
Construction of Orthogonal
Designs and Baseline Designs

by

Ruwan Chamara Karunanayaka

M.Sc., Sam Houston State University, USA, 2014
B.Sc.(Hons.), University of Kelaniya, Sri Lanka, 2009

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Statistics and Actuarial Science

Faculty of Science

c© Ruwan Chamara Karunanayaka 2018
SIMON FRASER UNIVERSITY

Summer 2018

Copyright in this work rests with the author. Please ensure that any
reproduction or re-use is done in accordance with the relevant national

copyright legislation.

Approval

Name: Ruwan Chamara Karunanayaka

Degree: Doctor of Philosophy (Statistics)

Title: Construction of Orthogonal Designs and
Baseline Designs

Examining Committee: Chair: Jinko Graham
Professor

Boxin Tang
Senior Supervisor
Professor

Tim Swartz
Supervisor
Professor

Jiguo Cao
Internal Examiner
Professor

William J. Welch
External Examiner
Professor
Department of Statistics
University of British Columbia

Date Defended: July 23, 2018

ii

Abstract

In this thesis, we study the construction of designs for computer experiments and
for screening experiments.

We consider the existence and construction of orthogonal designs, which are a
useful class of designs for computer experiments. We first establish a non-existence
result on orthogonal designs, generalizing an early result on orthogonal Latin
hypercubes, and then present some construction results. By computer search, we
obtain a collection of orthogonal designs with small run sizes. Using these results
and existing methods in the literature, we create a comprehensive catalogue of
orthogonal designs for up to 100 runs.

In the rest of the thesis, we study designs for screening experiments. We propose
two classes of compromise designs for estimation of main effects using two-level
fractional factorial designs under baseline parameterization. Previous work in the
area indicates that orthogonal arrays are more efficient than one-factor-at-a-time
designs whereas the latter are better than the former in terms of minimizing the
bias due to non-negligible interactions.

Using efficiency criteria, we examine a class of compromise designs, which are
obtained by adding runs to one-factor-at-a-time designs. A theoretical result is
established for the case of adding one run. For adding two or more runs, we
develop a complete search algorithm for finding optimal compromise designs. We
also investigate another class of compromise designs, which are constructed from
orthogonal arrays by changing some ones to zeros in design matrices. We then use
a method of complete search for small run sizes to obtain optimal compromise
designs. When the complete search is not feasible, we propose an efficient, though
incomplete, search algorithm.

iii

Keywords: Computer experiment; Design catalogue; Efficiency criterion; Latin

hypercube; Minimum aberration; One-factor-at-a-time design; Orthogonal array;

Rotation method; Search algorithm

iv

Dedication

To my loving wife, Hiranya, and my daughter, Sanaya.

v

Acknowledgements

I would like to express my special appreciation and thanks to all the people who

contributed in some way to the work described in this thesis.

First and foremost, I thank my senior supervisor, Dr. Boxin Tang, for believing

in me. He contributed to a rewarding graduate school experience and his guidance

gave me intellectual freedom in my work, while helping me find my limits. His en-

couragement in my writing, and his facility in funding were invaluable. I’ll always

appreciate the ways he helped me understand and negotiate this new language

and culture. He has been a tremendous mentor in so many ways.

I also thank my supervisor, Dr. Tim Swartz, for his unconditional support and

unfailing assistance in funding my research.

I also need to express my gratitude to my examining committee, Dr. William

Welch and Dr. Jiguo Cao for their valuable contributions.

I would like to thank the faculty and staff of SFU’s Department of Statistics

and Actuarial Science for their help and support during this time.

I am grateful to all the professors in my graduate studies, especially Dr. Ananda

Manage, Graduate Chair at Sam Houston State University. He helped introduce

me to the world of graduate studies and make me comfortable here. Without his

help, I may never have entered the PhD program at SFU. I also want to express

my deep appreciation to Dr. Mallawa Arachchi of the University of Kelaniya, Sri

Lanka, who set me on my path.

vi

Finally, I would like to acknowledge my family and my friends. Most impor-

tantly, I owe a debt of gratitude to my wife, who crossed oceans and continents

to accompany me, for her love and unyielding support. I am grateful to my dad

for his encouragement right from the start of my studies. I would like to thank

Dr. Jack Davis who helped me with proofreading some of my work. Thanks, too,

to my Sri Lankan friends at SFU, Bhagya, Pulindu, Lasantha, Rajitha, Dilshani,

Thilini, Himahansi, Nethangi and Nadheera, who made my time there a lot more

fun and also, a special thanks goes to Dr. Harsha Perera for helping me with

LaTex.

vii

Table of Contents

Approval ii

Abstract iii

Dedication v

Acknowledgements vi

Table of Contents viii

List of Tables xi

1 Introduction 1

1.1 Orthogonal Designs for Computer Experiments 1

1.2 Baseline Designs for Screening Experiments 3

1.3 Outline of the Thesis . 4

2 On the Existence and Construction of Orthogonal and Nearly

Orthogonal Designs 7

2.1 Introduction . 7

2.2 Theoretical Results . 9

2.3 Computer Search and Design Catalogue 14

2.3.1 Orthogonal Designs . 14

viii

2.3.2 Nearly Orthogonal Designs 19

3 Compromise Designs Under Baseline Parametrization 22

3.1 Introduction . 22

3.2 Introducing Compromise Designs 23

3.3 Finding Optimal Compromise Designs 26

3.3.1 Adding one run to basic OFAT design 26

3.3.2 Adding two or more runs to basic OFAT design 32

4 Second Class of Compromise Designs Under Baseline Parame-

terization 39

4.1 Introduction . 39

4.2 A New Class of Compromise Designs 41

4.3 Finding Optimal Designs from the Second Class of Compromise

Designs . 42

4.3.1 Method of Complete Search 42

4.3.2 A systematic method of construction 44

4.3.3 Algorithmic Search . 45

4.4 Performance of Our Algorithm . 46

5 Conclusions and Future Research 48

Bibliography 50

Appendix A Nearly Orthogonal Designs (NOD) up to n = 18 54

Appendix B Search Algorithm Results from Chapter 4 59

B.1 Results for n = 8 . 59

B.2 Results for n = 12 . 63

ix

B.3 Results for n = 16 . 68

x

List of Tables

Table 2.1 A summary of small OD(n, sm)s from computer search. . . . 14

Table 2.2 OD(6, 33) and OD(12, 39) . 15

Table 2.3 OD(15, 37), OD(18, 310) and OD(12, 65) 16

Table 2.4 OD(10, 56) and OD(15, 58) 16

Table 2.5 A catalogue of OD(n, sm) for n ≤ 100 18

Table 2.6 Best value for ρave for designs n = 6, 8, 9, 10 and 12 21

Table 2.7 Best value for ρave for designs n = 14, 15, 16 and 18 21

Table 3.1 The As and K2 values of ZOFAT and ZMA for n = 8 and m = 6 26

Table 3.2 The As, Ds and Es values of the designs from adding a run

consisting of k ones and m−k zeros to the basic OFAT design

for k = 0, 1, . . . ,m = 6. 31

Table 3.3 Comparisons of As and K2 values of three designs ZMA, ZC

and ZOFAT for m = 2, 6, 10, 14 and 18 factors. 32

Table 3.4 As optimal compromise designs for adding p = 2 runs. 34

Table 3.5 Ds optimal compromise designs for adding p = 2 runs. 35

Table 3.6 Es optimal compromise designs for adding p = 2 runs. 35

Table 3.7 As and Ds optimal compromise designs for adding p = 3 runs. 36

Table 3.8 Es optimal compromise designs for adding p = 3 runs. 36

Table 3.9 As optimal compromise designs for adding p = 4 runs. 37

Table 3.10Ds optimal compromise designs for adding p = 4 runs. 37

xi

Table 3.11Es optimal compromise designs for adding p = 4 runs. 38

Table 4.1 The As and K2 values of ZOFAT , ZC2 and ZMA for n = 8 and

m = 6 . 42

Table 4.2 The As and K2 values of the MA , C2, OFAT and C1 designs

for n = 8 and m = 6 . 43

Table 4.3 Compare K2 values for both complete and incomplete search

algorithms . 47

Table 4.4 Compare As values for both complete and incomplete search

algorithms . 47

Table A.1 NOD(n, 3m) for n = 6, 12 . 54

Table A.2 NOD(n, 4m) for n = 8, 12 . 54

Table A.3 NOD(9, 3m) and NOD(12, 6m) 55

Table A.4 NOD(14, 7m) . 55

Table A.5 NOD(15, 3m) . 55

Table A.6 NOD(15, 5m) . 56

Table A.7 NOD(16, 4m) . 56

Table A.8 NOD(16, 8m) . 57

Table A.9 NOD(18, 3m) . 57

Table A.10NOD(18, 9m) . 58

xii

Chapter 1

Introduction

1.1 Orthogonal Designs for Computer Experi-
ments

Historically, the design of physical experiments was considered the gold standard

of data collection for exploring a cause and effect relationships. Computer exper-

iments have become popular and powerful tools in the last two decades due to

the increase of computer power. Two key elements, the existence of mathemati-

cal theory and numerical methods, allow one to conduct computer experiments.

They are useful when physical experiments are infeasible, or in some cases, impos-

sible to perform. Computer experiments are used in scientific and technological

developments in diverse areas such as engineering, meteorology, cosmology, nu-

clear physics, neuroprosthetics and many more. See, for example, Sacks, Welch,

Mitchell and Wynn (1989) [31].

The main feature of a computer experiment is that it produces the same output

with the same inputs, i.e., a deterministic answer, as opposed to a physical exper-

iment. Therefore, none of the traditional principles of randomization, replication

and blocking are relevant in computer experiments. In general, the functional form

of the true relationship between the inputs and the outputs is unknown and com-

1

plicated. Therefore, designs for computer experiments should allow one to employ

various types of modelling methods and should provide information about all por-

tions of the experimental region. There are various types of designs that spread

the points evenly throughout the region, and these are referred to as space-filling

designs.

Latin hypercube designs, first introduced by McKay, Beckman and Conover

(1979) [22], are considered to be the most commonly used class of space-filling de-

signs for computer experiments. These designs have one-dimensional uniformity

and do not have repeated runs. Optimality criteria such as orthogonality and max-

imum distance were used to obtain good designs. Iman and Conover (1982) [14],

Owen (1994) [29], Tang (1998) [41], and Ye (1998) [44] introduced orthogonal and

nearly orthogonal Latin hypercubes and provided some construction and com-

putational results. These designs have zero or very low correlations in all two-

dimensional projections and are useful in fitting data using main effect models.

Bingham, Sitter and Tang (2009) [3] introduced and studied orthogonal and

nearly orthogonal designs for computer experiments by relaxing the condition that

the number of levels is the same as the run size. This is a very rich class of designs,

which include orthogonal Latin hypercubes at one extreme and two-level orthogo-

nal arrays at the other. Sun, Pang and Liu (2011) [37] constructed orthogonal and

nearly-orthogonal designs for computer experiments by rotating groups of factors

of orthogonal arrays. Georgiou, Stylianou, Drosou and Koukouvinos (2014) [12]

obtained 3-orthogonal U-type and non U-type designs with run sizes up to 100

by using known combinatorial structures. Investigation of orthogonal designs was

further pursued by Liu and Liu (2015) [21], and Sun and Tang (2017) [39].

2

1.2 Baseline Designs for Screening Experiments

Factorial designs with two-level factors are useful in both theory and practice of

physical experiments. They can be used to study the effects of multiple input

variables. Experimental variables are called factors, and they can be quantitative

or qualitative. Values of these factors are referred to as levels. A level combination

of all factors is called a treatment or a run. A two-level full factorial design with

m factors consists of 2m runs. In practice, full factorial designs for large m are

not economical. Therefore, subsets of full factorial designs are commonly used and

are referred to as fractional factorial designs. As opposed to the factorial design,

one can conduct one-factor-at-a-time design to investigate several factors one at

a time.

Consider a full factorial design withm factors of two levels ±1. Then, there are

a total of 2m − 1 factorial effects, and these effects are the contrasts of treatment

means. This type of parameterization using the symbols 1’s and -1’s is called an

orthogonal parameterization, as all effect contrasts are mutually orthogonal. When

there is a control or baseline level for each factor, it is quite natural to introduce

a baseline parameterization. Under the baseline parameterization, 0 and 1 are the

baseline and test level, respectively. The factorial effects are still contrasts of the

treatment means, but these contrasts are not mutually orthogonal, unlike those

under the orthogonal parameterization. Kerr (2006) [16], Banerjee and Muker-

jee (2008) [2] and Stallings and Morgan (2015) [33] pointed out the increasing

importance of the baseline parameterization.

Consider selecting an experimental design using the principle of "purpose" of

the experiment [32]. The purpose can be defined in terms of optimizing a partic-

ular quantity. Then, we can ask, what are the settings of inputs that we should

3

observe the response to optimize this quantity? This approach to the selection of

experimental design is referred to as an optimal design. The popular optimality

criteria A, D, and E are to minimize the trace, the determinant and the maximum

eigenvalue of the covariance matrix of the least square estimates of the parame-

ters, respectively. In screening experiments, the intercept term is of little interest,

and therefore we can simply ignore the first row and first column in the covariance

matrix. Now, we can redefine the A, D, and E optimality criteria by As, Ds and

Es optimality criteria for the resulting matrix.

Fries and Hunter (1980) [10] introduced the minimum aberration criterion

for selecting regular fractional factorial designs. Using one of the fundamental

principles for factorial effects, the hierarchical ordering principle, Mukerjee and

Tang (2012) [27] proposed a new minimum aberration criterion under the base-

line parameterization for estimating main effects when interaction effects are non-

negligible, and they also showed that orthogonal arrays of strength two are uni-

versally optimal for estimating main effects. Mukerjee and Tang (2012) [27] also

considered one-factor-at-a-time designs for estimating baseline main effects and

these designs allow unbiased estimation of main effects without any assumption

about the absence of interactions.

1.3 Outline of the Thesis

An outline of the remainder of the thesis is as follows. Chapter 2 is devoted to

new results on the existence and construction of orthogonal designs for computer

experiments. Lin, Bingham, Sitter and Tang (2010) [19] showed that an orthogonal

Latin hypercube does not exist when the run size is even but not a multiple of 4. A

general non-existence result is obtained for orthogonal designs, which includes the

aforementioned result as a special case. Based on the ideas in Lin, Mukerjee and

4

Tang (2009) [20] and Sun and Tang (2017) [38], we present some further results

on the constructions of large orthogonal designs using an orthogonal array and a

small orthogonal design.

A computer search for small orthogonal and nearly orthogonal designs is car-

ried out for up to 18 runs. This computer search algorithm is very much similar to

Lin’s [18] adapted algorithm and we try to improve it further by applying a simu-

lated annealing algorithm similar to that in Morris and Mitchell (1995) [26]. Using

these and existing orthogonal designs combined with the construction methods in

this chapter and other available methods, a comprehensive catalogue of orthogonal

designs is created for up to 100 runs.

In Chapter 3, we introduce a first class of compromise designs under the base-

line parameterization obtained by adding runs to one-factor-at-a-time designs.

Because such designs contain one-factor-at-a-time designs, they should perform

well in terms of minimizing the bias. Using efficiency criteria, we then find opti-

mal designs from this class of compromise designs. The resulting optimal designs

provide attractive alternatives to minimum aberration designs and one-factor-at-

a-time designs. For the case of adding one run, optimal compromise designs are

provided by a theoretical result. For the case of adding more than one run, we

develop a complete search algorithm, which allows us to find optimal compromise

designs for adding up to four runs to one-factor-at-a-time designs with m ≤ 20

factors.

In Chapter 4, we propose a second class of compromise designs obtained from

orthogonal arrays by changing some ones to zeros. These designs should per-

form better than orthogonal arrays in terms of minimizing the bias, because such

designs move towards the one-factor-at-a-time designs. We then select optimal

designs from the second class of compromise designs using both efficiency, As and

5

bias criterion, K2. We use a complete search procedure to obtain such designs

starting from changing a single one to zero in each column in minimum aberra-

tion designs. However, as the number of runs and the number of factors increase,

the complete search procedure is not feasible. Therefore, we develop an efficient

incomplete search algorithm to obtain optimal designs. In addition to the com-

puter search procedures, we propose a systematic method to obtain compromise

designs with some nice properties and these designs are actually the so-called bal-

anced arrays. We examine the performance of our incomplete search algorithm by

comparing its results with those from the complete search procedure.

Chapter 5 summarizes the thesis with a discussion of future research directions.

6

Chapter 2

On the Existence and
Construction of Orthogonal and
Nearly Orthogonal Designs

2.1 Introduction

Computer experiments are very useful statistical tools for investigating complex

systems in science and engineering. Designing such experiments plays a vital role

in subsequent statistical data analysis and model building. One attractive class

of designs for computer experiments is given by orthogonal Latin hypercubes.

