
Development of functional principal
components analysis and estimating the
time-varying gene regulation network

by

Yunlong Nie

M.Sc., University of British Columbia, 2013
B.Sc., Naikai University, 2011

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Statistics and Actuarial Science

Faculty of Science

c© Yunlong Nie 2018
SIMON FRASER UNIVERSITY

Fall 2018

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Yunlong Nie

Degree: Doctor of Philosophy (Statistics)

Title: Development of functional principal components
analysis and estimating the time-varying gene
regulation network

Examining Committee: Chair: Jinko Graham
Professor

Dr. Jiguo Cao
Senior Supervisor
Associate Professor

Dr. Liangliang Wang
Supervisor
Assistant Professor

Dr. Zhaosong Lu
Internal Examiner
Professor
Department of Mathematics
Simon Fraser University

Dr. Pang Du
External Examiner
Associate Professor
Department of Statistics
Virginia Polytechnic Institute and State University

Date Defended: September 27, 2018

ii

Abstract

Functional data analysis (FDA) addresses the analysis of information on curves or functions.
Examples of such curves or functions include time-course gene expression measurements, the
Electroencephalography (EEG) data motoring the brain activity, the emission rate of au-
tomobiles after acceleration and the growth curve of children on body fat percentage made
over a growth time period. The primary interests for the underlying curves or functions
varies in different fields. In this thesis, new methodology for constructing time-varying net-
work based on functional observations is proposed. Several variations of Functional Principal
Component Analysis (FPCA) are developed in the context of functional regression model.
Lastly, the new use of FPCA are explored in terms of recovering trajectory functions and
estimating derivatives.

Keywords: Functional Data Analysis; Functional Principal Component Analysis; Func-
tional Regression Model; Time-varying network; Sparse Functional Data; Derivative Esti-
mation

iii

Table of Contents

Approval ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures x

1 Introduction 1

2 Supervised Functional Principal Components Analysis 4
2.1 Introduction . 4
2.2 Estimating Functional Linear Models using FPCA 6
2.3 Method . 8

2.3.1 Supervised FPCA . 8
2.3.2 Smooth Supervised FPCA . 8
2.3.3 Computational Details . 9
2.3.4 Binary Response Variable . 10
2.3.5 Functional Regression . 12

2.4 Application . 13
2.5 Simulation Studies . 15

2.5.1 The First Simulation Study . 16
2.5.2 The Second Simulation Study . 19

2.6 Summary . 27

3 Sparse Functional Principal Components Analysis 28
3.1 Introduction . 28
3.2 Sparse Functional Principal Component Analysis 30

3.2.1 Sparsity Penalty . 30
3.2.2 Connection to the Conventional FPCA 31

3.3 Estimation Method . 33

iv

3.3.1 Estimate βj(t) for Given αj(t) . 33
3.3.2 Estimate αj(t) for Given βj(t) . 35
3.3.3 Detailed Algorithms . 37
3.3.4 Choosing Tuning Parameters . 38
3.3.5 Adjusted Total Variance Explained 39

3.4 Theoretical Results . 39
3.5 Application . 39
3.6 Simulation Study . 43
3.7 Summary . 45

4 Recovering the Underlying Trajectory from Sparse and Irregular Lon-
gitudinal Data 47
4.1 Introduction . 47
4.2 Functional Empirical Component Analysis 49
4.3 Sparse Orthonormal Approximation Method 51

4.3.1 Estimating the First FEC . 51
4.3.2 Estimating the First and Second FECs 53
4.3.3 Estimating More FECs . 54
4.3.4 Smoothness Regulation . 54
4.3.5 Selecting the Number of FECs . 56

4.4 Theoretical Results . 56
4.5 Application: Longitudinal CD4 Percentages 57
4.6 Simulations . 61
4.7 Summary . 65

5 Estimating Derivatives from Sparse and Irregularly Longitudinal Data 67
5.1 Introduction . 67
5.2 Derivative Functional Empirical Component Analysis 68
5.3 Estimation Method . 69

5.3.1 Estimating the first DeFEC . 70
5.3.2 Estimating the first and the second DeFECs 71
5.3.3 Estimating More DeFECs . 72
5.3.4 Smoothness Regulation . 72
5.3.5 Determine the Number of DeFECs 73

5.4 Real Data Application . 74
5.5 Simulation Studies . 78
5.6 Conclusions . 80

6 Sparse Functional Single Index Model 82
6.1 Introduction . 82

v

6.2 Methodology . 84
6.2.1 A sparse Functional Single Index Model 84
6.2.2 Sparsity Penalty . 84

6.3 Summary of Computing Algorithm . 85
6.3.1 Estimating the Link Function g(·) 86
6.3.2 Estimating the Index Function β(t) 86
6.3.3 Tuning Parameter Selection . 88

6.4 Application . 88
6.5 Simulation . 89
6.6 Summary . 93

7 Estimation of Directed Time-varying Gene Regulation Network 95
7.1 Introduction . 95
7.2 Method . 97

7.2.1 An ODE Model for Time-Varying Directed Gene Regulation Networks 97
7.2.2 Sparsity Penalty . 99
7.2.3 Roughness Penalty . 100
7.2.4 Parameter Estimation . 101
7.2.5 Identifiability Issue . 103
7.2.6 Choose Tuning parameters . 104
7.2.7 Derivative Estimation . 104

7.3 Application . 106
7.4 Simulation . 109
7.5 Summary . 113

Bibliography 117

Appendix A Theoretical Results in Section 3.4 123

Appendix B Theoretical Results in Section 4.2 and Section 4.4 126

vi

List of Tables

Table 2.1 The means and standard deviations of the classification error on testing
set in 100 random data splitting using both supervised FPCA and
unsupervised FPCA in the EEG data application. Here sFPCA and
FPCA stands for supervised FPCA and unsupervised FPCA respectively. 15

Table 2.2 The mean and standard deviation of the RAMSE in 100 simulation repli-
cates when the true β(t) is an arbitrary function. In each simulation
run, the true coefficient function β(t) =

∑10
l=1 clψl(t), where ci is inde-

pendently drawn from the standard normal distribution. For instance,
the mean RAMSE of sFPCA is 69.4% when the number of FPCs p = 1.
Here FPCA, sFPCA and sPCA denote unsupervised FPCA, supervised
FPCA and supervised PCA, respectively. 24

Table 2.3 The mean of paired differences of the RAMSEs in 100 simulation replica-
tions between supervised FPCA and four alternative methods. In each
simulation run, the true coefficient function β(t) =

∑10
l=1 clψl(t), where

ci is independently drawn from the standard normal distribution. For
instance, the mean RAMSE using the unsupervised FPCA method is
about 17.3% higher than that using supervised FPCA, with a paired
t-test p-value being 1.2e-31 when the number of FPCs p = 1. Here
FPCA and sPCA denote unsupervised FPCA and supervised PCA,
respectively. 25

Table 2.4 The mean and standard deviation of the RAMSE in 100 simulation repli-
cates when the true β(t) is related to 10 FPCs. Here FPCA and sFPCA
represent unsupervised FPCA and supervised FPCA, respectively. . 26

Table 3.1 The AIC value defined in (3.12) when the sparsity parameter λ varies. 42

Table 4.1 The values of AIC defined in (4.5) for various number of FECs. . . . 57

vii

Table 4.2 The summary results for predicting the individual trajectory using the
SOAP method and the PACE method for 100 simulation replicates.
The table shows the means, standard derivations (SDs), medians, min-
imums and maximums for the integrated mean prediction errors in (4.8)
when the true FPC scores are generated from the Gaussian distribution
and non-Gaussian distribution. 63

Table 4.3 The summary results for estimating the underlying eigenfunctions us-
ing the SOAP method and the PACE method for 100 simulation repli-
cates. The table shows the means, standard derivations(SDs), medians,
minimums and maximums for the integrated mean square errors (IM-
SEs) defined in (4.9) when the true FPC scores are generated from the
Gaussian distribution and non-Gaussian distribution. 64

Table 5.1 The AIC values for various number of DeFECs when conducting the
derivative functional empirical component analysis (DeFECA) for the
MIT Growth and Development Study. 75

Table 5.2 The summary results for estimating the derivative functions using the
DeFECA method and the DFCA method for 100 simulation repli-
cates. The table shows the means, standard derivations (STDs), medi-
ans, minimums and maximums for the mean integrated square errors
(MISE) defined in (5.8) for Gaussian and non-Gaussian scenarios. . . 80

Table 5.3 The summary results for estimating the DeFECs (φ1(t) and φ2(t))
using the DeFECA method and the DFCA method for 100 simulation
replicates. The table shows the means, standard derivations (STDs),
medians, minimums and maximums for the mean integrated square
errors (MISEs) defined in (5.9) for the Gaussian and non-Gaussian
scenarios. 80

Table 6.1 The means, standard deviations(SDs), medians, minimums and maxi-
mums of MSPEs for 100 Monte Carlo runs using the sparse FuSIM and
the conventional FuSIM methods. Here ‘sFuSIM’ and ‘FuSIM ’denote
the sparse functional single index model and the conventional func-
tional single index model, respectively. 92

Table 6.2 The means, standard deviations(SDs), medians, minimums and maxi-
mums of IMSEs for 100 Monte Carlo runs using the sparse FuSIM and
the conventional FuSIM methods. Here ‘sFuSIM’ and ‘FuSIM ’denote
the sparse functional single index model and the conventional func-
tional single index model, respectively. 93

viii

Table 6.3 The means, standard deviation(SD), medians, minimums and maxi-
mums of true positive(TP) and true negative(TN) proportions in per-
centage of the sparse FuSIM model for 100 Monte Carlo runs. 93

Table 7.1 The regulatory genes for all 20 genes selected by our method. The reg-
ulatory genes are sorted by their overall regulation effect on the cor-
responding target gene. For example, Mef2 has the largest the overall
regulation effect on Actn in comparison with Prm and tin. 109

Table 7.2 The means and standard deviations (SD) of the false positive errors
(FP) and the false negative errors (FN) of the four methods in 100
simulation replicates. Here ρ represents the noise-to-signal ratio in the
simulated data. 111

Table 7.3 The mean and standard deviation of the false positive rates using four
methods in 100 simulation replicates. Here ρ represents the noise-to-
signal ratio in the simulated data. 112

Table 7.4 The mean and standard deviation of squared prediction errors using
four methods in 100 simulation replicates. Here ρ represents the noise-
to-signal ratio in the simulated data. 113

ix

List of Figures

Figure 2.1 The readings of the brain activities at the AF1 channel for 15 ran-
domly selected alcoholic subjects (panel a) and 15 randomly selected
control subjects (panel b). All of them are exposed to two non-
matching stimuli in an EEG case study on genetic predisposition
to alcoholism. 14

Figure 2.2 The first four leading FPC estimated from Canadian Weather data. 16
Figure 2.3 Fifty randomly simulated curves in the simulation studies 17
Figure 2.4 Boxplots of the classificaition errors for 100 simulation runs when

using the first p FPCs estimated by supervised and unsupervised
FPCA in the first simulation study when the response variable is
binary. 18

Figure 2.5 The first FPC estimated with supervised and unsupervised FPCA in
one simulation run of the first simulation study when the response
variable is binary. 19

Figure 2.6 Boxplots of the prediction RAMSEs for 100 simulation runs using the
first p FPCs estimated by supervised and unsupervised FPCA in
Scenario 1 of the second simulation study when the response variable
is continuous and the noise-to-signal ratio ρ = 5%. 20

Figure 2.7 The first FPC estimated with supervised and unsupervised FPCA
at one simulation run in Scenario 1 of the second simulation study
when the response variable is continuous. 21

Figure 2.8 Boxplots of the prediction RAMSEs for 100 simulation runs using the
first p FPCs estimated by supervised and unsupervised FPCA in
Scenario 1 of the second simulation study when the response variable
is continuous and the noise-to-signal ratio ρ = 50%. 22

Figure 2.9 Boxplots of the prediction RAMSEs for 100 simulation runs using the
first p FPCs estimated by supervised and unsupervised FPCA in
Scenario 2 of the second simulation study when the response variable
is continuous. 23

x

Figure 3.1 The observed acceleration rates for 20 randomly selected diesel trucks
out of all 107 diesel trucks. Each curve respects one truck’s observa-
tions. 40

Figure 3.2 The estimated first four leading functional principal components us-
ing conventional FPCA for analyzing the acceleration curves. They
account for 25.7%, 24.6%, 17.4% and 15.3% of the total variation
among the acceleration curves, respectively. 41

Figure 3.3 Estimated sparse functional principal components (solid line) com-
pared to the conventional smoothing functional principal compo-
nents (dashed line). They account for 20%, 19%, 17% and 14% of
the total variation, respectively . 42

Figure 3.4 Boxplot of the integrated errors (3.14) for four methods including
the sparse FPCA method, the conventional FPCA method, iFPCA
and LFPCA in 100 simulation repetitions. 44

Figure 3.5 The estimated FPC using different methods including iFPCA (dot
dashed line) LFPCA (dot line) and sparse FPCA (dashed line) in
comparison with the true FPCs (solid line) in one simulation replicate. 45

Figure 4.1 The longitudinal CD4 percentage for 10 randomly selected subjects.
Each curve represents the measurements for one single subject. . . 58

Figure 4.2 The estimated three functional empirical components (FECs) along
with the estimated mean function for the CD4 data. 59

Figure 4.3 The estimated individual trajectories using the SOAP method (solid
line) and the corresponding observations (dots) for individual 11, 21,
72 and 90. 60

Figure 4.4 Boxplots of the mean square prediction errors for the last observation
in the CD4 dataset using the SOAP method and the PACE method
in 100 random data-splitting repetitions. 61

Figure 4.5 The true eigenfunctions used to generate the true underlying indi-
vidual trajectories. We obtain these two functional empirical compo-
nents by conducting conventional FPCA on the Canadian tempera-
ture Data (Ramsay and Silverman, 2002). 62

Figure 4.6 The estimated individual trajectory (solid line) using the PACE
method (left panel) and the SOAP method (right panel) compared
with the true trajectory (dashed line). The dots represent the obser-
vations for this curve. 64

Figure 5.1 The measured body fat percentage before and after menarche for 10
randomly-selected girls in the MIT Growth and Development Study. 75

xi

Figure 5.2 The estimated derivatives for 4 selected girls in the top 4 panels.
The corresponding estimated trajectories are shown in the bottom 4
panels. The dots indicate the observed data. 76

Figure 5.3 The estimated DeFEC scores for all 162 girls. Each dot represents one
girl. The left panel shows the first estimated DeFEC score against
the second estimated DeFEC score. The right panel shows the second
DeFEC score against the third DeFEC score. The three dot shapes
represent the three clusters identified by the K-means method. . . 77

Figure 5.4 The estimated derivative functions for five subjects in each of three
clusters identified by the K-means method on the estimated DeFEC
scores. 77

Figure 5.5 The top three derivative functional empirical components (DeFECs)
estimated from the MIT Growth and Development Study. 78

Figure 6.1 The estimated coefficient function β̂(t) using the sparse FuSIM (solid
line) and the conventional FuSIM (dashed line) respectively. 90

Figure 6.2 The estimated link function ĝ(t) for the sparse FuSIM method. . . 91
Figure 6.3 The hourly temperature for Day 2, 17 and 77. The estimated integral

values are 2.5, 60.6 and 113.7. 91

Figure 7.1 Ten cubic B-spline basis functions, defined by six interior knots. The
locations of interior knots are indicated by vertical dashed lines. . . 98

Figure 7.2 Estimated regulation functions on gene Myo31DF based in the ODE
model (7.1). Three regulatory genes, i.e., Prm, tin and Myo61DF are
selected out of 20 genes. All the regulation functions of the rest 17
genes are estimated to be strictly zero during the whole embryonic
stage. 107

Figure 7.3 The estimated time-varying directed gene regulation network of 20
genes in the muscle development pathway at three time points dur-
ing the embryonic stage. The connection lines represent the exis-
tence of regulation effects between genes. The line color indicates
whether the regulations have been verified in the literature: red (ver-
ified regulation effects), green (verified gene-to-gene interactions)
and black (unverified regulation effects). Details can be found in
the excel file at http://www.sfu.ca/\protect\unhbox\voidb@x\

penalty\@M\{}nyunlong/research/grn/. This figure is generated
using the qgraph package (Epskamp et al., 2012). 115

xii

http://www.sfu.ca/\protect \unhbox \voidb@x \penalty \@M \ {}nyunlong/research/grn/
http://www.sfu.ca/\protect \unhbox \voidb@x \penalty \@M \ {}nyunlong/research/grn/

Figure 7.4 Estimated regulation functions from the simulated data with the
noise-to-signal ratio of the simulated data ρ = 1% using the locally
sparse method. The dashed red and solid blue lines represent the
true regulation functions and the mean of the estimated regulation
functions in 100 simulation replicates. The grey bands denote the
pointwise 95% confidence interval of the estimated regulation functions.116

Figure 7.5 Estimated regulation functions from the simulated data with the
noise-to-signal ratio of the simulated data ρ = 5% using the locally
sparse method. The dashed red and solid blue lines represent the
true regulation functions and the mean of the estimated regulation
functions in 100 simulation replicates. The grey bands denote the
pointwise 95% confidence interval of the estimated regulation functions.116

xiii

Chapter 1

Introduction

Functional data analysis (FDA) addresses the analysis of information on curves or functions.
Examples of such curves or functions include time-course gene expression measurements,
the Electroencephalography (EEG) data motoring the brain activity, the emission rate of
automobiles after acceleration and the growth curve of children on body fat percentage made
over a growth time period. The primary interests for the underlying curves or functions vary
in different fields.

Functional regression model is widely used to study the relationship between a scalar
response variable and the functional predictor. One conventional approach under the func-
tional linear regression framework is to first perform functional principal component analysis
(FPCA) on the functional predictor and then use the first few leading functional principal
component (FPC) scores to predict the response variable. The leading FPCs estimated by
the conventional FPCA stand for the major source of variation of the functional predictor,
but these leading FPCs may not be mostly correlated with the response variable, so the pre-
diction accuracy of the functional linear regression model may not be optimal. In Chapter
2, we propose a supervised version of FPCA by considering the correlation of the func-
tional predictor and response variable. It can automatically estimate leading FPCs, which
represent the major source of variation of the functional predictor and are simultaneously
correlated with the response variable. Our supervised FPCA method is demonstrated to
have a better prediction accuracy than the conventional FPCA method by using one real
application on electroencephalography (EEG) data and three carefully-designed simulation
studies. This work has been published in Nie et al. (2018).

Chapter 3 considers a variation of the conventional FPCA method. The main goal of
FPCA is to explore major sources of variation in a sample of random curves. These major
sources of variation are represented by FPCs. The FPCs from the conventional FPCA
method are often nonzero in the whole domain, and are hard to interpret in practice. In this
paper, we consider the problem of estimating FPCs, which are only nonzero in subregions.
The resulting sparse FPCs not only represent the major variance resources but also can be
used to identify the subregions where those major variations exist. The current methods

1

obtain sparse FPCs by adding a penalty term on the length of nonzero regions of FPCs in the
conventional eigendecomposition framework. However, these methods become an NP-hard
optimization problem. To overcome this issue, we propose a novel regression framework to
estimate FPCs and the corresponding optimization is not NP-hard. We also show that the
FPCs estimated with our proposed sparse FPCA method is equivalent to the FPCs using
the conventional FPCA method when the sparsity parameter is zero. Simulation studies
illustrate that the proposed sparse FPCA method can provide more accurate estimates for
FPCs than other available methods when those FPCs are only nonzero in subregions. The
proposed method is demonstrated by exploring the major variations among the acceleration
rate curves of 107 diesel trucks, where the nonzero regions of the estimated sparse FPCs
are found well separated.

Chapter 4 considers the problem of recovering the underlying trajectory when the longi-
tudinal data are sparsely and irregularly observed and noise-contaminated. More specially,
such data are popularly analyzed with functional principal component analysis via the
Principal Analysis by Conditional Estimation (PACE) method. The PACE method may
sometimes be numerically unstable because it involves the inverse of the covariance matrix.
We propose a sparse orthonormal approximation (SOAP) method as an alternative. It es-
timates the optimal empirical basis functions in the best approximation framework rather
than eigen-decomposing the covariance function. The SOAP method avoids estimating the
mean and covariance function, which is challenging when the assembled time points with
observations for all subjects are not sufficiently dense. The SOAP method avoids the in-
verse of the covariance matrix, hence the computation is more stable. It does not require the
functional principal component scores to follow the Gaussian distribution. We show that
the SOAP estimate for the optimal empirical basis function is asymptotically consistent.
The finite sample performance of the SOAP method is investigated in simulation studies in
comparison with the PACE method. Our method is demonstrated by recovering the CD4
percentage curves from sparse and irregular data in the Multi-center AIDS Cohort Study.

Motived by the MIT Growth and Development study, we consider the problem of esti-
mating the individual growth rate when the measurements are sparse in Chapter 5. A new
method is proposed to directly estimate the optimal empirical basis functions for the deriva-
tives of individual trajectories in a best approximation framework. This method is refereed
to as the derivative functional empirical component analysis (DeFECA). The novelty of
our method is three-fold. First, the estimated empirical basis functions forms the most par-
simonious or optimal representation of the derivative functions. Second, our method does
not requires the coefficients of the empirical basis functions to be Gaussian distributed.
Our method is still applicable when this assumption is invalid or difficult to verify. Third,
our method does not require estimating the mean and covariance functions, which may
be challenging when the assembled time points with observations for all subjects are not
sufficiently dense. Last but not the least, simulation studies shows that our method is nu-

2

merically stable in comparison to existing methods because our method avoids the inverse
of the covariance matrix.

Chapter 6 considers estimating the functional single index with compact support. Func-
tional single index are widely used to describe the nonlinear relationship between a scalar
response and a functional predictor. The conventional functional single index model as-
sumes that the coefficient function is nonzero in the entire time domain. In other words, the
functional predictor always has a nonzero effect on the response all the time. We propose a
new compact functional single index model, in which the coefficient function is only nonzero
in a subregion. We also propose an efficient method which can simultaneously estimate the
nonlinear link function, the coefficient function and also the nonzero region of the coeffi-
cient function. Hence, our method can identify the region in which the functional predictor
is related to the response. Our method is applied to predict the total number of daily bike
rentals based on the hourly temperature data. The finite sample performance of the pro-
posed method is investigated with a simulation study in comparison with the conventional
functional single index model.

Lastly, we consider the problem of of modeling the dynamical regulation process within
a gene network in Chapter 7. We propose to model this dynamical system with a large num-
ber of nonlinear ordinary differential equations (ODEs), in which the regulation function
is estimated directly from data without any parametric assumption. Most current research
assumes the gene regulation network is static, but in reality, the connection and regulation
function of the network may change with time or environment. This change is reflected in
our dynamical model by allowing the regulation function varying with the gene expression
and forcing this regulation function to be zero if no regulation happens. We introduce a
statistical method called functional SCAD to estimate a time-varying sparse and directed
gene regulation network, and, simultaneously, to provide a smooth estimation of the regula-
tion function and identify the interval in which no regulation effect exists. The finite sample
performance of the proposed method is investigated in a Monte Carlo simulation study.
Our method is demonstrated by estimating a time-varying directed gene regulation net-
work of 20 genes involved in muscle development during the embryonic stage of Drosophila
melanogaster. This work has been published in Nie et al. (2017).

3

Chapter 2

Supervised Functional Principal
Components Analysis

2.1 Introduction

In this chapter, we study the problem of predicting a scalar response Y using the following
functional linear model

E(Y |X(t)) = g

(
β0 +

∫
T
β(t){X(t)− µ(t)}dt

)
(2.1)

where β0 ∈ R is the intercept, X(t) is the functional predictor process with the mean
function µ(t), β(t) is the slope function, and both β(t) and X(t) are assumed to be smooth
and square integrable on the domain T . The link function g is assumed to be monotonic
and invertible. The form of g is chosen based on the distribution assumption on Y . For
instance, g is usually chosen as the inverse logit function if Y is a binary variable.

The above functional linear model has been widely used to link a scalar response with
an integral form of a functional predictor. Compared with the classic regression problem
in which only scalar predictors are considered, the main challenge in this functional linear
model is that even a single functional predictor can lead to a saturated model due to
its high flexibility. A common strategy to address this problem is through the functional
principal component analysis (FPCA). The FPCA method estimates the functional linear
model (2.1) in two steps: estimating the functional principal components (FPCs) for the
functional predictor; and then using several leading FPCs in the functional linear model.
This topic has been extensively studied in the literature such as Ramsay and Silverman
(2002); Yao et al. (2005a) and Huang et al. (2009). Furthermore, functional linear models
have been naturally extended to generalized functional linear regression when the response
variable is binary or multinomial. For example, Ratcliffe et al. (2002) applied a functional
logistic regression to predict the high-risk birth rate based on periodically stimulated foetal
heart rate tracings. Müller and Stadtmüller (2005) related the response with the integral
form of a functional predictor through a smooth function. Cardot et al. (2003) used a

4

multinomial functional regression model to predict the land usage based on the temporal
evolution of coarse resolution remote sensing data. A more general approach is proposed by
Du and Wang (2014) in which the response is assumed to follow an exponential distribution.
A penalized lilkelihood method is used to estimate the unknown intercept and coefficient
function and the resulting penalized likelihood estimator is shown to attain the optimal rate
of convergence. The above functional linear model could also be extended to include both
parametric and nonparametric components (Du et al., 2012).

However, a common limitation of the above methods is that the estimation of FPCs in
the first step is totally separated from the regression model used to predict the response
variable Y in the second step. In the first step, the leading FPCs mainly focus on explaining
the maximum variation of the functional predictor. Thus, the estimated FPCs may not have
the maximum prediction power for Y . Therefore, practitioners usually have to include as
many FPCs as possible to fit the functional regression, which introduces excessive variability
into the model, especially when the sample size is relatively small. Our goal is to borrow
the information from the response variable Y to estimate FPCs in the first step such that
the resulting FPCs have a better performance in terms of predicting Y . This strategy is
called supervised FPCA in this manuscript.

Bair et al. (2006) introduced a supervised principal component analysis (PCA) method
in the context of classic multivariate regression problem, especially when the number of
predictors was much larger than the sample size. They proposed a latent variable framework
in which the response variable is only associated with a subset of predictors through a
latent variable. More specifically, their method consists of three steps: first a pre-screening
procedure is employed to select those important predictors; then PCA is performed on
those selected predictors to estimate the latent variable; finally a regression model is fitted
with those estimated PC scores. Li et al. (2016) proposed another version of supervised
PCA, namely, a supervised singular value decomposition (SupSVD) model. Unlike Bair
et al. (2006) focusing on predicting the response variable Y , the primary interest of the
SupSVD model is to recover the underlying low-rank structure of the predictor matrix with
the supervision information from Y . In addition, Li et al. (2016) could incorporate a multi-
dimensional response variable whereas Bair et al. (2006) only considered a single scalar
response variable.

However, neither of the above work can accommodate functional predictors. The ex-
tension from supervised PCA to functional data is nontrivial. Recently, Li et al. (2016)
extended the SupSVD model to functional principal component analysis (FPCA) and pro-
posed a method called supervised sparse functional principal component (SupSFPC). They
assume that the supervision data drive low-rank structures of the functional data of pri-
mary interest. The estimation procedure is based on the penalized likelihood function that
imposes a smooth and sparsity penalty on PC loadings. The difference between our work

5

and theirs is that we mainly focus on improving the prediction performance of FPCs, while
Li et al. (2016) focused on recovering the true FPCs.

The novelty of this chapter is three-fold. Firstly, we propose a framework to utilize the
scalar response variable, either continuous or categorical, to boost the prediction perfor-
mance of the estimated FPCs. Our method is particularly useful in dealing with ‘Large
p, Small n’ problem when multiple functional predictors exist. Secondly, unlike Bair et al.
(2006) which employs three steps, our approach does not require a pre-screening procedure.
Thirdly, our estimation algorithm is based on eigenvalue decomposition which is much eas-
ier to implement in comparison with the revised EM algorithm used by SupSFPC. An R
package “sFPCA" is developed to implement our proposed supervised FPCA method and
is available at https://github.com/YunlongNie/sFPCA.

The rest of this chapter is organized as follows. A review of conventional FPCA analysis
is given in Section 2.2. Details of our method is described in Section 2.3. Then we show
one real data application on electroencephalography (EEG) data in Section 2.4. Three
carefully-designed simulation studies are used to evaluate the finite sample performance of
our proposed method in Section 2.5. Section 2.6 provides concluding remarks.

2.2 Estimating Functional Linear Models using FPCA

We first introduce the conventional FPCA method for estimating the functional linear
model (2.1), which is also called unsupervised FPCA method in this chapter. Consider a
stochastic process X(t) on the domain T with the mean function E(X(t)) = µ(t). Using
the Karhunen-Loève expansion Fukunaga and Koontz (1970), the stochastic process X(t)
can be expressed as

X(t) = µ(t) +
∞∑
j=1

αjξj(t), i = 1, . . . , n, (2.2)

where ξj(t), j = 1, . . . ,∞, are standard orthogonal to each other and are also called func-
tional principal components (FPCs), and αj is called the jth FPC score. The FPC score αj
are uncorrelated random variables with mean 0 and variance λj . It can also be calculated
as αj =

∫
T (X(t) − µ(t))ξj(t)dt. For the rest of this chapter, we assume µ(t) ≡ 0 without

loss of generality.
In practice, we usually select the first several leading FPCs to approximate each random

curve X(t). Here we denote the number of FPCs chosen as p and we will discuss how to
determine p later in this manuscript. Then the representation in (2.2) reduces to

X(t) =
p∑
j=1

αjξj(t) = αT ξ(t), (2.3)

6

https://github.com/YunlongNie/sFPCA

in which α = (α1, α2, . . . , αp)T and ξ(t) = (ξ1(t), ξ2(t), . . . , ξp(t))T . Substituting (2.3) into
(2.1) gives

E(Y |X(t)) = g

(
β0 +

∫
T
β(t)

(p∑
j=1

αjξj(t)
)
dt

)

= g

(
β0 +

p∑
j=1

αj

∫
T
β(t)ξj(t)dt

)
. (2.4)

In the meanwhile, we can also express β(t) as a linear combination of the p leading FPCs
as

β(t) =
p∑
j=1

γjξj(t) = γT ξ(t), (2.5)

in which γ = (γ1, γ2, . . . , γp)T is an unknown coefficient vector to be estimated from the
data. Plugging (2.5) back into (2.4), we have

E(Y |X(t)) = g

(
β0 +αTγ

)
. (2.6)

We can estimate the unknown coefficient vector γ by regressing Y on the FPC scores α.
Determining an appropriate value of p is a difficult task in practice. One common strat-

egy is first choosing a large value of p such that the leading p FPCs in (2.2) together explain
more than 99% of the total variation. More formally,

p = inf{k :
∑k
j=1 λj∑∞
j=1 λj

≥ 99%}.

