, North Dakota
4 Cluster 3 5630.1 Pennsylvania, North Carolina

Table 4.4: Cluster Ranking through Mean Curve Integration
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Chapter 5

Conclusion and Discussion

In this thesis, the two main contributions are extending unsupervised random forest clus-
tering (URF clustering) to functional data and providing a comprehensive simulation study
for evaluating several clustering methodologies for functional data under different scenarios.
The proposed functional-case URF clustering is a filtering methods, which transfer the data
from a functional format into a multivariate format by replacing observed curves with their
feature information, such as B-spline or FPC scores. A drawback of this proposed method
is that it cannot select the number of clusters because the parameters in the random forest
can only be tuned with a known number of cluster.

Therefore, our simulation study is formed in two component. A study on the accuracy of
selecting the number of clusters and an evaluation study of the clustering results when the
number of clusters is known. In the simulation study, 6 clustering methods are involved.
These methods are URF forest clustering on B-spline coefficients or FPC scores, K-means
clustering on B-spline coefficients or FPC scores, FunFEM and FunHDDC. The first com-
ponent of the simulation study shows that the model-based clustering method FunFEM has
excellent performance for detecting the correct cluster number when the number of curves
in each cluster is small, but no clustering method has outstanding performance when the
number of the curves is large. In the second component of the simulation study, URF clus-
tering methods and FunFEM algorithm are found to be two competitive methods with the
best performance.

Finally, we apply the 6 clustering methods in the simulation study to the analysis of U.S.
weather forest data. With the interest of the patterns of the prediction error of minimum
temperature in 50 U.S. states, we firstly detect 4 clusters using FunFEM. After compar-
ing the clustering results among different methods, we consider that K-means clustering
on FPC scores has the most appropriate clustering result. From the result, we find that
weather in states near the west coastline and the east south coastline are most predictable,
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while the states near the east and northeast coastline are least predictable.

By comparing the simulation study and real data application, we can see that during the
analysis of real data, the procedure of selecting an appropriate clustering result can be
complicated and subjective. The reason for this problem is that clustering is a type of
unsupervised learning that is usually used in the exploratory analysis. Unlike the simulation
study, we usually do not know the number of clusters or which cluster the curves belong
to. Therefore, we may use multiple techniques or visualizations to select clustering results
such that the patterns between different clusters are as different as possible, and the curves
within a cluster are close to each other. The selection procedure may be very subjective,
but because these clustering methods are for exploratory analysis, the clustering result is
meaningful once it can provide useful information or motivation for the further analysis.
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Appendix A

Summary Tables of Simulation
Study under σ = 1.25 and Number
of Clusters K = 4.

Table A.1: Summary Table of Average Sensitivity and Precision from the Clustering Results
over 200 Simulations in 4 Different Scenarios under σ = 1.25 and Number of ClustersK = 4.

Sensitivity Precision
(Curves Number/Cluster) (Curves Number/Cluster)

Scenario Methods 20 50 100 20 50 100

1

URF on B-spline Coefficients 1 1 1 1 1 1
URF on FPC Scores 0.998 1 1 0.998 1 1
K-means on B-spline Coefficients 0.938 0.940 0.940 0.812 0.819 0.821
K-means on FPC Scores 0.937 0.937 0.936 0.802 0.813 0.817
FunFEM 0.998 0.999 0.998 0.994 0.998 0.993
FunHDDC 0.906 0.940 0.991 0.712 0.811 0.973

2

URF on B-spline Coefficients 1 1 0.999 1 1 0.999
URF on FPC Scores 0.998 1 1 0.998 1 1
K-means on B-spline Coefficients 0.939 0.932 0.993 0.810 0.793 0.801
K-means on FPC Scores 0.936 0.928 0.932 0.800 0.780 0.793
FunFEM 0.992 0.990 0.991 0.974 0.970 0.969
FunHDDC 0.969 0.994 0.998 0.905 0.983 0.992

3

URF on B-spline Coefficients 1 1 1 1 1 1
URF on FPC Scores 0.996 0.998 0.999 0.996 0.996 0.999
K-means on B-spline Coefficients 0.938 0.935 0.940 0.814 0.808 0.826
K-means on FPC Scores 0.942 0.941 0.950 0.825 0.828 0.855
FunFEM 0.998 0.996 0.993 0.994 0.988 0.979
FunHDDC 0.903 0.899 0.899 0.711 0.700 0.695

4

URF on B-spline Coefficients 0.999 0.999 .996 0.999 0.999 0.996
URF on FPC Scores 0.994 0.997 0.999 0.993 0.997 0.999
K-means on B-spline Coefficients 0.940 0.942 0.933 0.814 0.827 0.802
K-means on FPC Scores 0.937 0.930 0.946 0.806 0.789 0.839
FunFEM 0.995 0.994 0.996 0.983 0.983 0.988
FunHDDC 0.959 0.985 0.956 0.878 0.875 0.869
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Table A.2: Summary Table of Average Accuracy and WCMSE from the Clustering Results
over 200 Simulations in 4 Different Scenarios under σ = 1.25 and Number of ClustersK = 4.

Accuracy WCMSE
(Curves Number/Cluster) (Curves Number/Cluster)

Scenario Methods 20 50 100 20 50 100

1

URF on Bspline Coefficients 1 1 1 0.006 0.006 0.006
URF on FPC Scores 0.999 1 1 0.006 0.006 0.006
K-means on Bspline Coefficients 0.919 0.921 0.920 0.034 0.034 0.033
K-means on FPC Scores 0.916 0.919 0.922 0.034 0.031 0.031
FunFEM 0.997 0.999 0.997 0.007 0.006 0.007
FunHDDC 0.879 0.921 0.988 0.051 0.039 0.011

2

URF on Bspline Coefficients 1 1 0.999 0.007 0.006 0.006
URF on FPC Scores 0.999 1 1 0.007 0.006 0.006
K-means on Bspline Coefficients 0.919 0.905 0.910 0.036 0.039 0.038
K-means on FPC Scores 0.916 0.902 0.906 0.034 0.040 0.038
FunFEM 0.989 0.987 0.987 0.011 0.010 0.011
FunHDDC 0.961 0.993 0.997 0.020 0.009 0.007

3

URF on Bspline Coefficients 1 1 1 0.007 0.006 0.006
URF on FPC Scores 0.998 0.999 1 0.007 0.006 0.006
K-means on Bspline Coefficients 0.922 0.919 0.926 0.033 0.033 0.029
K-means on FPC Scores 0.927 0.927 0.938 0.026 0.025 0.021
FunFEM 0.997 0.995 0.991 0.008 0.007 0.008
FunHDDC 0.879 0.873 0.871 0.053 0.057 0.059

4

URF on Bspline Coefficients 0.999 0.999 0.998 0.007 0.006 0.006
URF on FPC Scores 0.997 0.998 0.999 0.007 0.006 0.006
K-means on Bspline Coefficients 0.920 0.926 0.915 0.034 0.031 0.033
K-means on FPC Scores 0.919 0.907 0.928 0.032 0.037 0.028
FunFEM 0.993 0.993 0.995 0.010 0.009 0.007
FunHDDC 0.948 0.947 0.944 0.024 0.024 0.024
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