Latin hypercubes were introduced by McKay, Beckman and Conover (1979) [22]

and orthogonal Latin hypercubes were first considered by Ye (1998) [44]. Further

results on orthogonal Latin hypercubes were provided in Lin, Mukerjee and Tang

(2009) [20], Sun, Liu and Lin (2009) [36], and Georgiou and Efthimiou (2014) [11].

Generalizing orthogonal Latin hypercubes, Bingham, Sitter and Tang (2009) [3]

introduced and studied orthogonal designs for computer experiments. Orthogonal

designs do not require the number of levels to be the same as the run size, as in

the case of Latin hypercubes. This is a very rich class of designs, which include

orthogonal Latin hypercubes at one extreme and two-level orthogonal arrays at

the other. Investigation of orthogonal designs was further pursued by Sun, Pang

7

and Liu (2011) [37], Georgiou, Stylianou, Drosou and Koukouvinos (2014) [12],

Liu and Liu (2015) [21], and Sun and Tang (2017) [39].

Consider a design D of n runs with m factors of s levels. For convenience of

studying orthogonality, the s levels are taken to be equally spaced and centred at

zero. One convenient choice is given by {−(s−1)/2,−(s−3)/2, . . . , (s−3)/2, (s−

1)/2}. For example, when s = 2, the two levels are −0.5 and 0.5. When s = 3,

the three levels are −1, 0, 1. This thesis considers designs where the s levels are

equally replicated for each factor. Because of this, we must have n = λs for some

integer λ ≥ 1. Such designs are denoted by D(n, sm). When λ = 1, a D(n, sm)

becomes a Latin hypercube, which we denote by LH(n,m). A D(n, sm) is said to

be orthogonal if dTi dj = 0 for any two distinct columns di and dj, in which case

we use OD(n, sm) to represent the design. Similarly, we use OLH(n,m) to denote

an orthogonal Latin hypercube.

Nearly orthogonal designs are useful for finding good space filling designs for

a large number of factors. Bingham, Sitter and Tang (2009) [3] proposed two

measures to assess the near orthogonality of design D, namely, the maximum

correlation ρM(D) and the average squared correlation ρ2
ave(D), where ρM(D) =

max
i<j
|ρij(D)|, ρ2

ave(D) = ∑
i<j

ρ2
ij(D)/[k(k−1)/2] and ρij(D) = dTi dj/[(dTi di)·(dTj dj)]1/2.

Since the mean of the levels of each and every column of orthogonal designs is zero,

ρij(D) is simply the correlation coefficient between the ith and jth column. De-

signs with small values of ρM(D) and ρ2
ave(D) are considered as nearly orthogonal

designs. Orthogonal designs have values zero for both of these measurements.

We also need the concept of orthogonal arrays in this thesis. An n×m matrix

is said to be an orthogonal array of strength two with n runs for m factors of s

levels, which are taken as 0, 1, . . . , s − 1 unless stated otherwise, if the s2 level

8

combinations occur with the same frequency in every submatrix of two columns.

Such an array is denoted by OA(n, sm, 2).

2.2 Theoretical Results

Lin, Bingham, Sitter and Tang (2010 [19], Theorem 2) showed that an OLH(n,m)

with m ≥ 2 does not exist if n > 3 is even but not a multiple of 4. This result can

be generalized to orthogonal designs.

Theorem 1. An OD(λs, sm) with m ≥ 2 does not exist if λ is odd and s = 4k+2

for any integer k ≥ 0.

When λ = 1, Theorem 1 reduces to the result of Lin, Bingham, Sitter and

Tang (2010) [19]. Though the idea of proving Theorem 1 is similar to that of Lin,

Bingham, Sitter and Tang (2010) [19], it is more challenging this time. We thus

give a full proof.

Proof. Suppose an OD(λs, sm) with m ≥ 2 exists for an odd λ and an s = 4k+ 2

for some integer k ≥ 0. Let (a1, . . . , an)T and (b1, . . . , bn)T be its two columns,

which have levels given by ±(2j−1)/2 where j = 1, . . . , s/2 and n = λs. As these

two columns are orthogonal, we first have

0 =
n∑
i=1

aibi =
s/2∑
j=1

∑
|ai|=(2j−1)/2

aibi,

which gives
s/2∑
j=1

(2j − 1)
 ∑
ai=(2j−1)/2

bi −
∑

ai=−(2j−1)/2
bi

 = 0. (2.1)

Since ∑n
i=1 bi = 0, we must have that

s/2∑
j=1

 ∑
ai=(2j−1)/2

bi +
∑

ai=−(2j−1)/2
bi

 = 0. (2.2)

9

Combining Equations (2.1) and (2.2), we obtain

s/2∑
j=1

(j − 1)
∑

ai=(2j−1)/2
(2bi)− j

∑
ai=−(2j−1)/2

(2bi)
 = 0. (2.3)

Since s = 4k+2, (2bi) is odd for all i, and the number of ai’s equal to (2j−1)/2 is λ,

which is odd, the sum ∑
ai=(2j−1)/2(2bi) must be odd. Similarly, ∑ai=−(2j−1)/2(2bi)

must be also odd. Since j − 1 and j have different parity,

(j − 1)
∑

ai=(2j−1)/2
(2bi)− j

∑
ai=−(2j−1)/2

(2bi)

has to be odd. Since s = 4k+ 2, s/2 = 2k+ 1 and so is odd. This means that the

left hand side of equation (2.3) is a sum of an odd number of odd numbers, an

obvious contradiction. The proof is completed. Q.E.D.

Example 1. (a) For s = 2, Theorem 1 produces a well known result that an

OD(2λ, 2m) with m ≥ 2 does not exist for any odd λ.

(b) Let s = 6. Then Theorem 1 says that an OD(6λ, 6m) does not exist for any odd

λ and any m ≥ 2. In particular, an OD(18, 6m), an OD(30, 6m) and an OD(42, 6m)

do not exist for any m ≥ 2.

(c) For s = 10, we have that an OD(30, 10m), an OD(50, 10m) and an OD(70, 10m)

do not exist for any m ≥ 2.

Steinberg and Lin (2006) [34] proposed an elegant method for constructing or-

thogonal Latin hypercubes by rotating an orthogonal array in groups of factors. A

general version of this method was presented in Pang, Liu and Lin (2009) [30]. The

method was made more powerful by Lin, Mukerjee and Tang (2009) [20] by cou-

pling an orthogonal array with a small orthogonal Latin hypercube, which allows

orthogonal Latin hypercubes with many more columns to be constructed. Based

10

on the ideas in Lin, Mukerjee and Tang (2009) [20] and those in Sun and Tang

(2017) [39] [38], we now present the constructions of three classes of orthogonal

designs.

Let A be an OA(n, sm1 , 2) and B be an OD(s, pm2). If we replace the uth level

in each column of A by the uth row of B, we obtain a design D1, which must be an

OD(n, pm1m2). Write D1 = (C1, . . . , Cm1) where Ci is the ith group of m2 factors

resulting from replacing the levels of the ith column of A by the rows of B. Any

two columns of D1 from two different groups Ci1 and Ci2 must be an OA(n, p2, 2).

Let ci1, . . . , cim2 be the columns of Ci. We list the cij’s in the following order:

c11, c21, . . . , cm11; c12, c22, . . . , cm12; . . . ; c1m2 , c2m2 , . . . , cm1m2 .

We now take two columns at a time from the above list to obtain q = [m1m2/2] sets

of two columns, where [x] denotes the largest integer not exceeding x. Since each

set of two columns come from different groups Ci1 and Ci2 , it is an OA(n, p2, 2).

Note that if m1 and m2 are both odd, the last column cm1m2 is left unselected and

all columns get selected otherwise.

Let these q sets of two columns be C(1), C(2), . . . , C(q), which are all OA(n, p2, 2)’s.

Then

D2 = (C(1)R, . . . , C(q)R), R =

 p −1

1 p


is an OD(n, (p2)m), an orthogonal design with m = 2q = 2[m1m2/2] factors, each

with p2 levels. Note that all the OA(n, p2, 2)’s referred to in this paragraph have

their p levels given by j − (p− 1)/2 for j = 0, 1, . . . , p− 1.

We next use the idea in Sun and Tang (2017) [38] to construct an orthogonal

design with p3 levels. For this purpose, we need to require p to be a prime power.

11

For simplicity of presentation, we only give details for the case where p is a prime.

One can refer to Sun and Tang (2017) [39] for how to deal with the general case.

For each C(j), let Bj = C(j) + (p − 1)/2 so that Bj is an OA(n, p2, 2) with levels

0, 1, . . . , p− 1. Now define

D(j) =



Bj Bj

Bj 1 +Bj

... ...

Bj p− 1 +Bj


,

where for example 1 + Bj means that 1 is added to all entries of Bj, and all

calculations are modulo p. Let Ej = D(j) − (p− 1)/2. Then

D3 = (E1R,E2R, . . . , EqR)

is an OD(np, (p3)2m), where

R =



p2 −p −1 0

p p2 0 1

1 0 p2 −p

0 −1 p p2


.

We summarize the above in a theorem.

Theorem 2. Given an OA(n, sm1) and an OD(s, pm2), we have that

(i) design D1 above is an OD(n, pm1m2),

(ii) design D2 above is an OD(n, (p2)2[m1m2/2]),

(iii) design D3 above is an OD(np, (p3)4[m1m2/2]).

12

The result in Theorem 2(i) was mentioned but only in the text of Sun and

Tang (2017) [39]. This is a useful result worth highlighting, which is what we are

doing. Theorem 2(iii) can be thought of as an application of the general rotation

method for Latin hypercubes in Sun and Tang (2017) [38] to the construction of

orthogonal designs. The result in Theorem 2(ii) further extends a result in Sun

and Tang (2017 [39], Propostion 3), which has already extended the original result

of Lin, Mukerjee and Tang (2009) [20]. In Lin, Mukerjee and Tang (2009) [20], an

even m1 is required and whereas in Sun and Tang (2017) [39], an even m1m2 is

required.

Example 2. Take A to be an OA(98, 715, 2) from Addelman-Kempthorne con-

struction, and B to be an OD(7, 73), which is an OLH(7, 3) available in Lin, Muk-

erjee and Tang (2009) [20]. Then Theorem 1(i) gives an OD(98, 745). As m1 = 15

and m2 = 3, both odd, Theorem 2(ii) gives an OD(98, 4944). To use the methods

in Lin, Mukerjee and Tang (2009) [20] and Sun and Tang (2017) [39], we have to

make one of m1 and m2 even. Deleting one column from A makes m1 = 14. From

this new A, we obtain an OD(98, 4942). Alternatively, we can delete one column

from B in order to have an even m2 which is 2. This will give an OD(98, 4930).

The current example is meant to be an illustration of Theorem 2. One can in

fact obtain an OD(98, 4948) by applying the method of Bingham, Sitter and Tang

(2009) [3] to the OLH(49, 24).

Example 3. Assuming the existence of a Hadamard matrix of order 4µ, let A

be an OA(4µ, 24µ−2, 2). Take B to be a trivial OD(2, 21). Then Theorem 2(iii)

produces a family of orthogonal designs with 8 levels, given by OD(8µ, 88µ−4).

Taking µ = 1, 2, 3, 4, 5, we obtain an OD(8, 84), an OD(16, 812), an OD(24, 820),

an OD(32, 828) and an OD(40, 836).

13

2.3 Computer Search and Design Catalogue

2.3.1 Orthogonal Designs

Lin (2008) [18] conducted a computer search of small orthogonal Latin hypercubes.

Using a similar algorithm, we conduct a computer search of small orthogonal

designs for up to 20 runs. The basic idea is to construct orthogonal designs by

sequentially selecting columns. The details of the algorithm are omitted here and

the interested reader is referred to the original presentation of Lin (2008) [18].

Instead, we focus on presenting the final products, the orthogonal designs obtained

by the algorithm.

n 6 10 12 12 15 15 18
s 3 5 3 6 3 5 3
m 3 6 9 5 7 8 10

Table 2.1: A summary of small OD(n, sm)s from computer search.

Table 2.1 is a summary of the results. To the best of our knowledge, all the

orthogonal designs in Table 2.1 are new, because of which we give a full display

of these designs in Tables 2.2, 2.3 and 2.4.

The existing literature has results for two cases in Table 2.1. Stylianou, Drosou,

Georgiou, and Koukouvinos (2015) [35] obtained an OD(12, 36) with six factors

while ours in Table 2.1 gives an OD(12, 39) which has nine factors. An OA(18, 37, 2)

with levels−1, 0, 1 is an OD(18, 37). We have obtained an OD(18, 310). For all other

parameter values of n and s in Table 2.1, there have been no orthogonal designs

available thus far. Since orthogonal Latin hypercubes of n = 6, 10 and 18 runs

14

do not exist, the orthogonal designs of these run sizes in Table 2.1 thus provide

attractive solutions if orthogonality is required of a design.

n

6 12
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0

0 −1 1 −1 −1 −1 0 1 1 1 0 0
1 0 0 0 −1 1 1 −1 0 1 −1 −1
−1 1 1 −1 0 1 1 1 −1 0 1 1

0 1 −1 1 −1 1 −1 1 1 −1 0 0
1 0 0 0 1 −1 1 1 0 −1 −1 −1

1 0 −1 1 −1 1 0 1 1
−1 1 1 0 −1 1 −1 0 0

0 1 0 −1 0 0 1 −1 1
1 0 0 0 0 −1 0 −1 1
1 0 0 0 0 −1 0 1 −1
0 1 0 −1 0 0 1 1 −1

Table 2.2: OD(6, 33) and OD(12, 39)

The rotation method in Sun, Pang and Liu (2011) [37] allows construction of

an OD(8, 46), an OD(12, 410), an OD(16, 414), an OD(18, 96) and an OD(20, 418).

Using the OLH(7, 3) in Lin (2008) [18] and the OD(10, 56) in Table 2.4 in com-

bination with the method of Bingham, Sitter and Tang (2009) [3], an OD(14, 76)

and an OD(20, 512) can be constructed. These theoretical results are hard to beat.

Our algorithm can be applied to these parameter values but we have not found

designs with more factors than these theoretically constructed designs, which is

expected.

Many larger orthogonal designs can be constructed if the small orthogonal

designs in Tables 2.2, 2.3 and 2.4 are used in conjunction with the method of

Bingham, Sitter and Tang (2009) [3]. To illustrate, we give two examples.

15

n

15 18
1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 −1 −1 1 1
1 −1 −1 0 0 0 1 −1 −1 −1 −1 −1 0 0 1 −1 −1
1 −1 0 0 1 1 0 0 −1 −1 0 1 0 0 −1 −1 −1
−1 −1 1 1 −1 −1 −1 1 −1 −1 0 1 1 1 1 1 1

0 −1 1 1 1 1 0 0 −1 1 1 −1 0 1 0 1 0
0 0 1 0 −1 0 1 0 −1 1 1 0 1 −1 0 −1 1
0 1 −1 1 −1 1 0 −1 0 0 1 0 1 0 0 1 −1
−1 0 −1 1 0 0 0 −1 0 0 1 1 −1 1 0 −1 0
−1 0 0 −1 −1 1 1 −1 0 1 0 1 −1 −1 −1 1 0

1 1 1 0 0 −1 1 −1 1 0 −1 1 1 −1 1 0 1
0 1 −1 1 1 −1 0 0 1 0 −1 0 1 1 −1 1 −1
0 1 0 −1 0 1 −1 1 0 1 −1 0 0 1 −1 −1 1
−1 0 0 −1 1 −1 1 1 0 1 −1 1 −1 0 1 0 −1
−1 0 0 −1 1 0 −1 1 0 1 0 −1 0 −1 1 0 −1

1 1 1 0 0 0 −1 0 1 0 0 −1 1 0 −1 −1 0
1 1 −1 1 0 −1 0 0 0 0
−1 1 0 0 −1 −1 1 1 0 1

1 1 −1 1 0 0 −1 0 0 0

n = 12
−2.5 −2.5 −2.5 −0.5 0.5

2.5 −0.5 0.5 −1.5 −1.5
0.5 1.5 −1.5 −2.5 2.5
−1.5 1.5 −0.5 2.5 −2.5
−0.5 −2.5 2.5 0.5 −0.5

2.5 0.5 0.5 1.5 −0.5
0.5 −1.5 −2.5 2.5 1.5
−2.5 2.5 2.5 0.5 2.5
−0.5 2.5 −1.5 −0.5 −2.5
−1.5 −1.5 1.5 −2.5 −1.5

1.5 −0.5 1.5 1.5 1.5
1.5 0.5 −0.5 −1.5 0.5

Table 2.3: OD(15, 37), OD(18, 310) and OD(12, 65)

n
10 15

0 −2 −2 −2 −1 0 0 −1 −2 0 −2 −1 1 2
1 −2 −1 2 0 −1 1 −1 1 −1 2 −2 −1 −2
−1 −1 0 1 1 1 −1 1 1 2 −1 −2 −1 0
−1 −1 1 −1 0 1 −1 1 0 2 −1 2 −2 −2

0 0 2 −2 2 −2 1 2 0 2 0 −2 1 1
−2 1 0 1 1 2 −2 −2 1 1 1 2 1 2

2 1 1 −1 −2 2 1 0 −1 −1 −2 1 −2 0
−2 2 −1 0 −2 −2 −1 1 −1 −2 2 −1 −1 1

1 0 2 2 −1 −1 2 −2 −2 1 0 0 2 −2
2 2 −2 0 2 0 2 2 2 0 1 2 2 0

−2 −1 −1 1 2 0 0 −1
0 0 0 −2 −1 1 0 −1
0 2 −2 −1 1 1 0 1
−2 0 2 −2 −2 −1 2 −1

2 −2 2 0 0 0 −2 2

Table 2.4: OD(10, 56) and OD(15, 58)

16

Example 4. LetD be the OD(10, 56) in Table 2.4. LetH be a Hadamard matrix of

order k. Then according to Bingham, Sitter and Tang (2009) [3], designH⊗D is an

OD(10k, 56k). Taking k = 2, 4, 8 and 12, we obtain an OD(20, 512), an OD(40, 524),

an OD(80, 548) and an OD(120, 572).