If the resulting p is too large compared to the sample size, one of the popular shrinkage
techniques such as LASSO and SCAD can be employed to do the variable selection. However,
this procedure’s prediction performance is still not satisfying in many complex problems
due to three reasons. First, the prediction power of those FPCs might not coincide with
the amount of variation they account for. For instance, the response variable might only
depend on the 10th FPC instead of any of the first 9 FPCs; Second, given a small sample
size, a large value of p introduces excessive variability into the model, making the model
selection a very difficult task. Particularly, in practice when multiple functional predictors
exist in the model, even with only a small number of FPCs selected for each functional
predictors, this large-p-small-n problem is still quite common. Thus, there is necessity to
boost the prediction power of the estimated FPCs for each functional predictor.

7

2.3 Method

We first consider the scenario when the response variable is continuous and then extend to
the case in which the response variable is binary.

2.3.1 Supervised FPCA

Without loss of generality, we assume E(X(t)) = 0 and E(Y) = 0 in the following discussion.
One can always centralize X(t) and Y to satisfy these two assumptions. We propose to
estimate FPCs: ξ1(t), ξ2(t), . . ., such that the estimate ξ̂k(t) maximizes

Q(ξ) = θ〈ξ, Ĉξ〉+ (1− θ)cov2(Y, 〈X, ξ〉)
||ξ||2

, (2.7)

subject to ||ξ|| = 1, 〈ξ, ξ̂j〉 = 0, for every j < k, and 0 ≤ θ ≤ 1. Here the norm ||ξ|| =
√
〈ξ, ξ〉

and 〈f, g〉 denotes the usual L2 inner product 〈f, g〉 =
∫
T f(t)g(t)dt. In addition, Ĉ is denoted

as the empirical covariance operator:

Ĉξ =
∫
T
Ĉ(·, t)ξ(t)dt,

where the empirical covariance function Ĉ(s, t) =
1
n

∑n
i=1Xi(s)Xi(t), and Xi(t) is an independent realization of the stochastic process X(t).
We take a closer look at the formalization of Q(ξ) shown in (2.7). The first term in

the numerator, 〈ξ, Ĉξ〉, represents the variation within the functional predictor X(t) that
can be explained by ξ(t); the second part in the numerator, cov2(Y, 〈X, ξ〉), represents the
squared covariance between the corresponding FPC score 〈X, ξ〉 and the response variable
Y . The balance between these two terms is governed by the weight parameter θ. Apparently,
specifying θ = 1 will give rise to unsupervised FPCA. On the other hand, specifying θ less
than 1 will lead to supervised FPCA. The weight parameter θ can be treated as a tuning
parameter and can be determined using cross-validation.

It is also worth mentioning the main rationale behind the ‘squared’ covariance, the
second term on the numerator in (2.7), is two-fold. First, we wish to keep this term, which
describes the association between the estimated FPC score and the response variable, of the
numerator in equation (8) positive, since the variance of the FPC scores in the first term
is always positive. Second, the ‘squared covariance’ also helps to convert the estimation
process into an eigenvalue decomposition problem, which will be illustrated in more details
in Section 2.3.3

2.3.2 Smooth Supervised FPCA

The FPCs obtained using (2.7) might need to be further smoothed or regularized. We
define another type of norm as ||f ||λ =

√
||f ||2 + λ||D2f ||2, in which D2f =

∫
T f
′′(t)dt. The

8

smooth estimate for the k-th supervised FPC is obtained by maximizing

Q(ξ) = θ〈ξ, Ĉξ〉+ (1− θ)cov2(Y, 〈X, ξ〉)
||ξ||2λ

, (2.8)

subject to ||ξ||λ = 1, 〈ξ, ξ̂j〉 = 0, for every j < k, and 0 ≤ θ ≤ 1. The smoothing param-
eter λ controls the degree of smoothness. For instance, when λ = 0, there is no penalty
on the roughness of the estimated component ξ̂(t) and the smooth supervised FPCs will
reduce to the regular supervised FPCs discussed in Section 2.3.1. On the other hand, a very
large value of λ will force the estimated component ξ̂(t) taking a linear form. Moreover,
this method is very easy to implement once the smoothing parameter λ is determined. In
addition, Silverman (1996) showed that under appropriate conditions the estimated FPCs
were consistent. In the rest of this section, we will focus on the details of estimating the
smooth supervised FPCs, which can be easily applied to unsmooth supervised FPCs by
setting λ = 0.

2.3.3 Computational Details

In this subsection, we give the computational details on how to estimate the smooth super-
vised FPC ξ(t) given a set of value for (θ, λ). To distinguish them, we call θ and λ as the
weight and smoothing parameters, respectively. To ease the computation, we use the same
B-spline basis functions φ1(t), φ2(t), ..., φM (t) to represent both the smooth supervised FPC
ξj(t) and the functional predictor Xi(t), in whichM denotes the total number of basis func-
tions. Note that our method is not restricted to B-spline basis system and can be extended
to other basis systems as well. Let Φ(t) denote the column vector (φ1(t), φ2(t), ..., φM (t))T ,
and rewrite (X1(t), X2(t), ..., Xn(t))T = SΦ(t), where S is an n ×M coefficient matrix. In
addition, we represent ξ(t) =

∑M
m=1 βmφm(t) = βTΦ(t), in which β denotes the coefficient

vector (β1, β2, ..., βM)T . Then the empirical covariance function can be expressed as

Ĉ(s, t) = 1
n

Φ(t)T (s)STSΦ(t).

Thus the first term in the numerator of (2.7) is given by

〈ξ, Cξ〉 = 1
n
βTWSTSWβ, (2.9)

where W is an M ×M matrix with elements wij = 〈φi(t), φj(t)〉.
As for the second term in the numerator in (2.7), we first derive the form of the FPC

score 〈Xi, ξ〉. For each Xi(t), the FPC score 〈Xi, ξ〉 is written as

〈Xi, ξ〉 = βTWSi = βTWi,

9

where Si is the i-th row of the coefficient matrix S, and Wi = WSi. Thus, combining all
the scores for each Xi(t)

(〈X1, ξ〉, 〈X2, ξ〉, . . . , 〈Xn, ξ〉)T = SWβ.

Finally the covariance term between Y and the FPC score is written as

cov(Y, 〈X, ξ〉) = 1
n
βT

n∑
i=1

YiWi = 1
n
βTWSTY,

in which Y = (Y1, Y2, . . . , Yn)T .
The squared covariance between Y and the FPC score is given as

cov2(Y, 〈X, ξ〉) = βTMMTβ

n2 , (2.10)

in which M = WSTY.
For the denominator part in (2.7), the norm of ξ(t) is given by

||ξ||2λ = βTWβ + λβTDβ = βTGβ, (2.11)

where D denotes a M ×M matrix with element
dij = 〈D2φi(t),D2φj(t)〉 and G = W + λD.

Putting (2.9), (2.10) and (2.11) together, Q(ξ) in (2.8) is recast into

Q(ξ) = βTUβ
βTGβ

,

where
U = θ

n
WSTSW + 1− θ

n2 MMT .

Let δ = G
1
2β, maximizing Q(ξ) is equivalent to maximizing δT (G−1/2)TUG−1/2δ subject

to δTδ = 1. Then δ1, . . . , δJ will be the leading J eigenvector of the matrix

(G−1/2)TUG−1/2.

Consequently, one can derive β̂j = (G1/2)−1δj . The corresponding smooth supervised FPC
is ξ̂j(t) = β̂

T

j Φ(t) for j = 1, . . . , J.

2.3.4 Binary Response Variable

When the response variable Y is binary, we suggest to replace cov2(Y, 〈X, ξ〉) in Q(ξ) defined
in (2.8) with the between-group variation of the FPC scores. Formally, let Y = (Y1, Y2,

. . . , Yn)T , in which Yi ∈ {0, 1}, i = 1, . . . , n, and nj is the number of Yi satisfying Yi = j

10

for j = 0, 1. Let α = (α1, α2 . . . , αn)T denote the vector of FPC scores for one FPC ξ(t),
in which αi = 〈Xi, ξ〉, and ᾱj = 1

nj

∑
{i:Yi=j} αi. Since we assume the mean function of the

functional predictor, E(X(t)) = µ(t) = 0, the expectation of the FPC score E(α) = 〈µ, ξ〉 =
0. The between-group variation of the FPC scores is

R(ξ) =
1∑
j=0

nj(ᾱj − E(α))2 = n1ᾱ
2
1 + n0ᾱ

2
0

= 1
n1

(
n∑
i=1

Yiαi)2 + 1
n0

(
n∑
i=1

((1− Yi)αi))2.

Note that
∑n
i=1 Yiαi = αTY = βTWSTY, thus

1
n1

(
n∑
i=1

Yiαi)2 = 1
n1
βTM1MT

1 β,

in which M1 = WSTY. Similarly,

1
n0

(
n∑
i=1

((1− Yi)αi))2 = 1
n0
βTM2MT

2 β,

in which M2 = WST (In − Y). Eventually, the between-group variation R(ξ) can be ex-
pressed as a quadratic form of β:

R(ξ) = 1
n1
βTM1MT

1 β + 1
n0
βTM2MT

2 β

= βT
(1
n1

M1MT
1 + 1

n0
M2MT

2

)
β

Then the smooth estimate for the k-th supervised FPC is obtained by maximizing

Qb(ξ) = θ〈ξ, Ĉξ〉+ (1− θ)R(ξ)
||ξ||2λ

= βTUbβ

βTGβ
, 0 ≤ θ ≤ 1,

subject to ||ξ||λ = 1, 〈ξ, ξ̂j〉 = 0, for every j < k, where

Ub = θ

n
WSTSW + (1− θ)

(1
n1

M1MT
1 + 1

n0
M2MT

2

)
.

Let δ = G
1
2β. It is equivalent to maximize

δT (G−1/2)TUbG−1/2δ, subject to δTδ = 1. Then δ1, . . . , δJ will be the the leading J

eigenvector of the matrix
(G−1/2)TUbG−1/2.

11

Consequently, one can derive the estimate for the vector of basis coefficients β̂j = (G1/2)−1δj .
The corresponding estimate for the j-th smooth supervised FPC is ξ̂j(t) = β̂

T

j Φ(t) for
j = 1, . . . , J.

2.3.5 Functional Regression

With the estimated first leading p FPCs, i.e., ξ̂1(t), ξ̂2(t), . . . ,
ξ̂p(t), one can fit a functional regression model between the functional predictor X(t) and
the response Y as discussed in Section 2.1. More specifically,

E(Y |X(t))) = g

(
β0 +

∫
T
β(t)X(t)dt

)
, (2.12)

in which g(·) is the link function. It is usually chosen as the inverse logit function if Y
is binary and the identify function if Y is continuous. One can follow the same strategy
described in Section 2.1 to express the unknown coefficient function

β(t) = γT ξ̂(t),

in which the unknown coefficient vector γ can be estimated by maximizing the likelihood
function of Y with the mean expressed in terms of FPCs and FPC scores

E(Y |X(t)) = g

(
β0 +

p∑
j=1

γj

∫
T
ξ̂j(t)µ(t)dt+αTγ

)
.

The number of FPCs, denoted by p, used in the functional regression can be consid-
ered as a tuning parameter. We recommend to determine the value of p in the following
way. We start with the number of FPCs p = 1 and obtain the cross-validation error as p
increases. Our experience suggests choosing the value of p when the cross-validation error
stops decreasing significantly. For example, one can conduct a paired t-test between the
cross-validation errors for p and p+ 1. If no significant improvement is observed, we choose
p as the optimal value. This rule is valid because the estimated first supervised FPC always
has larger prediction ability than the second supervised FPC, and so forth.

Our method can also be extended to accommodate multiple function predictors. Sup-
pose there are Q functional predictors: X(1)(t), . . . , X(Q)(t), then the multiple functional
regression model can be expressed as

E(Y) = g

(
β0 +

Q∑
q=1

∫
T
β(q)(t)X(q)(t)dt

)
.

We can conduct the smooth supervised FPCA for each functional predictor X(q)(t), q =
1, . . . , Q, and estimate the FPCs for X(q)(t). We denote the first qp estimated FPCs for the

12

functional predictor X(q)(t) as ξ̂(q)(t) = (ξ̂(q)
1 (t), . . . , ξ̂(q)

qp (t)) with the corresponding score
vector α(q) and the coefficient function β(q)(t) = (γ(q))T ξ̂(q)(t). Then the unkown coefficient
vector γ(q), q = 1, . . . , Q, can also be estimated by maximizing the likelihood function of Y
with the mean expressed in terms of FPCs and FPC scores

E(Y) = g

(
β0 +

Q∑
q=1

qp∑
j=1

γ
(q)
j

∫
T
ξ̂

(q)
j (t)µ(q)(t)dt+

Q∑
q=1

(α(q))Tγ(q)
)
, (2.13)

in which µ(q)(t) represents the mean trajectory for Xq(t).
In practice, when multiple functional predictors exist, the number of total FPCs is

sometimes close to or larger than the sample size. In this case, we recommend to employ one
of those popular variable selection tools such as LASSO or SCAD to estimate the model.
We will demonstrate this procedure in our real data application with a binary response
variable.

2.4 Application

We apply our method to analyze an electroencephalography (EEG) dataset. The EEG
dataset, collected by Zhang et al. (1995), is used to study the genetic predisposition to
alcoholism. The original dataset is available in UCI machine learning repository (https://

archive.ics.uci.edu/ml/datasets/EEG+Database). In total 122 subjects are separated
into two groups: alcoholic and control. Each subject is exposed to two non-matching stimuli,
i.e., two different pictures. In addition, 64 electrodes are placed on each subject’s scalp to
record the brain activities. Each electrode is sampled at 256Hz for 1 second. Our goal here
is to classify alcoholic and control subjects based on their brain activities.

The number of trials with two non-matching stimuli ranges from 10 to 30 from subject
to subject. Figure 2.1 displays the measurements averaged over all trials for 15 randomly
selected subjects in both alcoholic and control groups at 256 time points at one sensor called
the AF1 channel.

For each subject, we randomly select 2/3 of the total trials as the training trials and
the rest 1/3 of the trials as the test trials. Then, the training and test observations are
computed as the average of all training and test trials, respectively. We then apply our
smooth supervised FPCA method to estimate the first leading p FPCs for each sensor.

Next, we fit a multiple functional logistic regression

logit{P (Y = 1)} = β0 +
Q∑
q=1

∫
T
β(q)(t)X(q)(t)dt, (2.14)

where Y = 0, 1 correspond to the control and alcoholic subject, respectively, and X(q)(t) is
the brain activity for the q-th sensor. Following the method outlined in Subsection 2.3.5,

13

https://archive.ics.uci.edu/ml/datasets/EEG+Database
https://archive.ics.uci.edu/ml/datasets/EEG+Database

0 50 100 150 200 250

−
10

0
10

20

(a) alcoholic

Time(second)

S
en

so
r

R
ea

di
ng

0 50 100 150 200 250

−
20

−
10

0
10

(b) control

Time(second)

S
en

so
r

R
ea

di
ng

Figure 2.1: The readings of the brain activities at the AF1 channel for 15 randomly selected
alcoholic subjects (panel a) and 15 randomly selected control subjects (panel b). All of them
are exposed to two non-matching stimuli in an EEG case study on genetic predisposition
to alcoholism.

we add an L1 penalty on the coefficients for the slope function β(q)(t). In the context of a
binary response, equation (2.13) becomes

logit{P (Y = 1)} = β′0 +
Q∑
q=1

(α(q))Tγ(q),

where β′0 = β0 +
∑Q
q=1

∑p
j=1 γ

(q)
j

∫
T ξ̂

(q)
j (t)µ(q)(t)dt. Then the penalized log likelihood func-

tion is written as

l(β′0,γ1, . . . ,γq) = 1
n

(
n1 log(pi) + n0 log(1− pi)

)

+ λL

(
|β′0|+

Q∑
q=1

p∑
j=1
|γ(q)
j |
)

where pi = Pr(Yi = 1|X(1)
i (t), . . . , X(Q)

i (t)) = inv-logit(β′0 +
∑Q
q=1(α(q))Tγ(q)) and n1 =∑

Yi. The tuning parameter, λL, in the LASSO penalty is chosen using a five-fold cross
validation. For supervised FPCA, the weight parameter θ and the smoothing parameter λ
are selected from a 9-by-6 meshgrid, i.e., [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]× [1, 10, 102,

103, 104, 105]. Both of them are determined by a five-fold cross validation using the training
data set simultaneously with the sparsity parameter, λL, in the LASSO penalty. We also
apply the unsupervised FPCA method, in which the weight parameter θ is always set to

14

be 1, and the smoothing parameter λ is selected from [1, 10, 102, 103, 104, 105] by a five-fold
cross validation simultaneously with the sparsity parameter, λL, in the LASSO penalty.
After obtaining the estimate β̂0 and β̂(q)(t) for the multiple functional logistic regression
(2.14), we classify the subjects on the test data, and obtain the corresponding classification
error.

Table 2.1: The means and standard deviations of the classification error on testing set in 100
random data splitting using both supervised FPCA and unsupervised FPCA in the EEG
data application. Here sFPCA and FPCA stands for supervised FPCA and unsupervised
FPCA respectively.

of FPCs
Method classification error 1 2 3 4
sFPCA mean 0.208 0.200 0.180 0.166

sd 0.018 0.020 0.031 0.024
FPCA mean 0.266 0.217 0.207 0.212

sd 0.024 0.024 0.032 0.026

We repeat the above process for 100 replicates of random data splittings and summarize
the test classification errors. Table 2.1 shows the mean and standard deviation of the clas-
sification errors when the number of FPCs is selected for each sensor varies from 1 to 4 for
supervised FPCA and unsupervised FPCA. It shows that supervised FPCA has a higher
classification accuracy than unsupervised FPCA. For instance, supervised FPCA improves
the classification accuracy by about 20%, when just using one FPC, in comparison with
unsupervised FPCA. As one reviewer points out, it is not clear whether the difference of
the misclassification rate between FPCA and sFPCA is statistically significant.

2.5 Simulation Studies

Three different simulations are conducted to evaluate the proposed method. We first briefly
introduce the generation mechanism for the functional predictor X(t) in the beginning of
this section, since this generation mechanism stays the same across different simulations.
Then we discuss each simulation in details. We also conduct two more simulation studies to
compare our proposed supervised FPCA method with three alternative methods including
supervised PCA proposed by Bair et al. (2006), SupSVD (Li et al., 2016) and SupSFPC
(Li et al., 2016).

In order to make the simulation setting similar to real data, we use four FPCs, shown
in Figure 2.2, to generate sample functional predictors. They are the first four leading
FPCs estimated from the Canadian weather data (Ramsay and Silverman, 2005), which
consist of daily temperature measurements at 35 weather stations across Canada. Each
functional predictor Xi(t), i = 1, . . . , n, is simulated as: Xi(tk) = α1iξ1(tk) + α2iξ2(tk) +

15

α3iξ3(tk) +α4iξ4(tk), k = 1, 2, . . . , 365, where ξj(tk) is the j-th true FPCs, j = 1, . . . , 4. The
simulated FPC score is simulated as: αTi = (α1i, α2i, α3i, α4i)T

i.i.d∼ MVN(0,Σ), in which
Σ = diag(100,
80, 50, 30). Figure 2.3 below displays 50 random curves simulated under these settings.

0 100 200 300

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

ξ1(t)

0 100 200 300

−
0.

05
0.

00
0.

05

ξ2(t)

va
lu

es

0 100 200 300

−
0.

05
0.

00
0.

05

ξ3(t)

0 100 200 300

−
0.

05
0.

00
0.

05
0.

10

ξ4(t)

va
lu

es

Figure 2.2: The first four leading FPC estimated from Canadian Weather data.

2.5.1 The First Simulation Study

The first simulation study is designed to evaluate the proposed method when the response
variable is binary. Here we generate 1000 sample curves, Xi(t), i = 1, . . . , 1000. The response

16

0 100 200 300

−
3

−
2

−
1

0
1

2
3

time

si
m

ul
at

ed
_c

ur
ve

[,
1:

50
]

Figure 2.3: Fifty randomly simulated curves in the simulation studies

17

variable Y is generated as:

Yi ∼ Bernoulli(pi),

logit(pi) =
∫
T
β(t)Xi(t)dt, i = 1, . . . , 1000,

in which β(t) = ξ4(t). In other words, the binary response Y is only related to the fourth
FPC ξ4(t). We randomly select 200 samples as the test set and used the other 800 samples as
the training set. For supervised FPCA method, the weight parameter θ and the smoothing
parameter λ are selected on a 5-by-3 meshgrid, i.e., [0.1, 0.3, 0.5, 0.7, 0.9] × [10, 103, 105],
through a five-fold cross validation using those 800 training samples only. For unsupervised
FPCA method, the weight parameter θ is fixed to be 1 under different values of λ and the
smoothing parameter was selected from 10, 103 and 105 using a five-fold cross validation as
well.

We compare the prediction performance of supervised FPCA with unsupervised FPCA
in terms of classification errors on the test data in 100 simulation. Figure 2.4 summarizes
the classification errors. Supervised FPCA yields a much lower classification error than
unsupervised FPCA when the number of FPCs used, p, is less than 3. More specifically, the
mean test classification error of unsupervised FPCA is slightly less than 50% unless choosing
four FPCs, whereas the mean classification error of supervised FPCA is constantly less than
14% even when the number of FPCs is less than 3. This shows that supervised FPCA is
able to detect the FPCs that are most related with the response variable in advance and
our method can well accommodate the binary response.

●

●

●

●●●●

●●

●●

●

p=1 p=2 p=3

0.2

0.4

0.6

0.2

0.4

0.6

0.1

0.2

0.3

0.4

0.5

supervised unsupervised supervised unsupervised supervised unsupervised

C
la

ss
ifi

ca
iti

on
 E

rro
r

Figure 2.4: Boxplots of the classificaition errors for 100 simulation runs when using the first
p FPCs estimated by supervised and unsupervised FPCA in the first simulation study when
the response variable is binary.

18

To gain some insight, in Figure 2.5, we compare the first FPC ξ̂1(t) estimated by su-
pervised and unsupervised FPCA in one simulation run, along with the true FPC used
to simulate the response variable. We can see that the first FPC estimated by supervised
FPCA method is much closer to the true FPC, in comparison with the first FPC estimated
by unsupervised FPCA method.

0 100 200 300

−
0.

10
0.

00
0.

05
0.

10
0.

15

supervised FPCA
unsupervised FPCA
true

Figure 2.5: The first FPC estimated with supervised and unsupervised FPCA in one simu-
lation run of the first simulation study when the response variable is binary.

2.5.2 The Second Simulation Study

We conduct three simulation scenarios to evaluate the proposed method in different settings
when the response variable is continuous. Here we generate 100 sample curves, Xi(t), i =
1, . . . , 100, in the same way as discussed in the beginning of this section. The response vari-
able Y is generated using the functional linear regression model (2.1) with β(t) being speci-
fied as β(t) = γ1ξ1(t) + γ2ξ2(t)ξj(t) + γ3ξ3(t) + γ4ξ4(t) = γT ξ(t), where γ = (γ1, γ2, γ3, γ4)T

and ξ(t) = (ξ1(t), ξ2(t), ξ3(t), ξ4(t))T . In addition, the link function g(·) is the identity func-
tion. Without loss of generality we set β0 = 0.

Scenario 1

In the first scenario, we set the true γ = (0, 0, 0, 1)T such that the true slope function
β(t) = ξ4(t). In other words, the response variable Y is only related to the fourth leading
FPC ξ4(t). In addition, the noise term ε follows a normal distribution N(0, 30ρ), in which ρ
denotes the signal-to-noise ratio. We set ρ = 5% and 50%. We randomly select 20 samples
as the test set and treat the other 80 samples as the training set. Both the smoothing

19

parameter and the weight parameter are chosen via five-fold cross validation using the
training samples only on the same meshgrid used in the previous simulation. As for the
unsupervised FPCs, the weight parameter θ is set to be 1. The smoothing parameter λ
is selected from {10, 103, 105} using a five-fold cross validation. For unsupervised FPCA
method, the weight parameter θ is set to be 1. We compare the prediction performance of
the supervised FPCs with that of the unsupervised FPCs using 500 simulation runs. The
prediction error is evaluated using relative mean squre error (RAMSE) defined as

RAMSE =
∑n
`=1(ŷ` − y`)2∑n
`=1(ȳ − y`)2 . (2.15)

Here y` and ŷ` denote the observed `th response in the test set, respectively, and ȳ represents
the average of theose oberved responses the training set.

Figure 2.6 summarizes the prediction RAMSEs for 100 repeated runs when the noise-
to-signal ratio ρ = 5%. As we can see, supervised FPCA method consistently give lower
RAMSE compared with unsupervised FPCA when p is less than 3. More specifically, when
p < 4, the unsupervised FPCs perform no better than simply using the sample mean of
the training set as the average prediction error is constantly around 100%. In contrast, the
supervised FPCs is able to capture the information of the response variable and improve
its prediction performance accordingly. For example, even restricting only one FPC in the
functional linear regression, the average RAMSE is less than 45%, only half of the average
RAMSE of the unsupervised FPCs.

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●●●
●
●

●

●●

●●●

●

●●
●

●
●

p=1 p=2 p=3

0.25

0.50

0.75

1.00

1.25

0.0

0.5

1.0

0.0

0.5

1.0

supervise unsupervise supervise unsupervise supervise unsupervise

R
A

M
S

E

Figure 2.6: Boxplots of the prediction RAMSEs for 100 simulation runs using the first p FPCs
estimated by supervised and unsupervised FPCA in Scenario 1 of the second simulation
study when the response variable is continuous and the noise-to-signal ratio ρ = 5%.

To gain some insight, Figure 2.7 displays the first FPC ξ̂1(t) estimated by supervised
and unsupervised FPCA along with the true FPC related to the response variable when the

20

noise-to-signal ratio of the data is ρ = 5%. We can see the first FPC estimated by supervised
FPCA is much more closer to the true FPC compared with the first FPC estimated by
unsupervised FPCA. This indicates that supervised FPCA is able to detect the FPC that
is truly related to the continuous response variable.

0 100 200 300

−
0.

05
0.

00
0.

05
0.

10
0.

15

supervised FPCA
unsupervised FPCA
true

Figure 2.7: The first FPC estimated with supervised and unsupervised FPCA at one sim-
ulation run in Scenario 1 of the second simulation study when the response variable is
continuous.

Figure 2.8 displays the boxplots of the prediction RAMSEs when the simulation data have
the noise-to-signal ratio as ρ = 50%. It shows that supervised FPCA yielded a more robust
estimator since the mean RAMSE is only increased about 20% when the noise-to-signal ratio
of the simulated data is increased from 5% to 50%.

21

●

●●●

●

●

●●

●

●

●

●
●

●●●

●
●●●

●

●

●

●

●

●

●

●●
●

●

●
●
●●

●

●
●

●

p=1 p=2 p=3

0.25

0.50

0.75

1.00

1.25

0.5

1.0

0.5

1.0

1.5

supervise unsupervise supervise unsupervise supervise unsupervise

R
A

M
S

E

Figure 2.8: Boxplots of the prediction RAMSEs for 100 simulation runs using the first p FPCs
estimated by supervised and unsupervised FPCA in Scenario 1 of the second simulation
study when the response variable is continuous and the noise-to-signal ratio ρ = 50%.

Scenario 2

The only difference between this scenario and the previous one in section 2.5.2 is that we
specify γ = (0.25, 0.73, 0.29,
0.56)T , such that the response variable Y is related to a linear combination of all ξi(t), i =
1, 2, 3, 4. In practice, this case might be more realistic compared to the scenario when the
response is only related to a single FPC.

Figure 2.9 summarizes the prediction errors for 100 simulation runs when the noise-
to-signal ratio of the data is ρ = 5%. It shows that supervised FPCA still outperforms
unsupervised FPCA when using up to 3 FPCs. More specifically, when just using one FPC,
i.e. p = 1, unsupervised FPCA only performs slightly better than simply using the sample
mean of the training set as the average RAMSE is about 91%, because unsupervised FPCA
only successfully recovers the first FPC, while the response variable is correlated with all
four FPCs. In contrast, the average RAMSE using supervised FPCA is only 14.6% when just
using one FPC, which is quite satisfying.

These two scenarios above show that the prediction performance of supervised FPCA
seems quite satisfactory no matter whether the response variable is related to a single FPC
or a linear combination of several FPCs.

22

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

p=1 p=2 p=3

0.00

0.25

0.50

0.75

1.00

1.25

0.0

0.2

0.4

0.6

0.1

0.2

0.3

0.4

supervise unsupervise supervise unsupervise supervise unsupervise

R
A

M
S

E

Figure 2.9: Boxplots of the prediction RAMSEs for 100 simulation runs using the first p FPCs
estimated by supervised and unsupervised FPCA in Scenario 2 of the second simulation
study when the response variable is continuous.

Scenario 3

In the third scenario, we set the true β(t) as an arbitrary function generated using cubic
b-spline basis functions. More specifically,

β(t) =
L∑
l=1

clψl(t),

in which ψl(t) denotes the lth B-spline basis function and the basis coefficient cl is indepen-
dently sampled from the standard normal distribution. We set L to be 10. The functional
predictor Xi(t), i = 1, . . . , 40 are generated in the same way as described in the beginning
of Section 2.5. In each simulation run, we first randomly generate a β(t) by sampling cl
independently from the standard normal distribution, then generate the response Y using
the functional linear regression model with the corresponding β(t) and the noise term ε,
where the noise-to-signal ratio ρ is 50%. Then we randomly choose half of the samples as
the training data set and treat the remaining half as the test data set.

We compare the prediction performance of our proposed supervised FPCA with the
traditional unsupervised FPCA along with three other methods including supervised PCA
(Bair et al., 2006), SupSVD (Li et al., 2016) and SupSFPC (Li et al., 2016). To be more
specific, supervised PCA treats the functional predictor X(t) at each observed time point
as one scalar predictor. The R package superpc is used to implement this method. The
optimal feature threshold is determined using the default 5-fold cross-validation proposed
in Bair et al. (2006), which is also provided in the R package. For SupSVD and SupSFPC,
we first estimate the FPCs and then fit a regression model afterwards. These two methods

23

are implemented using the matlab code provided by the authors. For supervised FPCA,
the weight parameter θ and the smoothing parameter λ are selected simultaneously on a 9-
by-6 meshgrid, i.e., [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]× [1, 10, 102, 103, 104, 105], through
a five-fold cross validation. For unsupervised FPCA, the weight parameter θ is fixed to be
1 and the smoothing parameter is selected from [1, 10, 102, 103, 104, 105] using a five-fold
cross validation as well. In each simulation replicate, we apply supervised PCA, SupPCA,
SupFPCA, unsupervised FPCA and supervised FPCA on the same training set and obtain
the RAMSE on the same test set. The above procedure is repeated for 100 times.