Example 5. Again, let H be a Hadamard matrix of order k. If we take D be the

OD(12, 39) in Table 2.2, then design H⊗D is an OD(12k, 39k). Taking k = 2, 4, 8,

we obtain an OD(24, 318), an OD(48, 336) and an OD(96, 372).

17

n s m Construction Method n s m Construction Method
6 3 3 Table 2.2 52 4 50 SPL
8 4 6 SPL 52 13 24 Lin & BST

10 5 6 Table 2.4 54 9 24 SPL
12 3 9 Table 2.2 54 27 12 Theorem 2(iii)
12 6 5 Table 2.3 56 4 54 SPL
12 4 10 SPL 56 7 24 Lin & BST
14 7 6 Lin & BST 56 8 52 Theorem 2(iii)
15 3 7 Table 2.3 60 3 28 Table 2.3 & BST
15 5 8 Table 2.4 60 5 32 Table 2.4 & BST
16 4 14 SPL 60 15 24 Lin & BST
16 8 12 Theorem 2(iii) 64 4 62 SPL
18 3 10 Table 2.3 64 8 60 Theorem 2(iii)
18 9 10 Lin & BST 64 16 48 ST
20 4 18 SPL 64 16 48 SL & BST
20 5 12 Table 2.4 & BST 64 32 32 SLL & BST
22 11 14 Lin & BST 66 33 32 SLL & BST
24 3 18 Table 2.2 & BST 68 4 66 SPL
24 4 22 SPL 68 17 24 Lin & BST
24 6 10 Table 2.3 & BST 72 3 40 Table 2.3 & BST
24 8 20 Theorem 2(iii) 72 4 70 SPL
24 12 12 Lin & BST 72 8 68 Theorem 2(iii)
25 5 12 Theorem 2(i) 72 9 40 Lin & BST
26 13 12 Lin & BST 72 36 6 SPL
27 9 12 SPL 75 5 16 Theorem 2(i)
28 4 26 SPL 75 25 16 Theorem 2(ii)
28 7 12 Lin & BST 76 4 74 SPL
30 3 14 Table 2.3 & BST 76 19 24 Lin & BST
30 5 16 Table 2.4 & BST 80 4 78 SPL
30 15 12 Lin & BST 80 5 48 Table 2.4 & BST
32 4 30 SPL 80 8 76 Theorem 2(iii)
32 8 28 Theorem 2(iii) 80 20 24 Lin & BST
32 16 24 SL & BST 81 9 50 Theorem 2(i)
34 17 12 Lin & BST 81 27 24 Theorem 2(iii)
36 3 20 Table 2.3 & BST 84 4 82 SPL
36 4 34 SPL 84 21 24 Lin & BST
36 9 20 Lin & BST 88 4 86 SPL
38 19 12 Lin & BST 88 8 84 Theorem 2(iii)
40 4 38 SPL 90 9 20 SPL & BST
40 5 24 Table 2.4 & BST 92 4 90 SPL
40 8 36 Theorem 2(iii) 92 23 24 Lin & BST
40 20 12 Lin & BST 96 3 72 Table 2.3 & BST
42 21 12 Lin & BST 96 4 94 SPL
44 4 42 SPL 96 6 40 Table 2.3 & BST
44 11 28 Lin & BST 96 8 92 Theorem 2(iii)
45 9 10 SPL 96 12 48 Lin & BST
46 23 12 Lin & BST 96 48 24 LBST & BST
48 3 36 Table 2.2 & BST 98 7 48 Theorem 2(i) & BST
48 4 46 SPL 98 49 48 LMT & BST
48 6 20 Table 2.3 & BST 100 4 98 SPL
48 8 36 Theorem 2(iii) 100 5 48 Theorem 2(i) & BST
48 12 24 Lin & BST 100 25 48 LMT & BST
49 7 24 Theorem 2(i)
50 5 24 Theorem 2(i) & BST
50 25 24 LMT & BST

Table 2.5: A catalogue of OD(n, sm) for n ≤ 100

18

Using our computer search results and existing designs, in conjunction with

our Theorem 2 and other existing methods in the literature, we now create a

comprehensive catalogue of orthogonal designs for up to 100 runs. This is given

in Table 2.5, in which the following abbreviations are used to save space: BST

- Bingham , Sitter and Tang (2009) [3] , SPL - Sun, Pang and Liu (2011) [37]

, ST - Sun and Tang (2017) [39], Lin - Lin (2008) [18], SL - Steinberg and Lin

(2006) [34], LMT - Lin, Mukerjee, and Tang (2009) [20], SLL - Sun, Liu and Lin

(2009) [36], LBST - Lin, Bingham, Sitter and Tang (2010) [19].

2.3.2 Nearly Orthogonal Designs

We use a computer search algorithm to obtain nearly orthogonal designs. The

search algorithm is very much similar to the Lin’s [18] adapted algorithm and we

try to improve it further by applying a simulated annealing algorithm similar to

that in Morris and Mitchell (1995) [26]. We use a linearly decreasing annealing

temperature scheme to maximize our chance of finding a global optimum. In early

iterations the probability of selecting a candidate that is evaluated to be worse

than our comparison solution is relatively high. This permits the exploration of

the whole solution space and to find the general region of the global optimum. In

later iterations, when annealing temperature, Q, is small, the acceptance chance

of a worse candidate solution is small as well. The movement between solutions

becomes predominantly towards the nearest optimum. We selected this initial

temperature Q0 as a tuning parameter through trial-and-error.

In the first phase, we obtain an initial solution by sequentially adding columns.

For each column, we evaluated up to T1 random permutation of dk and choose

the best candidate column under the ρ2
ave optimality criterion. If ρ2

ave = 0 then

the orthogonal solution was obtained. This procedure is continued until the max-

19

imum number of orthogonal columns were achieved by the sequentially adding

columns. After achieving the maximum number of orthogonal columns, we search

for the next best candidate columns under the ρ2
ave optimality criterion. If there

are multiple candidate columns that are equally optimal, we select the first one.

In the second phase, we search for improvements on this initial solution by way

of simulated annealing. A step by step description of this algorithm as follows:

Step1: Let DOLD be the initial design we found from Phase 1. This is the compar-

ison solution until something replaces it. Let ρ2
ave(OLD) be the average squared

correlation of DOLD.

Step2: Among the columns of DOLD that are not already part of orthogonal

solution, select a column j, k ≤ j ≤ n− 1 and swap all possible pairs within that

column. If ρ2
ave(OLD) = 0 then go to Step 1. Otherwise move on to Step 3.

Step3: The matrix with the swapped elements in that column, DNEW is the

candidate matrix and ρ2
ave(NEW) is the candidate solution.

Step4 (a): If ρ2
ave(NEW) ≤ ρ2

ave(OLD), accept the candidate solution as the

comparison solution, and assign ρ2
ave(NEW)→ ρ2

ave(OLD) .

Step4 (b): If ρ2
ave(NEW) > ρ2

ave(OLD), accept the candidate solution with

probability e
− {ρ

2
ave(NEW)−ρ2

ave(OLD)}
Qi , where Qi is ith annealing temperature within

Phase 2.

Step 5:If a new candidate solution has been selected, and the changed column j

is part of an orthogonal solution, mark the column as orthogonal so that it is not

selected to change in future iterations.

20

The algorithm is run until no improvement. Nearly orthogonal designs allow

accommodation of more factors than orthogonal designs, thus providing a class

of very useful designs for computer experiments. We have applied our algorithm

to obtain a collection of nearly orthogonal designs for up to 18 runs. Tables 2.6

and 2.7 summarize the smallest ρave value. Full display of the designs are given in

Appendix A.

n = 6 n = 8 n = 9 n = 10 n = 12
m s = 3 s = 4 s = 3 s = 5 s = 3 s = 4 s = 6
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0.144 0 0 0 0 0 0
5 0.209 0.078 0.053 0 0 0 0
6 0.100 0.086 0 0 0 0.007
7 0.134 0.096 0.027 0 0 0.011
8 0.109 0.045 0 0.033 0.018
9 0.074 0 0.044 0.029
10 0.070 0.061 0.034
11 0.099 0.084 0.049

Table 2.6: Best value for ρave for designs n = 6, 8, 9, 10 and 12

n = 14 n = 15 n = 16 n = 18
m s = 7 s = 3 s = 5 s = 4 s = 8 s = 3 s = 9
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0.017 0 0 0 0.011 0 0.018
7 0.023 0 0 0 0.012 0 0.023
8 0.025 0.038 0 0 0.019 0 0.025
9 0.029 0.058 0.016 0.012 0.027 0 0.028
10 0.030 0.061 0.025 0.022 0.029 0 0.029
11 0.031 0.063 0.031 0.029 0.030 0.025 0.030
12 0.033 0.071 0.032 0.033 0.031 0.036 0.030
13 0.035 0.076 0.041 0.041 0.032 0.043 0.031
14 0.076 0.046 0.046 0.033 0.051 0.032
15 0.053 0.035 0.057 0.032
16 0.058 0.033
17 0.065 0.033

Table 2.7: Best value for ρave for designs n = 14, 15, 16 and 18

21

Chapter 3

Compromise Designs Under
Baseline Parametrization

3.1 Introduction

Two-level factorial designs are widely used in scientific and technological investi-

gations to study the effects of a large number of factors on a response variable.

Theory and practice of these designs mostly employ the familiar orthogonal pa-

rameterization, where main effects and interaction effects are defined using a set of

orthogonal contrasts (Mee 2009 [23]; Wu and Hamada 2009 [42]; Cheng 2014 [6]).

However, recent research (Kerr 2006 [16]; Banerjee and Mukerjee 2008 [2]; Stallings

and Morgan 2015 [33]) points to the increasing importance of a less common but

quite natural non-orthogonal baseline parameterization. Under the baseline pa-

rameterization, factorial effects are defined with reference to the baseline level.

This chapter of the thesis considers two-level factorial designs under the baseline

parameterization.

Mukerjee and Tang (2012) [27] showed that orthogonal arrays of strength two

are universally optimal for estimating main effects. However, if significant in-

teractions exist, the no-interaction model becomes biased. Mukerjee and Tang

(2012) [27] proposed a minimum aberration criterion, which can be used to min-

22

imize the bias in the main effect estimates among all orthogonal arrays. Further

work along this line has been carried out by Li, Miller and Tang (2014) [17], Miller

and Tang (2016) [25] and Mukerjee and Tang (2016) [28]. In addition to minimum

aberration designs, Mukerjee and Tang (2012) [27] also considered one-factor-at-

a-time (OFAT) designs for estimating baseline main effects. Unlike orthogonal

arrays, OFAT designs allow unbiased estimation of main effects without any as-

sumption on the absence of interactions.

3.2 Introducing Compromise Designs

Let Z be a baseline design of n runs for m factors of two levels 0 and 1 with 0

denoting the baseline level and 1 the test level. Thus, design matrix Z is an n×m

matrix with entries 0 and 1. We first consider a model that contains only an inter-

cept and the main effects of the m factors. Under the baseline parameterization,

the main effect of a factor is defined as the difference in the mean response when

this factor changes from the baseline level to the test level while all other factors

are held at the baseline level. Let an denote the vector of n ones. Then in matrix

form, the main effect model is given by

Y = Xθ + ε, (3.1)

Y is the vector of the observed responses, X = [an, Z] the model matrix, θ con-

sists of the intercept and all the main effects, and ε is the vector of the random

errors assumed to be uncorrelated with a constant variance σ2. The least square

estimate of θ is θ̂ = (XTX)−1XTY and its variance-covariance matrix is given by

σ2(XTX)−1. For screening experiments, which is the situation we are considering,

the intercept is of little interest and our focus should be on estimating the main

23

effects. Up to a constant σ2, the variance-covariance matrix of the main effect es-

timates is (XTX)−1
(−1,−1), which is the resulting matrix from deleting the first row

and first column of (XTX)−1. Mukerjee and Tang (2012) [27] showed that design

Z is universally optimal and thus As, Ds and Es optimal for estimating the main

effects among all n-run designs if Z is an orthogonal array of strength 2. The As,

Ds and Es optimality criteria are defined as the ones that minimize the trace, the

determinant and the maximum eigenvalue of (XTX)−1
(−1,−1), respectively.

If the interactions cannot be ignored, the true model becomes

Y = Xθ +X2θ2 + · · ·+Xmθm + ε, (3.2)

where θj is the vector of all j-factor interactions and Xj the corresponding model

matrix. Then the expected value of θ̂ under the true model is given by E(θ̂) =

θ+(XTX)−1XTX2θ2 + · · ·+(XTX)−1XTXmθm. It is clear that (XTX)−1XTXjθj

is the contribution to the bias in θ̂ due to the j-factor interactions. When the

intercept is of little interest, our focus should be on the bias in the estimates

of the main effects. Now let Cj be the matrix obtained by removing the first

row of (XTX)−1XTXj which corresponds to the bias in the intercept estimate.

Under the effect hierarchy principle that lower order effects are more important

than higher order effects, one should sequentially minimize some size measures of

C2, C3, . . . , Cm. One such measure is given by Kj = tr(CjCT
j). Then the minimum

aberration criterion is to sequentially minimize K2, K3, . . . , Km.

The baseline parameterization has an attractive property that there exist de-

signs that allow unbiased estimation of the main effects even in the presence

of some or all interactions. These are given by one-factor-at-a-time (OFAT) de-

signs. The basic OFAT design consists of treatment combinations (0, 0, . . . , 0),

24

(1, 0, . . . , 0), . . . ,(0, 0, . . . , 1), which give a design of n = m + 1 runs. When

n > m+1, the class of all OFAT designs is obtained if all n runs are selected from

the basic OFAT design. Let f0, f1, . . . , fm denote, respectively, the frequencies of

the treatment combinations (0, 0, . . . , 0), (1, 0, . . . , 0), . . . ,(0, 0, . . . , 1) occuring in

a general OFAT design. Mukerjee and Tang (2012) [27] showed that the As-

optimal OFAT design can be obtained by minimizing (mf−1
0 +∑m

i=1 f
−1
i) subject

to f0 +∑m
i=1 fi = n.

Example 1. For n = 8 and m = 6, the As optimal OFAT design, say ZOFAT , is

given by f0 = 2, f1 = f2 = · · · = f6 = 1. Let us compare ZOFAT with the minimum

aberration design ZMA using the As criterion and a bias criterion K2, the leading

term in the minimum aberration criterion. The two design matrices are displayed

below:

ZOFAT =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, ZMA =



0 0 0 0 0 0
0 1 0 1 0 1
1 1 0 0 1 1
1 0 0 1 1 0
0 0 1 1 1 1
0 1 1 0 1 0
1 1 1 1 0 0
1 0 1 0 0 1


.

Table 3.1 provides the values of As and K2 for the two designs. Clearly, ZMA

is better in minimizing the variance while ZOFAT is better in minimizing the bias.

Given the sharp contrasts between ZMA and ZOFAT , it would be very useful to

have some designs available that are not optimal under either criterion but perform

well under both.