Table 2.2 shows the mean RAMSEs and the corresponding standard deviations for each
method. As is shown in this table, supervised FPCA outperforms all the alternative meth-
ods, as it always produces the lowest mean RAMSEs.

Table 2.2: The mean and standard deviation of the RAMSE in 100 simulation replicates when
the true β(t) is an arbitrary function. In each simulation run, the true coefficient function
β(t) =

∑10
l=1 clψl(t), where ci is independently drawn from the standard normal distribution.

For instance, the mean RAMSE of sFPCA is 69.4% when the number of FPCs p = 1. Here
FPCA, sFPCA and sPCA denote unsupervised FPCA, supervised FPCA and supervised
PCA, respectively.

of FPCs
Method RAMSE 1 2 3
FPCA mean 0.694 0.467 0.280

sd 0.241 0.234 0.107
sFPCA mean 0.306 0.283 0.260

sd 0.102 0.100 0.090
sPCA mean 0.477 0.429 0.410

sd 0.147 0.121 0.117
SupSFPC mean 1.018 1.044 1.086

sd 0.057 0.073 0.096
SupSVD mean 1.016 1.041 1.059

sd 0.050 0.068 0.097

We further conduct a paired t-test to compare supervised FPCA with each of the al-
ternative methods and confirm that the RAMSE yielded by supervised FPCA is significantly
lower than that yielded by any other methods. The details of the paired t-tests are shown
in Table 2.3.

24

Table 2.3: The mean of paired differences of the RAMSEs in 100 simulation replications
between supervised FPCA and four alternative methods. In each simulation run, the true
coefficient function β(t) =

∑10
l=1 clψl(t), where ci is independently drawn from the standard

normal distribution. For instance, the mean RAMSE using the unsupervised FPCA method
is about 17.3% higher than that using supervised FPCA, with a paired t-test p-value being
1.2e-31 when the number of FPCs p = 1. Here FPCA and sPCA denote unsupervised FPCA
and supervised PCA, respectively.

of FPCs
Method 1 2 3
FPCA -17.3% (1.2e-31) -8.8% (4.8e-14) -3.5% (6.3e-04)
sPCA -9.5% (1.2e-15) -9.4% (1.9e-15) -9.7% (4.8e-16)

SupSFPC -61.5% (1.1e-80) -61% (2.4e-80) -64.5% (4.5e-82)
SupSVD -62.7% (1.7e-81) -62.3% (3.1e-81) -62.2% (3.9e-81)

25

Scenario 4

Previous simulations only assume the outcome is related to 4 FPCs at most. In this sce-
nario, we first generate the functional predictor X(t) using the first 10 leading FPCs esti-
mated from the Canadian weather data (Ramsay and Silverman, 2005). More specifically,
the functional predictor Xi(t), i = 1, . . . , n, is simulated as: Xi(tk) =

∑10
j=1 αjiξj(tk), k =

1, 2, . . . , 365, where ξj(·) is the jth leading FPC estimated from the Canadian Weather
data. The FPC score is simulated as: αi = (α1i, . . . , α10i)T

i.i.d∼ MVN(0,Σ), in which
Σ = diag(120, 108.8, 97.5, 86.2, 75,
63.8, 52.5, 41.2, 30, 15). Following this way, the 10th FPC, ξ10(t), only explains about 2% of
the total variation. To relate the outcome to a larger number of FPC’s, we set the true β(t)
as

β(t) =
10∑
j=1

cjξj(t),

In which the coefficient vector cT = (c1, . . . , c10)T = (0.31, 0.21, 0.61, 0.61, 0.07, 0.22,
0.95, 0.37, 0.59, 0.83), which is obtained by drawing random numbers from the uniform dis-
tribution.

In each simulation run, we first generate the response Y using the functional linear
regression model with β(t) and the noise term ε ∼ N(0, 15ρ). The noise-to-signal ratio ρ
is set as 50% and n = 1000. We then randomly choose 20% samples as the training data
set and treat the remaining 80% samples as the test data set. For supervised FPCA, the
weight parameter θ and the smoothing parameter λ are selected simultaneously on a 9-by-
6 meshgrid, i.e., [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] × [1, 10, 102, 103, 104, 105], through a
five-fold cross validation. For unsupervised FPCA, the weight parameter θ is fixed to be
1 and the smoothing parameter is selected from [1, 10, 102, 103, 104, 105] using a five-fold
cross validation as well. The above procedure is repeated 100 times. As shown in Table 2.4,
supervised FPCA outperforms unsupervised FPCA. Even with only one FPC, supervised
FPCA seems to be able to predict the response variable well.

Table 2.4: The mean and standard deviation of the RAMSE in 100 simulation replicates when
the true β(t) is related to 10 FPCs. Here FPCA and sFPCA represent unsupervised FPCA
and supervised FPCA, respectively.

of FPCs
Method RAMSE 1 2 3 4 5 6 7
FPCA mean 0.921 0.889 0.558 0.379 0.208 0.205 0.190

sd 0.022 0.031 0.072 0.079 0.022 0.022 0.018
sFPCA mean 0.154 0.148 0.145 0.143 0.140 0.140 0.137

sd 0.018 0.016 0.016 0.016 0.015 0.015 0.014

26

2.6 Summary

In this chapter, we consider the problem of predicting a scalar response variable by using
one or several functional predictors. The conventional FPCA method focuses on finding
FPCs that maximize the variation of FPC scores and ignores the response variable. We have
proposed a one-step supervised FPCA to detect those FPCs whose scores are correlated with
the response variable. The resulting FPCs have a better prediction performance compared
to the conventional FPCA method.

Through our real data application and simulations, we demonstrate that our method can
accommodate both continuous and binary response variable. Even through we only show
examples with binary response variable, we believe that our method can be easily extended
to predicting multinomial response variable. Lastly, our method is also quite user-friendly.

27

Chapter 3

Sparse Functional Principal
Components Analysis

3.1 Introduction

Functional principal component analysis (FPCA) is a key dimension reduction tool in func-
tional analysis. FPCA explores major sources of variability in a sample of random curves by
finding functional principal components (FPCs) that maximize the curve variation. Conse-
quently, the top few FPCs explain most of the variability in the random curve. In addition,
each random curve can be approximated by a linear combination of the top few FPCs.
Therefore, the infinite-dimensional curves are projected to a low-dimensional space defined
by the top FPCs. This powerful dimensional reduction feature also promotes the popularity
of FPCA.

The theoretical properties of FPCA have been carefully studied at length. For example,
Dauxois et al. (1982) first studied the asymptotic properties of PCA estimators for the
infinite dimensional data from a linear operator viewpoint. Following this point of view,
Mas (2002); Bosq (2000) utilized functional analysis to study FPCA theoretically. On the
other hand, Hall and Horowitz (2007); Hall et al. (2006); Yao et al. (2005a) studied FPCA
from the kernel perspective. In addition, FPCA has been widely and successfully applied
in many applications such as functional linear regression (Yao et al., 2005b), classification
and clustering of functional data (Ramsay and Silverman (2005); Yao et al. (2005b); Müller
(2005); Müller and Stadtmüller (2005); Peng and Müller (2008)). All these applications
assume the functional data are densely and regularly observed. When it comes to sparse
and irregularly observed data, Yao et al. (2005a) proposed to estimate the FPC score using
conditional expectation, which allows recovering the individual trajectory by borrowing
information across all the subjects. The smooth version of functional principal component
analysis is carefully studied by Rice and Silverman (1991); Pezzulli (1993); Silverman (1996)
and Yao et al. (2005a). There are mainly three methods to achieve smoothness. The first
method smooths the functional data in the first step and conducts the regular FPCA on the

28

sample covariance function. The second method smooths the covariance function first and
then eigendecomposes the resulting smoothed covariance function to estimate the smoothed
FPCs. The last method directly adds a roughness penalty in the optimization criterion for
estimating the FPCs.

The conventional functional principal component analysis aims to estimate FPCs which
maximize the curve variation. These FPCs represent the source or direction of maximum
variations among curves, and the curves are projected to the low-dimensional space defined
by these FPCs. Therefore, it is important to interpret them. However, these FPCs are
usually nonzero in the entire domain, and users often find it hard to interpret these FPCs.
On the other hand, if the estimated FPC is only nonzero in a subregion of the entire domain,
we can easily use them to identify the subregions from which the major variation of the
curves exhibits. In this chapter, our goal is to propose a method to estimate the sparse
functional principal components, which are only nonzero in a subregion and at the same
time account for an almost maximum amount of variation within the curves.

Two methods have been proposed to enhance the interpretability of functional principal
components. The first method is the interpretable functional principal components analysis
(iFPCA) proposed by Lin et al. (2016). This method adds an `0-penalty on the length of
the nonzero region of FPCs and obtains FPCs which are only nonzero in subregions. How-
ever, the optimization in their framework is an NP-hard problem because of the use of the
`0-penalty. A greedy backward elimination algorithm is proposed to solve this optimization
problem approximately. The second method is called a localized functional principal com-
ponents analysis (LFPCA) method proposed by Chen and Lei (2015). This method adds
an `1 penalty to the original eigendecomposition problem of smoothed FPCs, which is also
not a convex optimization problem. They approximate this non-convex problem through
a Deflated Fantope Localization method and propose a novel estimation procedure in a
sequential manner.

This chapter has three major contributions. Firstly, we propose a new regression-type
framework for the sparse functional principal component analysis. The estimated sparse
FPCs can not only account for a reasonable variation within the functional data but also be
sparse on the whole domain. We also show that the FPCs estimated with our proposed sparse
FPCA method is equivalent to the FPCs with the conventional FPCA method when the
sparsity parameter is zero. Secondly, our method is not an NP-hard optimization problem
and the computation is very efficient. Lastly, our method estimates the top sparse FPCs
simultaneously rather than estimating each FPC in a sequential manner. An R package
“sparseFPCA" is developed to implement our proposed SFPC method and is available at
https://github.com/YunlongNie/sparseFPCA.

The rest of the chapter is organized as follows. In Section 3.2, we introduce our SFPCA
method and show its connection with the conventional FPCA. Details of our method and
the computation algorithm are described in Section 3.3, followed by theoretical results

29

https://github.com/YunlongNie/sparseFPCA

in Section 3.4. In Section 3.5, we apply our proposed method in a real-data application
to explore major sources of variation among the acceleration rates of 107 diesel trucks.
In Section 3.6, a carefully-designed simulation is conducted to evaluate the finite sample
performance of our proposed method in comparison with other alternative methods. Section
3.7 provides concluding remarks.

3.2 Sparse Functional Principal Component Analysis

Consider a stochastic process X(t), which is square integrable on the compact domain T .
In other words, X(t) ∈ L2(T) almost surely, where L2(T) is the Hilbert space of square
integrable functions on T . We denote the inner product between two functions f, g ∈ L2(T)
as 〈f, g〉 =

∫
T f(t)g(t)dt with the corresponding norm as ||f || =

√
〈f, f〉. If 〈f, g〉 = 0, we

also use the notation f ⊥ g. Let xi(t), i = 1, . . . , n, be the observed functional data for
the stochastic process X(t). Without loss of generality, we assume that E(x(t)) = 0 in the
rest of this chapter. In practice, one can always center the observed functional data first to
remove this assumption.

We propose to estimate the first J leading unnormalized sparse FPCs β(t) = (β1(t), . . . ,
βJ(t))T by minimizing the following criterion:

1
n

n∑
i=1

∣∣∣∣∣∣∣∣xi(t)− J∑
j=1

αj(t)〈βj , xi〉
∣∣∣∣∣∣∣∣2 + τ

J∑
j=1

∫
β2
j (t)dt+ PEN(β(t)) (3.1)

with respect to βj(t) and the ancillary parameter αj(t), j = 1, . . . , J , with the constraints
||αj ||2 = 1 and 〈α`, αj〉 = 0 when ` 6= j. Here, PEN(β(t)) in (3.1) is a sparsity penalty
term for β(t), which penalizes the length of nonzero regions of each βj(t). When the spar-
sity penalty term becomes zero, we will show in Section 3.4 that minimizing the first two
terms in (3.1) will give rise to the conventional FPCs. In other words, the resulting FPC
will be the optimal basis functions in explaining or recovering observed functional data
{xi(t), i = 1, . . . , n}. In fact, when the sparsity penalty term become zero, αj(t) is equal
to the conventional j-th FPC, and αj(t) = βj(t)/||βj ||. Hence, 〈βj , xi〉/||βj || will be the
corresponding conventional FPC score for xi(t). On the other hand, after adding the spar-
sity penalty, our criterion (3.1) will not only consider the resulting FPC’s ability to ex-
plain the maximum variation among the functional data, but also take the sparsity of
the FPCs into account. After obtaining the estimate for the first J leading unnormalized
sparse FPCs {β̂j(t)}, we normalize each {β̂j(t)} to obtain the normalized sparse FPCs
ξ̂j(t) = β̂j(t)/||β̂j(t)||.

3.2.1 Sparsity Penalty

The sparse penalty term in (3.1) penalizes the length of nonzero regions of βj(t). The
functional SCAD method proposed by Lin et al. (2016) is a functional generalization of the

30

SCAD method (Fan and Li, 2001). The functional SCAD method is used in Lin et al. (2016)
to find a locally sparse estimator for the coefficient function in functional linear regression
models. The nice shrinkage property of functional SCAD allows the proposed estimator to
locate null subregions of the coefficient function without over shrinking nonzero values of
the coefficient functions.

We employ the functional SCAD penalty to achieve a locally sparse estimator of FPCs
by defining:

PEN(β(t)) =
J∑
j=1

∫
pλj

(|βj(t)|)dt,

in which pλ(·) is the SCAD function defined in Fan and Li (2001):

pλ(u) =

λu if 0 ≤ u ≤ λ,

−u2−2aλu+λ2

2(a−1) if λ < u < aλ,

(a+1)λ2

2 if u ≥ aλ,

where a is 3.7, as suggested by Fan and Li (2001), and λ is the tuning parameter. A large
value of the tuning parameter λj will penalize the nonzero region of the corresponding βj(t),
hence leading to a sparse estimation. On the other hand, when the sparse parameter, λj ,
is zero, the resulting βj(t) reduces to the conventional functional principal components.
Before showing the details of estimating the sparse FPCs given the tuning parameters, we
first show that the FPCs estimated with our proposed sparse FPCA method is equivalent
to the FPCs with the conventional FPCA method when the sparsity parameter is zero.

3.2.2 Connection to the Conventional FPCA

The conventional FPCA methods estimate the top FPCs with the eigendecomposition
method. We can show that the j-th functional principal components (FPCs) φj(t) is the j-th
eigenfunction of the covariance function G(s, t) = E(X(s)X(t)), and satisfies the following
eigenequation: ∫

G(s, t)φj(s)ds = λjφj(t), (3.2)

where λj is the corresponding eigenvalue and λ1 ≥ λ2 ≥ . . . ≥ 0. The conventional methods
estimate the FPCs by solving the above eigenequation (3.2) by replacing the covariance
function G(s, t) with the empirical covariance function g(s, t) = 1

n

∑n
i=1 xi(s)xi(t). The FPC

score sij can be calculated as sij = 〈xi, φj〉. The FPC score sij has mean 0 and variance λj .
One widely-used strategy to determine the number of FPCs is to choose a value such that

31

the first J leading FPCs account for more than 90% of the total variation:

J = inf
{
k :

∑k
j=1 λj∑∞
j=1 λj

≥ 90%
}
.

Another conventional way to understand FPCs is through the Karhunen-Loève(KL)
expansion (Fukunaga and Koontz, 1970). More specifically, according to the KL expansion,
xi(t) can be expressed as

xi(t) =
∞∑
j=1

sijφj(t), i = 1, . . . , n, (3.3)

in which 〈φi, φj〉 = δij , and δij is the Kronecker’s delta. A major advantage of FPCA is
that by projecting each xi(t) onto orthogonal FPCs with uncorrelated scores, it allows us
to approximate each xi(t) using the first J leading FPCs:

xi(t) ≈
J∑
j=1

sijφj(t), i = 1, . . . , n. (3.4)

In fact, there are many other basis functions on which xi(t) can be projected. However,
the FPCs obtained from eigendecomposing the empirical covariance function are the optimal
basis functions in the sense that they minimize the squared approximation errors (see Tran
(2008)). Formally speaking, for any fixed K ∈ N, the first J FPCs, φj , j = 1, . . . , J , satisfy

{φj , j = 1, . . . , J} = arg min
〈φ`,φj〉=δ`j

n∑
i=1

∣∣∣∣∣∣∣∣xi(t)− J∑
j=1
〈xi, φj〉φj

∣∣∣∣∣∣∣∣2.
This ‘best-approximation’ point of view inspires us to estimate the FPCs by searching for
the optimal basis functions to approximate xi(t), i = 1, . . . , n.

To the best of our knowledge, our proposed method is the first attempt to numerically
estimate FPCs from this ‘best-approximation’ point of view. We will show that the first
empirical leading FPC is the solution of a least square optimization with some constraints.
More specifically, let β̂(t) be the solution of minimizing

1
n

n∑
i=1

∣∣∣∣∣∣∣∣xi(t)− α(t)〈β, xi〉
∣∣∣∣∣∣∣∣2 + τ

∫
β2(t)dt

with respect to β(t) and the ancillary parameter α(t), with the constaint ||α||2 = 1, then
β̂(t) = cφ̂1(t), where φ̂1(t) is the first FPC, and c is a constant scale factor. The detailed
proof will be provided for Theorem 3.4.1 in Section 3.4.

32

Similarly, for the first J leading FPCs, let β̂1(t), . . . , β̂J(t) be the solution of minimizing

1
n

n∑
i=1

∣∣∣∣∣∣∣∣xi(t)− J∑
j=1

αj(t)〈βj , xi〉
∣∣∣∣∣∣∣∣2 + τ

J∑
j=1

∫
β2
j (t)dt

with respect to βj(t) and the ancillary parameter αj(t), j = 1, . . . , J , with the constaints
〈αi, αj〉 = δij . Then β̂j(t) = cjφ̂j(t), j = 1 . . . , J , where φ̂j(t) is the jth FPC and cj is a
scale factor. The detailed proof will be provided for Theorem 3.4.2 in Section 3.4. Theorem
3.4.2 shows that when the sparsity parameter λj = 0, the corresponding estimated sparse
FPC, ξ̂j(t), is equivalent to the conventional FPC, φ̂j(t). Therefore, the FPCs estimated
with our proposed sparse FPCA method is equivalent to the FPCs with the conventional
FPCA method when the sparsity parameter is zero.

3.3 Estimation Method

We propose to estimate the first J unnormalized sparse FPCs, β1(t), . . . , βJ(t), in a iterative
optimization method. More specifically, within each iteration, the first step is to find the
optimal βj(t) that minimizes the criterion (3.1) given the current estimate of αj(t) and the
second step is to search for a new αj(t) which further minimizes the proposed criterion
conditional on the optimal βj(t) from the first step. This procedure is repeated until it
converges. In the rest of this section, we first give the details of these two steps. Then we
discuss the tuning parameter selection and the adjusted variance explained in the end.

3.3.1 Estimate βj(t) for Given αj(t)

Given the jth αj(t), the corresponding βj(t) is obtained by minimizing

Q(βj(t)) = 1
n

n∑
i=1

∣∣∣∣∣∣∣∣〈xi, αj〉 − 〈βj , xi〉∣∣∣∣∣∣∣∣2

+ τ

∫
β2
j (t)dt+

∫
pλ(|βj(t)|)dt+ γ

∫ [
d2βj(t)
dt2

]2
dt.

Note that besides the sparsity penalty, we also add a roughness penalty with a smoothing
parameter γ to achieve smoothness for the resulting SFPC. A larger value of γ will prevent
the estimated SFPC from being too ‘wiggly’. Without any parametric assumption on βj(t),
we first represent βj(t) as a linear combination of basis functions

βj(t) =
M∑
m=1

bjmψm(t) = ψ(t)Tbj , (3.5)

where ψ(t) = (ψ1(t), ψ2(t), . . . , ψM (t))T denotes the vector of B-spline basis functions, bj is
the corresponding vector of basis coefficients, andM denotes the number of basis functions.

33

For simplicity, we recast each part inQ(βj(t)) into a matrix form. Let aj = (a1j , a2j , . . . , anj)T

with aij =
∫
xi(t)αj(t)dt, then the first term in the loss function can be expressed as

n∑
i=1
||〈xi, αj〉 − 〈βj , xi〉dt||2 = (aj − Zbj)T (aj − Zbj). (3.6)

Here Z is a n ×M matrix with entries zij =
∫
xi(t)ψj(t)dt for 1 ≤ i ≤ n and 1 ≤ j ≤ M .

The second term in the loss function can be expressed as

τ

∫
β2(t)dt = τbTj Ψbj , (3.7)

in which Ψ denotes a M ×M matrix with entries Ψij =
∫
ψi(t)ψj(t)dt for 1 ≤ i, j ≤ M .

The roughness penalty term in the loss function can be expressed as

γ

∫ [
d2βj(t)
dt2

]2
dt = γbTj Rbj (3.8)

in which R denotes aM ×M matrix with the (i,j)-th entry
∫
ψ′′i (t)ψ′′j (t)dt for 1 ≤ i, j ≤M .

The sparsity penalty term in the loss function, as shown in Lin et al. (2016), can be
approximated as

∫
pλ(|βj(t)|)dt ≈

T

M − d

M−d∑
`=1

pλ

(√∫ t`

t`−1
β2
j (t)dt

)
,

in which t0, t1, . . . , tM−d denote the sequence of the knots of B-spline basis functions ψ(t),
and d denotes the order of the basis functions. We further define

||β[`](t)||22
def=

∫ t`

t`−1
β2
j (t)dt = bTj Ψjbj ,

in which Ψj denotes a M × M matrix with the (p,q)-entry as
∫ tj
tj−1 ψp(t)ψq(t)dt when

j ≤ p, q ≤ j + d and zero elsewhere. Using the local quadratic approximation (LQA)
method proposed in Fan and Li (2001), given some initial estimate b(0)

j , we can derive that

∫
pλ(|βj(t)|)dt ≈

T

M − d

[
bTjW (0)bj +G(b(0)

j)
]
, (3.9)

where

W (0) = 1
2

M−d∑
`=1

(
p′λ(||β[`](t)||2

√
M − d/T)

||β[`](t)||2
√
T/M − d

Ψj

)
,

34

and

G(β(0)) ≡
M∑
`=1

pλ

(||β(0)
[`] ||2√

T/M − d

)
− 1

2

M∑
`=1

p′λ

(||β(0)
[`] ||2√

T/M − d

) ||β(0)
[`] ||2√

T/M − d
.

Putting (3.6),(3.7),(3.8) and (3.9) together, we obtain

Q(βj(t)) = 1
n

(a−Zβ)T (a−Zβ) + τβTΨβ+ γβTRβ+ T

M − d
βTW (0)β+ T

M − d
G(β(0)).

By minimizing Q(βj(t)), we obtain the estimate for the basis coefficients

β̂ =
(1
n

ZTZ + τΨ + γR + T

M − d
W(0)

)−1
ZTa.

Then we plug the estimate β̂, into (3.5) to obtain the estimates for βj(t):

β̂(t) = φ(t)T β̂.

3.3.2 Estimate αj(t) for Given βj(t)

Let α(t) = (α1(t), . . . , αJ(t))T , β(t) = (β1(t), . . . , βJ(t))T , and uij = 〈βj , xi〉. We obtain the
estimate for α(t) by minimizing

Q(α) =
n∑
i=1

∣∣∣∣∣∣∣∣xi(t)− J∑
j=1

αj(t)uij
∣∣∣∣∣∣∣∣2

=
n∑
i=1
||xi||2 −

∫
2

n∑
i=1

xi(t)
(J∑
j=1

αj(t)uij
)
dt+

∫ n∑
i=1

(J∑
j=1

αj(t)uij
)2
dt.

First, we can see that the first term is equivalent to the sum of norm of each observed xi(t),
which does not depend on the value of α(t). Second, the last term can be recast into:

∫ n∑
i=1

(J∑
j=1

αj(t)uij
)2
dt =

∫ n∑
i=1

J∑
j=1

α2
j (t)u2

ij +
n∑
i=1

∑
l<k

2αl(t)uilαk(t)uikdt =
n∑
i=1

u2
ij

due to the fact that 〈αi, αj〉 = δij . Thus, the last term does not depend on the value of
α(t), either. Therefore, minimizing Q(α) is equivalent to minimizing the second term. We

35

can further recast the second term into the following form:

∫ n∑
i=1

xi(t)
(J∑
j=1

αj(t)uij
)
dt =

∫ (J∑
j=1

αj(t)
∫ n∑

i=1
(xi(t)xi(s))βj(s)ds

)
dt

= n

∫ (J∑
j=1

αj(t)
∫
g(t, s)βj(s)ds

)
dt

= n

∫ (J∑
j=1

αj(t)
K∑
k=1

λk〈βj , φk〉φk(t)
)
dt,

where φk, k = 1, . . . ,K, denotes the empirical eigenfunctions obtained from decomposing
the sample covariance function g(t, s) as discussed in Equation (3.2) and λk is the cor-
responding eigenvalues. The last step in the above equation uses the fact that g(t, s) =∑K
k=1{λkφk(t)φk(s)}, where K is the number of nonzero eigenvalues of the sample covari-

ance function, and K ≤ n. To simplify the notation, let ξj(t) =
∑K
k=1 λk〈βj , φk〉φk(t), so

that the above equation becomes

∫ n∑
i=1

xi(t)
(J∑
j=1

αj(t)uij
)
dt = n

∫ (J∑
j=1

αj(t)ξj(t)
)
dt. (3.10)

To maximize this term with respect to αj(t), we first express {ξj(t), j = 1, . . . , J} by its
eigenfunctions. That is,

ξj(t) =
J∑
l=1

√
κl
ρjl√
κl
gl(t), (3.11)

in which gl(t), l = 1, . . . , J, denotes the l-th FPC for {ξj(t), j = 1, . . . , J}, κl is the cor-
responding eigenvalue, and ρjl = 〈ξj , gl〉 is the corresponding FPC scores. Then we plug
equation (3.11) back into equation (3.10):

∫ n∑
i=1

xi(t)
(J∑
j=1

αj(t)uij
)
dt = n

∫ (J∑
j=1

αj(t)
J∑
l=1

√
κl
ρjl√
κl
gl(t)

)
dt

= n
J∑
j=1

√
κl

J∑
l=1

ρjl√
κl

∫ (
αj(t)gl(t)

)
dt.

By the Cauchy-Swartz inequality, the above equation is maximized when∫
αj(t)gl(t)dt ∝

ρjl√
κl
.

36

Note that gl(t), l = 1, . . . , J, can be viewed as the orthogonal basis functions that αj(t) is
projected onto. Therefore, the solution should be given as

α̂j(t) =
J∑
l=1

ρjl√
κl
gl(t), j = 1, . . . , J.

Putting into a matrix form, we have

α̂(t) = Pg(t),

in which P is a J×J matrix with (j,l)-th element being ρjl√
κl
. To check whether the resulting

α̂(t) satisfies the orthonormal condition, we can see that the coefficients matrix

P =

ρ11√
κ1

. . . ρ1J√
κJ

... . . .
...

ρJ1√
κ1

. . . ρJJ√
κJ

is an orthogonal matrix because PTP = I. Therefore, the resulting α̂j(t) satisfy 〈α̂i, α̂j〉 =
δij .

3.3.3 Detailed Algorithms

Below we summarize the proposed estimation method step by step:

Step I: Initialize α(0)
j (t) = φ̂j(t), j = 1, . . . , J, where φ̂j(t) is the estimated FPC using

the conventional FPCA method, which satisfy ||φ̂j ||2 = 1 and 〈φ̂i, φ̂j〉 = 0, i 6= j;

Step II: Given α(i)
j (t), obtain the corresponding β(i)

j (t) by minimizing

Qτ,λ,γ(β(t)) = 1
n

(
n∑
i=1
||
∫
xi(t)α(i)(t)dt− 〈β, xi〉||2

+ τ

∫
β2(t)dt+ γ

∫
β′′

2(t)dt+
∫
pλ(|β(t)|)dt.

Due to the fact that 〈α(i)
k , α

(j)
l 〉 = 0 for k 6= l, we can obtain each β(i)

j (t) separately.
The details of this step is discussed in Section 3.3.1.

Step III: Given β(i)
1 (t), . . . , β(i)

J (t), obtain the corresponding α(i+1)
1 (t), . . . , α(i+1)

J (t) by min-
imizing

Q(α(t)) = 1
n

n∑
i=1
||xi(t)−

J∑
j=1

αj(t)
∫
β

(i)
j (t)xi(t)dt||2 + Constant.

37

The ‘Constant’ term represents
∑J
j=1 τ

∫
{β(i)

j }2(t)dt and the remaining constant
terms when β(i)(t) is given. Unlike Step II, we can obtain α(i+1)

1 (t), . . . , α(i+1)
J (t)

simultaneously. The details of this step is provided in Section 3.3.2.

Step IV: Repeat Step II to Step III until they converge.

3.3.4 Choosing Tuning Parameters

There are three tuning parameters: the ridge-type parameter τ , the sparsity parameter λ,
and the smoothing parameter γ. The ridge-type parameter τ is only required to be positive
by Theorem 3.4.2. A larger value of τ will force the norm of the estimated β̂(t) to be
smaller. Our numerical experience suggests the largest empirical eigenvalue λi is a proper
value to set for τ . The sparsity parameter λ controls the sparsity of the estimated sparse
FPCs β̂(t). Note that the more compact the resulting sparse FPCs are, the less variation
they can explain for the original functional data in comparison to the conventional FPCs
or equivalently the errors of approximating the original functional data become larger. We
recommend choosing a λ that balances between sparsity and the errors of approximating
the original functional data. In addition, the smoothing parameter γ prevents the resulting
β(t) from being too ‘wiggly’. Again, a smoother β(t) explains less variation of the functional
data and we recommend to choose a value that balances these two aspects. In practice, one
can choose both the smoothing parameter and the sparsity parameter by cross-validation.
More specifically, one can split the data into the training and test datasets. Then we can
use the proposed sparse FPCA method to obtain the estimated sparse FPCs. Next, we
can use the resulting sparse FPCs to recover the trajectory in the test set and compare it
with what is observed to obtain the cross-validation errors. However, this two-dimensional
cross-validation method might be computationally intensive in practice. We alternatively
propose a two-step procedure to choose the tuning parameter. Our computational experience
suggests this two-step procedure yields reasonable results.

In the first step, the smoothing parameter γ is chosen using cross-validation as de-
scribed in Ramsay and Silverman (2005). In the second step, we introduce the following
AIC criterion to select the sparsity parameter λ:

AIC = n log(
∑n
i=1 ||xi(t)− x̂i(t)||2

nT
) + 2df(λ), (3.12)

where xi(t) and x̂i(t) =
∑K
k=1〈xi, φ̂k〉φ̂k represent the ith sample curve and its corresponding

estimate using the estimated FPCs, respectively. The degree of freedom is the number of
nonzero bspline coefficients in the estimated FPCs under different values of the sparsity
parameter λ. The goal is to balance the errors of approximating functional data and the

38

length of the support regions of the estimated FPCs. We will demonstrate this procedure
in both real data application and simulation studies.

3.3.5 Adjusted Total Variance Explained

Due to the fact that the sparse functional principal component scores are not necessarily
uncorrelated, the variance explained by the jth SFPC is not simply the variance of the
corresponding SFPC scores and need to take the correlation between SFPCs into account.
Here we propose a new approach to compute the total variance explained by the jth SFPC.
Let φj(t) and sj denote the jth SFPC and the corresponding score vector. We regress sj on
s1, . . . , sj−1 and denote the resulting residuals as rj . Then the adjusted variance explained
by φj(t) is ||rj ||2.

3.4 Theoretical Results

In this section we show that the empirical FPCs can be obtained by minimizing the mean
L2 errors to the observed function data xi(t). We start with only the first leading FPC in
Theorem 3.4.1 and extend to the first J leading FPCs in Theorem 3.4.2. The detailed proofs
for these two theorems are in the Appendix A.

Theorem 3.4.1. For any τ > 0, let

β̂(t) = arg min 1
n

n∑
i=1

∣∣∣∣∣∣∣∣xi(t)− α(t)〈β, xi〉
∣∣∣∣∣∣∣∣2 + τ

∫
β2(t)dt (3.13)

subject to ||α||2 = 1, then β̂(t) = cφ̂1(t), where φ̂1(t) is the first empirical eigenfunctions of
the sample covariance function g(s, t) = 1

n

∑n
i=1 xi(s)xi(t) and c is a constant scale factor.

The next theorem extends Theorem 3.4.1 into the first J leading FPCs.

Theorem 3.4.2. Let α(t) = (α1(t), . . . , αJ(t)) and β(t) = (β1(t), . . . , βJ(t)). For any τ > 0,
let

(α̂(t), β̂(t)) = arg min 1
n

n∑
i=1
||xi(t)−

J∑
j=1

αj(t)〈βj , xi〉dt||2 + τ
J∑
j=1

∫
β2
j (t)dt

subject to 〈αi, αj〉 = δij and δij is the Kronecker delta, then β̂j(t) = cjφ̂j(t), j = 1, . . . , J ,
where φ̂j(t) is the j-th empirical eigenfunctions of the sample covariance function g(s, t) =
1
n

∑n
i=1 xi(s)xi(t) and cj is a scale factor.

3.5 Application

Our proposed method is demonstrated by analyzing a real dataset relating to particulate
matter (PM) emissions from diesel trucks (Clark et al., 2007). In the experiment, trucks

39

are driven through a pre-determined driving cycle and PM at the exhaust pipe is measured
every second via a particulate matter counter. Hall and Hooker (2015) analyzed this dataset
to predict PM using the acceleration rate with a functional linear model. Figure 3.1 displays
the acceleration rate curves for 107 diesel trucks. We will demonstrate our proposed sparse
FPCA method by analyzing the major variations among these acceleration curves.

−5.0

−2.5

0.0

2.5

0 20 40 60

Time(second)

A
cc

el
er

at
io

n

Figure 3.1: The observed acceleration rates for 20 randomly selected diesel trucks out of all
107 diesel trucks. Each curve respects one truck’s observations.

We first applied the conventional FPCA method (Ramsay and Silverman, 2005) to
analyze the major variations among these acceleration curves. The top four estimated FPCs
are shown in Figure 3.2. They account for 25.7%, 24.6%, 17.4% and 15.3% of the total
variation among the acceleration curves, respectively. In total, the first four FPCs explain
83.0% of the total variation. As expected, these estimated FPCs are nonzero on the entire
time domain.

40

Third FPC Fourth FPC

First FPC Second FPC

0 20 40 60 0 20 40 60

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

Time(second)

Figure 3.2: The estimated first four leading functional principal components using conven-
tional FPCA for analyzing the acceleration curves. They account for 25.7%, 24.6%, 17.4%
and 15.3% of the total variation among the acceleration curves, respectively.

We then apply our proposed sparse FPCA method to analyze the major variations
among these acceleration curves. For the purpose of comparison, we also estimate the first
four sparse FPCs. We select the sparsity parameter λ = 40 based on the AIC values given
in Table 3.1. The corresponding estimated sparse FPCs are shown in Figure 3.3. They
account for 20%, 19%, 17% and 14% of the total variation among the acceleration curves,
respectively. The total variation of the first four sparse FPCs is 70%.

Figure 3.3 shows that the estimated sparse FPCs tend to be nonzero at different inter-
vals along the whole time domain. For instance, the first sparse FPC is nonzero roughly in
[25,45], which indicates that the major variation among the acceleration curves comes from
this interval. Compared to the conventional FPCs, which are nonzero everywhere, the esti-
mated SFPCs are nonzero at different intervals. More specifically, the second sparse FPC

41

is nonzero between [10, 25], the third sparse FPC is nonzero between [40, 60] and the last
sparse FPC is nonzero between [0, 10]. This observation suggests the major variation within
the acceleration curves can be separated into different subintervals rather than mixing with
each other in the entire domain.

Third sFPC Fourth sFPC

First sFPC Second sFPC

0 20 40 60 0 20 40 60

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Time(second)

Figure 3.3: Estimated sparse functional principal components (solid line) compared to the
conventional smoothing functional principal components (dashed line). They account for
20%, 19%, 17% and 14% of the total variation, respectively

Table 3.1: The AIC value defined in (3.12) when the sparsity parameter λ varies.

λ 0 1 20 40 80 100
AIC 14.68 14.63 5.83 -12.19 5.74 0.18

42

3.6 Simulation Study

We conduct a simulation study to evaluate our proposed sparse FPCA method by com-
paring it with three available methods, including the conventional FPCA method (Ramsay
and Silverman, 2005), the interpretable functional principal component analysis (iFPCA)
proposed by Lin et al. (2016) and the localized functional principal component analysis
(LFPCA) proposed by Chen and Lei (2015).

More specifically, the true underlying functional curves are generated using

Xi(t) = si1ξ1(t) + si2ξ2(t) + si3ξ3(t) + si4ξ4(t),

t ∈ [1, 60], where ξk(t), k = 1, 2, 3, 4, are obtained from the real data application as shown in
Figure 3.3, and (s1, s2, s3, s4) are generated from multivariate normal distribution with mean
zero and the variance-covariance matrix Σ = diag(30, 20, 10, 3). The observed trajectories
are generated by Yij = Xi(tj) + εij for j = 1, . . . , 60, where tj is the j-th observed point
equally spaced in [1, 60] and εij

i.i.d∼ N(0, 1). For the iFPCA method, following the authors’
recommendation, the smoothing parameter is chosen by CV and the sparsity parameter
is also selected using CV after the smoothing parameter is determined. For the LFPCA
method, we also use the recommended CV method to determine the tuning parameters.
For the proposed sparse FPCA method, we use AIC as our criterion to choose the tuning
parameters as described in Section 3.3.4.

We compare the performance of the four methods using the integrated error (IE) defined
as follows:

IE(ξ̂) =
4∑

k=1

∫
(ξk(t)− ξ̂k(t))2dt, (3.14)

in which ξk(t) and ξ̂k(t) represent the k-th true FPC and the corresponding estimated FPC,
respectively. The results in Figure 3.4 show that the sparse FPCA method yields the lowest
integrated errors in comparison with all three alternative methods. We plot those estimated
FPCs from one simulation replicate in Figure 3.5 using sparse FPCA, LFPCA and iFPCA.
We can see that the estimated FPCs from the sparse FPCA method are closest to the true
FPCs. More specifically, iFPCA and LFPCA perform similarly as the sparse FPCA method
in estimating the first two FPCs, but they become worse than the sparse FPCA method
when estimating the 3rd and 4th FPCs.

43

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

sFPCA iFPCA LFPCA FPCA

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 3.4: Boxplot of the integrated errors (3.14) for four methods including the sparse
FPCA method, the conventional FPCA method, iFPCA and LFPCA in 100 simulation
repetitions.

44

Third FPC Fourth FPC

First FPC Second FPC

0 20 40 60 0 20 40 60

−0.1

0.0

0.1

0.2

0.3

−0.1

0.0

0.1

0.2

0.3

Time(second)

Methods

iFPCA

LFPCA

SFPCA

True

Figure 3.5: The estimated FPC using different methods including iFPCA (dot dashed line)
LFPCA (dot line) and sparse FPCA (dashed line) in comparison with the true FPCs (solid
line) in one simulation replicate.

3.7 Summary

In this chapter, we focused on the problem of estimating FPCs with the compact support.
The conventional FPCA method estimate FPCs by maximizing the variation among the
functional data. But these estimated FPCs are nonzero in the entire domain, hence they
are often hard to interpret.

Conventional FPCA methods estimate FPCs by eigendecomposing the sample covari-
ance function. However, when we need to add the regulation penalty to the FPCs, this
eigendecomposition method always leads to an NP-hard problem. We proposed a new re-
gression framework to estimate the sparse FPCs by minimizing the errors of approximating
functional data. One major advantage of our framework is that the optimization problem

45

is not NP-hard when adding a penalty term to regulate the FPCs. We also showed that the
FPCs estimated with our proposed sparse FPCA method is equivalent to the FPCs with
the conventional FPCA method when the sparsity parameter is zero.

Our sparse FPCA method was applied to explore the major variations among the accel-
eration rate curves of 107 diesel trucks. We found that the nonzero regions of the estimated
sparse FPCs are well separated, which shows that the major variation within the accel-
eration curves can be separated into different subintervals rather than mixing with each
other in the entire domain. We also compare our proposed sparse FPCA method with the
conventional FPCA method (Ramsay and Silverman, 2005), the interpretable functional
principal component analysis (Lin et al., 2016) and the localized functional principal com-
ponent analysis (Chen and Lei, 2015) using a simulation study. The simulation study shows
that the sparse FPCA method obtains more accurate estimates of FPCs in comparison with
the alternative three methods when the true FPCs has compact support regions.

46

Chapter 4

Recovering the Underlying
Trajectory from Sparse and
Irregular Longitudinal Data

4.1 Introduction

Functional principal component analysis (FPCA) is a key dimension reduction tool in func-
tional data analysis. FPCA explores major sources of variability in a sample of random
curves by finding functional principal components (FPCs) that maximize the curve varia-
tion. Consequently, the top few FPCs explain most of the variability in the random curves.
In addition, each random curve can be approximated by a linear combination of the top
FPCs. Therefore, the infinite-dimensional curves are projected to a low-dimensional space
defined by the top FPCs. This powerful dimensional reduction feature also contributes to
the popularity of FPCA.

The theoretical properties of FPCA have been carefully studied at length. For example,
Dauxois et al. (1982) first studied the asymptotic properties of PCA estimators for the
infinite dimensional data from a linear operator perspective. Following this point of view,
Mas (2002) and Bosq (2000) utilized functional analysis to study FPCA theoretically. On
the other hand, Hall and Horowitz (2007); Hall et al. (2006); Yao et al. (2005a) studied
FPCA from the kernel perspective. The smooth version of FPCA is carefully studied by
Rice and Silverman (1991); Pezzulli (1993); Silverman (1996); Yao et al. (2005a). There
are mainly three methods to achieve smoothness. The first method smooths the functional
data in the first step and conducts the regular FPCA on the sample covariance function.
The second method smooths the covariance function first and then eigen-decomposes the
resulting smoothed covariance function to estimate the smoothed FPCs. The last method
directly adds a roughness penalty in the optimization criterion for estimating FPCs.

FPCA has been widely and successfully applied in many applications such as func-
tional linear regression (Cardot et al., 1999), classification and clustering of functional data
(Ramsay and Silverman (2005); Müller (2005); Müller and Stadtmüller (2005); Peng and

47

Müller (2008)). All these applications assume the functional data are densely and regularly
observed.

When the functional data are sparsely and irregularly observed, it is challenging to
obtain a good estimate for FPCs and the corresponding FPC scores. Yao et al. (2005a)
proposed the Principal Analysis by Conditional Estimation (PACE) method to analyze
the sparse functional data. The PACE method estimates the covariance function by the
local polynomial regression method and then eigen-decomposes the estimated covariance
function to obtain the eigenfunctions as the estimates of FPCs. The corresponding FPC
score is estimated using conditional expectation, which requires that FPC scores follow a
Gaussian distribution. The asymptotic properties are established in Hall et al. (2006).

The PACE method is very successful. It is now popularly used to analyze sparse func-
tional data. On the other hand, the PACE method also has two major assumptions, which
may limit its applications. The first assumption of PACE is that the assembled time points
with observations for all subjects are sufficiently dense. Otherwise, PACE cannot estimate
the mean and covariance function by pooling data for all subjects together. The second
assumption of PACE is that the FPC scores follow a Gaussian distribution. Otherwise, the
conditional expectation formula is invalid. In addition, the PACE method involves the in-
verse of the estimated covariance matrix when estimating individual trajectories, which may
be unstable. This problem will be demonstrated in our simulation studies. Peng and Paul
(2009) proposed a restricted maximum likelihood approach to estimate FPCs and apply a
Newton-Raphson procedure on the Stiefel manifold to guarantee that the resulting FPCs
satisfies the orthonormality constraints. They also used conditional expectation to obtain
FPC scores in order to recover individual trajectories. Therefore, their method also involves
the inverse of the estimated covariance matrix and requires the FPC scores to be Gaussian
distributed.

The main objective of this chapter is to recover the underlying trajectory given sparse
and irregular longitudinal observations. Note that this objective is different from explor-
ing the major variation patterns of the functional data, which is the central goal for the
conventional FPCA.

We propose a new sparse orthonormal approximation (SOAP) method to recover the
underlying trajectory. This method directly estimates the optimal empirical basis functions
and the corresponding coefficients in the best approximation framework. The SOAP method
has three main advantages. First, our method avoids the inverse of the covariance matrix,
and the computation is stable and efficient. Second, it does not require that the scores
follow the Gaussian distribution. Therefore, it can be applied in non-Gaussian cases. Lastly,
our method does not need to estimate the mean and covariance function, which might
be challenging when the assembled time points with observations for all subjects are not
sufficiently dense.

48

The rest of this chapter is organized as follows. Section 4.2 introduces the best ap-
proximation framework for recovering the underlying trajectory given sparse and irregular
longitudinal observations. Section 4.3 describes the SOAP method for estimating the opti-
mal empirical basis functions and the corresponding coefficients. The asymptotic consistency
results for the estimated functional empirical components(FECs) are provided in Section
4.4. Our proposed method is demonstrated in Section 4.5 by recovering the longitudinal
CD4 percentage trajectories. In Section 4.6, we compare the finite sample performance of
our method with the PACE method using simulation studies. Section 4.7 provides conclud-
ing remarks. An R package ‘fSOAP’ has been to implement the proposed method and is
available at https://github.com/YunlongNie/fSOAP.

4.2 Functional Empirical Component Analysis

Consider n independent realizations, x1(t), . . . , xn(t), of an L2 stochastic process X(t) :
t ∈ [0, T] at a sequence of random points on [0, T] with measurement errors. That is, the
observed data yij , i = 1 . . . , n, j = 1 . . . , ni, is

yij = xi(tij) + εij ,

where {εij} are independent and identically distributed random errors with mean zero and
variance σ2. The number of measurements ni for each curve is random and small. The
observed time points tij can also be different for each curve. Using the Karhunen-Loève
expansion (Fukunaga and Koontz, 1970), each xi(t) can be expressed as

xi(t) = µ(t) +
∞∑
k=1

αikφk(t),

where µ(t) = E(X(t)) is the mean function, and φk(t), k = 1, 2, . . . , are the eigenfunctions
of the covariance function C(s, t) = E[(X(s)−µ(s))(X(t)−µ(t))], t, s ∈ [0, T]. We call φk(t)
the functional principal components (FPCs) and αik is the corresponding FPC score. The
above estimation procedure is called the functional principal component analysis (FPCA).

A main advantage of FPCA is that xi(t) is projected to orthogonal basis functions,
which allows us to approximate xi(t) using the first K leading FPCs:

xi(t) ≈ µ(t) +
K∑
k=1

αikφk(t).

There are many other basis functions on which xi(t) can be projected. However, the eigen-
functions of the covariance functions have been proved to be the optimal basis functions in
the sense that they minimize the mean L2 errors (see Tran (2008)). Formally speaking, for

49

https://github.com/YunlongNie/fSOAP

any fixed K ∈ {1, 2, . . .}, the first K leading FPCs minimize

1
n

(n∑
i=1

∫ [
xi(t)− µ(t)−

K∑
k=1
〈xi − µ, φk〉φk(t)

]2
dt

)
,

subject to 〈φk, φl〉 = δkl, where δkl is the Kronecker’s delta. From the above criterion, we
can see that the eigenfunctions φk(t), k = 1, . . . ,K, are essentially the optimal empirical
basis functions to the centered stochastic process X(t)− µ(t).

For the original stochastic process X(t) without subtracting the mean function, the
optimal empirical basis functions are the eigenfunctions of K(s, t) = E[X(s)X(t)], as shown
in Theorem 4.2.1 below. Note that although K(s, t) is not a covariance function, it is a still
Mercer kernel. By Mercer’s theorem, there exists an orthonormal basis ψm(t) such that
K(s, t) has the following representation:

K(s, t) =
∞∑
m=1

λmψm(s)ψm(t),

in which the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ 0 and the eigenfunctions satisfy 〈ψm, ψ`〉 = δm`.
Correspondingly, xi(t) can be represented as

xi(t) =
∞∑
m=1

αimψm(t).

Now we will show that the empirical basis functions, ψm(t),m = 1, . . . ,M, optimal in the
sense of minimizing the approximation error (4.1), are the eigenfunctions of the estimated
K̂(s, t) = 1

n

∑n
i=1[xi(s)xi(t)].

Theorem 4.2.1. For any given value ofM , the optimal empirical basis functions ψm(t),m =
1, . . . ,M, which minimize

1
n

n∑
i=1

(∫ [
xi(t)−

M∑
m=1

αimψm(t)
]2
dt

)
, (4.1)

subject to 〈ψm, ψ`〉 = δm`, are the first M eigenfunctions of K̂(s, t) = 1
n

∑n
i=1[xi(s)xi(t)]

and αim = 〈xi, ψm〉.

The detailed proof for Theorem 4.2.1 is given in the Appendix B. Theorem 4.2.1 not
only shows that those eigenfunctions of K̂(s, t) are the optimal empirical basis functions to
approximate the original functional data, but also provides an alternative way to estimate
these optimal empirical basis functions in the best approximation framework other than
eigen-decomposing the uncentered sample covariance function K̂(s, t). Note that estimating
the sample covariance function may become challenging when the data are sparsely observed
and the assembled time points with observations for all subjects are not sufficiently dense.

50

Moreover, this best approximation framework also allows for estimating the coefficients
to the optimal empirical basis functions without inverting the sample covariance matrix.
Furthermore, Theorem 4.2.1 shows that estimating the mean function µ(t) is not necessary
if the goal is recovering or approximating the original trajectory. In practice, when the ob-
served data are very sparsely observed and the assembled time points for all subjects are
not sufficiently dense, it may be challenging to estimate the mean function µ(t). Alterna-
tively, we can simply estimate those optimal empirical basis functions and represent each
trajectory using the estimated optimal empirical basis functions.

In this chapter, the optimal empirical basis functions ψm(t),m = 1, 2, . . . , are called the
functional empirical components (FECs), and αim is the corresponding FEC score. Note
that when the mean function of the stochastic process X(t), µ(t) = E(X(t)) = 0, the
functional empirical components are equivalent to the functional principal components.

We propose the sparse orthonormal approximation (SOAP) method to estimate the first
M FECs ψm(t),m = 1, . . . ,M, by minimizing the observed loss function:

1
n

n∑
i=1

1
ni

ni∑
j=1

[
yij −

M∑
m=1

αimψm(tij)
]2
, (4.2)

subject to 〈ψm, ψ`〉 = δm`, where m, ` = 1, . . . ,M . We solve the optimization problem
(4.2) in a sequential manner. That is, we first obtain the first FEC. Then conditional
on the estimated first FEC, we estimate the second FEC, and so on. When estimating
each FEC, we estimate the m-th component ψm and the corresponding FEC score αm =
(α1m, . . . , αnm)T in an iterative fashion. We first estimate αm based on the given FEC
ψm(t) and the observations yij , i = 1, . . . , n, j = 1, . . . , ni. Then, given the estimated α̂m,
we obtain the corresponding FEC ψm(t) by minimizing (4.2). In each iteration, the loss
function (4.2) is guaranteed to decrease.

4.3 Sparse Orthonormal Approximation Method

We first describe our sparse orthonormal approximation (SOAP) method to estimate the
first FEC in Section 4.3.1. Then our method is expanded to estimate the first M FECs in
Section 4.3.2.

4.3.1 Estimating the First FEC

Based on (4.2), the first FEC ψ1(t) is obtained by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

[
yij − αi1ψ1(tij)

]2
, (4.3)

51

subject to ||ψ1(t)||2 = 1. We first express ψ1(t) as a linear combination of basis functions:
ψ1(t) = βT1 b(t), where b(t) = (b1(t), . . . , bL(t))T is a vector of basis functions, and β1 =
(β11, . . . , β1L)T is the corresponding vector of coefficients. We propose to minimize (4.3)
in an iterative fashion. That is, for a given ψ1(t), we find the corresponding αi1 which
minimizes (4.3). Then given the value of αi1, we minimize (4.3) with respect to ψ1(t). In
every iteration step, the value of the lost function (4.3) decreases. The detailed algorithm
is outlined as follows:

Step I Set the initial value of ψ1(t) as ψ(0)
1 (t), which satisfies ||ψ(0)

1 ||2 = 1;

Step II Given the current value of ψ(`)
1 (t), j = 0, 1, 2, . . ., we can obtain the value of

α
(`)
1 = (α11, . . . , αn1)T by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

[
yij − αi1ψ(`)

1 (tij)
]2
.

In fact, this is simply a least squares problem. The ith element of α(`)
1 can be

expressed as
αi1 = (ψT1iψ1i)−1ψT1iyi.

where ψ1i = (ψ1(ti1), . . . , ψ1(tini))T is a ni × 1 vector and yi = (yi1, . . . , yini)T .

Step III Given the current value of α(`)
1 , we update ψ(`)

1 (t) to ψ(`+1)
1 (t) by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

[yij − α(`)
i1 ψ1(tij)]2,

subject to ||ψ1||2 = 1.

We recast the above criterion into:

n∑
i=1

1
ni

ni∑
j=1

[yij − α(`)
i1 ψ1(tij)]2

=
n∑
i=1

1
ni

ni∑
j=1

[yij − α(`)
i1 β

T
1 b(tij)]2

=
n∑
i=1

ni∑
j=1

[1
√
ni
yij − βT1

1
√
ni
α

(`)
i1 b(tij)]2,

subject to βT1 Gβ1 = 1, in which G is a L × L matrix with the (i, j)-th element
〈bi, bj〉. This is a constrained least squares problem. Fortunately, we can ignore
the norm constrain and obtain the unconstrained least squares minimizer first and
then scale it such that its norm is 1. More specifically, the solution can be written
as β(`+1)

1 = β̃
(j+1)
1 /

√
{β̃(j+1)

1 }TGβ̃(j+1)
1 , in which β̃(j+1)

1 = (a(`)Ta(`))−1(a(`))Tyw,

52

yw = (yT1 /
√
n1, . . . ,yTn/

√
nn)T and a(`) = (a(`)

1
T
, . . . ,a(`)

n
T

)T is a (
∑n
i=1 ni) × L

matrix, in which a(`)
i is a ni×L matrix with (p, q) elements being α(`)

i1 ψq(tip)/
√
ni.

It can be checked that the minimizer obtained from the least squares will satisfy
the Karush-Kuhn-Tucker condition, thus it is the global minimizer of the loss
function (4.3)

Step IV Repeat Step II and III until the algorithm converges.

4.3.2 Estimating the First and Second FECs

The first and second FECs are estimated by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

[yij − αi1ψ1(tij)− αi2ψ2(tij)]2 ,

subject to 〈ψm, ψ`〉 = δm`,m, ` ∈ {1, 2}. We propose to use the following algorithm to
simultaneously estimate ψ1(t) and ψ2(t).

Step I: Set an initial value of ψ(0)
1 (t), which can be obtained using the algorithm described

in the previous subsection.

Step II: Given the current value of ψ(`)
1 (t), we apply the following iterative algorithm to

obtain the estimates for ψ(`)
2 (t) and α(`)

m ,m = 1, 2, by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

[yij − αi1ψ(`)
1 (tij)− αi2ψ2(tij)]2 ,

subject to 〈ψm, ψ`〉 = δm`,m, ` ∈ {1, 2}. We apply a similar procedure as de-
scribed in the previous subsection to obtain the estimates for ψ(`)

2 (t) and α(`)
m ,m =

1, 2, as follows:

(1) Set an initial value for ψ2(t), denoted as ψ0
2(t), which satisfies ||ψ0

2||2 = 1 and
〈ψ0

2, ψ
(`)
1 〉 = 0;

(2) Given the current value of ψ(`)
2 (t), we obtain the estimate for α(`)

m ,m = 1, 2,
by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

[yij − αi1ψ(`)
1 (tij)− αi2ψ(`)

2 (tij)]2.

This is simply a least squares problem. For the i-th subject, the corresponding
α

(`)
i = (α(`)

i1 , α
(`)
2i)T is given as

α
(`)
i = (ψTi ψi)−1ψTi yi,

53

whereψi = (ψ(`)
i1 ,ψ

(`)
i2),ψ(`)

i1 = (ψ(`)
1 (ti1), . . . , ψ(`)

1 (tini))T ,ψ
(`)
i2 = (ψ(`)

2 (ti1), . . . , ψ(`)
2 (tini))T

and yi = (yi1, . . . , yini)T .

(3) Given the value of α(`)
i , update the value of ψ(`+1)

2 (t) by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

[yij − α(`)
i1 ψ

(`)
1 (tij)− α(`)

2i ψ2(tij)]2

subject to 〈ψ(`+1)
2 , ψ

(`)
1 〉 = 0 and ||ψ(`+1)

2 ||2 = 1. Because the norm of ψ(`+1)
2 (t)

will not affect the KKT conditions, we can first ignore the norm constraint
and the minimization becomes a least square with equality-constraints prob-
lem. This problem can also be solved efficiently using the Least Squares with
Equalities and Inequalities(LSEI) algorithm proposed by Lawson and Han-
son (1974). Then, we normalize the resulting solution such that the norm of
ψ

(`+1)
2 (t) is 1.

(4) Repeat step (2) and step (3) until the convergence reaches.

(5) In the end, we obtain the estimate ψ(`)
2 (t) and α(`)

m ,m = 1, 2, for the given
value of ψ(`)

1 (t) .

Step III: Given the estimated value ψ(`)
2 (t), we treat ψ1(t) as an unknown function and

apply the same algorithm within Step II to obtain the estimate for ψ(`+1)
1 (t) and

α
(`+1)
m ,m = 1, 2.

Step IV: Repeat Step II and III until the algorithm converges.

4.3.3 Estimating More FECs

Given the estimates for the first M FECs, ψ̂i(t), i = 1, . . . ,M , we can obtain the estimate
for ψM+1(t) and the corresponding αM+1 using a similar strategy as described in Subsection
4.3.2. To be more specific, we iterate between α1,α2, . . . ,αM+1 and ψM+1(t) by treating
the first M FECs fixed. After we obtain the estimate for ψM+1, we can further refine those
estimates for the first M FECs iteratively by treating each of them as unknown at each
iteration. In this way, the loss function decreases in the loss function in every iteration. As
well, the estimated FECs are always orthogonal to each other.

4.3.4 Smoothness Regulation

In order to control the smoothness of the estimated FECs ψm(t),m = 1, . . . ,M , we can
add a roughness penalty in (4.2). That is, for any fixed M , we estimate ψ1(t), . . . , ψM (t) by
minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

[
yij −

M∑
m=1

αimψm(tj)
]2

+
M∑
m=1

γm

∫ [
d2ψm(t)
dt2

]2
dt, (4.4)

54

subject to 〈ψm, ψ`〉 = δm`, where m, ` = 1, . . . ,M . The algorithm introduced in Subsec-
tion 3.1-3.3 can be modified accordingly. For instance, we can estimate the first FEC by
modifying Step III in Subsection 3.1 as:

Step III (b) Given the current value of α(`)
1 , we update the estimate of ψ(`)

1 (t) to ψ
(`+1)
1 (t) by

minimizing
1
n

n∑
i=1

1
ni

ni∑
j=1

[yij − α(`)
i1 ψ1(tij)]2 + γ1

∫ [
d2ψ1(t)
dt2

]2
dt,

subject to ||ψ1||2 = 1.

The above minimization is essentially a quadratically constrained quadratic program(QCQP)
problem. We use the R package Rsolnp (Ghalanos and Theussl, 2015) based on the SOLNP
algorithm proposed by Ye (1987) to numerically solve it. We will demonstrate the perfor-
mance of this method in our simulation studies.

When estimating each FEC, there is only one tuning parameter involved, i.e., the
smoothing parameter γm. The value of γm controls the amount of smoothness imposed
on the m-th FEC. We propose to select the tuning parameter based on the leave-one-curve-
out cross validation strategy. To be more specific, we treat one curve’s observations as the
test data set and the data for all other curves as the training data set. For instance, when
we estimate the first FEC ψ1(t), we can first obtain the estimate for the first FEC, ψ̂ (−i)

1 (t),
using all the training data for any given value of γ1, where we suppose to use the i-th curve
as the test data set. Then, the score for the test curve can be calculated by minimizing

ni∑
j=1

(yij − αi1ψ̂ (−i)
1 (tij))2.

Then the prediction for yij is ŷ(−i)
ij = α̂

(−i)
i1 ψ̂

(−i)
1 (tij). The prediction error for the i-th curve

is
1
ni

∑
j

(ŷ (−i)
ij − yij)2.

The cross validation error for γ1 is given as

CV(γ1) =
n∑
i=1

1
ni

ni∑
j=1

(ŷ (−i)
ij − yij)2.

For the following FEC, we propose to select the smoothing parameter after treating the
previous estimated FECs fixed.

55

4.3.5 Selecting the Number of FECs

We use the AIC criterion proposed by Li et al. (2013) to select the number of FECs:

AIC(M) = N log(σ2
M) +N + 2nM,

in which M denotes the number of FECs, n denotes the number of individual curves, and
N =

∑n
i=1 ni is the total number of observations. We can estimate the noise variance, σ2

M ,
by using the average square of the residuals. That is,

σ̂2
M = 1

n

∑
i=1

1
ni

(yi − ŷi,M)T (yi − ŷi,M), (4.5)

where ŷi,M = (ŷi1, . . . , ŷini)T represents the fitted i-th individual’s observations when the
number of FECs is selected to be M .