25

ZMA As = 3.0 K2 = 10.5
ZOFAT As = 9.0 K2 = 0.0

Table 3.1: The As and K2 values of ZOFAT and ZMA for n = 8 and m = 6

Instead of restricting to the runs in the basic OFAT design, we propose the

consideration of a class of compromise designs obtained by adding any (n−m−1)

runs to the basic OFAT design. As all such designs contain the basic OFAT design,

they should perform well under the K2 bias criterion. Out of this class of designs,

optimal compromise designs can then be selected using efficiency criteria. All three

As, Ds and Es criteria will be considered in this thesis.

The next section examines how to construct such optimal compromise designs.

A theoretical result is established showing that the design obtained by adding the

all-ones run is optimal under all three As, Ds and Es criteria. For the case of

adding more than one run, it appears quite difficult to obtain such theoretical

results. Instead, we resort to computer to search for optimal compromise designs.

The naive approach of considering all possible ways of adding the extra runs is

very time-consuming and only allows us to find some optimal designs for adding

two runs. By making use of the symmetry of the basic OFAT design, we develop a

complete search algorithm that is quite powerful and enables us to find all optimal

compromise designs for adding up to four runs and up to m = 20 factors.

3.3 Finding Optimal Compromise Designs

3.3.1 Adding one run to basic OFAT design

This section is devoted to finding the optimal compromise design for the case of

adding one run to the basic OFAT design. Then the design matrix Z consists of

m + 1 treatment combinations (0, 0, . . . , 0), (1, 0, . . . , 0), . . . ,(0, 0, . . . , 1) and an

26

extra run uT = (u1, u2, . . . , um), where ui = 0, 1, for i = 1, 2, . . . ,m. The design

matrix is thus given by

Z =



0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...
0 0 0 · · · 1
u1 u2 u3 · · · um


.

As the model matrix is X = [an, Z], we obtain

XTX =

 n aTm + uT

am + u Im + uuT

 ,

where Im is the identity matrix of order m and am is the vector of m ones.

Since we are interested only in the main effects, not the intercept term, we need

the variance-covariance matrix, say M , of the main effect estimates, which can

calculated as follows

M = (XTX)−1
(−1,−1) =

[
Im + uuT − n−1(am + u)(am + u)T

]−1
. (3.3)

The As, Ds and Es criteria select designs by minimizing the trace, the determinant

and the maximum eigenvalue of matrix M , respectively. We have the following

general result.

Theorem 3. Design Z given by adding the all-ones run uT = (1, 1, . . . , 1) to the

basic OFAT design is optimal under all three As, Ds and Es criteria.

Proof. Equation (3.3) becomes M = A−1 if we define

27

A = I + uuT − n−1(a+ u)(a+ u)T (3.4)

where we write I for Im and a for am for simplicity in the proof. Them eigenvalues

τ1, . . . , τm of matrix A in (3.4) can be obtained via τi = 1 + λi with i = 1, . . . ,m

from the m eigenvalues λ1, . . . , λm of matrix

B = uuT − n−1(a+ u)(a+ u)T . (3.5)

As B has rank at most 2, it has at least m−2 eigenvalues equal to 0. Let these be

λ3 = · · · = λm = 0. To find the other two eigenvalues λ1 and λ2, we differentiate

three cases.

Case (i). For u = (0, . . . , 0)T , matrix B in (3.5) becomes −n−1aaT , which has

rank 1. Therefore the other two eigenvalues of B are λ1 = 0 and λ2 = −n−1‖a‖2 =

−n−1m, where ‖a‖2 denotes the squared length of vector a.

Case (ii). For u = (1, . . . , 1)T = a, we obtain B = aaT − n−1(2a)(2a)T =

(1− 4n−1)aaT , which also has rank 1. Therefore, λ1 = 0 and λ2 = (1− 4n−1)m.

Case (iii). In this case, u consist of k ones and m−k zeros with 1 ≤ k ≤ m−1.

Note that cases (i) and (ii) correspond to k = 0 and k = m, respectively. When

1 ≤ k ≤ m − 1, u and a + u are independent, and thus B in (3.5) has rank

2. Obviously, u is not an eigenvector. So, an eigenvector of B must have form

x = u+αv for some real α where v = a+u. We will find λ1 and λ2 from Bx = λx.

As B = uuT − n−1vvT and x = u+ αv, we obtain

Bx = (‖u‖2 + αuTv)u− n−1(vTu+ α‖v‖2)v = λ(u+ αv).

Therefore λ = ‖u‖2 + αuTv and αλ = −n−1(vTu+ α‖v‖2). Combining these two

equations for α and λ and noting that ‖u‖2 = k, ‖v‖2 = 3k + m and uTv = 2k,

28

we obtain

α2 + bα + g = 0, (3.6)

where g = n−1 and b = (k+ 3gk+mg)/2k. Let α1 and α2 be the two solutions to

equation (3.6). Then the two eigenvalues λ1 and λ2 of B are therefore given by

λ1 = k + 2kα1, λ2 = k + 2kα2. (3.7)

In addition, we must have

α1 + α2 = −b, α1α2 = g. (3.8)

We thus obtain that det(A) = ∏m
i=1 τi = ∏m

i=1(1 + λi) = (1 + λ1)(1 + λ2) as λi = 0

for i = 3, . . . ,m. By (3.7) and (3.8), we obtain

det(A) = gk2 + (1− 3g −mg)k + 1− gm. (3.9)

Although the above expression for det(A) is obtained for 1 ≤ k ≤ m − 1, we

can easily verify that it also holds for cases (i) k = 0 and (ii) k = m. As a real-

valued function of k, the expression in (3.9) is a quadratic function with a positive

coefficient for the k2 term and thus minimized at −(1−3g−mg)/(2g) = 1/2. This

shows that det(A) is maximized at k = m when k is only allowed to take values

0, 1, . . . ,m. Thus k = m minimizes det(M). The Ds optimality is now established.

We next prove the As optimality. The As criterion minimizes

trace(M) =
m∑
i=1

1
τi

=
m∑
i=1

1
1 + λi

= m−2+ 1
1 + λ1

+ 1
1 + λ2

= m−2+ 2 + λ1 + λ2

(1 + λ1)(1 + λ2)
.

29

Using (3.7), (3.8) and (3.9), we have

trace(M)− (m− 2) = h(k) = p(k)
f(k) (3.10)

where f(k) = gk2 +(1−3g−mg)k+1−gm and p(k) = (1−3g)k+2−mg. Again,

although (10) is obtained for case (iii), one can verify directly that it holds for cases

(i) and (ii) as well. Treating h(k) as a real-valued function, we obtain h′(k) = w(k)
f2(k) ,

where w(k) = c0k
2 + c1k + c2 with c0 = −g(1− 3g), c1 = −2(2−mg)g and c2 =

(2−mg)mg− (1−3g). Since w(k) is a quadratic function of k, the following three

facts (a) c0 < 0, (b) w(k) is maximized at −c1/(2c0) = −(2−mg)/(1− 3g) < 0,

and w(0) = (3m+ 2)/(m+ 2)2 > 0 imply that w(k) > 0 for 0 ≤ k < k∗ for some

k∗ > 0 and w(k) < 0 for k > k∗. This shows that h(k) is increasing in 0 ≤ k ≤ k∗

and decreasing in k > k∗. Because of this property, h(k) is minimized at k = m

out of the allowable k values k = 0, 1, . . . ,m if h(m) < h(0), which amounts to

(m+ 2− 4mg)/(m+ 1− 4mg) < (2−mg)/(1−mg). The latter inequality can be

verified easily as m > 1. The As is now established.

The Es criterion finds optimal designs by minimizing max{1/(1+λ1, . . . , 1/(1+

λm)}, which is equivalent to maximizing min(λ1, . . . , λm). Clearly, min(λ1, . . . , λm)

is equal to −mg for case (i), 0 for case (ii) and λ1 = k+2kα1 for case (iii) where α1

is the smaller root of equation (3.6), which is given by α1 = −b/2− (b2− 4g)1/2/2

as b > 0. Therefore

min(λ1, . . . , λm) = k
[
1− (b+ (b2 − 4g)1/2

]
for 1 ≤ k ≤ m− 1. (3.11)

Since b = (k + 3gk +mg)/2k depends on k, we make this explicit by introducing

bk = (k + 3gk + mg)/2k, which is a strictly decreasing function of k for k ≥ 1.

Thus bk > bm, which implies that bk + (b2
k − 4g)1/2 > bm + (b2

m − 4g)1/2 = 1 for

30

1 ≤ k ≤ m−1. By (11), we have that min(λ1, . . . , λm) < 0 for 1 ≤ k ≤ m−1. Recall

that min(λ1, . . . , λm) = −mg < 0 for case (i) (k = 0) and min(λ1, . . . , λm) = 0

for case (ii) (k = m). Thus 0 is the maximum value of min(λ1, . . . , λm), which is

attained at k = m. This completes the proof for the Es optimality. Q.E.D.

Table 3.2 provides an illustration of Theorem 3, in which for m = 6, we

evaluate the performances of all designs from adding one run to the basic OFAT

design. As can be seen from the table, none of the As, Ds and Es criteria is a

strictly decreasing function of k. This partly explains why the proof of Theorem

3 is nontrivial.

k As Ds Es

0 9.00 4.00 4.00
1 11.50 4.00 6.92
2 9.00 2.00 4.56
3 7.13 1.00 2.76
4 6.14 0.57 1.83
5 5.59 0.36 1.31
6 5.25 0.25 1.00

Table 3.2: The As, Ds and Es values of the designs from adding a run consisting
of k ones and m− k zeros to the basic OFAT design for k = 0, 1, . . . ,m = 6.

We next compare in Table 3.3 three designs: the minimum aberration (MA)

design ZMA, the optimal compromise design ZC and the optimal OFAT design

ZOFAT in terms of both the efficiency and the bias. For simplicity, we only calculate

As for the efficiency and K2 for the bias. Comparisons are made for designs of

n = m+2 runs withm = 2, 6, 10, 14, 18 factors, in which cases, the MA designs are

available. We know that MA designs are the best in terms of efficiency while OFAT

31

designs are the best in minimizing the bias. In contrast, our optimal compromise

designs ZC , though not optimal under either criterion, are quite competitive under

both criteria.

As value K2 value
m ZMA ZC ZOFAT ZMA ZC ZOFAT

2 2.00 2.00 3.00 0.50 0.50 0.00
6 3.00 5.25 9.00 10.50 3.16 0.00
10 3.33 9.13 15.00 32.50 5.32 0.00
14 3.57 13.09 21.00 54.13 7.38 0.00
18 3.60 17.06 27.00 112.50 9.41 0.00

Table 3.3: Comparisons of As and K2 values of three designs ZMA, ZC and ZOFAT
for m = 2, 6, 10, 14 and 18 factors.

A by-product of Theorem 3 is a set of simple formulas for the As, Ds, Es values

and the leading bias term K2 of the optimal design. This is given in a corollary.

Corollary 1. The optimal design in Theorem 3 has

Ds = m+ 2
m2 −m+ 2 , As = m− 1 +Ds, Es = 1, K2 = m4(m− 1)

2(m2 −m+ 2)2 .

3.3.2 Adding two or more runs to basic OFAT design

In view of the lengthy proof of Theorem 3, it appears that a theoretical derivation

of optimal designs for the general case is extremely difficult if possible at all.

Instead, we devote our effort to computer search of optimal compromise designs

for adding p ≥ 2 runs to the basic OFAT design for m factors.

32

A naive approach is to consider all possible ways of adding p runs to the basic

OFAT design. With m factors, there are 2m possible runs to choose from for just

adding one run. For adding p runs, one would have to examine (2m)p choices if

the search is to be complete. This number 2mp is 230 which is already more than

one billion even for m = 15 and p = 2, and becomes astronomically large for

m = 20 and p = 3. We have in fact tried out this approach and only obtained

some optimal designs for p = 2.

A much more efficient search is to work with columns instead of rows by taking

advantage of the symmetry of the basic OFAT design. When adding p runs to the

basic OFAT design of m factors, the design matrix has two parts: the top part

being the m+ 1 runs given by the basic OFAT design and the bottom part being

the extra p runs, which form a p ×m matrix with entries 0 and 1. Let U denote

this matrix consisting of the added p runs. Because of the symmetry of the basic

OFAT design, the whole design remains essentially the same when the columns of

U are arbitrarily permuted. This observation is the key to our development of an

efficient search.

Any column of U is a binary vector of length p. There are in total 2p such

binary vectors and let them be ω1, . . . , ω2p . Let xj be the number of times ωj

occurs in U for j = 1, . . . , 2p. Then two different U ’s can be obtained from each

other by column permutation, if their sets of x’s values are the same. This means

that we only need to consider U ’s with different sets of x’s values when searching

for optimal compromise designs. Note that ∑2p
j=1 xj = m. Given a set of solutions

x1, . . . , x2p satisfying ∑2p
j=1 xj = m, one such U can be generated by collecting in

any order ωj repeated xj times for every j = 1, . . . , 2p.

33

The following is a detailed description of our computational search algorithm

for finding optimal compromise designs when adding p runs to the basic OFAT

design.

Step 1. Systematically generate all nonnegative integer solutions to equation∑2p
j=1 xj = m. This is done as follows. First let x1 = 0, 1, . . . ,m. Given

x1, . . . , xj, let xj+1 = 0, 1, . . . ,m−∑j
i=1 xi, where j = 1, . . . , 2p − 1.

Step 2. For each solution (x1, . . . , x2p), generate matrix U by collecting ω1, . . . , ω2p

with ωj repeated xj times. Then stack Z0 on top of U to get design matrix

Z, where Z0 is the matrix of the basic OFAT design. Appending a column

of all ones to Z, we obtain the model matrix X.

Step 3. Evaluate the design using all the three criteria As, Ds and Es.

With this efficient, yet still complete, search algorithm, we are able to obtain

optimal compromise designs for all m ≤ 20 factors and adding p = 2, 3, 4 runs. We

have used all three As, Ds and Es criteria in our search. While the same optimal

designs are found under all three criteria in some cases, there are also many cases

where the three criteria give different designs. It is remarkable that in all cases,

As, Ds and Es optimal designs only depend on a small subset of ω vectors. A

run-down of the results for p = 2, 3, 4 is given below.

m 4 5 6 7 8 9 10 11 12
U ω2

1ω
2
2 ω2

1ω
3
2 ω3

1ω
3
2 ω3

1ω
4
2 ω4

1ω
4
2 ω4

1ω
5
2 ω4

1ω
6
2 ω5

1ω
6
2 ω5

1ω
7
2

m 13 14 15 16 17 18 19 20
U ω6

1ω
7
2 ω7

2ω
7
3 ω7

2ω
8
3 ω8

2ω
8
3 ω8

2ω
9
3 ω9

2ω
9
3 ω9

2ω
10
3 ω10

2 ω
10
3

Table 3.4: As optimal compromise designs for adding p = 2 runs.

34

m 4 5 6 7 8 9
U ω2

1ω
2
2 ω3

1ω
2
2 ω4

1ω
2
2 ω4

1ω
3
2 ω4

1ω
4
2 ω5

1ω
4
2

m 10 11 12 13 14 15
U ω5

1ω
5
2 ω6

1ω
4
2ω3 ω6

1ω
3
2ω

3
3 ω6

1ω
4
2ω

3
3 ω7

1ω
3
2ω

4
3 ω7

1ω
4
2ω

4
3

m 16 17 18 19 20
U ω7

1ω
5
2ω

4
3 ω7

1ω
5
2ω

5
3 ω8

1ω
5
2ω

5
3 ω8

1ω
5
2ω

6
3 ω9

1ω
5
2ω

6
3

Table 3.5: Ds optimal compromise designs for adding p = 2 runs.

m 4 5 6 7 8 9 10 11 12
U ω4

1 ω5
1 ω6

1 ω7
1 ω8

1 ω9
1 ω10

1 ω11
1 ω12

1
m 13 14 15 16 17 18 19 20
U ω13

1 ω14
1 ω15

1 ω16
1 ω17

1 ω18
1 ω19

1 ω20
1

Table 3.6: Es optimal compromise designs for adding p = 2 runs.

In Tables 3.4, 3.5 and 3.6 , we present As, Ds and Es, respectively, optimal

designs from adding p = 2 runs to the basic OFAT design. The optimal designs

depend on three ω vectors and let them be

ω1 =
(1

1
)
, ω2 =

(1
0
)
, ω3 =

(0
1
)
.

In Tables 3.4, 3.5 and 3.6, a shortcut notation is to used to present the two

extra runs where, for example, entry ω2
1ω

3
2 means that matrix U is obtained by

repeating ω1 twice and ω2 three times, that is,

U =
(1 1 1 1 1

1 1 0 0 0
)
.