4.4 Theoretical Results

Theorem 2 shows that our first estimated FEC will asymptotically converge to the true
FEC as the number of subjects increases. Similar results are shown in Theorem 3 for the
rest estimated FECs.

Consider sparse observations of functional data yij = xi(tij)+ εij , where the observation
times tij , j = 1, . . . , ni, for subject i are uniformly drawn from [0, 1]. Let the Mercer rep-
resentation for the uncentered covariance function K(s, t) = E(X(s)X(t)) of the stochastic
process X(t) be

K(s, t) =
∞∑
m=1

λmψ
0
m(s)ψ0

m(t).

Assume
∑
m λm <∞ and

∫ 1
0 [ψ0

m(t)]4d t <∞ for each m = 1, 2, · · · .

Theorem 4.4.1. Recall the objective function

Ln(α, ψ) = 1
n

n∑
i=1

1
ni

ni∑
j=1

[yij − αi1ψ1(tij)]2 (4.6)

whereα1 = (α11, . . . , αn1) ∈ Rn and ψ1(t) is a function in L2(0, 1) with constraint
∫ 1

0 ψ
2(t)d t =

1. Then the minimizer ψ̂1(t) of Ln converges to ψ0
1(t) in L2(0, 1) almost surely as n→∞.

Theorem 4.4.2. The minimizers ψ̂l(t), l = 1, · · · ,M , of the loss function

Ln({αl, ψl}Ml=1) = 1
n

n∑
i=1

1
ni

ni∑
j=1

[yij −
M∑
l=1

αilψl(tij)]2 (4.7)

converges to ψ0
l (t), l = 1, · · · ,M, in L2[0, 1] almost surely as n→∞.

56

The proofs for Theorems 4.4.1 and 4.4.2 are available in the Appendix B. The following
lemmas are used to prove the above theorem.

Lemma 4.4.1. Let mi, i = 1, 2, . . . , be independent positive random variables with mean
1 and

∑∞
i=1 E(mi − 1)2/i2 < ∞. For any sequence of positive numbers, ai, such that∑∞

i=1 E(mi − 1)2a2
i /i

2 <∞, we have

lim
n→∞

1
n

n∑
i=1

ai = lim
n→∞

1∑n
i=1mi

n∑
i=1

miai a.s.

Lemma 4.4.2. Let mij , i = 1, 2, . . . , j = 1, 2, . . . , be positive random variables. For each
j = 1, 2, . . ., mij , i = 1, 2, . . ., are independently and identically distributed with mean 1
and finite variance. Then for any infinite matrix A = [Aij], with λj = limn

1
n

∑n
i=1 a

2
ij exists

for each j, as n→∞,

lim
n→∞

1
n

n∑
i=1

∞∑
j=1

a2
ij = lim

n→∞
1
n

n∑
i=1

∞∑
j=1

a2
ijmij =

∞∑
j=1

λj .

Lemma 4.4.3. For an n× p matrix A, the r-rank approximation of A under the Frobenius
norm of matrices is Ã =

∑r
i=1αi ⊗βi where r ≤ min(n, p), and αi, βi are the eigenvectors

of AAT and ATA, respectively.

4.5 Application: Longitudinal CD4 Percentages

We demonstrate our proposed method by analyzing the longitudinal CD4 counts dataset.
The CD4 percentage, which is defined as CD4 counts divided by the total number of lym-
phocytes, is a commonly used marker to describe the health status of HIV infected persons.
The dataset considered here is from the Multi-center AIDS Cohort Study, which includes
repeated measurements of CD4 percentages for 283 homosexual men who became HIV pos-
itive between 1984 and 1991. All subjects were scheduled to be measured at semi-annual
visits. The trajectories of 10 randomly selected subjects are shown in Figure 4.1. It shows
that the data are sparse with unequal numbers of repeated measurements and different
visit times for individual subjects, because many of them missed scheduled visits and the
HIV infections could occur randomly during the study. For all 283 subjects, the number of
observations per subject ranged between 1 and 14, with a median of 6 measurements.

Table 4.1: The values of AIC defined in (4.5) for various number of FECs.
FECs 1 2 3 4 5 6

AIC 8493.44 7632.86 7626.01 7720.19 7913.83 8059.46

The objective of our analysis is to recover individual longitudinal trajectories from the
sparse and irregular observations. The smoothing parameters are selected from {0, 102, 104, 108}

57

using the leave-one-curve-out cross-validation and the selected smoothing parameters for the
first 5 estimated eigenfunctions are 104, 102, 104, 102 and 104, respectively. Table 4.1 displays
the values of AIC defined in (4.5) varying with the number of FECs. It shows that AIC is
minimized when the number of FECs is 3.

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

10

20

30

40

50

0 2 4 6
Time

C
D

4
pe

rc
en

ta
ge

Figure 4.1: The longitudinal CD4 percentage for 10 randomly selected subjects. Each curve
represents the measurements for one single subject.

Figure 4.2 shows the estimated three FECs and the estimated mean function. The first
estimated FEC, ψ̂1(t), is decreasing and positive over the whole time interval. The first FEC
score can be interpreted as the weighted average of the longitudinal trajectory across time.
The second estimated FEC, ψ̂2(t), changes its sign at time 3. The second FEC score can be
interpreted as the change of the longitudinal trajectory between [0, 3] and [3, 6]. Similarly,
the third estimated FEC, ψ̂3(t), is positive [1.6, 4.3] and negative elsewhere. So the third
FEC score represents the change of the longitudinal trajectory between [1.6, 4.3] and the
other periods. The mean function is obtained by taking the average of all the individual
predicted trajectories, which shows an overall decreasing trend across individuals.

Figure 4.3 shows the predicted individual trajectories for 4 different individuals with
the various number of observations. It shows that all the estimated CD4 trajectories fit

58

0.35

0.40

0.45

0.50

0 2 4 6

Time

1st FEC

−0.4

0.0

0.4

0.8

0 2 4 6

Time

2nd FEC

−0.5

0.0

0.5

0 2 4 6

Time

3rd FEC

20

25

30

35

0 2 4 6

Time

C
D

4
pe

rc
en

ta
ge

Mean Function

Figure 4.2: The estimated three functional empirical components (FECs) along with the
estimated mean function for the CD4 data.

59

●

0

20

40

60

0 2 4 6

Time

C
D

4
pe

rc
en

ta
ge

Individual 11

●
●

0

20

40

60

0 2 4 6

Time

C
D

4
pe

rc
en

ta
ge

Individual 72

●

●
●

0

20

40

60

0 2 4 6

Time

C
D

4
pe

rc
en

ta
ge

Individual 21

● ●

● ● ●

●

●
●

0

20

40

60

0 2 4 6

Time

C
D

4
pe

rc
en

ta
ge

Individual 90

Figure 4.3: The estimated individual trajectories using the SOAP method (solid line) and
the corresponding observations (dots) for individual 11, 21, 72 and 90.

60

●

●

●

●

40

80

120

160

SOAP PACE

Method

S
qu

ar
ed

 P
re

di
ct

io
n

E
rr

or

Figure 4.4: Boxplots of the mean square prediction errors for the last observation in the
CD4 dataset using the SOAP method and the PACE method in 100 random data-splitting
repetitions.

the observations well. An estimated individual trajectory generally displays the overall de-
creasing trend when the number of observations is small. On the other hand, when there
are enough observations for individuals, such as individual 90 shown in Figure 4.3, the
estimated individual trajectory is able to capture the individual trend.

To compare the SOAP method with the PACE method (Yao et al., 2005a) with respect
to recovering the underlying trajectories, we use the following procedure. First, we randomly
select the data of half subjects as the training data set and treat the other half data as the
test data set. We estimate the FECs using the training dataset. Next, for each subject in
the test data set, we treat the last observation as unknown and predict it based on the
previous observations. In the end, we compare the predicted value with the observed value
and obtain the mean square prediction error (MSPE) for all individuals in the test data
set. We repeat this procedure 100 times. Figure 4.4 are the boxplots of the MSPEs for
two methods. Figure 4.4 shows that the SOAP method outperforms the PACE method in
predicting the future individual trajectories. For instance, the median of MSPEs is 55.87
for the SOAP method, which is 35% smaller than the PACE method. The 25% and 75%
quantiles of MSPEs are 52.05 and 62.08 for our method, which are also 31% and 38% smaller
than the PACE method, respectively.

4.6 Simulations

To evaluate the performance of our proposed method, we conduct one simulation study in
comparison with the PACE method. In order to make our proposed method and the PACE

61

method comparable, we simulate the curves Xi(t) such that E(Xi(t)) = 0. Then in this
simulation setting, the functional principal components (FPCs) in PACE are equivalent
to our proposed functional empirical components (FECs). Therefore, for the rest of this
section, we unify both of them as eigenfunctions.

0.02

0.04

0.06

0 100 200 300

Time

ψ1(t)

−0.04

0.00

0.04

0.08

0 100 200 300

Time

ψ2(t)

Figure 4.5: The true eigenfunctions used to generate the true underlying individual trajec-
tories. We obtain these two functional empirical components by conducting conventional
FPCA on the Canadian temperature Data (Ramsay and Silverman, 2002).

The underlying true trajectories are simulated as Xi(t) = αi1ψ1(t) + αi2ψ2(t), i =
1, . . . , n, where the true eigenfunctions, ψ1(t) and ψ2(t) are shown in Figure 4.5, satisfying
〈ψi, ψj〉 = δij , i, j = 1, 2. The corresponding scores αi1 and αi2 are generated in both Gaus-
sian and non-Gaussian distributions. For the Gaussian scenario, the scores are generated
from two independent Gaussian distributions. That is, αi1

i.i.d∼ N(0, 30) and αi2
i.i.d∼ N(0, 10).

For the non-Gaussian scenario, the scores are first generated from two independent gamma
distributions and then are centered by subtracting the sample mean. That is, αi1 = α′i1−ᾱ′i1,
where α′i1

i.i.d∼ Gamma(1, 0.03) and αi2 = α′i2−ᾱ′i2, where α′i2
i.i.d∼ Gamma(1, 0.1). We choose

the parameters of these two gamma distributions such that the standard derivations are
roughly the same as in the Gaussian scenario. The corresponding observed data for each
trajectory are generated as yij = Xi(tij)+εij , in which εij ∼ N(0, σ2). To achieve the sparse-
ness, the number of time points, ni, for each trajectory is chosen randomly from a discrete
uniform distribution on {1, 2, 3, 4, 5} and the corresponding time points tij , j = 1, . . . , ni,
are uniformly generated in the entire time domain [0, T].

To evaluate the performance of the SOAP method, we generate 300 training samples
and 300 test samples in each simulation replication. We first use our proposed method to
estimate the eigenfunctions using the training dataset, and then predict the test samples’

62

trajectories. The PACE method is also applied to estimate the eigenfunctions from the
training data and predict the trajectories for the test samples. These two methods are
compared by defining the integrated mean prediction error (IMPE) for the 300 test samples
as:

IMPE = 1
300

300∑
i=1

∫
[x̂i(t)− xi(t)]2dt, (4.8)

in which xi(t) represents the true i-th trajectory in the test set and x̂i(t) is the corresponding
predicted trajectory. We repeat the above procedure for 100 repetitions.

Table 4.2: The summary results for predicting the individual trajectory using the SOAP
method and the PACE method for 100 simulation replicates. The table shows the means,
standard derivations (SDs), medians, minimums and maximums for the integrated mean
prediction errors in (4.8) when the true FPC scores are generated from the Gaussian dis-
tribution and non-Gaussian distribution.

Gaussian Non-Gaussian
SOAP PACE SOAP PACE

Mean 159.38 1.02× 105 164.46 981.36
SD 32.45 1.18× 106 53.65 4.51×104

Median 154.16 151.83 151.59 290.30
Minimum 98.42 80.87 75.81 145.45
Maximum 283.32 1.39× 107 521.61 5.34×105

The results are shown in Table 4.2. First of all, we find that the performance of PACE
is quite unstable when the true FPC scores are generated from the Gaussian distribution
and non-Gaussian distribution in comparison with our proposed method. For instance, the
maximum IMPE of PACE goes up to 1.3× 107. There are 11 in the Gaussian scenario and
19 in the non-Gaussian scenario out of 100 repetitions that IMPE of PACE is greater than
600. In contrast, all IMPEs from SOAP are less than 600.

We notice that PACE produces poorly predicted trajectories when the time points with
observations are relatively close to each other. The reason is that estimating the individual
scores involves computing the inverse of the sample covariance matrix, and the inverse of
this matrix can be quite unstable when the time points with observations are close. Figure
4.6 shows an example from one simulation run with 5 observations in this scenario. Note
that those 3 observations in the middle are relatively close in the time domain to each
other in comparison with the last observation. As we can see in the left panel in Figure 4.6,
the predicted trajectory produced by PACE overfits the observed data, while the predicted
trajectory from SOAP is quite close to the true underlying trajectory.

63

●
●

● ●

●

0

2

4

6

0 100 200 300

Time

PACE

●

●

●

●

●−1.0

−0.5

0.0

0.5

0 100 200 300

Time

SOAP

Figure 4.6: The estimated individual trajectory (solid line) using the PACE method (left
panel) and the SOAP method (right panel) compared with the true trajectory (dashed line).
The dots represent the observations for this curve.

Table 4.3: The summary results for estimating the underlying eigenfunctions using the
SOAP method and the PACE method for 100 simulation replicates. The table shows the
means, standard derivations(SDs), medians, minimums and maximums for the integrated
mean square errors (IMSEs) defined in (4.9) when the true FPC scores are generated from
the Gaussian distribution and non-Gaussian distribution.

Gaussian Non-Gaussian
IMSE(ψ̂1) IMSE(ψ̂2) IMSE(ψ̂1) IMSE(ψ̂2)

Mean SOAP 3.20 32.05 3.56 32.90
PACE 19.42 566.89 65.35 1012.42

SD SOAP 1.89 3.00 2.61 3.86
PACE 12.20 451.37 56.31 551.54

Median SOAP 2.75 31.56 2.72 33.02
PACE 15.42 406.00 46.37 961.76

Minimum SOAP 0.47 25.81 0.45 23.59
PACE 4.48 76.10 7.14 117.05

Maximum SOAP 9.59 40.33 14.40 44.95
PACE 81.98 1803.95 356.77 2157.66

64

Besides recovering the individual trend, we also compare the estimated eigenfunctions
with the true eigenfunctions using the following integrated mean square error (IMSE):

IMSE(ψ̂i) =
∫

[ψi(t)− ψ̂i(t)]2dt, i = 1, 2. (4.9)

The results are summarized in Table 4.3. First, the estimated eigenfunctions using the SOAP
method are much closer to the true underlying eigenfunctions than those estimated with
the PACE method under both simulation settings. For instance, the mean IMSE(ψ̂1) from
the PACE method is 4 times larger than the SOAP method and IMSE(ψ̂2) from the PACE
method is almost 18 times larger than the SOAP method. In addition, the performance
of the SOAP method is not sensitive to the distribution of the underlying scores, but the
PACE method’s performance significantly drops from the Gaussian to the non-Gaussian
scenario. For instance, the mean IMSE(ψ̂1) increases from 19.42 (Gaussian) to 65.34 (non-
Gaussian). Finally, we notice that the performance of the SOAP method is generally more
stable than the PACE method, which is shown by comparing the standard derivations of
the IMSEs. For example, the standard deviation of IMSE(ψ̂2) is 551.54 using the PACE
method in comparison with 3.86 using the SOAP method.

4.7 Summary

In this chapter, we propose a novel SOAP method for predicting the underlying individual
trajectories as well as the major variation patterns from sparse and irregularly longitudinal
observations. The SOAP method directly estimates the empirical functional components
from the best approximation perspective. This perspective is different from most conven-
tional methods, such as PACE, which first estimates the de-meaned covariance function
from the data and then eigen-decompose the resulting covariance function to obtain the
estimated FPCs. This new best approximation perspective enables the SOAP method to
recover the individual trajectories without estimating the mean and covariance functions
and without requiring that the underlying FPC scores be Gaussian distributed.

We demonstrate the SOAP method by analyzing a CD4 dataset, in which the longitu-
dinal measurements for each individual are sparsely and irregularly observed. Our SOAP
method is able to recover the individual CD4 trajectories and explore the major variational
sources across all subjects. We also compare the performance of the SOAP method and
the PACE method in prediction by treating the last observation of each individual as un-
known and find that the SOAP method produces better predictions compared to the PACE
method.

Furthermore, we evaluate the performance of the SOAP method and the PACE method
in a simulation study. We notice that the PACE method can be numerically unstable when
the data are observed in close time points. Generally speaking, the SOAP method outper-

65

forms the PACE method in both predicting the individual trajectory and recovering the
optimal empirical basis functions.

66

Chapter 5

Estimating Derivatives from Sparse
and Irregularly Longitudinal Data

5.1 Introduction

In this chapter, we consider the problem of estimating derivatives of a sample of individual
trajectories when the data are sparsely observed and contaminated with noise.

Conventional methods estimate the derivative of an individual trajectory by first esti-
mating the individual trajectory directly using some nonparametric regression methods such
as kernel smoothing(Gasser and Mülller, 1984), local polynomial regression(Fan and Gijbels,
1995b) and smoothing splines (de Boor, 2001). Then the derivative of the estimated indi-
vidual trajectory is obtained as the estimated derivative function. However, these method
generally requires the data to be densely observed, otherwise the estimated individual tra-
jectory would have large errors and the estimated derivative would have even larger errors.

When the data are sparsely and irregularly observed, Liu and Müller (2009) proposed
to first estimate the FPCs of the individual trajectories and then use the derivatives of the
functional principal components (FPCs) as the optimal empirical basis functions to rep-
resent the derivatives of the individual trajectories. However, the derivatives of the FPCs
for individual trajectories are not the FPCs for the derivative functions. Therefore, they
are not the optimal empirical basis functions to represent the derivative functions. To over-
come this drawback, Dai et al. (2017) proposed the derivative principal component analysis
(DFCA) method to estimate the functional principal components of the derivative func-
tions, which are the optimal empirical basis functions to represent the derivative functions.
They showed that the covariance of the derivative functions was equivalent to the deriva-
tive of the covariance of the original functions. Therefore, Dai et al. (2017) proposed to
estimate the covariance of the derivative functions by taking the derivative of the estimated
covariance of the original function and then to eigen-decompose the estimated covariance
function of the derivative functions to obtain the FPCs of the derivative functions. Their

67

DFCA method outperformed the method proposed in Liu and Müller (2009) shown in their
simulation study.

In this chapter, we propose a new method to directly estimate the optimal empirical
basis functions for the derivative functions in the best approximation framework. This
method is called the derivative functional empirical component analysis (DeFECA). The
novelty of our method is three-fold. First, the estimated empirical basis functions forms
the most parsimonious or optimal representation of the derivative functions. Second, our
method does not requires the coefficients to the empirical basis functions to be Gaussian
distributed. Our method is still applicable when this assumption is invalid or difficult to
verify. Third, our method does not require estimating the mean and covariance functions,
which may be challenging when the assembled time points with observations for all subjects
are not sufficiently dense. Last but not the least, simulation studies shows that our method
is numerically stable in comparison to existing methods because our method avoids the
inverse of the covariance matrix.

The rest of this chapter is organized as follows. The proposed DeFECA framework is
introduced in Section 5.2. An efficient estimation method is given in Section 5.3. In Section
5.4, the proposed method is demonstrated by exploring the dynamics of body fat percentage
of 162 girls before and after the first menarche. A carefully-designed simulation is conducted
to evaluate the finite sample performance of our proposed method in comparison with other
alternative methods in Section 5.5. Section 5.6 provides concluding remarks.

5.2 Derivative Functional Empirical Component Analysis

This chapter considers an L2 stochastic process X(t), where we assume t ∈ [0, 1] without
loss of generality. Let xi(t) denote a random sample of X(t), i = 1 . . . , n. The data yij , j =
1 . . . , ni, are observation of xi(t) at the point tij with the measurement error εij . In other
words,

yij = xi(tij) + εij ,

where {εij} are i.i.d. with zero mean and σ2 variance.
We assume that the derivate, X ′(t), is a smooth and square integrable random process.

By Mercer’s theorem, we have the following representation for the uncentered covariance
function C(s, t) = E(X ′(s)X ′(t)):

C(s, t) =
∞∑
k=1

λkφk(t)φk(s),

in which λk is the k-th positive eigenvalue with the decreasing order λ1 ≥ λ2 ≥ . . . ≥ 0,
and φk(t) is the corresponding k-th eigenfunctions. Let x′i(t) denote the derivative function

68

for xi(t). We can express the derivative function as

x′i(t) =
∞∑
k=1

αikφk(t),

in which αik is the k-th coefficient to the kth eigenfunction φk(t).
We call φk(t) as the derivative functional empirical component (DeFEC) to distinguish

them from the conventional functional principal components (FPCs), which are the eigen-
functions of the covariance function E[{X(s)−E(X(s))}{X(t)−E(X(t))}] of the original
functional data X(t). The coefficient αik is called the k-th DeFEC score of the i-th curve.

In practice, one can approximate the derivative function x′i(t) by using the first K
leading DeFECs:

x′i(t) ≈
K∑
k=1

αikφk(t).

Consequently, the function xi(t) can be expressed as

xi(t) = xi0 +
∫ t

0
x′i(s)ds = xi0 +

K∑
k=1

αik

∫ t

0
φk(s)ds, (5.1)

where xi0 represent the value of the i-th curve at the starting point 0. Furthermore, the
observations can be expressed as

yij = xi0 +
K∑
k

αik

∫ tij

0
φk(s)ds+ εij . (5.2)

We propose to estimate the first K DeFECs φk(t), k = 1, . . . ,K, in the best approxima-
tion framework by minimizing the following criterion:

n∑
i=1

1
ni

ni∑
j=1

{
yij −

(
xi0 +

K∑
k=1

αik

∫ tij

0
φk(s)ds

)}2
, (5.3)

with constraints that φk(t), k = 1, . . . ,K, satisfying 〈φk, φj〉 = 1 if k = j and 〈φk, φj〉 = 0 if
k 6= j.

5.3 Estimation Method

In this section, we first describe the method to estimate the first DeFEC φ1(t) and the
associated score α1 in Section 5.3.1 and then extend the method to estimate the first K
FDCs, φk(t), k = 1, . . . ,K, in Section 5.3.2 and Section 5.3.3.

69

5.3.1 Estimating the first DeFEC

The first DeFEC φ1(t) is expressed with a linear combination of basis functions: φ1(t) =
βT1 b1(t), where β1 = (β11, . . . , β1J)T is the vector of basis coefficients and b(t) = (b1(t), . . . , bJ(t))T

is the corresponding vector of basis functions. When we focus on estimating the first DeFEC,
the loss function in (5.3) will reduce to

1
n

n∑
i=1

1
ni

ni∑
j=1

[
yij − xi0 − αi1hTijβ1

]2
. (5.4)

subject to ||φ1||2 = 1, where hij =
∫ tij

0 b(s)ds.
We propose to minimize (5.4) in an iterative fashion. For a given β1, we estimate αi1

and xi0 by minimizing the loss function (5.4) with respect to αi1 and xi0. Then, given the
estimated αi1 and xi0, we estimate β1 by minimizing the loss function (5.4) with respect to
β1. The value of the loss function (5.4) decreases in each iteration. The detailed algorithm
is outlined as follows:

Step I: Set the initial value of β1 as β(0)
1 such that the corresponding DeFEC satisfying

||φ(0)
1 ||2 = 1;

Step II: Given the current value of β(`)
1 , ` = 0, 1, 2, . . . , we estimate x(`)

i0 and α
(`)
1i by

minimizing
ni∑
j=1

(
yij − xi0 − α1iB

(`)
i1j

)2
,

in which B
(`)
i1j = hTijβ

(`)
1 . This is simply a least square problem. We obtain the

estimated intercept x(`)
i0 and the estimated slope α(`)

1i .

Step III: Given the estimates α(`)
1i and x

(`)
i0 , we update the estimate of β1 to β(`+1)

1 by
mimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

(
yij − x(`)

i0 − α
(`)
i1 hTijβ1

)2
, (5.5)

subject to ||φ(0)
1 ||2 = βT1 Gβ1 = 1, in which G is a J × J matrix with the

(i, j)−th element being
∫ 1

0 bi(t)bj(t)dt. This is a constrained least squares prob-
lem. Fortunately, we can ignore the norm constraint and first obtain the un-
constrained least squares minimizer and then scale the estimated φ1(t) such
that its norm is 1. Let β̃(`+1)

1 be the minimizer of the loss function (5.5) with-
out the norm constraint. It is expressed as β̃

′(`+1)
1 = {(a(`))Ta(`)}−1(a(`))Ty(`),

in which y(`) = ((y(`)
1)T /√n1, . . . , (y(`)

n)T /√nn)T , y(`)
i = (yi1 − x

(`)
i0 , . . . , yini −

x
(`)
ni0)T , a(`) = ((a(`)

1)T , . . . , (a(`)
n)T)T , and an ni × J matrix a(`)

i has the (p, q)-
th element as α(`)

i1
∫ tip

0 bq(s)ds/
√
ni. We then scale the estimate as β(`+1)

1 =

70

β̃
(`+1)
1 /

√
(β̃(`+1)

1)TGβ̃(`+1)
1 . We can easily verify the Karush-Kuhn-Tucker (KKT)

condition to show that β(`+1)
1 is the minimizer for the given value of α(`)

1i and
x

(`)
i0 , i = 1, . . . , n.

Step IV: Repeat Step II and III until the algorithm converges.

5.3.2 Estimating the first and the second DeFECs

The first two DeFECs are estimated by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

(
yij − xi0 − αi1

∫ tij

0
φ1(s)ds− αi2

∫ tij

0
φ2(s)ds

)2
.

subject to
∫ 1

0 φ
2
i (t)dt = 1, i, j = 1, 2, and

∫ 1
0 φ1(t)φ2(t)dt = 0. The first two DeFECs are both

expressed as a linear combination of basis functions φi(t) = βTi b(t), i = 1, 2. We propose
to use the following algorithm to simultaneously estimate φ1(t) and φ2(t):

Step I: Set an initial value β(0)
1 . We can apply the algorithm described in the previous

section to obtained this initial estimate.

Step II: Given the current value of β(`)
1 , ` = 0, 1, 2, . . . , we estimate β(`)

2 ,α
(`)
1 = (α(`)

11 , . . . , α
(`)
n1)T ,α(`)

2 =
(α(`)

12 , . . . , α
(`)
n2)T and x(`)

0 = (x(`)
10 , . . . , x

(`)
n0)T by minimizing:

1
n

n∑
i=1

1
ni

ni∑
j=1

(
yij − xi0 − αi1hTijβ

(`)
1 − αi2hTijβ2

)2
,

subject to β(`)
1
T

Gβ(`)
2 = 0 and β(`)

2
T

Gβ(`)
2 = 1, in which G is a J × J matrix

with the (i, j)−th element being
∫ 1

0 bi(t)bj(t)dt. We apply the following iterative
algorithm to obtain the estimates:

(1) Set an initial value for β2, which is denoted as β(0)
2 .

(2) In them-th iteration, given the current value of β(m)
2 , we estimateα(m)

1 ,α
(m)
2 ,x(m)

0
by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

(
yij − xi0 − αi1hTijβ

(`)
1 − αi2hTijβ

(m)
2

)2

This is simply a least square problem.

(3) Given the estimate α(m)
1 ,α

(m)
2 ,x(m)

0 , we obtain the (m+ 1)-th value of β2 by
minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

(
yij − x(m)

i0 − α
(m)
i1 hTijβ

(`)
1 − α

(m)
i2 hTijβ2

)2

71

subject to (β(`)
1)TGβ2 = 0 and β2

TGβ2 = 1. This is a least squares problem
with the linear constraints, which can also be solved efficiently using the
Least Squares with Equalities and Inequalities (LSEI) algorithm proposed
by Lawson and Hanson (1974).

(4) Repeat Step (2) and Step (3) until the convergence reaches. In the end, we
obtain the estimate of β(`)

2 , α(`)
1 , α(`)

2 and x(`)
0 given the value of β(`)

1 .

Step III: Given the estimated value β(`)
2 , we treat β1 as unknown again and apply the same

algorithm within Step II to obtain the estimate for β(`+1)
1 and α(`+1)

1 , α(`+1)
2 and

x(`+1)
0 .

Step IV: Repeat Step II and III until the algorithm converges.

5.3.3 Estimating More DeFECs

Given the estimates for the first m DeFECs, m = 2, 3, . . . , we can obtain the (m + 1)-
th DeFEC and the corresponding DeFEC scores α1, . . . ,αm+1, and the starting value x0

using a similar strategy described in the previous section. To be more specific, we can iterate
between the values of α1, . . . ,αm+1,x0 and the (m+ 1)-th DeFEC φm+1(t) by treating the
previous m estimated DeFECs as fixed. After we obtain the estimate of φm+1(t), we can
further refine our estimate for the first m estimated DeFECs iteratively by treating each
DeFEC as unknown in each iteration. For instance, we can treat φ1(t) as unknown and
updates its estimate conditional on all other estimated DeFECs, φ2(t), . . . , φm+1(t). The
loss function decreases in every step and we stop until the algorithm converges.

5.3.4 Smoothness Regulation

In order to control the smoothness of the estimated DeFECs, φk(t), k = 1, . . . ,K, we add a
roughness penalty in the loss function (5.3). We estimate φ1(t), . . . , φK(t) by minimizing:

n∑
i=1

1
ni

ni∑
j=1

(
yij −

[
xi0 +

K∑
k=1

αik

∫ tij

0
φk(s)ds

])2
+

K∑
k=1

γk

∫ [
d2φk(t)
dt2

]2
dt, (5.6)

subject to 〈φk, φj〉 = 1 if k = j and 〈φk, φj〉 = 0 if k 6= j, where k, j ∈ {1, . . . ,K}. The
algorithm introduced in Subsections 3.1-3.3 will be modified accordingly. For instance, when
estimating the first DeFEC, we can update Step III in Subsection 3.1 to:

Step III(b) Given the value of α(`)
1i and x(`)

i0 , we update the estimate of β1 to β(`+1)
1

by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

(
yij − x(`)

i0 − α
(`)
i1

∫ tij

0
φ1(s)ds

)2
+ γ1

∫ [
d2φ1(t)
dt2

]2
dt

72

subject to ||φ1||2 = 1.

The above minimization is essentially a quadratically constrained quadratic program (QCQP)
problem. We use the R package Rsolnp (Ghalanos and Theussl, 2015) based on the SOLNP
algorithm proposed by Ye (1987) to numerically solve it. We will demonstrate this method
is our simulation study.