35

In Tables 3.7 and 3.8, we present As, Ds and Es optimal designs for adding

p = 3 runs. This time, the optimal designs can be determined using four ω vectors

as given below

ω1 =
 1

1
0

 , ω2 =
 1

0
1

 , ω3 =
 0

1
1

 , ω4 =
 1

1
1

 .

m 4 5 6 7 8 9
U ω1ω2ω

2
3 ω1ω

2
2ω

2
3 ω2

1ω
2
2ω

2
3 ω2

1ω
2
2ω

3
3 ω2

1ω
3
2ω

3
3 ω3

1ω
3
2ω

3
3

m 10 11 12 13 14 15
U ω3

1ω
3
2ω

4
3 ω3

1ω
3
2ω

5
3 ω4

1ω
4
2ω

4
3 ω4

1ω
4
2ω

5
3 ω4

1ω
5
2ω

5
3 ω5

1ω
5
2ω

5
3

m 16 17 18 19 20
U ω5

1ω
5
2ω

6
3 ω5

1ω
6
2ω

6
3 ω6

1ω
6
2ω

6
3 ω6

1ω
6
2ω

7
3 ω6

1ω
7
2ω

7
3

Table 3.7: As and Ds optimal compromise designs for adding p = 3 runs.

m 4 5 6 7 8 9 10 11 12
U ω4

4 ω5
4 ω6

4 ω7
4 ω8

4 ω9
4 ω10

4 ω11
4 ω12

4
m 13 14 15 16 17 18 19 20
U ω13

4 ω14
4 ω15

4 ω16
4 ω17

4 ω18
4 ω19

4 ω20
4

Table 3.8: Es optimal compromise designs for adding p = 3 runs.

The As, Ds and Es optimal designs for adding four runs can be found in Tables

3.9, 3.10 and 3.11, respectively, where the following 11 ω vectors are needed.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11
1 1 1 0 1 1 1 0 0 0 1
1 1 0 1 1 0 0 1 1 0 1
1 0 1 1 0 1 0 1 0 1 1
0 1 1 1 0 0 1 0 1 1 1

36

m 4 5 6 7
U ω1ω2ω3ω4 ω1ω2ω3ω

2
4 ω1ω2ω3ω8ω9ω10 ω1ω2ω3ω8ω9ω

2
10

m 8 9 10 11
U ω2

1ω
2
8ω

2
9ω

2
10 ω1ω2ω3ω

2
8ω

2
9ω

2
10 ω1ω5ω6ω

2
7ω8ω

2
9ω

2
10 ω5ω

2
6ω

2
7ω

2
8ω

2
9ω

2
10

m 12 13 14 15
U ω2

5ω
2
6ω

2
7ω

2
8ω

2
9ω

2
10 ω3

5ω
2
6ω

2
7ω

2
8ω

2
9ω

2
10 ω3

5ω
3
6ω

2
7ω

2
8ω

2
9ω

2
10 ω3

5ω
3
6ω

3
7ω

2
8ω

2
9ω

2
10

m 16 17 18 19
U ω3

5ω
3
6ω

3
7ω

3
8ω

2
9ω

2
10 ω3

5ω
3
6ω

3
7ω

3
8ω

3
9ω

2
10 ω3

5ω
3
6ω

3
7ω

3
8ω

3
9ω

3
10 ω4

5ω
3
6ω

3
7ω

3
8ω

3
9ω

3
10

m 20
U ω4

5ω
4
6ω

3
7ω

3
8ω

3
9ω

3
10

Table 3.9: As optimal compromise designs for adding p = 4 runs.

m 4 5 6 7
U ω1ω2ω3ω4 ω2

1ω2ω3ω4 ω2
1ω

2
2ω3ω4 ω2

1ω
2
2ω

2
3ω4

m 8 9 10 11
U ω2

1ω
2
2ω

2
3ω

2
4 ω3

1ω
2
2ω

2
3ω

2
4 ω2

1ω
2
2ω

2
3ω4ω8ω9ω10 ω3

1ω
2
2ω

2
3ω

2
4ω8ω9

m 12 13 14 15
U ω3

1ω
3
2ω

2
3ω

2
4ω8ω9 ω3

1ω
3
2ω

3
3ω

2
4ω8ω9 ω3

1ω
3
2ω

3
3ω

3
4ω8ω9 ω4

1ω
3
2ω

3
3ω

3
4ω8ω9

m 16 17 18 19
U ω4

1ω
4
2ω

3
3ω

3
4ω8ω9 ω4

1ω
4
2ω

4
3ω

3
4ω8ω9 ω4

1ω
4
2ω

4
3ω

4
4ω8ω9 ω5

1ω
4
2ω

4
3ω

4
4ω8ω9

m 20
U ω5

1ω
5
2ω

4
3ω

4
4ω8ω9

Table 3.10: Ds optimal compromise designs for adding p = 4 runs.

37

m 4 5 6 7 8 9 10 11 12
U ω4

11 ω5
11 ω6

11 ω7
11 ω8

11 ω9
11 ω10

11 ω11
11 ω12

11
m 13 14 15 16 17 18 19 20
U ω13

11 ω14
11 ω15

11 ω16
11 ω17

11 ω18
11 ω19

11 ω20
11

Table 3.11: Es optimal compromise designs for adding p = 4 runs.

While there is no apparent pattern in the As and Ds optimal designs. Es

optimal designs can all be obtained by adding copies of all-ones run to the basic

OFAT design. This may well hold in general and deserves further investigation.

38

Chapter 4

Second Class of Compromise
Designs Under Baseline
Parameterization

Orthogonal arrays and one-factor-at-a-time (OFAT) designs perform well under

the criteria of minimizing variance and bias, respectively, but not under both

criteria. Compromise designs provide middle ground between orthogonal arrays

and OFAT designs. Chapter 3 has considered a class of compromise designs by

adding runs to the basic OFAT designs using efficiency criteria. This chapter

investigates another class of compromise designs obtained from orthogonal arrays

by changing some ones to zeros. To obtain the best designs, we use a method of

complete search for smaller run sizes, and an incomplete search algorithm when

the complete search is not feasible.

4.1 Introduction

Two-level factorial designs are a useful class of screening designs in both theory

and practice. The orthogonal parameterization is the most often used method of

analyzing two-level factorial designs. The baseline parameterization is less com-

mon but quite natural in situations where there is a null state or baseline level for

39

each factor (Banerjee and Mukerjee, 2008 [2]). Mukerjee and Tang (2012) [27] stud-

ied two-level factorial designs under the baseline parameterization. They showed

that orthogonal arrays of strength two are universally optimal for estimating main

effects and proposed a minimum aberration criterion when interactions exist in

addition to the main effects. The minimum aberration criterion can be used to

minimize the bias in the main effect estimation among all orthogonal arrays. OFAT

designs allow unbiased estimation of main effects even in the presence of some or

all interactions.

Even though minimum aberration (MA) designs are universally optimal, they

are not optimal under the bias criterion. On the other hand, basic OFAT designs

are better at minimizing the bias, but not the variance. Therefore it would be very

useful to have some designs available that are not optimal under either criterion,

but perform well under both. Karunanayaka and Tang (2017) [15] proposed a class

of compromise designs obtained by adding runs to the basic OFAT designs using

efficiency criteria.

In this chapter, we propose another class of compromise designs obtained from

MA designs by changing some ones to zeros. These designs should perform well

in terms of minimizing the variance if the number of such changes is small. The

best designs from this second class of compromise designs are then selected using

both the efficiency criterion, As and the bias criterion, K2. We use a complete

search procedure to obtain such designs starting from changing a single one to

zero in each column in MA designs. However, the complete search procedure is

feasible only for small designs. Therefore, an efficient incomplete search algorithm

is developed to handle larger designs. The performance of our incomplete search

algorithm is examined by comparing its results with those from the complete

search procedure.

40

4.2 A New Class of Compromise Designs

The first class of compromise designs was studied by Karunanayaka and Tang

(2017) [15] - see Chapter 3. Such designs are obtained by adding runs to the basic

OFAT designs. When adding runs to the basic OFAT design, the resulting design

would be biased, but it will perform well in terms of minimizing variance. This

trade-off between minimizing the bias and variance is the foundation to building

a second class of compromise designs. Starting from the MA designs, which are

the best in terms of minimizing variance, but not in minimizing the bias, we are

looking for a class of compromise designs which may not be optimal under the

variance but may improve the bias. This second class of compromise designs is

obtained by changing some ones to zeros in MA designs. First, consider the n run,

m factor orthogonal array of strength two. Then, there are n/2 ones and zeros for

each factor. Let p be the number of ones to be changed to zeros in all m columns,

where 1 < p < n/2. For a given m and p, we can obtain a class of compromise

designs and, one such design, ZC2 , can be obtained by taking p = 1. Let’s consider

the three designs which are As optimal, bias optimal and compromise design of

second class for n = 8 and m = 6.

ZMA =



0 0 0 0 0 0
0 1 0 1 0 1
1 1 0 0 1 1
1 0 0 1 1 0
0 0 1 1 1 1
0 1 1 0 1 0
1 1 1 1 0 0
1 0 1 0 0 1


, ZOFAT =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

41

ZC2 =



0 0 0 0 0 0
0 1 0 1 0 0
1 1 0 0 0 1
1 0 0 0 1 0
0 0 0 1 1 1
0 1 1 0 1 0
1 0 1 1 0 0
0 0 1 0 0 1


.

The following table summarizes the values of As and K2 for the three designs.

Compared with ZMA, design ZC2 has a significant decrease of bias while it loses

only a bit of the efficiency. This makes a lot of sense because this design is not far

from the MA design.

ZMA As = 3.0 K2 = 10.5
ZC2 As = 3.3 K2 = 6.24

ZOFAT As = 9.0 K2 = 0.0

Table 4.1: The As and K2 values of ZOFAT , ZC2 and ZMA for n = 8 and m = 6

We can obtain the second class of compromise designs for different values of

p, but the question is how to find the optimal design out of all the designs in the

class.

4.3 Finding Optimal Designs from the Second
Class of Compromise Designs

4.3.1 Method of Complete Search

We can obtain the second class of compromise designs by changing some ones to

zeros in MA designs. The changes can be done in many ways, which will produce

many classes of compromise designs. One such class of compromise designs of

interest is given by changing p ones to zeros in all m columns. We start the search

42

procedure for the case p = 1. Since the resulting designs are not very far from the

orthogonal arrays, they should perform well under the efficiency criteria. However,

the bias can be improved significantly due to those changes, because the number

of zeros increases in interaction matrices. We continue the search procedure for

the cases 1 < p < n/2 and the following example shows the results for n = 8 and

m = 6.

n = 8,m = 6 As K2

MA 3 10.5
C2: p = 1 As-criterion 3.3 6.24

K2-criterion 3.3 6.24
C2: p = 2 As-criterion 5.25 4.5

K2-criterion 10 3
C2: p = 3 As-criterion 9 0

K2-criterion 9 0
OFAT 9 0

C1 5.25 3.16

Table 4.2: The As and K2 values of theMA , C2, OFAT and C1 designs for n = 8
and m = 6

This table compares the results of MA, OFAT , first class of compromise (C1)

and second class of compromise (C2) designs using the both bias and efficiency

criteria. We first obtain the best design using each criterion and then use that

design to calculate the value of the other criterion. For an example, consider the

class of compromise designs for the case of p = 2. First, we search for a design

that minimizes the variance. We use the As criterion and find that the best design

has As = 5.25 and its bias K2 = 4.5. Then we obtain the bias-best design using

K2 criterion and find that the best design has K2 = 3 and As = 10.

43

We are able to produce compromise designs using both bias and efficiency

criteria for the cases of n = 8 and all m, and for n = 12 up to m = 5 factors.

The results are presented in Appendix B. We can still use the complete search

procedure to obtain a few more optimal designs, but it becomes very time con-

suming since it involves an enormous amount of evaluations and at some point

this search procedure has to be terminated, because the number of evaluations is

given by
(
n/2
p

)m
, where 1 ≤ p < n/2. In fact, the complete search procedure is not

feasible even for the smaller run sizes, for an example, n = 12 and m = 8 there

are 2.56× 1010 possibilities for the case of p = 3. This leads us to use an algorith-

mic search procedure. In the next section, we will propose an efficient incomplete

search algorithm.

4.3.2 A systematic method of construction

Mukerjee and Tang (2012) [27] proved that the MA designs are the best in min-

imizing variance under the baseline parameterization. Compromise designs cor-

responding to p = 1 also have some good properties in minimizing the variance,

because they are not very far away from the MA designs. Motivated by an ap-

parent pattern in the optimal designs found by complete search, we introduce a

systematic method of construction.

Step 1. Let 1 + ZMA be the matrix obtained by adding 1 (mod 2), to all the

entries of design matrix of ZMA,

Step 2. Replace the row consisting of all ones by zeros.

Even though a theoretical result has not yet been obtained, this method pro-

vides all optimal designs given by complete search. In addition, we can show that

44

the design from this construction has

As = 4m
n

[
1 + 4

(n2 − 4m)

]
. (4.1)

Example 1: We give a systematic construction of the variance-best design for

n = 8 and m = 6. From an OA(8, 6, 2, 2), say ZMA, we can obtain 1 + ZMA,

which is the matrix obtained by adding 1 (mod 2) all the entries of ZMA. Then

we replace all the ones by zeros in the resulting matrix and which gives the best

design, Z∗C2 , under As criterion. Using the equation (4.1), we have As = 3.3.

1 + ZMA =



1 1 1 1 1 1
1 0 1 0 1 0
0 0 1 1 0 0
0 1 1 0 0 1
1 1 0 0 0 0
1 0 0 1 0 1
0 0 0 0 1 1
0 1 0 1 1 0


, Z∗C2 =



0 0 0 0 0 0
1 0 1 0 1 0
0 0 1 1 0 0
0 1 1 0 0 1
1 1 0 0 0 0
1 0 0 1 0 1
0 0 0 0 1 1
0 1 0 1 1 0



4.3.3 Algorithmic Search

The idea of our search algorithm is a version of the local search algorithms from

Aarts and Lenstra (2003) [1]. Suppose that we are searching for the bias-best

design for the case of p = 1 in the MA design of n = 8 and m = 6. We can select

a random initial design by changing a single one to zero in all six columns or pick

the design that is obtained from the systematic method. Let’s denote this as D0.

First, let’s obtain all the fifteen (i.e. 5×3) neighbours around D0 by interchanging

a one and a zero in one and only one of the six columns and, compute the K2 for

the resulting designs. This process will continue for all the other columns. Then

we compare the results and obtain the design that has the smallest K2, say D1.

If D1 is better than D0, we then use D1 as our new D0, denoted by D∗0. For this

45

new D∗0, we then obtain all its new neighbours and compare them with D∗0. We

will continue this process until there is no improvement. Moreover, if we can start

the process with different random designs and continue the same process, we may

be able to find a better design. A step by step description of this algorithm as

follows:

1. Choose a random design and compute K2.

2. Generate new arrays by interchanging the zeros and ones in each column of

the initial design and compute the K2 for these arrays. If the initial design

has a smaller K2 value than any of these designs, we choose a different initial

design. Otherwise, replace the initial design by the current best deign.

3. Continue Step 2 until there is no improvement.

4. We can continue Steps 1-3 by starting several initial designs and see if we

can find a better design.

Remark 1. Though not considered in this thesis, our algorithm is obviously

applicable to run sizes for which orthogonal arrays do not exist. For example, it

can be applied to designs of n = 10 runs with each column consisting of four ones

and six zeros.

4.4 Performance of Our Algorithm

The complete search procedure produces results for all the cases of m in run sizes

n = 8 and for n = 12 up to m ≤ 5 factors. Using our algorithm, we are able

to obtain the optimal designs for every m in run sizes up to n = 20. The only

way that we can check the performance of our search algorithm is to compare its

results with those of the complete search. It can be observed that, in most cases,

46

the search algorithm performs as well as the complete search. The following tables

make comparison of the results from the complete search algorithm and incomplete

search algorithm for only the cases where two algorithms produce different results

for both As and K2 criteria. All the other results are presented in Appendix B.

n m p Complete:K2 Incomplete:K2

8 3 1 0.778 0.582
8 6 1 6.24 6.694
8 7 1 9.333 12.611

12 2 1 0.202 0
12 3 1 0.812 0.736
12 4 1 1.709 1.506
12 5 1 3.074 2.845

Table 4.3: CompareK2 values for both complete and incomplete search algorithms

n m p Complete:As Incomplete:As

8 6 1 3.3 3.563
8 7 1 3.889 6.111

Table 4.4: Compare As values for both complete and incomplete search algorithms

By looking at these numbers, we conclude that the incomplete search algorithm

performance is very satisfactory. Surprisingly, it produces better results than the

complete search in some cases. The reason behind this is that in complete search

we replace ones by zeros and in the search algorithm we swap ones and zeros. So

there are other designs that are not obtainable from the complete search. It is

also worth to mentioning the impact of the initial design. The search procedure

starts from the random design and our best design under the bias criterion, K2

will depends on that. Therefore, we cannot guarantee that the best design can be

obtained from the incomplete search algorithm all the time.

47

Chapter 5

Conclusions and Future Research

In Chapter 2, we studied the construction of orthogonal and nearly orthogonal

designs. In addition to what has been done, an interesting theoretical problem is

the construction of the best nearly orthogonal design when orthogonal designs do

not exist, which happens when s = 4k+2 and λ is odd as shown in Theorem 1. In

this case, it is possible to obtain a lower bound on a measure of nonorthogonality,

which can then be used to assess the quality of a given design. Lin (2008) [18]

considered this problem for Latin hypercubes. It would be interesting to examine

if such a lower bound could be obtained in the general case.

Besides computer experiments, the orthogonal designs given in this thesis can

also be used as fractional factorial designs in screening experiments. Miller and

Sitter (2001) [24] examined how to identify interactions using a design of 24 runs

for 12 factors obtained by folding over a 12 run Plackett-Burman design. Folding

over the OD(12, 39) gives an OD(24, 39), which also has the property that main

effects are all orthogonal to interactions. This design may not be as efficient in

terms of estimating linear main effects as the two-level design of 24 runs considered

by Miller and Sitter (2001) [24], but it has three levels, allowing detection of

curvature and thus the possibility of response surface exploration (Cheng and Wu

(2001) [7]). This would be an interesting problem to look at in the future.

48

In Chapter 3, we proposed and studied a new class of baseline designs, which

are obtained by adding runs to the basic OFAT design. Such designs are quite

competitive under both the efficiency criterion and the bias criterion, and thus

offer an attractive class of alternatives to the efficiency-best MA designs and the

bias-best OFAT designs. A theoretical result shows that the design obtained by

adding a run of all ones is As, Ds and Es optimal. In view of this result, it is

possible to establish the type 1 optimality of this design using the results of Cheng

(1980) [4] and Cheng (2014) [5]. Our computer search results of optimal designs

for adding two or more runs exhibit some apparent patterns, which strongly hint

that there may exist some theoretical optimality results for the general case of

adding p ≥ 2 runs. These are interesting further research topics, which we hope

to address in the future.

In Chapter 4, we have investigated a second class of compromise designs start-

ing from MA designs. The search for the best designs is done using both complete

and incomplete search algorithms. Performance of our incomplete search algorithm

is studied by making comparison with the available cases of complete search re-

sults. We have seen that our algorithm gives similar results to the complete search

algorithm. However, this might not be the case in general. In the current incom-

plete search algorithm, we select a neighbourhood of size one. One possible way

to improve the algorithm is to consider using larger neighbourhoods in our local

search algorithm.

49

Bibliography

[1] E. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization.
Princeton University Press: New Jersey, 2003.

[2] T. Banerjee and R. Mukerjee. Optimal factorial designs for cDNA microarray
experiments. The Annals of Applied Statistics, 2:366–385, 2008.

[3] D. Bingham, R. R. Sitter, and B. Tang. Orthogonal and nearly orthogonal
designs for computer experiments. Biometrika, 966:51–65, 2009.

[4] C. S. Cheng. Optimality of some weighing and 2n fractional factorial designs.
The Annals of Applied Statistics, 8:436–446, 1980.

[5] C. S. Cheng. Optimal biased weighing designs and two-level main-effect plans.
Journal of Statistical Theory and Practice, 8:83–89, 2014.

[6] C. S. Cheng. Theory of Factorial Design: Single- and Multi-Stratum Experi-
ments. CRC Press, 2014.

[7] S. W. Cheng and C. F. J. Wu. Factor screening and response surface explo-
ration. Statistica Sinica, 11:553–604, 2001.

[8] A. Dean, M. Morris, J. Stufken, and D. Bingham. Handbook of Design and
Analysis of Experiments. CRC Press, 2015.

[9] K. Fang, R. Li, and A. Sudjianto. Design and Modeling for Computer Exper-
iments. CRC Press, 2006.

[10] A. Fries andW. G. Hunter. Minimum aberration 2k−p designs. Technometrics,
22:601–608, 1980.

[11] S. D. Georgiou and I. Efthimiou. Some classes of orthogonal latin hypercube
designs. Statistica Sinica, 24:101–120, 2014.

[12] S. D. Georgiou, S. Stylianou, K. Drosou, and C. Koukouvinos. Construc-
tion of orthogonal and nearly orthogonal designs for computer experiments.
Biometrika, 101:741–747, 2014.

50

[13] A. V. Geramita and J. Seberry. Orthogonal Designs. Marcel Dekker, 1979.

[14] R. L. Iman and W. J. Conover. A distribution-free approach to inducing rank
correlation among input variables. Communication in Statistics–Simulation
and Computation, 11:311–334, 1982.

[15] R. C. Karunanayaka and B. Tang. Compromise designs under baseline
parametrization. Journal of Statistical Planning and Inference, 190:32–38,
2017.

[16] K. F. Kerr. Efficient 2k factorial designs for blocks of size 2 with microarray
applications. Journal of Quality Technology, 38:309–318, 2006.

[17] P. Li, A. Miller, and B. Tang. Algorithmic search for baseline minimum
aberration designs. Journal of Statistical Planning and Inference, 149:172–
189, 2014.

[18] C. D. Lin. New developments in designs for computer experiments and physi-
cal experiments. Doctoral dissertation, Department of Statistics and Actuarial
Science, Simon Fraser University, 2008.

[19] C. D. Lin, D. Bingham, R. R. Sitter, and B. Tang. A new and flexible method
for constructing designs for computer experiments. The Annals of Statistics,
38:1460–1477, 2010.

[20] C. D. Lin, R. Mukerjee, and B. Tang. Construction of orthogonal and nearly
orthogonal latin hypercubes. Biometrika, 96:243–247, 2009.

[21] H. Liu and M.Q. Liu. Column-orthogonal strong orthogonal arrays and sliced
strong orthogonal arrays. Statistica Sinica, 25:1713–1734, 2015.

[22] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three
methods for selecting values of input variables in the analysis of output from
a computer code. Technometrics, 21:239–245, 1979.

[23] R. Mee. A comprehensive guide to factorial two-level experimentation.
Springer Science & Business Media, 2006.

[24] A. Miller and R. R. Sitter. Using the folded-over 12-run plackett-burman
design to consider interactions. Technometrics, 43:44–55, 2001.

[25] A. Miller and B. Tang. Using regular fractions of two-level designs to find
baseline designs. Statistica Sinica, 26:745–759, 2016.

[26] M. D. Morris and T. J. Mitchell. Exploratory designs for computational
experiments. Journal of Statistical Planning and Inference, 43:381–402, 1995.

51

[27] R. Mukerjee and B. Tang. Optimal fractions of two-level factorials under a
baseline parameterization. Biometrika, 99:71–84, 2012.

[28] R. Mukerjee and B. Tang. Optimal two-level regular designs under base-
line parametrization via cosets and minimum moment aberration. Statistica
Sinica, 26:1001–1019, 2016.

[29] A. Owen. Controlling correlations in latin hypercube samples. Journal of the
American Statistical Association, 89:1517–1522, 1994.

[30] F. Pang, M. Q. Liu, and D. K. Lin. A construction method for orthogonal
latin hypercube designs with prime power levels. Statistica Sinica, 96:1721–
1728, 2009.

[31] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Designs and analysis
of computer experiments. Statistical Science., 4(4):433–435, 1989.

[32] T. J. Sanater, B. J. Williams, and W. I. Notz. The Design and Analysis of
Computer Experiments. Springer Series in Statistics, 2003.

[33] J. W. Stallings and J. P. Morgan. General weighted optimality of designed
experiments. Biometrika, 102:925–935, 2015.

[34] D. M. Steinberg and D. K. Lin. A construction method for orthogonal latin
hypercube designs. Biometrika, 93:279–288, 2006.

[35] S. Stylianou, S. K. Drosou, S. D. Georgiou, and C. Koukouvinos. Column-
orthogonal and nearly column-orthogonal designs for models with second-
order terms. Journal of Statistical Planning and Inference, 161:81—90, 2015.

[36] F. Sun, M. Q. Liu, and D. K. Lin. Construction of orthogonal latin hypercube
designs. Biometrika, 96:971–974, 2009.

[37] F. S. Sun, F. Pang, and M. Q. Liu. Construction of column-orthogonal designs
for computer experiments. Science China Mathematics, 54:2683–2692, 2011.

[38] F. S. Sun and B. Tang. A general rotation method for orthogonal latin
hypercubes. Biometrika, 104:465–472, 2017.

[39] F. S. Sun and B. Tang. A method of constructing space-filling orthogonal
designs. Journal of the American Statistical Association, 92:683–689, 2017.

[40] B. Tang. Orthogonal array-based latin hypercubes. Journal of the American
Statistical Association, 88:1392–1397, 1993.

[41] B. Tang. Selecting latin hypercube designs using correlation criteria. Statis-
tics Sinica, 8:965–977, 1998.

52

[42] C. F. J. Wu and M. S. Hamada. Experiments: Planning, Analysis and Opti-
mization. Wiley, Hoboken, New Jersey, 2009.

[43] H. Xu. An algorithm for constructing orthogonal and nearly-orthogonal ar-
rays with mixed levels and small runs. Technometrics, 44:356–368, 2002.

[44] K. Q. Ye. Orthogonal column latin hypercubes and their application in com-
puter experiments. Journal of the American Statistical Association, 93:1430–
1439, 1998.

53

Appendix A

Nearly Orthogonal Designs
(NOD) up to n = 18

n
6 12

−1 −1 −1 −1 0 −1 −1 −1 −1 −1 −1 −1 0 0 −1 0
0 −1 1 1 −1 −1 −1 −1 0 1 1 1 0 0 1 −1
1 0 0 −1 −1 0 −1 1 1 −1 0 1 −1 −1 −1 0
−1 1 1 0 1 −1 0 1 1 1 −1 0 1 1 −1 0

0 1 −1 1 0 1 −1 1 −1 1 1 −1 0 0 0 0
1 0 0 0 1 0 1 −1 1 1 0 −1 −1 −1 0 1

1 0 −1 1 −1 1 0 1 1 0 1
−1 1 1 0 −1 1 −1 0 0 1 −1

0 1 0 −1 0 0 1 −1 1 −1 −1
1 0 0 0 0 −1 0 −1 1 1 1
1 0 0 0 0 −1 0 1 −1 1 −1
0 1 0 −1 0 0 1 1 −1 0 1

Table A.1: NOD(n, 3m) for n = 6, 12

n
8 12

3 3 1 −1 −3 −3 −3 −3 3 3 −1 −1 −1 −1 −3 −3 −3 −3
1 1 1 −1 −3 1 3 3 −1 1 3 −3 −3 3 −3 −1 −1 1
−1 −1 3 −3 3 1 −3 1 −1 3 −3 −3 3 −1 −1 1 3 −1

3 −3 −3 1 1 3 −1 −1 −3 −3 1 1 3 1 −3 1 1 −3
−3 −1 −3 −3 −1 −1 1 −1 1 −1 1 3 −1 −3 −1 −1 3 3
−1 −3 3 3 −1 −1 1 3 −3 −1 −3 1 −3 −3 1 −1 −1 −3
−3 3 −1 3 1 3 −1 1 1 1 1 3 1 3 3 −3 3 −1

1 1 −1 1 3 −3 3 −3 1 −3 −3 −1 −3 3 1 3 1 1
−1 −1 −1 −1 −1 3 1 1 −3 −3 3
−3 −3 3 3 1 −1 −1 3 3 −1 1

1 3 −3 3 −3 1 −3 3 1 1 −1
3 3 1 −1 3 1 1 −1 3 −3 3

Table A.2: NOD(n, 4m) for n = 8, 12

54

n
9 12

1 1 0 −1 1 1 0 1 −5 −5 −5 −1 1 −3 3 −1 3 −1 5
0 0 0 0 −1 −1 −1 1 5 −1 1 −3 −3 −5 −3 5 −3 −3 3
1 −1 1 0 0 −1 1 0 1 3 −3 −5 5 5 1 3 −1 −5 −1
−1 0 1 −1 −1 1 1 0 −3 3 −1 5 −5 3 1 −1 −5 −3 3

1 1 0 1 −1 0 0 −1 −1 −5 5 1 −1 3 5 5 −1 3 −3
−1 0 1 1 1 0 −1 −1 5 1 1 3 −1 −3 3 −3 5 −5 −5

0 −1 −1 −1 0 0 −1 −1 1 −3 −5 5 3 −1 −5 1 −3 3 −5
0 −1 −1 1 0 1 0 1 −5 5 5 1 5 −5 −1 1 1 1 1
−1 1 −1 0 1 −1 1 0 −1 5 −3 −1 −5 1 −1 3 5 5 −1

−3 −3 3 −5 −3 1 −5 −5 1 −1 −3
3 −1 3 3 3 5 −3 −3 3 1 5
3 1 −1 −3 1 −1 5 −5 −5 5 1

Table A.3: NOD(9, 3m) and NOD(12, 6m)

n
14

0 1 −1 −3 3 2 −2 −2 3 1 −1 0 −3
2 3 1 0 −1 0 −1 0 2 −3 3 3 2
−1 2 −1 −3 0 −2 2 3 −2 3 0 3 0
−2 −1 2 2 −1 −1 1 3 3 −2 −2 1 −3

1 −3 0 −2 −2 −3 3 −3 1 0 3 −1 −1
−3 2 −3 3 −3 0 −1 −2 1 2 −1 0 1

1 0 2 0 1 −2 −3 2 2 3 0 −3 3
3 1 −2 1 0 −3 −2 0 −3 −2 −2 −1 −2
−1 −2 1 1 3 −1 1 −3 −1 −1 −3 2 3

3 −3 −2 3 1 3 0 1 0 2 2 2 0
−2 −2 3 −1 −2 2 −3 −1 −3 0 1 1 −1

2 0 0 −2 −3 3 2 1 0 −1 −3 −2 2
0 3 3 2 2 1 3 −1 −2 1 1 −3 −2
−3 −1 −3 −1 2 1 0 2 −1 −3 2 −2 1

Table A.4: NOD(14, 7m)

n
15

1 −1 −1 −1 −1 −1 −1 −1 0 1 0 1 1 0
1 −1 −1 0 0 0 1 1 −1 0 −1 −1 −1 1
1 −1 0 0 1 1 0 0 1 −1 0 1 0 −1
−1 −1 1 1 −1 −1 −1 0 0 −1 0 0 −1 0

0 −1 1 1 1 1 0 −1 −1 1 0 0 1 1
0 0 1 0 −1 0 1 1 −1 1 0 1 0 −1
0 1 −1 1 −1 1 0 0 0 −1 1 1 0 1
−1 0 −1 1 0 0 0 1 1 1 1 −1 1 −1
−1 0 0 −1 −1 1 1 −1 1 0 −1 −1 0 0

1 1 1 0 0 −1 1 −1 0 −1 1 −1 1 0
0 1 −1 1 1 −1 0 −1 0 0 −1 0 −1 −1
0 1 0 −1 0 1 −1 0 −1 0 1 −1 −1 −1
−1 0 0 −1 1 −1 1 0 1 0 1 1 −1 1
−1 0 0 −1 1 0 −1 1 −1 −1 −1 0 1 0

1 1 1 0 0 0 −1 1 1 1 −1 0 0 1

Table A.5: NOD(15, 3m)

55

n
15

0 −1 −2 0 −2 −1 1 2 2 −1 −2 −1 1 2
1 −1 1 −1 2 −2 −1 −2 2 1 0 2 2 1
−1 1 1 2 −1 −2 −1 0 −1 2 2 −1 −1 2
−1 1 0 2 −1 2 −2 −2 1 −1 −2 1 −1 0

1 2 0 2 0 −2 1 1 0 −2 1 2 0 −2
−2 −2 1 1 1 2 1 2 2 1 1 1 0 −1

1 0 −1 −1 −2 1 −2 0 0 1 2 −1 2 −2
−1 1 −1 −2 2 −1 −1 1 1 0 −1 −2 −2 −2

2 −2 −2 1 0 0 2 −2 −1 2 0 0 −2 −1
2 2 2 0 1 2 2 0 1 0 0 −2 1 1
−2 −1 −1 1 2 0 0 −1 −2 −2 1 −2 2 0

0 0 0 −2 −1 1 0 −1 0 −2 2 1 −2 2
0 2 −2 −1 1 1 0 1 −2 2 −1 2 1 1
−2 0 2 −2 −2 −1 2 −1 −1 0 −2 0 0 −1