When estimating each DeFEC, only one tuning parameter is involved, which is the
smoothing parameter γk. The value of γk controls the amount of smoothness imposed on
the estimated DeFEC. We propose to select its value using the leave-one-curve-out cross
validation strategy. To be more specific, we treat the i-th curve as the test data set and
all the other curves as the training data set. When we estimate the first DeFEC, we can
compute the first DeFEC estimate φ̂(−i)

1 (t) using all the training curves’ observations. Then,
the estimated score for the test curve, i.e., the i-th curve, can be calculated by minimizing

ni∑
j=1

(yij − xi0 − α1

∫ tij

0
φ̂

(−i)
1 (t)ds)2,

in which yij represents the j-th measurement observed at tij for the i-th curve and ni

denotes the total number of observations for the i-th curve. Then the predicted value is
ŷ

(−i)
ij = x̂

(−i)
i0 + α̂

(−i)
i1

∫ tij

0 φ̂
(−i)
1 (s)ds. The cross validation error for the i-th curve is

1
ni

ni∑
j=1

(yij − ŷ(−i)
ij)2.

The cross validation error for γ1 is given as

CV(γ1) =
n∑
i=1

1
ni

ni∑
j=1

(yij − ŷ(−i)
ij)2.

For the following DeFECs, we proposed to select the smoothing parameter by treating the
previous estimated DeFECs fixed.

5.3.5 Determine the Number of DeFECs

In practice, we need to determine the number of DeFECs used to recovery the derivative
function given sparse and irregular observations. An appropriate number of DeFECs should
balance between model complexity and goodness of fit. A larger number of DeFECs leads to
a better fit of observations but introduces more variability of the estimate. In this chapter,
we propose to use the AIC criterion proposed by Li et al. (2013) to select the number of
DeFECs:

AIC(K) = N log(σ2
[K]) +N + 2nK,

73

in which K denotes the number of DeFECs, n denotes the number of individual curves and
N is the total number of observations. We can estimate variance of the noise, σ2

[K], using
the mean squares of residuals:

σ̂2
[K] = 1

n

n∑
i=1

1
ni

(yi − ŷi,[K])T (yi − ŷi,[K]), (5.7)

where ŷi,[K] is the fitted value for the i-th curve when using K DeFECs.

5.4 Real Data Application

We demonstrate our proposed method by analyzing the data from a prospective study on
body fat accretion in a cohort of 162 girls from the MIT Growth and Development Study
(Phillips et al., 2003). At the start of this study, all girls were pre-menarcheal and non-obese,
as determined by a triceps skinfold thickness less than the 85th percentile. All girls were
followed over time according to a schedule of annual measurements until four years after
menarche. The final measurement was scheduled on the fourth anniversary of their reported
date of menarche. At each examination, a measure of body fatness was obtained based on
bioelectric impedance analysis and a measure of percent body fat percentage was derived.
This data set has totally 1049 measurements for the percent body fat, with an average of 6.4
measurements per subject. Figure 5.1 shows the data for 10 randomly-selected individuals.

74

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

−2.5 0.0 2.5

Time Relative to Menarche

B
od

y
Fa

t P
er

ce
nt

ag
e

Figure 5.1: The measured body fat percentage before and after menarche for 10 randomly-
selected girls in the MIT Growth and Development Study.

Table 5.1: The AIC values for various number of DeFECs when conducting the derivative
functional empirical component analysis (DeFECA) for the MIT Growth and Development
Study.

Number of DeFECs 1 2 3 4
AIC 3270.56 3221.03 3218.81 3267.54

The objective of our analysis is to recover the derivatives of individual growth curves and
to explore their major variations. The smoothing parameters are selected from {0, 0.01, 0.1, 1, 10}
using the leave-one-curve-out cross validation. The selected smoothing parameters for the
first 3 estimated DeFECs are 0, 0.1, and 0.01, respectively. The number of DeFECs is se-
lected to be 3 using the AIC criterion in (5.7), shown in Table 5.1.

Figure 5.2 shows the estimated derivative functions for 4 individuals with various number
of measurements. The top 4 panels plot the derivative functions and the bottom 4 panels
gives the corresponding estimated trajectories. The estimated trajectories fit the observed
data well despite that different individuals have different growth dynamics.

75

id=150 id=160 id=27 id=55

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

−5

0

5

10

Time Relative to Menarche

E
st

im
at

ed
 D

er
iv

at
iv

es

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

id=150 id=160 id=27 id=55

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

10

20

30

40

Time Relative to Menarche

B
od

y
Fa

t P
er

ce
nt

ag
e

Figure 5.2: The estimated derivatives for 4 selected girls in the top 4 panels. The corre-
sponding estimated trajectories are shown in the bottom 4 panels. The dots indicate the
observed data.

We can cluster the subjects’ dynamics patterns based on their estimated DeFEC scores.
More specifically, we apply the K-means method on their estimated DeFEC scores to cluster
them. Three clusters are identified, which are shown in Figure 5.3. Figure 5.4 displays the
estimated derivative functions for five subjects in each cluster. It shows that the subjects in
different group clearly has different dynamic patterns. For instance, the subjects in Group 1
exhibits positive dynamics around the age of menarche, which also indicates that they tend
to gain body fact during this time period. By contrast, subjects in Group 2 have negative
dynamics before menarche and positive dynamics after menarche, which means their body
fact percentages decreases to its lowest level before menarche and gradually bounce back
after menarche. In addition, the body fat percentage of those subjects in Group 3 seems
have lower changing rate compared to the first two Groups on average.

Figure 5.5 shows the estimated DeFECs. The first estimated DeFEC represents the first
major mode of variation in the girls’ growth rates of their body fat percentage. It is positive
in the whole time interval except the right boundary. It indicates that the first major mode
of variation in the girls’ growth rates is the weighted average of the growth rates. The largest
weight happens at around one year after menarche, which suggests that the girls have the
largest variation in their growth rates at this time point. The second DeFEC represents
the second major mode of variation in the girls’ growth rates of their body fat percentage,
which is negative in the time period from 3 years prior to menarche until menarche and
positive in the other time period. It indicates that the second major mode of variation in

76

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

−50

−25

0

25

−10 0 10 20

score1

sc
or

e2

Group
● 1

2
3

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

−50

−25

0

25

−20 −10 0 10

score3

sc
or

e2

Group
● 1

2
3

Figure 5.3: The estimated DeFEC scores for all 162 girls. Each dot represents one girl.
The left panel shows the first estimated DeFEC score against the second estimated DeFEC
score. The right panel shows the second DeFEC score against the third DeFEC score. The
three dot shapes represent the three clusters identified by the K-means method.

Group=1 Group=2 Group=3

−2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0 −2.5 0.0 2.5 5.0

−20

−10

0

10

20

Time Relative to Menarche

E
st

im
at

ed
 D

er
iv

at
iv

e

Figure 5.4: The estimated derivative functions for five subjects in each of three clusters
identified by the K-means method on the estimated DeFEC scores.

77

−0.5

0.0

0.5

−4 −3 −2 −1 0 1 2 3 4 5

Time Relateve to Menarche

First DeFEC

0.0

0.5

1.0

−4 −3 −2 −1 0 1 2 3 4 5

Time Relateve to Menarche

Second DeFEC

0.0

0.5

−4 −3 −2 −1 0 1 2 3 4 5

Time Relateve to Menarche

Third DeFEC

Figure 5.5: The top three derivative functional empirical components (DeFECs) estimated
from the MIT Growth and Development Study.

the girls’ growth rates is the contrast of the girls’ growth rates between the time period
from 3 years prior to menarche until menarche and the other time period.

5.5 Simulation Studies

To evaluate the performance of the proposed DeFECA method, we conduct the following
simulation study to compare with the derivative principal component analysis (DFCA)
method proposed in Dai et al. (2017). In order to make the proposed DeFECA method
and the DFCA method comparable, we simulate the curves x′i(t) such that E(x′i(t)) =
0. Then in this simulation setting, the functional principal components (FPCs) for the
derivative functions in DFCA are equivalent to our proposed derivative functional empirical
components (DeFECs). Therefore, for the rest of this section, we unify both of them as
DeFECs.

We simulate the derivative functions x′i(t), i = 1, . . . , n, as x′i(t) = α1iφ1(t) + α2iφ2(t),
where the true DeFECs φ1(t) and φ2(t) are the estimates from the real data application, as
shown in the left two panels of Figure 5.5. We generate the true DeFEC scores αi1 and αi2 in
both Gaussian and non-Gaussian distributions. For the Gaussian scenario, the true DeFEC
scores are generate from two independent Gaussian distributions. That is, α1i

i.i.d∼ N(0, 30)
and α2i

i.i.d∼ N(0, 10). For the non-Gaussian scenario, the scores are generate from two inde-
pendent gamma distributions. That is, α1i

i.i.d∼ gamma(1, 0.03) and αi2
i.i.d∼ gamma(1, 0.1).

We choose the parameters of these two gamma distributions such that the standard deriva-
tions are roughly the same as those in the Gaussian case. The corresponding observed data
for each xi(t) is generated by yij = xi0+

∫ tij

0 x′i(s)ds+εij , i = 1, . . . , n, j = 1, . . . , ni, in which
xi0 represents the starting value for the ith curve, which is generated independently from
N(0, 32). The measurement errors εij is generated from N(0, 1). To achieve the sparseness,

78

the number of data points, ni, for each curve is sampled from a discrete uniform distribu-
tion on {3, 4, 5, 6, 7}. The corresponding time points, i.e.,{tij , j = 1, . . . , ni}, are uniformly
generated in the entire time domain [0, T]. We generate n = 200 sample curves in each sim-
ulation repetition. In each simulation repetition, we apply our proposed DeFECA method
to first estimate the DeFECs, i.e., φ1(t) and φ2(t), of the derivative functions and the De-
FEC scores and starting values xi0. Then the estimate for the derivative function can be
expressed as:

x̂′i(t) = x̂i0 +
K̂∑
k=1

α̂ikφ̂k(t).

We use leave-one-curve-out cross validation to choose from {0, 0.001, 0.1, 1, 10} for the values
of the smoothing parameters. The number of DeFECs,K, is selected using AIC. Within each
repetition, we compute the mean integrated square errors (MISE) between the estimated
derivatives and the true derivatives:

MISE = 1
n

n∑
i=1

∫
{x′i(t)− x̂′i(t)}2dt, (5.8)

in which x′i(t) represents the true derivative function for the ith curve and x̂′i(t) is the
corresponding estimated derivative function. We also apply the DFCA method (Dai et al.
(2017)) to estimate the derivative functions and calculate the corresponding MISE. We
repeat this procedure for 100 simulation replicates.

The estimation results are summarized in Table 5.2. The DeFECA method yields smaller
MISE on average in comparison to the DFCA method in both Gaussian and non-Gaussian
scenarios. For instance, the average MISE of the DFCA method are 1110 and 3335 for
Gaussian and non-Gaussian scenarios, respectively, both of which are almost three times as
large as those of the DeFECAmethod. The derivative functions estimated from the DeFECA
method are also more stable than the DFCA method, because the standard deviations of
MISE for the DeFECA method are 83% and 75% smaller than those of the DFCA method
for the Gaussian and non-Gaussian scenarios, respectively.

We also calculate the mean integrated square errors (MISE) between the true DeFEC
and their estimates

MISE(φk) =
∫
{φ′k(t)− φ̂′k(t)}2dt, k = 1, 2. (5.9)

The results are summarized in Table 5.3. First, the estimated DeFECs using the DeFECA
method are much closer to the true DeFECs than those estimated with the DFCA method
in both Gaussian and non-Gaussian scenarios. For instance, the mean MISEφ1 from the
DFCA method in the Gaussian scenario is 0.98, which is about 10 times as large as the mean
MISEφ1 of the DeFECA method. Second, we notice that the performance of the DeFECA
method is generally much more stable compared to the DFCA method by comparing the

79

Table 5.2: The summary results for estimating the derivative functions using the DeFECA
method and the DFCA method for 100 simulation replicates. The table shows the means,
standard derivations (STDs), medians, minimums and maximums for the mean integrated
square errors (MISE) defined in (5.8) for Gaussian and non-Gaussian scenarios.

Gaussian non-Gaussian
DFCA DeFECA DFCA DeFECA

Mean 1110 379 3335 1050
STD 640 110 1171 292

Median 971 354 3181 952
Minimum 349 237 1630 815
Maximum 3894 905 7005 2294

standard derivations of the MISEs. For example, the standard deviations of MISE(ψ1) is
0.1 using the DFCA method in comparison with 0.03 using the DeFECA method.

Table 5.3: The summary results for estimating the DeFECs (φ1(t) and φ2(t)) using the
DeFECA method and the DFCA method for 100 simulation replicates. The table shows
the means, standard derivations (STDs), medians, minimums and maximums for the mean
integrated square errors (MISEs) defined in (5.9) for the Gaussian and non-Gaussian sce-
narios.

Gaussian Non-Gaussian
MISE(φ1) MISE(φ2) MISE(φ1) MISE(φ2)

Mean DFCA 0.98 1.49 0.93 1.54
DeFECA 0.11 0.22 0.08 0.27

STD DFCA 0.10 0.29 0.11 0.30
DeFECA 0.03 0.12 0.01 0.13

Median DFCA 0.97 1.52 0.93 1.62
DeFECA 0.11 0.19 0.08 0.23

Minimum DFCA 0.78 1.04 0.62 0.95
DeFECA 0.06 0.06 0.07 0.09

Maximum DFCA 1.21 1.94 1.20 1.95
DeFECA 0.25 0.79 0.10 0.66

5.6 Conclusions

In this chapter, we propose a novel derivative functional empirical component analysis
(DeFECA) method for estimating the individual derivative function as well as the major
variation patterns of the underlying dynamics from sparse and irregularly longitudinal ob-
servations. The DeFECA method directly estimates the optimal empirical basis functions
from the best approximation perspective, while most conventional methods, such as DFCA,
first estimate the de-meaned covariance function from the data and then eigen-decompose

80

the estimated covariance function to obtain FPCs. This new best approximatio’ perspec-
tive enables the DeFECA method to predict the individual derivative function without
estimating the mean function and without requiring the DeFECA scores to be Gaussian
distributed.

We demonstrate the DeFECA method by analyzing the MIT Growth and Development
study, in which the longitudinal body fat percentages are sparsely and irregularly observed
before and after the menarche. Our DeFECA method can estimate the individual derivative
functions and explore the major variation modes of the growth dynamics among all subjects.
Furthermore, we compare the performance of the DeFECA method and the DFCA method
in simulation studies. The DeFECA method is shown to outperform the DFCA method
in both predicting the individual trajectory and recovering the optimal empirical basis
functions.

81

Chapter 6

Sparse Functional Single Index
Model

6.1 Introduction

In this chapter, we consider the problem of modeling the relationship between a functional
predictor and a scalar response. Given a scalar response Y and a functional predictor X(t)
observed in [0, T], the conventional functional linear regression model assumes that the
scalar response Y is linked with a functional predictor in the following model:

E(Y |X) = β0 +
∫ T

0
β(t)X(t)dt,

in which β0 is the intercept and β(t) is the coefficient function. The above functional linear
regression model describes a linear relationship between the response and the functional
predictor.

A natural way to extend the above functional linear regression model is to use a func-
tional single index model (FuSIM):

E(Y |X) = g(
∫ T

0
β(t)X(t)dt), (6.1)

in which β(t) is the index or weight function and g(·) is the link function describing the
relationship between the scalar response Y and the intergral of the functional predictor X(t)
and the index function β(t). If g(x) takes a known parametric form, such as the identity or
logit function, then the functional single index model reduces to the conventional functional
linear model (Ramsay and Silverman, 2005) or generalized functional linear model (Müller
and Stadtmüller, 2005), respectively.

If we take a closer look at the functional single index model (6.1), the index function β(t)
determines weights of the contribution of the functional predictor X(t) related to the scalar
response through the function g(·) at each time point t ∈ [0, T]. In particular, if β(t) ≡ 0
on a subinterval I ⊂ [0, T], then the functional predictor X(t) is not related to the response

82

Y on this subinterval. It is of great interest to estimate the support region of β(t), denoted
by S = {t : β(t) 6= 0}, in which the functional predictor is related to the the response.

In this chapter, we propose the following sparse functional single index model (sparse
FuSIM):

E(Y |X) = g(
∫
S
β(t)X(t)dt) (6.2)

in which S ⊂ [0, T] is unknown. Our goal in this chapter is to simultaneously estimate the
index function β(t), the nonlinear function g(·) without any parametric assumptions, and
identify the support region S on which X(t) is related to Y . Such a sparsely-supported
estimate of β(t) can not only increase the prediction accuracy of the response, but also lead
to a better interpretation of the functional single index model.

Several methods have been proposed to estimate the functional single index model (6.1).
For instance, Chen et al. (2011) estimated the unknown link function g(·) by nonparametric
kernel smoothing with polynomial convergence rate. Ma (2014) considered a functional
single-index model with multiple functional predictors. They used B-spline basis functions
to estimate both the link function g(·) and the index or slope function β(t). They also showed
the uniform convergence rates of the proposed spline estimators. In addition, Ait-Saïdi et al.
(2008) proposed an alternative cross-validation procedure for the model estimation. Jiang
and Wang (2011) and Li et al. (2017) considered another type of index model in which the
response is a function and the covariates are scalar and functions respectively. However,
all the methods above assume that the support of the index function is the same as the
functional predictors. That is, S = [0, T].

In the conventional functional linear regression model, in which the link function g(·)
takes a linear form, this sparse support estimate has been studied by Ramsay et al. (2009),
Zhou et al. (2013), and Lin et al. (2016). The “FLiRTI” method proposed by Ramsay et al.
(2009) approximates the coefficient function nonparametrically at some discrete grid points
and penalizes the L1 norm of β(t) and its first several derivatives to determine whether the
estimated function and its derivatives are zero at each point. As mentioned by Zhou et al.
(2009), the coefficient function estimated by the “FLiRTI” method has a large variance when
the number of points increases and the model is often over-parameterized. To overcome this
issue, a two-step procedure proposed by Zhou et al. (2009) is used to obtain an initial
estimate for the support region of the coefficient function in the first step. The estimated
support region is refined in the second step. However, the computation cost of this two-step
procedure is quite high and hard to implement. A simple one-step procedure called ‘SloS’
proposed by Lin et al. (2016) yields a smooth and locally sparse estimator of β(t). The
SloS method regularizes the sparseness and smoothness of the coefficient function using
the functional SCAD penalty and the roughness penalty in a single optimization objective
function. However, none of the above methods consider the scenario in which the functional

83

predictor is related to the response by an unknown nonlinear link function g(·). To the best
of our knowledge, this is the first study that considers the sparse support problem within
the functional single index model framework.

The main contribution of our method is two folds. First, we propose a new sparse
functional single index model, in which the support region of the coefficient function β(t)
is a subregion of the entire domain. Second, we propose an efficient algorithm to estimate
the coefficient function β(t), its support region and the unknown nonlinear link function
g(·) simultaneously. An R package sFuSIM has been developed to implement the proposed
method and is available at https://github.com/YunlongNie/sFuSIM.

The remainder of this chapter is organized as follows. In Section 6.2.1, we present the
details of sparse FuSIM and the corresponding fitting procedure. In Section 6.3, we introduce
an efficient algorithm for the parameter estimations, followed by the tunning parameter
selection in the end. Section 6.4 applies sparse FuSIM to a bike rental dataset. The finite-
sample performance of our method is evaluated in Section 6.5 using a carefully-designed
simulation study. Section 6.6 provides the concluding remarks.

6.2 Methodology

6.2.1 A sparse Functional Single Index Model

Let yi, i = 1, . . . , n, represent the observations for the response and xi(t) be the correspond-
ing functional predictor. We propose to estimate the sparse functional single index model
(6.2) by minimizing the following criterion:

Q(β, g) = 1
n

n∑
i=1

(
yi − g(

∫ T

0
β(t)xi(t)dt)

)2
+ PENλ(β), (6.3)

where the norm of β(t) is required to be 1 to ensure the identifiability of g(·) and β(t). Note
that the integral inside the function g(·) is taken between [0, T] instead of the true support
region of β(t), i.e., S. In order to obtain a sparsely-supported estimator for β(t), we add
a second term which penalizes the L1 norm of the index function β(t). There is a tuning
parameter, λ, in the penalty, which controls the sparseness of the resulting β(t). A large
value of λ will shrink the magnitude of β(t) towards zero in some subintervals. Therefore,
the resulting β(t) will be only nonzero in the other subintervals and the union of these
subintervals will be the estimated S. On the other hand, when λ = 0, our model will reduce
to the conventional FuSIM model and the support of β(t) will always be [0, T].

6.2.2 Sparsity Penalty

The penalty term in (6.3) penalizes the L1 norm of β(t) to obtain a sparsely- supported
estimate. We employ the functional SCAD method proposed by Lin et al. (2016), which

84

https://github.com/YunlongNie/sFuSIM

is a functional generalization of the SCAD method (Fan and Li, 2001). The functional
SCAD method is proposed in Lin et al. (2016) to find a locally sparse estimator for the
coefficient function in functional linear regression models. The nice shrinkage property of
functional SCAD allows the proposed estimator to locate null subregions of the coefficient
function without over shrinking nonzero values of the coefficient functions. More spefically,
the functional SCAD penalty in the sparse FuSIM method is defined as:

PENλ(β) = 1
T

∫ T

0
pλ(|β(t)|)dt,

in which pλ(·) is the SCAD function defined in Fan and Li (2001):

pλ(u) =

λu if 0 ≤ u ≤ λ,

−u2−2aλu+λ2

2(a−1) if λ < u < aλ,

(a+1)λ2

2 if u ≥ aλ,

Here a is 3.7, as suggested by Fan and Li (2001), and λ is the tuning parameter. We refer
to λ as the sparsity parameter for the rest of this chapter. A large value of λ will penalize
the nonzero region of the corresponding β(t), hence leading to a sparse estimation of β(t).
On the other hand, when the sparsity parameter, λ, is zero, the resulting β(t) reduces to
the conventional functional single index model.

6.3 Summary of Computing Algorithm

Given a specific value of λ in the fSCAD penalty, we estimate β(t) and the nonlinear function
g(·) in an iterative fashion. The algorithm is summarized below:

Step I Set the initial value for β(t), denoted as β(0)(t);

Step II Given the current value of β(j)(t), we estimate g(j)(·) by minimizing

Q1(g|β(j)) = 1
n

n∑
i=1

(
yi − g(

∫ T

0
β(j)(t)xi(t)dt)

)2

Step III Given the current value of g(j)(·), we update the estimate of β(t) to β(j+1)(t) by
minimizing

Q2(β|g(j)) = 1
n

n∑
i=1

(
yi − g(j)(

∫ T

0
β(t)xi(t)dt)

)2

+ PENλ(β)

Step IV Repeat Step II and III until the algorithm coverages.

85

6.3.1 Estimating the Link Function g(·)

We now give the details of estimating the link function g(·) in Step II of the computing
algorithm. For simplicity, we omit the index for iteration in this subsection. Given the
current estimate of β̂(t), the criterion given in Step II becomes

Q1(g|β̂(t)) = 1
n

n∑
i=1

(
yi − g(ẑi)

)2
,

in which ẑi =
∫ T

0 β̂(t)xi(t)dt. We propose to estimate g by the local linear regression(Wand
and Jones, 1994). The local linear regression estimator of g is given as

ĝ(z) =
n∑
i=1

[m̂0 − m̂1(zi − z)]Kh(zi − z),

where m̂0, m̂1 is obtained by minimizing

1
n

n∑
i=1

(
[yi −m0 −m1(zi − z)]Kh(zi − z)

)2
.

Here Kh(·) is a kernel function with the bandwidth h. The bandwidth is selected by cross-
validation as suggested by Fan and Gijbels (1995a).

6.3.2 Estimating the Index Function β(t)

This subsection covers the details of estimating the index function β(t) in Step III of the
computing algorithm. We also omit the index for iteration in this subsection for simplicity.
Given the current estimate of ĝ(·), the criterion given in Step III becomes

Q2(β|ĝ) = 1
n

n∑
i=1

(
yi − ĝ(

∫ T

0
β(t)xi(t)dt)

)2
+ PENλ(β). (6.4)

The index function β(t) is expressed as a linear combination of basis function: β(t) =
bTB(t), where B(t) = (B1(t), . . . , BL(t))T are basis functions and b = (b1, . . . , bL)T are the
corresponding basis coefficients. We choose cubic B-splines as our basis functions, because
they have the sparse support property (de Boor, 2001), which is important for efficient
computation and identification of the support region of β(t). Then the integral inside the
least squares term in (6.4)is expressed as

∫ T

0
β(t)xi(t)dt = bT

∫ T

0
B(t)xi(t)dt = ZTi b,

in which Zi = (
∫
B1(t)xi(t)dt, . . . ,

∫
BL(t)xi(t)dt)T . Because ĝ(·) is a nonlinear function,

minimizing Q2(β) in (6.4) is a nonlinear optimization problem. To solve this nonlinear

86

optimization problem, we propose to apply the local approximation idea and obtain the
minimizer in an iterative manner. Based on the current estimates β(j)(t) = b(j)B(t) in the
j-th iteration step, j = 1, 2, . . ., the least squares term in (6.4) can be approximated by

1
n

n∑
i=1

(
yi − ĝ(

∫ T

0
β(t)xi(t)dt)

)2

≈ 1
n

n∑
i=1

([
yi − ĝ(ZTi b(j))− ĝ′(ZTi b(j))

][
bTZi − ZTi b(j)

])2

=(b(j) − b)TG(j)(b(j) − b), (6.5)

in which y(j)
i = yi− ĝ(ZTi b(j))− ĝ′(ZTi b(j)) and the L×L matrix G(j) = 1

n

∑n
i=1(y(j)

i)2ZTi Zi.
Similarly, we can also use the local quadratic approximation(LQA) proposed in Fan and

Li (2001) to approximate the penalty term in (6.4) given the current estimate β(j)(t):

1
T

∫
pλ(|β(t)|)dt ≈ 1

L− d

L−d∑
`=1

pλ

(√∫ t`

t`−1
β2(t)dt

)
,

in which t0, t1, . . . , tL−d denote the sequence of the knots of the B-spline basis functions
B(t), and d represents the order of the basis functions. We further define

||β[`](t)||22
def=

∫ t`

t`−1
β2(t)dt = bTB`b,

in which B` denotes a L×L matrix with the (p,q)-entry as
∫ tj
tj−1 bp(t)bq(t)dt when ` ≤ p, q ≤

`+ d and zero elsewhere. Then we can derive that

1
T

∫
pλ(|β(t)|)dt ≈ 1

L− d

[
bTW (j)b + C(b(j))

]
, (6.6)

where

W (j) = 1
2

L−d∑
`=1

(
p′λ(||β[`](t)||2

√
L− d/T)

||β[`](t)||2
√
T/L− d

B`

)
,

and

C(b(j)) ≡
L∑
`=1

pλ

(||β(j)
[`]||2√

T/L− d

)

− 1
2

L∑
`=1

p′λ

(||β(j)
[`]||2√

T/L− d

) ||β(j)
[`]||2√

T/L− d
.

87

Putting (6.5) and (6.6) together, given the current estimate β(j)(t), the local quadratic
approximation of Q2 in (6.4) can be expressed as

Q2(b) ≈(b(j) − b)TG(j)(b(j) − b) (6.7)

+ 1
L− d

[
bTW (j)b + C(b(j))

]
+ γbTΓb.

Taking the derivative of Q2 with respect to b, we have

∂Q2(b)
∂b

= −2G(j)(b(j) − b) + 2 1
L− d

W (j)b + 2γΓb.

Therefore, the updated estimate is b̂ =
(

G(j) + 1
L−dW

(j) + γΓ
)−1

G(j)b(j). In the end, we

can plug in the estimate b̂ to obtain the estimate for the index function β(t) as

β̂(t) = b̂TB(t).

6.3.3 Tuning Parameter Selection

The sparsity parameter λ can be selected by information criteria such as AIC and BIC. In
the real data application and simulation studies of this chapter, we employ BIC because it
encourages sparse models. The BIC criterion is defined as

BIC = n log(RSS/n) + log(n)(p+ 1),

in which n presents the sample size, RSS represents residuals sum of squares and p is the
number of nonzero elements in the estimated basis coefficients b̂.

6.4 Application

There has been an increased demand for bicycle rentals in recent years, because renting is
considered as a more economical and environmentally-friendly alternative to owning bicy-
cles. Thus, it is of great interest to ensure a sufficient bike supply, which is critical for a
successful business in this area. In this section, we try to gain a better understanding of the
relationship between the weather conditions and the customers’ rental behavior during the
weekend days. More specifically, we focus on the capital bike share study (Fanaee-T and
Gama, 2014), which are rentals to cyclists without membership in the Capital Bike Share
program in Washington, D.C. The total counts of casual bike rentals are recorded from
January 1st, 2011, to December 31st, 2012, for a total of 105 weeks. Weather information
such as temperature is also collected on an hourly basis.

We restrict our analysis to rentals on Saturdays, in which there is a particularly high
demand for casual bike rentals compared to the weekdays’ bike rentals. Our goal is to study

88

how Saturday rentals relate to the hourly temperature. Understanding the nature of this
association can help predict the casual rental demand based on the weather forecast. We
apply the sparse functional single index model (6.2) to address this problem, where the
scalar response Y is the total number of Saturday rentals, and the functional covariate X(t)
is the hourly temperature.

The sparse functional single index model (6.2) is estimated with our proposed method.
The optimal value of the sparsity parameter λ is selected from {10−1, 101, 103, 105, 108} by
10-fold cross-validation. Given the value of λ, the bandwidth of the local linear regression
is selected by the leave-one-out cross-validation, which is implemented using the R package
NonpModelCheck (Zambom and Akritas, 2017). The details of the bandwidth selection can
be found in Fan and Gijbels (1995a). We use the Gaussian kernel function and find that the
performance of our method is quite similar among different choices of the kernel function.
The optimal value of the sparsity parameter is selected to be 105 and the optimal bandwidth
is selected to be 29.

Figure 6.1 displays the estimated coefficient function β̂(t). It shows that the support
of the estimated coefficient function β(t) is between 6 am to 10 pm, which indicates the
bike rental is mainly impacted by the temperature in this time period. In addition, the
estimated coefficient function starts increasing from 6 am, reaches its peak at around 2 pm
and decreases afterward until 10 pm. This observation suggests that temperature around 2
pm is more influential to the bike rentals compared to other times throughout the day.