2 −2 2 0 0 0 −2 2 −2 −1 −1 0 −1 0

Table A.6: NOD(15, 5m)

n
16

−3 −3 1 3 −3 −1 3 −3 1 −1 −3 1 3 1 3
3 1 1 −3 1 −3 1 −3 3 −1 −1 −1 −3 −3 3
−1 −1 −1 3 3 −3 3 3 −1 −1 1 1 −1 −3 −3
−1 −3 −3 −3 1 −3 −1 −3 −3 1 3 −1 1 3 −1

1 −1 3 1 3 −1 −1 3 −1 −3 −1 −3 −1 3 3
−1 3 3 −1 −1 1 1 −1 1 −3 3 −3 3 −1 −3

1 −3 −3 1 −3 3 −1 1 3 −3 1 −1 −3 1 −1
−1 1 1 3 1 1 −3 −3 −1 3 −3 −3 −3 −1 −3

3 −1 −1 1 3 1 −3 −1 3 1 −1 3 3 1 −3
3 3 1 3 −3 −1 −1 −1 −3 −1 3 3 −1 1 1
−3 3 −1 −1 3 3 3 −1 1 1 1 3 −3 3 1

3 −3 3 −3 −1 3 3 1 −3 3 −1 1 −1 −1 −1
1 3 −3 −1 −3 −3 1 3 1 3 −3 −1 1 3 −1
−3 1 −1 −3 −1 1 −3 1 −3 −3 −3 3 1 −3 1
−3 −1 3 −1 −1 −1 −3 3 3 3 3 1 1 −1 1

1 1 −3 1 1 3 1 1 −1 1 1 −3 3 −3 3

Table A.7: NOD(16, 4m)

56

n
16

−7 −7 −5 3 3 3 −7 1 1 3 −5 −7 5 1 −3
−1 −5 5 5 5 −3 1 3 5 −3 5 5 7 −1 5

3 1 −1 −5 7 −7 −7 5 −7 −5 1 −1 −5 5 1
−5 −5 7 −7 −5 3 5 5 −1 −7 −3 1 −3 −1 −5
−3 5 −5 −7 −5 −1 −3 7 3 7 −1 5 3 −5 5
−1 −1 3 1 7 5 1 −5 −3 1 −5 3 −7 −7 7
−7 3 −3 1 1 −3 7 −1 7 1 5 −5 −7 7 3

1 3 −1 −3 −1 1 −5 −7 5 −7 7 −5 1 −7 −3
3 5 5 3 −7 1 −5 −3 3 −3 −7 −1 3 7 7
5 −3 1 −5 −1 −7 7 −5 −3 5 −3 −7 5 −3 1
7 −1 −7 −1 3 −1 3 −1 7 −1 −7 7 −1 3 −7
−5 −3 −3 5 −7 −5 −1 −7 −7 −1 3 7 −1 1 −1

1 7 7 7 1 −5 −1 3 −1 5 −1 −3 −3 −5 −7
7 −7 3 −1 −3 7 −3 1 1 7 7 1 −5 3 −1
−3 7 1 −3 5 7 3 −3 −5 3 3 3 7 5 −5

5 1 −7 7 −3 5 5 7 −5 −5 1 −3 1 −3 3

Table A.8: NOD(16, 8m)

n
18

0 −1 −1 −1 −1 −1 −1 −1 1 1 1 0 −1 0 1 0 −1
−1 −1 −1 −1 −1 0 0 1 −1 −1 −1 0 1 0 0 1 0

0 −1 −1 0 1 0 0 −1 −1 −1 0 −1 −1 1 −1 −1 0
1 −1 −1 0 1 1 1 1 1 1 0 1 0 −1 0 0 0
0 −1 1 1 −1 0 1 0 1 0 −1 −1 −1 0 −1 1 0
0 −1 1 1 0 1 −1 0 −1 1 1 −1 1 1 1 0 1
−1 0 0 1 0 1 0 0 1 −1 −1 1 0 1 1 −1 −1
−1 0 0 1 1 −1 1 0 −1 0 1 0 0 −1 1 1 −1
−1 0 1 0 1 −1 −1 −1 1 0 0 1 1 −1 −1 0 1
−1 1 0 −1 1 1 −1 1 0 1 −1 −1 −1 0 0 0 0

0 1 0 −1 0 1 1 −1 1 −1 1 −1 1 0 0 1 0
1 0 1 −1 0 0 1 −1 −1 1 −1 0 1 0 0 −1 −1
1 0 1 −1 1 −1 0 1 0 −1 0 1 −1 1 1 1 1
1 0 1 0 −1 0 −1 1 0 −1 1 0 0 −1 −1 −1 −1
0 1 0 0 −1 1 0 −1 −1 0 0 1 −1 −1 0 0 1
1 1 −1 1 0 −1 0 0 0 0 −1 −1 0 −1 1 −1 1
−1 1 0 0 −1 −1 1 1 0 1 1 0 0 1 −1 −1 1

1 1 −1 1 0 0 −1 0 0 0 0 1 1 1 −1 1 −1

Table A.9: NOD(18, 3m)

57

n
18

−1 −1 −1 −3 −3 0 3 0 3 4 −2 −2 −3 −4 3 −3 3
0 −2 0 −1 −3 4 −3 1 1 −4 3 −1 −1 4 4 2 4
−2 −2 2 −4 −1 −3 −1 3 −3 −3 3 −3 −2 −3 −4 1 −1
−1 2 −3 −4 4 3 2 4 2 0 1 0 4 1 1 −2 −4

0 −4 3 −2 4 2 2 −1 2 1 −4 2 −1 2 −3 4 1
1 −3 2 4 0 −1 −4 3 4 0 0 3 −3 0 0 −4 −4
3 3 4 −3 3 −1 −4 −4 0 2 1 −3 0 1 1 −3 1
−4 4 1 2 −2 4 1 −1 −3 2 −1 −1 −4 3 −1 0 −3

3 −4 0 2 0 −2 3 0 −4 4 4 −2 1 2 3 2 −2
−2 1 4 3 2 0 0 4 −4 −1 −3 1 3 −2 2 −2 4

4 0 −2 0 1 2 4 −3 −2 −4 2 4 −2 −1 −2 −4 2
4 1 −2 1 −4 −2 1 2 1 −1 −4 −4 2 4 −3 −1 0
−3 −3 −4 4 3 1 −2 −4 0 −2 −1 −4 1 −3 −1 0 0

2 3 −3 0 2 −4 −1 1 −1 −2 −3 2 −4 −1 4 4 −1
−4 −1 −4 −2 −1 −4 −2 −2 −1 3 0 4 2 3 −2 −1 2

2 0 1 −1 −4 3 −3 −2 −2 1 −2 3 4 −4 0 3 −3
−3 2 3 1 −2 −3 4 −3 4 −3 2 1 3 0 2 1 −2

1 4 −1 3 1 1 0 2 3 3 4 0 0 −2 −4 3 3

Table A.10: NOD(18, 9m)

58

Appendix B

Search Algorithm Results from
Chapter 4

B.1 Results for n = 8

n = 8,m = 2 As K2

p = 1 Complete search:As-criterion 1.071 0.255
Algorithm:As-criterion 1.071 0.255

Complete search:K2-criterion 1.667 0
Algorithm:K2-criterion 1.667 0

Systematic method 1.071 0.255
p = 2 Complete search:As-criterion 1.5 0.281

Algorithm:As-criterion 1.5 0.281
Complete search:K2-criterion 1.5 0

Algorithm:K2-criterion 1.5 0
p = 3 Complete search:As-criterion 2.333 0

Algorithm:As-criterion 2.333 0
Complete search:K2-criterion 2.333 0

Algorithm:K2-criterion 2.333 0
MA 1 0.5

59

n = 8,m = 3 As K2

p = 1 Complete search:As-criterion 1.615 0.789
Algorithm:As-criterion 1.615 0.789

Complete search:K2-criterion 2.833 0.778
Algorithm:K2-criterion 2.242 0.582

Systematic method 1.615 1.331
p = 2 Complete search:As-criterion 2.4 2.25

Algorithm:As-criterion 2.4 0.33
Complete search:K2-criterion 3 0

Algorithm:K2-criterion 3 0
p = 3 Complete search:As-criterion 3.6 0

Algorithm:As-criterion 3.6 0
Complete search:K2-criterion 3.6 0

Algorithm:K2-criterion 3.6 0
MA 1.5 2.25

n = 8,m = 4 As K2

p = 1 Complete search:As-criterion 2.167 1.667
Algorithm:As-criterion 2.167 2.146

Complete search:K2-criterion 3.667 1.444
Algorithm:K2-criterion 3.667 1.444

Systematic method 2.167 2.146
p = 2 Complete search:As-criterion 3.333 1.083

Algorithm:As-criterion 3.333 1.083
Complete search:K2-criterion 4.5 0.625

Algorithm:K2-criterion 4.5 0.625
p = 3 Complete search:As-criterion 5 0

Algorithm:As-criterion 5 0
Complete search:K2-criterion 5 0

Algorithm:K2-criterion 5 0
MA 2 3.75

60

n = 8,m = 5 As K2

p = 1 Complete search:As-criterion 2.727 3.810
Algorithm:As-criterion 2.727 3.810

Complete search:K2-criterion 3.444 3.333
Algorithm:K2-criterion 3.444 3.333

Systematic method 2.727 3.810
p = 2 Complete search:As-criterion 4.286 2.235

Algorithm:As-criterion 4.286 1.653
Complete search:K2-criterion 6 1.375

Algorithm:K2-criterion 6 1.375
p = 3 Complete search:As-criterion 6.667 0

Algorithm:As-criterion 6.667 0
Complete search:K2-criterion 6.667 0

Algorithm:K2-criterion 6.667 0
MA 2.5 6.5

61

n = 8,m = 6 As K2

p = 1 Complete search:As-criterion 3.3 6.24
Algorithm:As-criterion 3.563 6.313

Complete search:K2-criterion 3.3 6.24
Algorithm:K2-criterion 4.611 6.694

Systematic method 3.3 6.24
p = 2 Complete search:As-criterion 5.25 4.5

Algorithm: As-criterion 5.25 3.656
Complete search:K2-criterion 10 3

Algorithm: K2-criterion 7.5 3
p = 3 Complete search:As-criterion 9 0

Algorithm: As-criterion 9 0
Complete search:K2-criterion 9 0

Algorithm: K2-criterion 9 0
MA 3 10.5

OFAT 9 0
C1 5.25 3.16

n = 8,m = 7 As K2

p = 1 Complete search:As-criterion 3.889 9.333
Algorithm:As-criterion 6.111 12.611

Complete search:K2-criterion 3.889 9.333
Algorithm:K2-criterion 6.111 12.611

Systematic method 3.889 9.333
p = 2 Complete search:As-criterion 9 6

Algorithm:As-criterion 9 6
Complete search:K2-criterion 9 6

Algorithm:K2-criterion 9 6
p = 3 Complete search:As-criterion 14 0

Algorithm:As-criterion 14 0
Complete search:K2-criterion 14 0

Algorithm:K2-criterion 14 0
MA 3.5 15.75

62

B.2 Results for n = 12

n = 12,m = 2 As K2

p = 1 Complete search:As-criterion 0.686 0.339
Algorithm:As-criterion 0.686 0.339

Complete search:K2-criterion 0.795 0.202
Algorithm:K2-criterion 1.4 0

Systematic method 0.686 0.339
p = 2 Complete search:As-criterion 0.762 0.163

Algorithm:As-criterion 0.762 0.163
Complete search:K2-criterion 1 0

Algorithm:K2-criterion 1 0
p = 3 Complete search:As-criterion 0.9 0.18

Algorithm:As-criterion 0.9 0.18
Complete search:K2-criterion 1 0

Algorithm:K2-criterion 1 0
p = 4 Complete search:As-criterion 1.25 0

Algorithm:As-criterion 1.25 0
Complete search:K2-criterion 1.25 0

Algorithm:K2-criterion 1.25 0
p = 5 Complete search:As-criterion 2.2 0

Algorithm:As-criterion 2.2 0
Complete search:K2-criterion 2.2 0

Algorithm:K2-criterion 2.2 0
MA 0.667 0.5

63

n = 12,m = 3 As K2

p = 1 Complete search:As-criterion 1.030 1.049
Algorithm:As-criterion 1.030 1.049

Complete search:K2-criterion 1.264 0.812
Algorithm:K2-criterion 1.752 0.736

Systematic method 1.030 1.049
p = 2 Complete search:As-criterion 1.167 0.472

Algorithm:As-criterion 1.167 0.472
Complete search:K2-criterion 1.45 0.403

Algorithm:K2-criterion 1.45 0.403
p = 3 Complete search:As-criterion 1.364 0.707

Algorithm:As-criterion 1.364 0.669
Complete search:K2-criterion 2 0

Algorithm:K2-criterion 2 0
p = 4 Complete search:As-criterion 2 0

Algorithm:As-criterion 2 0
Complete search:K2-criterion 2 0

Algorithm:K2-criterion 2 0
p = 5 Complete search:As-criterion 3.333 0

Algorithm:As-criterion 3.333 0
Complete search:K2-criterion 3.333 0

Algorithm:K2-criterion 3.333 0
MA 1 1.583

n = 12,m = 4 As K2

p = 1 Complete search:As-criterion 1.375 2.293
Algorithm:As-criterion 1.375 2.293

Complete search:K2-criterion 1.654 1.709
Algorithm:K2-criterion 1.914 1.506

Systematic method 1.375 2.293
p = 2 Complete search:As-criterion 1.6 0.907

Algorithm:As-criterion 1.6 0.907
Complete search:K2-criterion 1.6 0.907

Algorithm:K2-criterion 1.6 0.907
p = 3 Complete search:As-criterion 1.833 1.729

Algorithm:As-criterion 1.833 1.729
Complete search:K2-criterion 2.556 0.469

Algorithm:K2-criterion 2.556 0.469
p = 4 Complete search:As-criterion 2.875 0.289

Algorithm:As-criterion 2.875 0.289
Complete search:K2-criterion 3 0

Algorithm:K2-criterion 3 0
p = 5 Complete search:As-criterion 4.5 0

Algorithm:As-criterion 4.5 0
Complete search:K2-criterion 4.5 0

Algorithm:K2-criterion 4.5 0
MA 1.333 3.333

64

n = 12,m = 5 As K2

p = 1 Complete search:As-criterion 1.720 4.112
Algorithm:As-criterion 1.720 4.112

Complete search:K2-criterion 2.163 3.074
Algorithm:K2-criterion 2.389 2.845

Systematic method 1.720 4.112
p = 2 Complete search:As-criterion 2.05 3.061

Algorithm:As-criterion 2.05 3.061
Complete search:K2-criterion 2.083 1.458

Algorithm:K2-criterion 2.083 1.458
p = 3 Complete search:As-criterion 2.308 3.391

Algorithm:As-criterion 2.467 2.46
Complete search:K2-criterion 3.556 0.938

Algorithm:K2-criterion 3.556 0.938
p = 4 Complete search:As-criterion 3.762 0.599

Algorithm:As-criterion 3.762 0.599
Complete search:K2-criterion 5 0

Algorithm:K2-criterion 5 0
p = 5 Complete search:As-criterion 5.714 0

Algorithm:As-criterion 5.714 0
Complete search:K2-criterion 5.714 0

Algorithm:K2-criterion 5.714 0
MA 1.667 5.833

n = 12,m = 6 As K2

p = 1 Complete search:As-criterion 2.067 6.653
Algorithm:As-criterion 2.067 6.887