Figure 6.2 shows the estimated link function ĝ(t). The estimated link functions ĝ(·)
clearly has a nonlinear pattern. For interpretation, we plot the hourly temperature of three
days which correspond to three different levels of the integral value

∫
X(t)β̂(t)dt in Figure

6.3. It shows that when the temperature is around zero, the numero of bike rentals are quite
low, as shown in Day 2; when the temperature around 2 pm increases to around 20 degrees,
the bike rental is at a high level as shown in Day 17; when the temperature around 2 pm
is too high to around 38 degrees, the bike rental drops as shown in Day 77. Generally, the
hourly temperature between 6 am to 10 pm greatly affects the number of bike rentals.

6.5 Simulation

To assess the performance of our method, we conduct a simulation study which mimics the
real data application. The response yi, i = 1, . . . , n, is generated with the following model

yi = g0(
∫
β0(t)X(t)dt) + εi,

in which the true coefficient function β0(t) and the true link function g0(·) is taken as the
estimated coefficient function in the bike rental application as shown in Figure 6.1 and 6.2
respectively. The random noise εi follows a normal distribution with mean zero and standard
deviation σε. Note that the true coefficient function is only nonzero in [6,22] instead of the

89

0.0

0.2

0.4

0 5 10 15 20 25

Hour

Estimated Coefficient Function

Figure 6.1: The estimated coefficient function β̂(t) using the sparse FuSIM (solid line) and
the conventional FuSIM (dashed line) respectively.

90

0

50

100

0 25 50 75 100

X
T
β
^

Estimated Link Function

Figure 6.2: The estimated link function ĝ(t) for the sparse FuSIM method.

−3

−2

−1

0

1

0 5 10 15 20 25

Hour

T
e
m

p
e
ra

tu
re

Day2

0

5

10

15

20

0 5 10 15 20 25

Hour

T
e
m

p
e
ra

tu
re

Day17

0

10

20

30

40

0 5 10 15 20 25

Hour

T
e
m

p
e
ra

tu
re

Day77

Figure 6.3: The hourly temperature for Day 2, 17 and 77. The estimated integral values are
2.5, 60.6 and 113.7.

91

Table 6.1: The means, standard deviations(SDs), medians, minimums and maximums of
MSPEs for 100 Monte Carlo runs using the sparse FuSIM and the conventional FuSIM
methods. Here ‘sFuSIM’ and ‘FuSIM ’denote the sparse functional single index model and
the conventional functional single index model, respectively.

sFuSIM FuSIM
Mean 16.40 89.92

SD 34.84 310.91
Median 6.00 24.08

Minimum 1.34 2.18
Maximum 245.82 2433.30

entire time domain, i.e., [1,24]. In other words, the functional predictor Xi(t) is only related
to response Y when t ∈ [6, 22]. We use the observed hourly temperature for 105 Saturdays
in the real data application as our functional predictor Xi(t), i = 1, . . . , n, in this simulation
study, in which n = 105.

In each simulation repetition, we randomly select 80% of the samples from the observed
hourly temperature curves as the training data set and treat the remaining samples’ data
as the test data set. Then we estimate the coefficient function β(t) and the link function
g(·) using the training data set only, predict the response variable using the test data set
and obtain the mean squared prediction errors (MSPEs). The above procedure is repeated
100 times. The results are shown in Table 6.1. First, the average MSPE produced by the
sparse FuSIM is 16.40, which is 5 times smaller than the average MSEP using the conven-
tional FuSIM. In addition, the sparse FuSIM’s performance is more stable compared to the
conventional FuSIM, because the standard deviation of the sparse FuSIM method is much
smaller than that of to the conventional FuSIM.

In addition, we compare the estimated β̂(t) with the true coefficient β0(t) by integrated
mean square error(IMSE), which is defined as:

IMSE =
∫ T

0
(β̂(t)− β0(t))2dt.

The results are shown in Table 6.2. As can be seen, the estimated coefficient functions
using the sparse FuSIM are much closer to the true coefficient function compared to those
estimated from the conventional FuSIM method. For instance, the average IMSEs using our
method is only 0.02, whereas the average IMSEs using conventional FuSIM is about 1.88.

To further quantify the ability of identifying the support of β0(t), we calculate the
average of proportions of the true support that are correctly identified by the sparse FuSIM
model. The quantity is computed as follows. For a given estimated β̂(t), we compute its
value on a sequence of dense and equally-spaced points in [6, 22], which is the support of
β0(t). For example, the sequence is taken to be 6, 6.001, 6.002, . . . , 21.999, 22. Then

92

Table 6.2: The means, standard deviations(SDs), medians, minimums and maximums of
IMSEs for 100 Monte Carlo runs using the sparse FuSIM and the conventional FuSIM
methods. Here ‘sFuSIM’ and ‘FuSIM ’denote the sparse functional single index model and
the conventional functional single index model, respectively.

sFuSIM FuSIM
Mean 0.02 1.88

SD 0.03 1.51
Median 0.01 1.22

Minimum 0.00 0.08
Maximum 0.17 3.86

Table 6.3: The means, standard deviation(SD), medians, minimums and maximums of true
positive(TP) and true negative(TN) proportions in percentage of the sparse FuSIM model
for 100 Monte Carlo runs.

TP TN
Mean 99.3 95.8

SD 3.1 9.6
Median 100.0 100.0

Minimum 85.7 60.0
Maximum 100.0 100.0

we compute the proportion of the points at which β̂(t) is nonzero among all points in the
sequence. In addition, we can calculate the average of proportions of the non-effect regions
that are correctly identified by the sparse FuSIM model in a similar fashion. That is, for
a given estimated β̂(t), we compute its value on a sequence of dense and equally-spaced
points within [0,6] and [22 24], in which β0(t) is strictly zero. For example, the sequence is
taken to be 0, 0.001, 0.002, . . . , 5.999, 6 and 22, 22.001,. . . , 23.999,24. Then we compute
the proportion of the points at which β̂(t) is zero among all points in the sequence. Finally,
we average these two calculated proportions from 100 repetitions. To distinguish these
two proportions, we refer to them as true positive (TP) and true negative (TN) proportions
respectively. The results are summarized in Table 6.3. The performance of the sparse FuSIM
is quite satisfactory in terms of estimating the support of β(t) as the averaged TP and TN
proportions are 99.3% and 95.8% respectively.

6.6 Summary

In this chapter, we propose a novel sparse functional single index model, which studies the
relationship between a scalar response and a functional predictor. Our method is not only
able to estimate the nonlinear relationship between the functional predictor and the scalar

93

response without any parametric assumption, but also able to identify the region in which
the functional predictor is related to the response.

We apply the sparse functional single index model to predict the daily bike rental counts
using the temperature data. We find that bike rental is mainly affected by the temperature
between 10 am and 22 pm. In addition, the temperature has a nonlinear impact on bike
rental. To be more specific, the bike rentals increase with the temperature from around
0 degrees to around 20 degrees and decreases with temperature from 20 degrees until 38
degrees. We also compare our sparse functional single index model with the conventional
functional single index model using a simulation study. The simulation study shows that
our model yields better predictions to the response and also provides satisfactory estimation
of the true effective region of the functional predictor.

94

Chapter 7

Estimation of Directed
Time-varying Gene Regulation
Network

7.1 Introduction

Gene regulation networks (GRN) have gained a lot of attention from biologists, geneticists,
and statisticians in recent years. A variety of methods have been developed to infer gene
regulation networks based on gene expression data such as Boolean networks (Thomas, 1973;
Mehra et al., 2004; Laubenbacher and Stigler, 2004), information theory models (Steuer
et al., 2002; Stuart et al., 2003), and Bayesian networks (Jensen, 1996; Needham et al.,
2007). However, these methods only focus on static GRN, i.e., the network with the time-
invariant topology given a set of genes. In fact, the regulation effect between a given pair
of genes may change dramatically over the course of a biological process (Luscombe et al.,
2004). Consequently, the GRN topology may be time-varying.

Ordinary differential equation (ODE) models (Cao and Zhao, 2008; Lu et al., 2011; Wu
et al., 2014) have become popular to model the dynamical changes (both decreasing and
increasing) of a target gene expression as a function of expression levels of all regulatory
genes. The estimated regulation effect is also time-varying due to the variation of the regu-
latory gene expression. For instance, Cao and Zhao (2008) focused on parameter estimation
for the ODE model when the type of regulation effect between two genes is known.

When the number of genes in the network is large, a sparse model is often preferable.
But model selection (identification of true regulatory genes) has not been well addressed
in the high-dimension context, where the total number of genes available far exceeds the
number of gene expression measures. To solve this problem, Lu et al. (2011) reduced the
dimension by first clustering genes into modules, then estimating a linear additive ODE
model on the module level instead of the gene level. However, this method fails to capture
the dynamical regulation effect at the gene level. In addition, the linear assumption on the
regulation function may be impractical in many complex scenarios. Wu et al. (2014) modeled

95

the regulation effect using a nonlinear function and solved the curse of dimensionality by
adopting shrinkage techniques such as group LASSO (Yuan and Lin, 2006) and adaptive
LASSO (Zou, 2006). On the other hand, once the regulatory genes are selected, the global
topology of the GRN will stay constant during the whole process. However, in reality, the
regulation effect from one gene might exist only in a certain time period rather than during
the whole biological process.

Thus, we would prefer a flexible model in which the global topology of the estimated
GRN is time-varying. Several methods have been proposed to estimate time-varying net-
works. For instance, Hanneke et al. (2010) extended exponential random graph models
(ERGMs) to model the topology change of a time-varying social network based on a num-
ber of evolution statistics such as edge-stability, reciprocity, and transitivity. However, their
method can only recover the undirected interactions between the nodes and can only be
scaled up to small-scale networks because of the sampling algorithm. Song et al. (2009)
and Kolar et al. (2010) proposed a kernel-reweighted logistic regression model with the L1

penalty to estimate a time-varying GRN, which can be scaled up to large networks. Another
advantage of their method is to allow both smoothing and sudden changes in the network
topology. Kolar and Xing (2009) established the consistency of the kernel-smoothing L1

regularized method. But both Song et al. (2009) and Kolar et al. (2010) only took binarized
gene expression data as the input, and were also limited to undirected interactions between
the genes. To the best of our knowledge, no existing methods use differential equations to
model directed time-varying networks and estimate directed time-varying networks from
continuous gene expression data. This is the main focus of this chapter.

Our mothod makes three crucial contributions. First, we model the dynamical feature
of directed GRN using a high-dimensional nonlinear ODE model, in which the regulation
function is a nonlinear function of the regulatory gene expression and is exactly zero in those
intervals when no regulation effect happens. Hence our model allows the global topology of
the directed GRN to be time-varying. Second, we propose a carefully-designed shrinkage
technique called the functional smoothly clipped absolute deviation (fSCAD) method to
do three tasks simultaneously: detecting significant regulatory genes for any given gene,
identifying the intervals in which the significant regulatory genes have the regulation effect,
and estimating the nonlinear regulation function without any parametric assumption. Fi-
nally, our method is computationally efficient and can be scaled up to the high-dimensional
context. An R package called ‘flyfuns’ is developed to implement our proposed method.
This package can be downloaded at http://www.sfu.ca/~nyunlong/research/grn/. A
demonstration is also provided on the website.

The rest of this chapter is organized as follows. Details of our method are introduced in
Section 7.2. Our method is demonstrated with a real data example in Section 7.3, where we
estimate a time-varying directed gene regulation network among 20 Drosophila melanogaster
genes during the embryonic stage. Section 7.4 presents a simulation study to investigate

96

http://www.sfu.ca/~nyunlong/research/grn/

the finite sample performance of our method in comparison with conventional methods.
Conclusions are given in Section 7.5.

7.2 Method

7.2.1 An ODE Model for Time-Varying Directed Gene Regulation Net-
works

Suppose a time-varying directed gene regulation network has G genes in total, and their
expressions are measured in a certain time period. The following ODE model relates the
rate of change of one target gene expression to the expression of all genes in the network:

Ẋ`(t) = µ` +
G∑
g=1

fg`(Xg), ` = 1, . . . , G, t ∈ [0, T], (7.1)

where Ẋ`(t) denotes the first derivative of X`(t) at time t for the target gene `, µ` is the
intercept term, and fg`(Xg) represents the regulation function of gene g on gene `. Here we
assume Ẋ`(t) is known, and in Section 7.2.7 we will discuss how to estimate it. Note that
our approach also belongs to the framework of the two-step estimation for ODE parameters
(Ramsay and Silverman, 2002; Chen and Wu, 2008).

When the number of genes, G, is large, we assume that only a few genes regulate the
expression of the target gene `. In other words, in the ODE model (7.1), only a few regulation
functions fg`(Xg) 6= 0 and all others fg`(Xg) ≡ 0. This assumption implies the sparsity of
the underlying directed GRN structure.

In addition, we assume that the regulation effect of a particular regulatory gene might
only be significant when its expression level is within a certain range. We use Sg` to denote
the support or nonzero intervals of the regulation function fg`. In other words, fg`(Xg) 6= 0
when Xg ∈ Sgl and fg`(Xg) = 0 when Xg /∈ Sgl. This assumption results in a dynamical
directed GRN with a time-varying topology, because some regulation functions may be
nonzero at one time and become zero at some other time.

Without any parametric assumption on the regulation function fg`(Xg), we represent
fg`(Xg) as a linear combination of basis functions

fg`(Xg) =
Kg`∑
k=1

βg`kφg`k(Xg) = φTg`(Xg)βg`, (7.2)

where φg`(Xg) = (φg`1(Xg), φg`2(Xg), . . . , φg`Kg`
(Xg))T denotes the vector of basis func-

tions, βg` = (βg`1, . . . , βg`Kg`
)T is the corresponding vector of basis coefficients, and Kg`

denotes the number of basis functions. If all the elements of βg` are estimated to be zero,
then fg`(Xg) ≡ 0, and the corresponding gene is omitted from the ODE model. On the

97

other hand, if only a few elements of βg` are estimated to be zero, then the corresponding
regulation function fg`(Xg) will be strictly zero in certain intervals.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7.1: Ten cubic B-spline basis functions, defined by six interior knots. The locations
of interior knots are indicated by vertical dashed lines.

In this method, we choose B-spline basis functions due to their compact support prop-
erty: they are only nonzero in a local interval (de Boor, 2001). This property is crucial
for the computation efficiency and the sparse estimation of our fSCAD method. Figure 7.1
shows an example of the ten cubic B-spline basis functions, defined by six interior knots.
We can see that each of the six basis functions in the center is nonzero over four adjacent
sub-intervals. In addition, the three left-most basis functions and the three right-most basis
functions are nonzero over no more than four adjacent sub-intervals.

The method proposed in the rest of this section is trying to achieve the following three
tasks simultaneously: detecting those significant regulatory genes whose regulation func-
tion fg`(Xg) 6= 0, identifying the nonzero intervals, Sg`, of these regulation functions and
estimating the nonlinear regulation function, i.e., fg`(Xg), in the corresponding nonzero
intervals.

98

7.2.2 Sparsity Penalty

The most common way to achieve sparsity is to add a penalty term to the loss function. Our
method belongs to this fashion by carefully choosing the penalty composition. Generally
speaking, the main idea is to first partition each regulatory gene’s whole expression domain
into several subintervals. The penalty term depends on the magnitude of the regulation
effect in each subinterval instead of in the entire expression domain.

The functional SCAD method was first proposed by Lin et al. (2016), which could be
considered as a functional generalization of the SCAD (Fan et al., 2004). In Lin et al. (2016),
they used fSCAD to estimate the coefficient function in the functional linear regression.
However, they only had one functional predictor in their model, and did not consider the
variable selection problem. In our work, we extend this method to do the variable selection
in the high-dimensional differential equation model. At the same time, we use the fSCAD
method to identify the nonzero intervals, Sg`, of these regulation functions and estimate
the nonlinear regulation function in the estimated nonzero intervals simultaneously. Now
we introduce our fSCAD penalty as follows.

The fSCAD penalty in our model is defined as

G∑
g=1

Mg`

∆xg

∫ xgu

xgl

pλ(|fg`(Xg)|)dXg,

where xgl and xgu are the lower and upper bounds of the expression of the g-th gene Xg(t),
t ∈ [0, T], ∆xg = xgu − xgl, and Mg` is the number of subintervals partitioned by the knots
of B-spline basis functions, so Mg` is the total number of interior knots plus one. We use
the cubic B-spline basis functions in our simulation and application, then Mg` = Kg` − 3,
where Kg` is the number of cubic spline basis functions. Inside the integral, pλ(·) denotes
the SCAD penalty function defined in Fan and Li (2001):

pλ(u) =

λu if 0 ≤ u ≤ λ,

−u2−2aλu+λ2

2(a−1) if λ < u < aλ,

(a+1)λ2

2 if u ≥ aλ,

where a is 3.7, as suggested by Fan and Li (2001), and λ is the tuning parameter, which
controls the sparsity of the regulation functions.

Let x0, x1, . . . , xMg`
denote the sequence of the knots of B-spline basis function. Lin

et al. (2016) has shown that

1
∆xg

∫ xgu

xgl

pλ(|fg`(Xg)|)dXg = 1
Mg`

lim
Mg`→+∞

Mg`∑
j=1

pλ

(√
Mg`

∆xg

∫ xgj

xg,j−1
[fg`(Xg)]2dXg

)
. (7.3)

99

From (7.3), one can see that the fSCAD penalty is essentially the summation of penalties
in each subinterval [xg,j−1, xgj]. In each subinterval [xg,j−1, xgj], the penalty is governed by
the magnitude of the regulation effect quantified by

∫ xgj
xg,j−1

[fg`(Xg)]2dXg. Thus fSCAD com-
pares all gene regulation effects on each subinterval and tends to shrink those insignificant
regulation effects towards zero without over-shrinking those significant regulation effects.
The value of λ determines the size of the shrinkage effect. For instance, a larger value of
λ will lead to smaller nonzero region for fg`(Xg). If the nonzero region of the regulation
function does not exist, the corresponding gene is omitted from the ODE model. Thus we
identify those genes that have no regulation effects. On the other hand, if the nonzero re-
gion does exist, the corresponding gene will have a significant regulation effect when its
expression level is within the estimated nonzero region.

In comparison with group LASSO, the advantage of fSCAD is that it is able to discover a
strong regulation effect even when this effect only exists for a small subinterval. Essentially,
fSCAD penalizes the gene regulation function based on their regulation effects on each
subinterval, whereas group LASSO cannot achieve this because its penalty depends on the
regulation effect in the whole interval. For instance, if the regulation effect of one gene
only exists in a short interval, group LASSO will still shrink the effect to zero and ignore
its regulation effect completely even though the magnitude of the regulation effect is quite
large in that short interval.

7.2.3 Roughness Penalty

We assume that the regulation function fg`(Xg) is a smooth function of Xg because the reg-
ulation effect is not expected to change dramatically when the regulatory gene’s expression
has a small change.

In order to obtain a smooth regulation function, we introduce a roughness penalty. For
a certain regulatory gene Xg, we define the roughness penalty as:

∣∣∣∣∣∣∣∣df2
g`(Xg(t))
dt2

∣∣∣∣∣∣∣∣2 =
∫ T

0

(
d2fg`(Xg(t))

dt2

)2
dt.

Based on the basis function expansion for the regulation function fg`(Xg(t)) defined in (7.2),
one can show that the second derivative of fg`(Xg(t)) can be calculated as

d2fg`(Xg(t))
dt2

=
Kg`∑
k=1

βg`k
d2φg`k(Xg(t))

dt2
=

Kg`∑
k=1

βg`kdg`k,

where

dg`k = d2φg`k(Xg(t))
dt2

= d2φg`k
dX2

g

(
dXg

dt

)2
+ dφg`k

dXg

d2Xg

dt2
. (7.4)

100

The roughness penalty for all G regulation functions is given as

R` =
G∑
g=1

∣∣∣∣∣∣∣∣df2
g`(Xg(t))
dt2

∣∣∣∣∣∣∣∣2 =
G∑
g=1

∫ T

0

(Kg`∑
k=1

βg`kdg`k

)2
dt. (7.5)

7.2.4 Parameter Estimation

Combining the fSCAD penalty (7.3) and the roughness penalty (7.5), we estimate fg`(Xg)
via minimizing the following loss function:

Q(β`) = 1
n

n∑
i=1

(
Ẋ`(ti)−

G∑
g=1

fg`(Xg(ti))
)2

+ γ
G∑
g=1

∣∣∣∣∣∣∣∣df2
g`(Xg(t))
dt2

∣∣∣∣∣∣∣∣2

+
G∑
g=1

Mg`

∆xg

∫ xgu

xgl

pλ(|fg`(Xg)|)dXg, (7.6)

where β` = (βT1`,βT2`, . . . ,βTG`)T , is a length GK column vector of all basis function coeffi-
cients.

The first term in (7.6) quantifies the goodness of fit to the derivative. The second
term is the summation of the roughness penalty for each regulation function, and γ is
the smoothing parameter which controls the smoothness of all regulation functions. The
last term corresponds to the fSCAD penalty.

For simplicity, we recast each part of the loss function in (7.6) into a matrix form.
Following the notations in (7.2), the first term of the loss function can be expressed as

1
n

n∑
i=1

(
Ẋ`(ti)−

G∑
g=1

fg`(Xg(ti))
)2

= 1
n

(Ẋ` −ΦT
` β`)T (Ẋ` −ΦT

` β`), (7.7)

where Ẋ` = (Ẋ`(t1), Ẋ`(t2), . . . , Ẋ`(tn))T is a length n column vector, Φ` = [Φ1`n,Φ2`n, · · · ,ΦG`n]T

is a GK × n matrix,
Φg`n = [φg`(Xg(t1)),φg`(Xg(t2)), . . . ,φg`(Xg(tn))] is a Kg` × n matrix, and

φg`(Xg(t1)) =
(
φg`1(Xg(t1)), φg`2(Xg(t1)), . . . , φg`Kg`

(Xg(t1))
)T
. Let Vg` be a Kg` × Kg`

matrix with entries υg,ij =
∫ T

0 dg`idg`jdx, where 1 ≤ i, j ≤ Kg` and dg`i is expressed using
(7.4).

Let V` = diag(V1`,V2`, . . . ,VG`) be a matrix (GKg`×GKg`) with blocks V1`,V2`, . . . ,VG`

in its main diagonal and zeros elsewhere. Then the roughness penalty in (7.6) is transformed
into the following form:

γ
G∑
g=1

∣∣∣∣∣∣∣∣df2
g`(Xg(t))
dt2

∣∣∣∣∣∣∣∣2 = γβT` V`β`. (7.8)

101

Based on (7.3), the fSCAD penalty can be approximated as

Mg`

∆xg

∫ xgu

xgl

pλ(|fg`(Xg)|)dXg ≈
Mg`∑
j=1

pλ

(√
Mg`

∆xg

∫ xgj

xg,j−1
[fg`(Xg)]2dXg

)
.

In addition, we define

||fg`[j]||22
def=

∫ xgj

xg,j−1
[fg`(Xg)]2dXg = βTg`Mg`jβg`,

where Mg`j is a Kg` × Kg` matrix with entries mg`j,uv =
∫ xgj
xg,j−1

φg`u(Xg)φg`v(Xg)dXg,

if j ≤ u, v ≤ j + d and zero otherwise. Using the local quadratic approximation (LQA)
proposed in Fan and Li (2001), given some initial estimate β(0)

g` , we can derive that

Mg`

∆xg

∫ xgu

xgl

pλ(|fg`(Xg)|)dXg ≈ βTg`W
(0)
g` βg` +G(β(0)

g`),

where

W
(0)
g` = 1

2

Mg`∑
j=1

(ṗλ(||fg`[j]||2
√
Mg`/∆xg)

||fg`[j]||2
√

∆xg/Mg`

Mglj

)
,

and

G(β(0)
g`) ≡

Mg`∑
j=1

pλ

(||fg`[j]||2√
∆xg/Mg`

)
− 1

2

Mg`∑
j=1

ṗλ

(||fg`[j]||2√
∆xg/Mg`

) ||fg`[j]||2√
∆xg/Mg`

.

Adding all the fSCAD penalty for each gene, we have

G∑
g=1

Mg`

∆xg

∫ xgu

xgl

pλ(|fg`(Xg)|)dXg ≈ βT` W(0)
` β` +

G∑
g=1

G(β(0)
`), (7.9)

where W(0)
` = diag(W(0)

1` ,W
(0)
2` , . . . ,W

(0)
G`). Putting (7.7), (7.8) and (7.9) together, we obtain

Q(β`) = 1
n

(Ẋ` −ΦT
` β`)T (Ẋ` −ΦT

` β`) + γβT` V`β` + βT` W(0)
` β` +

G∑
g=1

G(β(0)
g`).

By minimizing Q(β`), we obtain the estimate for the basis coefficients

β̂` = 1
n

(1
n

Φ`ΦT
` + γV` + W(0)

`

)−1
Φ`Ẋ`.

Then we can plug the estimate, β̂`, into (7.2) to obtain the estimates for all regulation
functions:

f̂g`(Xg) = φTg`(Xg)β̂g`, g = 1, . . . , G, ` = 1, . . . , G.

102

7.2.5 Identifiability Issue

Modeling multiple regulatory genes introduces an identifiability problem. For instance, sup-
pose there are only two regulatory genes such that the ODE (7.1) is reduced to

Ẋ`(t) = µ` + f1`(X1(t)) + f2`(X2(t)).

Since simultaneously adding any constant to f1`(·) and subtracted it from f2`(·) does not
affect the model prediction, f1`(·) and f2`(·) are only estimable up to an additive constant.

To address this issue, we apply a similar strategy as in Wood (2006), which constrains
the sum of fg`(·) to zero over the entire time domain. That is,

E(fg`(Xg(t))) = 0, g = 1, . . . , G. (7.10)

This also implies that µ̂` = E(Ẋ`(t)). In the rest part of this section, we briefly discuss how
to include constraints (7.10) into the parameter estimation.

Denote wg`k =
∑n
i=1 φg`k(Xg(ti)). The constraint (7.10) can be satisfied in a sample as

G∑
g=1

(Kg`∑
k=1

βg`kwg`k

)2
= 0. (7.11)

Next we can recast the left side of (7.11) into a matrix form

G∑
g=1

(Kg`∑
k=1

βg`kwg`k

)2
= βT` Ω`β`,

where Ω` = diag(Ω1`,Ω2`, . . . ,ΩG`) and

Ωg` =

w2
g`1 wg`1wg`2 · · · wg`1wg`Kg`

wg`2wg`1 w2
g`2 · · · wg`2wg`Kg`

...
... · · ·

...
wg`Kg`

wg`1 wg`Kg`
wg`2 · · · w2

g`Kg`

 .

We add λIβT` Ω`β` to the loss function (7.6), in which λI is a relatively large positive number
to make sure that (7.11) holds. Consequently, the estimator β̂` becomes

β̂` = 1
n

(1
n

Φ`ΦT
` + γV` + W(0)

` + λIΩ`

)−1
Φ`Ẋ`. (7.12)

Note that Ω` is a singular matrix so that a very large value of λI might cause 1
nΦ`ΦT

` +
γV` + W(0)

` + λIΩ` in (7.12) to be almost singular. If that is the case, we recommend to
try a new value of λI , for instance, half of the previous value.

103

Below we give the details of our algorithm to compute the estimated coefficients β̂`:

Step 1: Compute the initial estimate β̂(0)
` = 1

n

(
1
nΦ`ΦT

` + λIΩ`

)−1
Φ`Ẋ`.

Step 2: In each iteration, given β̂(i)
` , compute the corresponding W (i)

` . Then β̂(i+1)
` =

1
n

(
1
nΦ`ΦT

` + γV` +W (i)
` + λIΩ`

)−1
Φ`Ẋ`. If a variable is very small in magnitude

such that it makes
(

1
nΦ`ΦT

` +γV`+W (i)
` +λIΩ`

)
almost singular or badly scaled

so that inverting
(

1
nΦ`ΦT

` + γV` +W
(i)
` + λIΩ`

)
is unstable, then we manually

shrink it into zero.

Step 3: Repeat Step 2 until β̂(i)
` converges.

7.2.6 Choose Tuning parameters

We need to specify four tuning parameters in (7.12): the total number of basis functions
used to represent each regulation function, Kg`; the smoothing parameter in the rough-
ness penalty for each regulation function, γ; the fSCAD penalty for sparsity, λ; and the
identifiability parameter, λI .

First of all, a large value of Kg` is chosen to obtain a good approximation for each
regulation function fg`(·). This will not result in a saturated model since the smoothing
parameter, γ, and fSCAD penalty parameter, λ, will control the roughness of the regu-
lation functions. Second, λI ∈ [104, 109] generally works well according to our experience
and this choice is not crucial. We note that the value of λI only affects the convergence
speed. Once Kg` and λI are determined, one can use a popular selection criterion such as
information criterion (AICc, BIC) or cross validation to search the optimal values for γ and
λ on a discrete grid. Our experience from the real data application suggests that the AICc
information criterion tends to work well from a practical perspective.

7.2.7 Derivative Estimation

The ODE model in (7.1) uses the derivatives of each gene as the response. In this section,
we introduce a smoothing spline method to estimate the derivative of each gene based on
the its own observed expression values. Other methods for the derivative estimation can
also be used in our framework.

Let Yi denote the measurement for a particular gene at time ti, ti ∈ [0, T]. Suppose that
Yi, i = 1, . . . , n, is from an unknown gene expression function X(t). That is,

Yi = X(ti) + εi, i = 1, . . . , n,

104

where εi is independently and identically distributed from a normal distribution N(0, σ2
s).

Our goal is to estimate X(t) and Ẋ(t) from Yi, i = 1, . . . , n.
We first represent X(t) using a linear combination of B-spline basis functions:

X(t) =
J∑
j=1

θiψj(t) = ψ(t)Tθ,

in which θ is the length J vector of coefficients, and ψ(t) is the length J vector of basis
functions. Then we estimate the vector of coefficients θ by minimizing the following loss
function:

Q0(θ) =
n∑
i=1

(
Yi −X(ti)

)2
+ λ0

∫ [
Ẍ(t)

]2
dt, λ0 > 0. (7.13)

Intuitively, the first term in Q0(θ) quantifies the goodness of fit to the data, and the second
one controls the roughness of the estimated function. The relative importance between these
two terms is controlled by λ0. For instance, a larger value of λ0 will lead to a smoother
estimate for X(t). Here we suggest using the generalized cross validation (GCV) score in
Craven and Wahba (1978) to determine the value of λ0.

To estimate the vector of the basis coefficients θ, we can rewrite (7.13) into a matrix
form:

Q0(θ) = (Y−Ψθ)T (Y−Ψθ) + λ0θ
TRθ,

where R is a J × J matrix with entries Rij =
∫
ψ̈i(t)ψ̈j(t)dt and Ψ is an n× J matrix with

entries Ψij = ψj(ti). Taking the derivative Q0(θ) with respect to θ, one can obtain

θ̂ = (ΨTΨ + λ0R)−1ΨTY.

Thus, the estimated trajectory for X(t) and the derivative Ẋ(t) can be expressed as X̂(t) =
ψ(t)T θ̂ and ˆ̇X(t) = ψ̇(t)T θ̂.