Complete search:K2-criterion 2.802 4.815
Algorithm:K2-criterion 2.802 4.815

Systematic method 2.067 6.653
p = 2 Algorithm:As-criterion 2.511 4.685

Algorithm:K2-criterion 3.4 2.78
p = 3 Algorithm:As-criterion 3.119 4.418

Algorithm:K2-criterion 3.933 2.044
p = 4 Algorithm:As-criterion 4.667 0.944

Algorithm:K2-criterion 7 0.75
p = 5 Complete search:As-criterion 7 0

Algorithm:As-criterion 7 0
Complete search:K2-criterion 7 0

Algorithm:K2-criterion 7 0
MA 2 9.167

65

n = 12,m = 7 As K2

p = 1 Algorithm:As-criterion 2.414 9.692
Algorithm:K2-criterion 3.035 7.644

Systematic method 2.414 9.811
p = 2 Algorithm:As-criterion 2.982 7.962

Algorithm:K2-criterion 4.252 4.674
p = 3 Algorithm:As-criterion 3.778 6.074

Algorithm:K2-criterion 4.482 3.174
p = 4 Algorithm:As-criterion 5.606 2.898

Algorithm:K2-criterion 6.333 1.417
p = 5 Algorithm:As-criterion 8.4 0

Algorithm:K2-criterion 8.4 0
MA 2.333 13.417

n = 12,m = 8 As K2

p = 1 Algorithm:As-criterion 2.762 13.755
Algorithm:K2-criterion 3.752 12.289

Systematic method 2.762 13.755
p = 2 Algorithm:As-criterion 3.438 11.016

Algorithm:K2-criterion 4.733 7.506
p = 3 Algorithm:As-criterion 4.75 7.858

Algorithm:K2-criterion 5.769 3.778
p = 4 Algorithm:As-criterion 6.55 3.646

Algorithm:K2-criterion 6.55 2.458
p = 5 Algorithm:As-criterion 10 0

Algorithm:K2-criterion 10 0
MA 2.667 18.667

n = 12,m = 9 As K2

p = 1 Algorithm:As-criterion 3.111 18.494
Algorithm:K2-criterion 3.856 17.803

Systematic method 3.111 18.494
p = 2 Algorithm:As-criterion 3.905 14.223

Algorithm:K2-criterion 5.599 12.998
p = 3 Algorithm:As-criterion 5.579 11.665

Algorithm:K2-criterion 9.781 9.928
p = 4 Algorithm:As-criterion 7.5 4.5

Algorithm:K2-criterion 14.25 4
p = 5 Algorithm:As-criterion 12 0

Algorithm:K2-criterion 12 0
MA 3 25

66

n = 12,m = 10 As K2

p = 1 Algorithm:As-criterion 3.843 25.493
Algorithm:K2-criterion 4.299 25.662

Systematic method 3.462 24.172
p = 2 Algorithm:As-criterion 5.071 19.932

Algorithm:K2-criterion 5.993 17.334
p = 3 Algorithm:As-criterion 6.588 14.427

Algorithm:K2-criterion 10.9 13.64
p = 4 Algorithm:As-criterion 8.464 6.872

Algorithm:K2-criterion 15 6
p = 5 Algorithm:As-criterion 15 0

Algorithm:K2-criterion 15 0
MA 3.33 32.5
C1 9.13 5.32

OFAT 15 0

n = 12,m = 11 As K2

p = 1 Algorithm:As-criterion 4.634 33.842
Algorithm:K2-criterion 4.634 33.842

Systematic method 3.813 30.8
p = 2 Algorithm:As-criterion 5.469 24.657

Algorithm:K2-criterion 6.832 26.804
p = 3 Algorithm:As-criterion 8.148 20.080

Algorithm:K2-criterion 8.533 17.489
p = 4 Algorithm:As-criterion 13.5 10.75

Algorithm:K2-criterion 19 12
p = 5 Algorithm:As-criterion 22 0

Algorithm:K2-criterion 22 0
MA 3.667 41.25

67

B.3 Results for n = 16

n = 16,m = 2 As K2

p = 1 Complete search:As-criterion 0.508 0.379
Algorithm:As-criterion 0.508 0.379

Complete search:K2-criterion 0.548 0.306
Algorithm:K2-criterion 0.508 0.379

Systematic method 0.508 0.379
p = 2 Complete search:As-criterion 0.536 0.255

Algorithm:As-criterion 0.536 0.255
Complete search:K2-criterion 0.833 0

Algorithm:K2-criterion 0.833 0
p = 3 Complete search:As-criterion 0.591 0.252

Algorithm:As-criterion 0.591 0.252
Complete search:K2-criterion 0.733 0

Algorithm:K2-criterion 0.733 0
p = 4 Complete search:As-criterion 0.667 0.125

Algorithm:As-criterion 0.667 0.125
Complete search:K2-criterion 0.75 0

Algorithm:K2-criterion 0.75 0
p = 5 Complete search:As-criterion 0.848 0.160

Algorithm:As-criterion 0.848 0.160
Complete search:K2-criterion 0.867 0

Algorithm:K2-criterion 0.867 0
p = 6 Complete search:As-criterion 1.167 0

Algorithm:As-criterion 1.167 0
Complete search:K2-criterion 1.167 0

Algorithm:K2-criterion 1.167 0
p = 7 Complete search:As-criterion 2.143 0

Algorithm:As-criterion 2.143 0
Complete search:K2-criterion 2.143 0

Algorithm:K2-criterion 2.143 0
MA 0.5 0.5

68

n = 16,m = 3 As K2

p = 1 Complete search:As-criterion 0.762 1.418
Algorithm:As-criterion 0.762 1.418

Complete search:K2-criterion 0.762 1.418
Algorithm:K2-criterion 1.726 0.755

Systematic method 0.762 1.763
p = 2 Complete search:As-criterion 0.808 0.790

Algorithm:As-criterion 0.808 0.790
Complete search:K2-criterion 1.029 0.743

Algorithm:K2-criterion 1.238 0.569
p = 3 Complete search:As-criterion 0.899 1.132

Algorithm:As-criterion 0.899 0.747
Complete search:K2-criterion 0.932 0.336

Algorithm:K2-criterion 1.114 0.299
p = 4 Complete search:As-criterion 1 0.396

Algorithm:As-criterion 1 0.396
Complete search:K2-criterion 1.5 0

Algorithm:K2-criterion 1.5 0
p = 5 Complete search:As-criterion 1.302 0.688

Algorithm:As-criterion 1.302 0.541
Complete search:K2-criterion 1.429 0

Algorithm:K2-criterion 1.429 0
p = 6 Complete search:As-criterion 1.8 0

Algorithm:As-criterion 1.8 0
Complete search:K2-criterion 1.8 0

Algorithm:K2-criterion 1.8 0
p = 7 Complete search:As-criterion 3.231 0

Algorithm:As-criterion 3.231 0
Complete search:K2-criterion 3.231 0

Algorithm:K2-criterion 3.231 0
MA 0.75 2.25

69

n = 16,m = 4 As K2

p = 1 Algorithm:As-criterion 1.017 2.690
Algorithm:K2-criterion 1.469 1.576

Systematic method 1.017 2.919
p = 2 Algorithm:As-criterion 1.083 1.786

Algorithm:K2-criterion 1.843 1.094
p = 3 Algorithm:As-criterion 1.211 1.481

Algorithm:K2-criterion 1.321 0.651
p = 4 Algorithm:As-criterion 1.333 1

Algorithm:K2-criterion 1.833 0.375
p = 5 Algorithm:As-criterion 1.767 1.666

Algorithm:K2-criterion 2.333 0
p = 6 Algorithm:As-criterion 2.5 0

Algorithm:K2-criterion 2.5 0
p = 7 Algorithm:As-criterion 4.333 0

Algorithm:K2-criterion 4.333 0
MA 1 3.75

n = 16,m = 5 As K2

p = 1 Algorithm:As-criterion 1.271 4.637
Algorithm:K2-criterion 1.943 2.938

Systematic method 1.271 5.087
p = 2 Algorithm:As-criterion 1.364 3.029

Algorithm:K2-criterion 2.756 2.0467
p = 3 Algorithm:As-criterion 1.526 3.539

Algorithm:K2-criterion 1.842 1.021
p = 4 Algorithm:As-criterion 1.667 1.792

Algorithm:K2-criterion 2.25 0.75
p = 5 Algorithm:As-criterion 2.286 1.721

Algorithm:K2-criterion 2.88 0.420
p = 6 Algorithm:As-criterion 3.333 0

Algorithm:K2-criterion 3.333 0
p = 7 Algorithm:As-criterion 5.455 0

Algorithm:K2-criterion 5.455 0
MA 1.25 6.5

70

n = 16,m = 6 As K2

p = 1 Algorithm:As-criterion 1.526 7.373
Algorithm:K2-criterion 2.149 4.972

Systematic method 1.526 7.503
p = 2 Algorithm:As-criterion 1.65 4.95

Algorithm:K2-criterion 2.359 3.312
p = 3 Algorithm:As-criterion 1.864 3.627

Algorithm:K2-criterion 5.454 2.119
p = 4 Algorithm:As-criterion 2 3.125

Algorithm:K2-criterion 3 1.125
p = 5 Algorithm:As-criterion 2.768 3.386

Algorithm:K2-criterion 3.433 0.877
p = 6 Algorithm:As-criterion 4.233 0.552

Algorithm:K2-criterion 4.5 0
p = 7 Algorithm:As-criterion 6.6 0

Algorithm:K2-criterion 6.6 0
MA 1.5 9.75

n = 16,m = 7 As K2

p = 1 Algorithm:As-criterion 1.871 11.254
Algorithm:K2-criterion 2.511 7.372

Systematic method 1.781 10.936
p = 2 Algorithm:As-criterion 1.944 7.079

Algorithm:K2-criterion 5.230 3.936
p = 3 Algorithm:As-criterion 2.186 6.910

Algorithm:K2-criterion 3.267 3.387
p = 4 Algorithm:As-criterion 2.5 4.707

Algorithm:K2-criterion 3.917 2.197
p = 5 Algorithm:As-criterion 3.296 3.646

Algorithm:K2-criterion 4.361 1.357
p = 6 Algorithm:As-criterion 5.158 2.529

Algorithm:K2-criterion 7 0
p = 7 Algorithm:As-criterion 7.778 0

Algorithm:K2-criterion 7.778 0
MA 1.75 14.25

71

n = 16,m = 8 As K2

p = 1 Algorithm:As-criterion 2.096 14.164
Algorithm:K2-criterion 2.581 10.438

Systematic method 2.036 13.754
p = 2 Algorithm:As-criterion 2.253 10.305

Algorithm:K2-criterion 3.256 7.654
p = 3 Algorithm:As-criterion 2.572 7.508

Algorithm:K2-criterion 4.299 4.606
p = 4 Algorithm:As-criterion 2.667 6.5

Algorithm:K2-criterion 5.541 3.709
p = 5 Algorithm:As-criterion 4.062 3.657

Algorithm:K2-criterion 5.533 2.049
p = 6 Algorithm:As-criterion 6.039 2.823

Algorithm:K2-criterion 8.5 0.75
p = 7 Algorithm:As-criterion 9 0

Algorithm:K2-criterion 9 0
MA 2 17.75

72

n = 16,m = 9 As K2

p = 1 Algorithm:As-criterion 2.291 17.633
Algorithm:K2-criterion 3.147 14.916

Systematic method 2.291 17.619
p = 2 Algorithm:As-criterion 2.559 14.640

Algorithm:K2-criterion 4.361 9.621
p = 3 Algorithm:As-criterion 2.811 11.934

Algorithm:K2-criterion 4.529 7.154
p = 4 Algorithm:As-criterion 3 8.75

Algorithm:K2-criterion 5.032 5.085
p = 5 Algorithm:As-criterion 4.347 5.415

Algorithm:K2-criterion 5.516 3.168
p = 6 Algorithm:As-criterion 6.933 1.78

Algorithm:K2-criterion 7.2 1.427
p = 7 Algorithm:As-criterion 10.286 0

Algorithm:K2-criterion 10.286 0
MA 2.25 22.5

n = 16,m = 10 As K2

p = 1 Algorithm:As-criterion 2.588 23.823
Algorithm:K2-criterion 3.491 21.075

Systematic method 2.546 23.288
p = 2 Algorithm:As-criterion 2.934 18.669

Algorithm:K2-criterion 4.005 14.849
p = 3 Algorithm:As-criterion 3.199 14.463

Algorithm:K2-criterion 3.730 10.910
p = 4 Algorithm:As-criterion 3.667 10.866

Algorithm:K2-criterion 6.212 6.218
p = 5 Algorithm:As-criterion 4.859 7.909

Algorithm:K2-criterion 12.085 5.161
p = 6 Algorithm:As-criterion 7.869 3.771

Algorithm:K2-criterion 11.5 2.25
p = 7 Algorithm:As-criterion 11.667 0

Algorithm:K2-criterion 11.667 0
MA 2.5 29.25

73

n = 16,m = 11 As K2

p = 1 Algorithm:As-criterion 2.948 30.349
Algorithm:K2-criterion 3.881 28.081

Systematic method 2.802 29.982
p = 2 Algorithm:As-criterion 3.239 23.859

Algorithm:K2-criterion 3.803 21.421
p = 3 Algorithm:As-criterion 3.653 20.751

Algorithm:K2-criterion 4.248 15.525
p = 4 Algorithm:As-criterion 3.667 15.313

Algorithm:K2-criterion 6.735 9.697
p = 5 Algorithm:As-criterion 6.242 9.556

Algorithm:K2-criterion 7.357 6.100
p = 6 Algorithm:As-criterion 8.808 4.454

Algorithm:K2-criterion 14 3.125
p = 7 Algorithm:As-criterion 13.2 0

Algorithm:K2-criterion 13.2 0
MA 2.75 37.25

n = 16,m = 12 As K2

p = 1 Algorithm:As-criterion 3.289 38.526
Algorithm:K2-criterion 3.633 37.114

Systematic method 3.058 36.982
p = 2 Algorithm:As-criterion 3.583 30.529

Algorithm:K2-criterion 4.330 28.462
p = 3 Algorithm:As-criterion 4.292 26.675

Algorithm:K2-criterion 5.885 20.877
p = 4 Algorithm:As-criterion 4 19.5

Algorithm:K2-criterion 12.268 19.167
p = 5 Algorithm:As-criterion 6.651 11.700

Algorithm:K2-criterion 12.712 10.958
p = 6 Algorithm:As-criterion 9.75 7.734

Algorithm:K2-criterion 18.5 5
MA 3 45.75

74

n = 16,m = 13 As K2

p = 1 Algorithm:As-criterion 3.474 46.299
Algorithm:K2-criterion 3.579 45.256

Systematic method 3.314 45.0299
p = 2 Algorithm:As-criterion 3.966 38.449

Algorithm:K2-criterion 4.504 36.559
p = 3 Algorithm:As-criterion 4.792 30.365

Algorithm:K2-criterion 5.115 27.064
p = 4 Algorithm:As-criterion 5.048 23.233

Algorithm:K2-criterion 8.25 20.518
p = 5 Algorithm:As-criterion 7.973 15.733

Algorithm:K2-criterion 15.107 15.618
p = 6 Algorithm:As-criterion 10.711 8.749

Algorithm:K2-criterion 22.667 6.583
MA 3.25 55.5

n = 16,m = 14 As K2

p = 1 Algorithm:As-criterion 3.911 56.126
Algorithm:K2-criterion 4.139 56.355

Systematic method 3.57 54.129
p = 2 Algorithm:As-criterion 4.678 48.899

Algorithm:K2-criterion 4.722 46.844
p = 3 Algorithm:As-criterion 5.319 39.001

Algorithm:K2-criterion 5.588 35.205
p = 4 Algorithm:As-criterion 6.239 30.401

Algorithm:K2-criterion 7.794 26.264
p = 5 Algorithm:As-criterion 9.302 20.448

Algorithm:K2-criterion 11.611 18.583
p = 6 Algorithm:As-criterion 14.75 12.531

Algorithm:K2-criterion 19.85 9.095
MA 3.5 66.5
C1 13.09 7.38

OFAT 21 0

75

n = 16,m = 15 As K2

p = 1 Algorithm:As-criterion 4.256 67.449
Algorithm:K2-criterion 4.491 69.216

Systematic method 3.827 64.286
p = 2 Algorithm:As-criterion 5.127 57.204

Algorithm:K2-criterion 5.674 60.079
p = 3 Algorithm:As-criterion 5.935 46.407

Algorithm:K2-criterion 6.369 45.879
p = 4 Algorithm:As-criterion 7.305 33.674

Algorithm:K2-criterion 7.971 35.226
p = 5 Algorithm:As-criterion 11.803 27.510

Algorithm:K2-criterion 11.915 26.433
p = 6 Algorithm:As-criterion 30 19.25

Algorithm:K2-criterion 25.5 15.75
MA 3.75 78.75

76

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	Introduction
	Orthogonal Designs for Computer Experiments
	Baseline Designs for Screening Experiments
	Outline of the Thesis

	On the Existence and Construction of Orthogonal and Nearly Orthogonal Designs
	Introduction
	Theoretical Results
	Computer Search and Design Catalogue
	Orthogonal Designs
	Nearly Orthogonal Designs

	Compromise Designs Under Baseline Parametrization
	Introduction
	Introducing Compromise Designs
	Finding Optimal Compromise Designs
	Adding one run to basic OFAT design
	Adding two or more runs to basic OFAT design

	Second Class of Compromise Designs Under Baseline Parameterization
	Introduction
	A New Class of Compromise Designs
	Finding Optimal Designs from the Second Class of Compromise Designs
	Method of Complete Search
	A systematic method of construction
	Algorithmic Search

	Performance of Our Algorithm

	Conclusions and Future Research
	Bibliography
	Appendix Nearly Orthogonal Designs (NOD) up to n=18
	Appendix Search Algorithm Results from Chapter 4
	Results for n=8
	Results for n=12
	Results for n=16