Because the estimated derivatives for gene ` at observed time points are essentially
correlated across time, equation (7) should take this correlation into consideration and be
replaced by

1
n

(ˆ̇X` −ΦT
` β`)T

[
Ĉov(ˆ̇X)

]−1(ˆ̇X` −ΦT
` β`),

where the estimated variance-covariance matrix of the derivatives Ĉov(ˆ̇X) can be obtained
with the delta method,

Ĉov(ˆ̇X) = Ψ̇T Ĉov(θ̂)Ψ̇ = σ̂2
sΨ̇

T (ΨTΨ + λ0R)−1ΨTΨ(ΨTΨ + λ0R)−1Ψ̇, (7.14)

in which ˆ̇X = (ˆ̇X(t1), . . . , ˆ̇X(tn))T , Ψ̇ is a n × J matrix with entries ψ̇j(ti) and σ̂2
s can be

obtained by computing the sample variance of the residuals es = Y−Ψθ̂.

105

In fact, as one reviewer suggests, our proposed algorithm given at the end of Section 2.5
is still applicable by simply letting

[
Ĉov(ˆ̇X)

]−1 = LT` L` be the Cholesky decomposition of
the inverse variance-covariance matrix and then pre-conditioning both ˆ̇X` and ΦT

` with L`.
Consequently, equation (12) becomes

β̂` = 1
n

(1
n

Φ`LT` L`ΦT
` + γV` + W(0)

` + λIΩ`

)−1
Φ`LT` L` ˆ̇X`.

7.3 Application

We consider a data set of 20 Drosophila melanogaster genes involved in the muscle develop-
ment during the embryonic stage (see Bar-Joseph (2004) for details). The time-course gene
expressions are measured at 30 time points in the embryonic stage (Arbeitman et al., 2002).

The time-varying directed gene regulation network of these 20 genes are modeled using
the nonlinear ODE model (7.1). The time-varying regulation functions fg`(Xg) in (7.1) for
each of those 20 genes are estimated in two steps. In the first step, we obtain the estimate
for the trajectory of each gene and its derivatives using the smoothing spline method, as
introduced in Section 2.7. In the second step, we treat the derivative estimates for each gene
as the response and all genes’ trajectory estimates as the covariates in ODE model (7.1). We
then estimate the basis coefficients for each regulation function via (7.12). The smoothing
parameter γ and the sparsity parameter λ are both determined simultaneously using AICc
criterion. The smoothing parameter γ is chosen from four candidate values: 10, 10−1, 10−3

and 10−5. The sparsity parameter λ is selected from five candidate values: 10, 1, 10−1 and
10−2. Since the results are not sensitive to specific values of the number of basis functions,
Kg`, and the identifiability parameter, λI , we set their values to be Kg` = 5 and λI = 104

to ease the computation.

106

Myo61F Prm tin

−0.002

0.000

0.002

0.004

0.006

0.00

0.02

0.04

−0.01

0.00

0.01

0.02

1 2 3 0 2 4 2 4 6
Gene expression

E
st

im
at

ed
 r

eg
ul

at
io

n
fu

nc
tio

n

Figure 7.2: Estimated regulation functions on gene Myo31DF based in the ODE model
(7.1). Three regulatory genes, i.e., Prm, tin and Myo61DF are selected out of 20 genes. All
the regulation functions of the rest 17 genes are estimated to be strictly zero during the
whole embryonic stage.

Figure 7.2 shows the estimated regulation functions for gene Myo31DF. It can be seen
that 3 out of 20 genes are selected, which means that the regulation functions of the other
17 genes are estimated to be strictly zero during the entire embryonic stage. Those three
estimated regulation functions shown in Figure 7.2 all have non-linear trends and show local
sparsity to some extent.

To check whether our finding for gene Myo31DF makes biology sense, we conduct a lit-
erature search for studies on gene interactions using the Drosophila Interactions Database
(Murali et al., 2011) and the GeneMANIA tool (Warde-Farley et al., 2010). We find ev-
idences in the literature about all three regulatory genes Myo61F, Prm, and tin on gene
Myo31DF. For instance, Hozumi et al. (2006) suggested that both Myo61F and Myo31DF
played a crucial role in generating left-right asymmetry of the embryonic gut. They found
that Myo31DF was required in the hindgut epithelium for normal embryonic handedness
and the overexpression of Myo61F reversed the handedness of the embryonic gut, and its
knockdown also caused a left-right patterning defect. These two unconventional myosin I
proteins might have antagonistic functions in left-right patterning. The results obtained
from our analysis match these insights. For instance, Figure 7.2 shows that gene Myo61F
only regulates gene Myo31DF when its expression level is either less than 1 or greater
than 2. Thus, either the knockdown or overexpression of Myo61F will cause a left-right
patterning defect. In addition, Lewis et al. (2005), Ruby et al. (2007), Ruby et al. (2007)
and Kheradpour et al. (2007) suggested that gene Prm and gene Myo31DF shared two
common miRNAs, i.e., mir-iab-4 and mir-999. As for gene tin, even though there was no
direct evidence showing its regulation effect on Myo31DF, Fu et al. (1997) found out that

107

tin was critical in determining the patterning of the Drosophila heart. Because of gene
Myo31DF ’s role in generating the left-right asymmetry gut, our hypothesis is that tin reg-
ulates Myo31DF to insure the left-right asymmetry formation in the heart. This hypothesis
needs to be further investigated in real genetic studies.

Once the regulation functions for all 20 genes are estimated, we can visualize the whole
GRN at any given time point. Figure 7.3 shows the estimated GRN at different selected
time points during the embryonic stage. One important feature of the estimated GRN is
that the regulation effects between genes are time-varying. For example, Prm regulates sls
at the beginning of the embryonic stage, i.e., t = 3h, however, Mef2 replace Prm’s role in
regulating sls in the middle stage. In addition, from the whole network point of view, we
observe that genes interact with each other more frequently in the beginning than in the
middle or at the end of the embryonic stage. Finally, we find some strong regulators such
as Mef2, Myo61F, Prm and Mhc, which act as hubs in our estimated GRN.

In Figure 7.3, we highlight those interactions that have been verified in the literature.
A red arrow indicates the corresponding directed regulation effect between genes has been
verified; a green arrow means the corresponding gene-to-gene interaction has been discovered
before but the exactly direction is unclear; and a black arrow means the corresponding
interaction has not been found so far. Most regulation effects estimated using our method
have been verified previously. Those regulation effects that have not been discovered may be
candidate hypotheses for future investigation. It is worth mentioning that the total number
of known interactions in the literature is 158 out of 400 possible interactions. In other words,
the background interaction rate is 39.5%(=158/400). Using our method, wIt is woe estimate
67 interactions, 58 of which are verified in the literature. The discovery rate for our method
is 86.6%(=58/67), which is more than twice the background interaction rate.

Another very important feature of our estimated GRN shown in Figure 7.3 is that the
estimated network is sparsely connected. In other words, only a limited number of genes
regulate a target gene. Table 7.1 displays a complete list of estimated regulatory genes
for all genes. The number of regulatory genes ranges from 2 to 6 with an average 3.35.
Furthermore, we prioritize those selected regulatory genes based on their estimated signal
strength. The signal strength is defined using the functional L2 norm of the estimated
regulation functions in the entire time domain considered. For example, for gene Actn,
Mef2 is a stronger regulator in the whole time interval compared to Prm and tin, as shown
in the first row of Table 7.1.

108

Table 7.1: The regulatory genes for all 20 genes selected by our method. The regulatory
genes are sorted by their overall regulation effect on the corresponding target gene. For
example, Mef2 has the largest the overall regulation effect on Actn in comparison with Prm
and tin.

Target Gene Regulatory Genes
Actn Mef2 Prm tin
dpp Mef2 Prm flw
eve Myo61F Mef2 srp eve
fln tin Prm Actn Mhc Msp300 flw
flw Myo61F Prm
how sls Mlc1 fln
lmd srp Myo61F flw
Mef2 Myo61F up flw lmd
Mhc Msp300
Mlc1 Msp300 Prm tin
Msp300 tin up Mlc1 Prm Msp300
Myo31DF Prm tin Myo61F
Myo61F Msp300 tin fln
Prm Msp300
sls Prm tin how Mef2
srp Mef2 Prm flw eve twi Msp300
tin Mef2 lmd Myo61F flw twi
twi Mef2 srp
up Msp300 Prm Mlc1 flw
wg Mef2 twi

7.4 Simulation

In this section, we assess the performance of our fSCAD method using a simulation study. To
mimic the real gene regulation process, we use the ODE model for the target gene Myo31DF
estimated from the real data analysis to generate the true trajectory of the target gene as
follows:

X0(t) =
∫ t

0
Ẋ0(τ)dτ =

∫ t

0

20∑
i=1

fi(Xi(τ))dτ, (7.15)

where Ẋ0(τ) denotes the derivative of the expression for the target gene and Xi(τ) is the
expression function of gene i at time τ , i.e., what was observed empirically at τ . Here we
take τ ∈ {0, 1, 2, . . . , 23}. The three true regulation functions fi(Xi), i = 1, 2, 3 are the

109

same as the estimated regulation functions from the real data shown in Figure 2, and all
the remaining 17 true regulation functions are strictly zero in the whole interval. That is,
fi(Xi) ≡ 0, i = 4, . . . , 20. For simplicity, we use X1, X2 and X3 to denote gene Prm, tin and
Myo61F, respectively. In addition, we refer to genes with non-zero regulation functions as
regulatory genes and genes with strictly-zero regulation functions as non-regulatory genes.
To account for the estimation error in estimating the derivative function Ẋ0(t) in the first
step, as one reviewer suggests, we generate the noisy data by adding a white noise ε to the
true X0(t). The noise level is controlled by the noise-to-signal ratio ρ as ε i.i.d∼ N(0, ρσ2

x),
where σx is the sample standard deviation of the true trajectory X0(t) empirically observed
at τ ∈ {0, 1, 2, . . . , 23}.

We estimate ODE model (7.1) using the group Lasso method and the following three
methods:

Locally sparse method: the loss function defined in (7.7) with both fSCAD penalty and
roughness penalty;

Smoothing spline method: the loss function defined in (7.7) with roughness penalty
only, i.e., λ = 0;

Linear fSCAD method: the loss function defined in (7.7) with the fSCAD penalty and
a very large roughness penalty. More specifically, we fix γ = 100 to force the estimated
regulation functions to be almost linear.

For the locally sparse method and the smoothing spline method, the smoothing parameter
γ is chosen from four candidate values: 10, 10−1, 10−3 and 10−5 using AICc. For both the
locally sparse method and the linear fSCAD method, the sparsity parameter λ is selected
from five candidate values: 10, 1, 10−1 and 10−2 using AICc. In addition, the number of
basis function Kg` and the identifiability parameter λI remain the same as in the real
data analysis, i.e., Kg` = 5 and λI = 104. For the group Lasso method, we use the 5-fold
cross-validation to choose the penalty parameter.

We access the variable-selection accuracy for each method using the false negative error
(FN) and the false positive error (FP), which are defined in the gene regulation scenario as
follows:

FN = # of incorrectly estimated non-regulatory genes
of all true regulatory genes ,

FP = # of incorrectly estimated regulatory gene
of all estimated regulatory gene .

The simulation is repeated for 100 times and the results are presented in Table 7.2. First
of all, we can see that the locally sparse method yields the lowest FN error among all
the methods given the same noise-to-signal level. To be more specific, when the noise-to-
signal level is only 1%, the locally sparse method only misselects 25% of all the estimated
regulatory genes. In comparison, with no sparsity penalty, smoothing spline method is not

110

able to produce a parsimony model such that the FP error keeps at 85% even when the noise-
to-signal level is only 1%. The group Lasso method also fails to detect the true regulatory
genes and over 90% of the estimated regulatory genes are actually non-regulatory genes in
our simulation settings. This is because the group Lasso method cannot detect local sparsity
and always penalize the regulation function in the whole domain. In addition, the linear
fSCAD yields the second lowest FP error because of the fSCAD penalty, however, as the
large roughness penalty forces the regulation functions to be linear, the resulting model are
not as parsimony as the true model is. On the other hand, the smoothing spline method
does not make any FN error due to the fact that it estimates all the genes as regulatory
genes. Both the linear fSCAD and the locally sparse method yield similar FN errors, which
indicates that they seldom select true non-regulatory genes as regulatory genes. Lastly,
the performance of group Lasso is still very poor, because over 85% of the estimated non-
regulatory genes are actually true regulatory genes even when the noise-to-signal ratio level
is 1%.

Table 7.2: The means and standard deviations (SD) of the false positive errors (FP) and the
false negative errors (FN) of the four methods in 100 simulation replicates. Here ρ represents
the noise-to-signal ratio in the simulated data.

FP FN
Method ρ Mean SD Mean SD
Locally Sparse 1% 25.0% 0.0% 0.0% 0.0%

5% 30.0% 11.5% 9.0% 15.6%
Smoothing Spline 1% 85.0% 0.0% 0.0% 0.0%

5% 85.0% 0.0% 0.0% 0.0%
Linear fSCAD 1% 63.9% 5.5% 4.8% 11.7%

5% 63.9% 5.5% 4.8% 11.7%
Group Lasso 1% 94.9% 8.2% 88.1% 19.5%

5% 99.5% 3.2% 99.3% 4.7%

Next, we assess the each method’s ability to detect the sparsity of the regulation func-
tions. For each regulation function, we divide the corresponding entire interval into 100
subintervals equally. The specificity for each estimated regulation function in one simula-
tion run is calculated as the percentage of those strictly-zero subintervals which are falsely
estimated as non-zero. Then we take the average specificity for each method across all
regulation functions in 100 simulation replicates. The complete results are shown in Table
7.4. We find that the locally sparse method yields the lowest specificity among all methods
considered. Less than 10% of the true strictly-zero subintervals are incorrectly estimated as
non-zero even when the noise-to-signal ratio is high. The smoothing spline method cannot
produce sparse regulation function estimations, therefore its specificity is always 1. With
a very large roughness penalty, the linear fSCAD method forces the estimated regulation

111

function to be close to linear forms, and this method fails to detect the change points be-
tween zero regions and non-zero regions. Therefore, the linear fSCAD method yields the
second highest specificity among all four methods. With the group Lasso penalty, the group
Lasso method tends to shrink the entire regulation function to zero and the correspond-
ing specificity is about 16%. On the other hand, we find that the the group Lasso method
always shrinks those three true regulation function into strictly zero even when the noise-to-
ratio level is only 1%. In constrast, the locally sparse method estimated regulation function
are much closer to the the true regulation functions. The average of estimated regulation
functions compared to the true regulation functions along with the experimental point-wise
confidence bands using the locally sparse method are shown in Figure 7.4 and 7.5.

Method ρ Mean Standard Deviation
Locally sparse 1% 6.8% 1.0%

5% 8.4% 2.9%
Smoothing spline 1% 100.0% 0.0%

5% 100.0% 0.0%
Linear fSCAD 1% 24.3% 2.6%

5% 30.5% 5.0%
Group Lasso 1% 17.9% 13.3%

5% 16.0% 5.4%

Table 7.3: The mean and standard deviation of the false positive rates using four methods in
100 simulation replicates. Here ρ represents the noise-to-signal ratio in the simulated data.

Although the main focus of our method is to estimate time-varying directed GRN, we
also compare the prediction performance of our proposed method with the group Lasso
method. More specifically, we hold out the last observation, i.e., Xi(23), i = 0, 1, . . . , 20,
for all the genes in the network and estimate the regulation functions using the first 23
observations only. Then we use our method and the group Lasso method to estimate the
gene regulation functions in the ODE model (7.1). We then use the estimated ODE model
(7.1) to predict the value of X0(τ) at τ = 23 and compute the squared prediction error. We
also compare their prediction performances with two other methods: the constant expression
method and an autoregressive model, AR1. The constant expression model simply takes the
sample mean from previously observed trajectories values as the prediction value. The AR1
method is fitted using the maximum likelihood approach. The detailed results are presented
in Table 7.4. Table 7.4 shows that the locally sparse method yields the lowest mean squared
prediction error among all methods, which is only about 10% compared to the group Lasso
method and the AR1 model.

112

Method ρ Mean Standard Deviation
Locally Sparse 1% 0.23 0.15

5% 0.96 1.27
Group Lasso 1% 6.72 0.60

5% 6.80 2.97
AR1 1% 8.66 0.62

5% 8.70 3.00
Constant Expression 1% 568.80 1.07

5% 568.45 5.37

Table 7.4: The mean and standard deviation of squared prediction errors using four methods
in 100 simulation replicates. Here ρ represents the noise-to-signal ratio in the simulated data.

In summary, our proposed method can correctly select the true regulatory genes without
misselecting those true non-regulatory genes in the ODE model compared to other alterna-
tive methods. In addition, it can also successfully identify the strictly-zero subregions of all
regulation functions. Finally, it outperforms popular method such as group Lasso in term
of the forward prediction accuracy.

7.5 Summary

ODE models are widely used to model a dynamical system in many fields such as biology,
economics, and physics. In this chapter, we use a high-dimensional nonlinear ODE model
to describe a time-varying direct GRN. It is worth mentioning, as one reviewer suggests,
the ODE model itself is time-stationary in the sense that all the regulation functions are
deterministic functions of the regulatory gene expressions, but the edges may implicitly
emerge or disappear over time, and the strength of the edge may vary with time, because
the expressions of regulatory genes change with time. We propose the fSCAD method to
estimate the unknown regulation functions in the high-dimensional ODE model from the
time-course gene expression data.

In the real data application, we show that our method can simultaneously detect the
significant regulatory genes, estimate the nonlinear regulation functions without any para-
metric assumption, and identify the intervals with no regulation effects. The resulting GRN
with the estimated regulation functions has many potential implications. First, based on
the estimated edges and their corresponding directions, new hypotheses for gene regulation
mechanism can be proposed as candidate relationships for future investigations. For those
edges that have already been verified in the literature, we can prioritize them based on
the estimated signal strength. In addition, when no prior knowledge about the direction of
the regulation effect is available, our method can be a good starting point for the direction
detection. Furthermore, our method can not only suggest potentially unverified regulation
relationships between genes, but also give clues in which time periods the regulation ef-

113

fects are most likely to be detected. This advantage can greatly facilitate the future biology
experiment designs for detecting gene regulation effects.

Furthermore, our simulation study shows that our method is able to estimate the true
regulation functions under different levels of noises in the data more accurately in compari-
son with the group Lasso method. Finally, our method avoids solving the ODEs numerically,
making it computational efficient and feasible in the high-dimensional context. Our method
can be extended to model and estimate other high-dimensional directed networks from
time-course or longitudinal data.

114

Fi
gu

re
7.
3:

T
he

es
tim

at
ed

tim
e-
va
ry
in
g
di
re
ct
ed

ge
ne

re
gu

la
tio

n
ne

tw
or
k
of

20
ge
ne

s
in

th
e
m
us
cl
e
de

ve
lo
pm

en
t
pa

th
w
ay

at
th
re
e

tim
e
po

in
ts

du
rin

g
th
e
em

br
yo

ni
c
st
ag

e.
T
he

co
nn

ec
tio

n
lin

es
re
pr
es
en
t
th
e
ex
ist

en
ce

of
re
gu

la
tio

n
eff

ec
ts

be
tw

ee
n

ge
ne

s.
T
he

lin
e

co
lo
r
in
di
ca
te
s
w
he

th
er

th
e
re
gu

la
tio

ns
ha

ve
be

en
ve
rifi

ed
in

th
e
lit
er
at
ur
e:

re
d
(v
er
ifi
ed

re
gu

la
tio

n
eff

ec
ts
),

gr
ee
n
(v
er
ifi
ed

ge
ne

-t
o-

ge
ne

in
te
ra
ct
io
ns
)
an

d
bl
ac
k
(u
nv

er
ifi
ed

re
gu

la
tio

n
eff

ec
ts
).

D
et
ai
ls

ca
n
be

fo
un

d
in

th
e
ex
ce
lfi

le
at

ht
tp

:/
/w

ww
.s

fu
.c

a/
~n

yu
nl

on
g/

re
se

ar
ch

/g
rn

/.
T
hi
s
fig

ur
e
is

ge
ne

ra
te
d
us
in
g
th
e
qg

ra
ph

pa
ck
ag

e
(E

ps
ka

m
p
et

al
.,
20

12
).

115

http://www.sfu.ca/~nyunlong/research/grn/
http://www.sfu.ca/~nyunlong/research/grn/

Myo61F Prm tin

−0.005

0.000

0.005

0.010

0.00

0.02

0.04

−0.01

0.00

0.01

0.02

1 2 3 0 2 4 2 4 6
Gene Expression

m
ea

n
Estimated Regulation Functions

Figure 7.4: Estimated regulation functions from the simulated data with the noise-to-signal
ratio of the simulated data ρ = 1% using the locally sparse method. The dashed red and solid
blue lines represent the true regulation functions and the mean of the estimated regulation
functions in 100 simulation replicates. The grey bands denote the pointwise 95% confidence
interval of the estimated regulation functions.

Myo61F Prm tin

−0.005

0.000

0.005

0.010

0.015

−0.02

0.00

0.02

0.04

−0.01

0.00

0.01

0.02

1 2 3 0 2 4 2 4 6
Gene Expression

m
ea

n

Estimated Regulation Functions

Figure 7.5: Estimated regulation functions from the simulated data with the noise-to-signal
ratio of the simulated data ρ = 5% using the locally sparse method. The dashed red and solid
blue lines represent the true regulation functions and the mean of the estimated regulation
functions in 100 simulation replicates. The grey bands denote the pointwise 95% confidence
interval of the estimated regulation functions.

116

Bibliography

Ait-Saïdi, A., F. Ferraty, R. Kassa, and P. Vieu (2008). Cross-validated estimations in the
single-functional index model. Statistics 42 (6), 475–494.

Arbeitman, M. N., E. E. Furlong, F. Imam, E. Johnson, B. H. Null, B. S. Baker, M. A.
Krasnow, M. P. Scott, R. W. Davis, and K. P. White (2002). Gene expression during the
life cycle of drosophila melanogaster. Science 297 (5590), 2270–2275.

Bair, E., T. Hastie, D. Paul, and R. Tibshirani (2006). Prediction by supervised principal
components. Journal of the American Statistical Association 101 (473), 119–137.

Bar-Joseph, Z. (2004). Analyzing time series gene expression data. Bioinformatics 20 (16),
2493–2503.

Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Springer-
Verlag, New York.

Cao, J. and H. Zhao (2008). Estimating dynamic models for gene regulation networks.
Bioinformatics 24 (14), 1619–1624.

Cardot, H., R. Faivre, and M. Goulard (2003). Functional approaches for predicting land
use with the temporal evolution of coarse resolution remote sensing data. Journal of
Applied Statistics 30 (10), 1185–1199.

Cardot, H., F. Ferraty, and P. Sarda (1999). Functional linear model. Statistics & Probability
Letters 45 (1), 11–22.

Chen, D., P. Hall, and H.-G. Müller (2011). Single and multiple index functional regression
models with nonparametric link. The Annals of Statistics 39 (3), 1720–1747.

Chen, J. and H. Wu (2008). Estimation of time-varying parameters in deterministic dynamic
models. Statistica Sinica 18 (3), 987–1006.

Chen, K. and J. Lei (2015). Localized functional principal component analysis. Journal of
the American Statistical Association 110 (511), 1266–1275.

Clark, N., M. Gautam, W. Wayne, D. Lyons, G. Thompson, and B. Zielinska (2007). Heavy-
duty vehicle chassis dynamometer testing for emissions inventory, air quality modeling,
source apportionment and air toxics emissions inventory. Coordinating Research Council,
incorporated.

Craven, P. and G. Wahba (1978). Smoothing noisy data with spline functions. Numerische
Mathematik 31 (4), 377–403.

117

Dai, X., H.-G. Müller, and W. Tao (2017). Derivative principal component analysis for
representing the time dynamics of longitudinal and functional data. arXiv preprint
arXiv:1707.04360 .

Dauxois, J., A. Pousse, and Y. Romain (1982). Asymptotic theory for the principal com-
ponent analysis of a vector random function: some applications to statistical inference.
Journal of Multivariate Analysis 12 (1), 136–154.

de Boor, C. (2001). A Practical Guide to Splines. Applied Mathematical Sciences. Springer,
New York.

Du, P., G. Cheng, and H. Liang (2012). Semiparametric regression models with additive
nonparametric components and high dimensional parametric components. Computational
Statistics & Data Analysis 56 (6), 2006–2017.

Du, P. and X. Wang (2014). Penalized likelihood functional regression. Statistica Sinica,
1017–1041.

Epskamp, S., A. O. J. Cramer, L. J. Waldorp, V. D. Schmittmann, and D. Borsboom
(2012). qgraph: Network visualizations of relationships in psychometric data. Journal of
Statistical Software 48 (4), 1–18.

Fan, J. and I. Gijbels (1995a). Data-driven bandwidth selection in local polynomial fitting:
variable bandwidth and spatial adaptation. Journal of the Royal Statistical Society. Series
B 57 (2), 371–394.

Fan, J. and I. Gijbels (1995b). Local Polynomial Modelling and Its Applications. Chapman
and Hall, London.

Fan, J. and R. Li (2001). Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association 96 (456), 1348–1360.

Fan, J., H. Peng, et al. (2004). Nonconcave penalized likelihood with a diverging number
of parameters. The Annals of Statistics 32 (3), 928–961.

Fanaee-T, H. and J. Gama (2014). Event labeling combining ensemble detectors and back-
ground knowledge. Progress in Artificial Intelligence 2 (2-3), 113–127.

Fu, Y., P. Ruiz-Lozano, and S. M. Evans (1997). A rat homeobox gene, rnkx-2.5, is a homo-
logue of the tinman gene in drosophila and is mainly expressed during heart development.
Development Genes and Evolution 207 (5), 352–358.

Fukunaga, K. and W. L. Koontz (1970). Representation of random processes using the
finite karhunen-loeve expansion. Information and Control 16 (1), 85–101.

Gasser, T. and H.-G. Mülller (1984). Estimating regression functions and their derivatives
by the kernel method. Scandinavian Journal of Statistics 11 (3), 171–185.

Ghalanos, A. and S. Theussl (2015). Rsolnp: General Non-linear Optimization Using Aug-
mented Lagrange Multiplier Method. R package version 1.16.

Hall, P. and G. Hooker (2015). Truncated linear models for functional data. Journal of the
Royal Statistical Society: Series B 78 (3), 637–653.

118

Hall, P. and J. L. Horowitz (2007). Methodology and convergence rates for functional linear
regression. The Annals of Statistics 35 (1), 70–91.

Hall, P., H.-G. Müller, and J.-L. Wang (2006). Properties of principal component methods
for functional and longitudinal data analysis. The Annals of Statistics 34 (3), 1493–1517.

Hanneke, S., W. Fu, and E. P. Xing (2010). Discrete temporal models of social networks.
Electronic Journal of Statistics 4, 585–605.

Hozumi, S., R. Maeda, K. Taniguchi, M. Kanai, S. Shirakabe, T. Sasamura, P. Spéder,
S. Noselli, T. Aigaki, R. Murakami, et al. (2006). An unconventional myosin in drosophila
reverses the default handedness in visceral organs. Nature 440 (7085), 798–802.

Huang, J. Z., H. Shen, and A. Buja (2009). The analysis of two-way functional data using
two-way regularized singular value decompositions. Journal of the American Statistical
Association 104 (488), 1609–1620.

Jensen, F. V. (1996). An Introduction to Bayesian Networks. University College London
Press, London.

Jiang, C.-R. and J.-L. Wang (2011, feb). Functional single index models for longitudinal
data. The Annals of Statistics 39 (1), 362–388.

Kheradpour, P., A. Stark, S. Roy, and M. Kellis (2007). Reliable prediction of regulator
targets using 12 drosophila genomes. Genome Research 17 (12), 1919–1931.

Kolar, M., L. Song, A. Ahmed, and E. P. Xing (2010). Estimating time-varying networks.
Annals of Applied Statistics 4 (1), 94–123.

Kolar, M. and E. P. Xing (2009). Sparsistent estimation of time-varying discrete markov
random fields. arXiv:0907.2337 .

Laubenbacher, R. and B. Stigler (2004). A computational algebra approach to the reverse
engineering of gene regulatory networks. Journal of Theoretical Biology 229 (4), 523–537.

Lawson, C. L. and R. J. Hanson (1974). Solving Least Squares Problems. Englewood Cliffs,
Prentice-Hall, NJ.

Lewis, B., C. Burge, and D. Bartel (2005). Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microrna targets. Cell 120 (1),
15.

Li, G., H. Shen, and J. Z. Huang (2016). Supervised sparse and functional principal com-
ponent analysis. Journal of Computational and Graphical Statistics 25 (3), 859–878.

Li, G., D. Yang, A. B. Nobel, and H. Shen (2016). Supervised singular value decomposition
and its asymptotic properties. Journal of Multivariate Analysis 146, 7–17.

Li, J., C. Huang, Z. Hongtu, and A. D. N. Initiative (2017). A functional varying-coefficient
single-index model for functional response data. Journal of the American Statistical
Association 112 (519), 1169–1181.

119

Li, Y., N. Wang, and R. J. Carroll (2013). Selecting the number of principal components
in functional data. Journal of the American Statistical Association 108 (504), 1284–1294.

Lin, Z., J. Cao, L. Wang, and H. Wang (2016). Locally sparse estimator for func-
tional linear regression models. Journal of Computational and Graphical Statis-
tics doi:10.1080/10618600.2016.1195273, 1–41.

Lin, Z., L. Wang, and J. Cao (2016). Interpretable functional principal component analysis.
Biometrics 72 (3), 846–854.

Liu, B. and H.-G. Müller (2009). Estimating derivatives for samples of sparsely observed
functions, with application to online auction dynamics. Journal of the American Statis-
tical Association 104 (486), 704–717.

Lu, T., H. Liang, H. Li, and H. Wu (2011). High-dimensional ODEs coupled with mixed-
effects modeling techniques for dynamic gene regulatory network identification. Journal
of the American Statistical Association 106 (496), 1242–1258.

Luscombe, N. M., M. M. Babu, H. Yu, M. Snyder, S. A. Teichmann, and M. Gerstein (2004).
Genomic analysis of regulatory network dynamics reveals large topological changes. Na-
ture 431 (7006), 308–312.

Ma, S. (2014, oct). Estimation and inference in functional single-index models. Annals of
the Institute of Statistical Mathematics 68 (1), 181–208.

Mas, A. (2002). Weak convergence for the covariance operators of a hilbertian linear process.
Stochastic Processes and Their Applications 99 (1), 117–135.

Mehra, S., W.-S. Hu, and G. Karypis (2004). A boolean algorithm for reconstructing the
structure of regulatory networks. Metabolic Engineering 6 (4), 326–339.

Müller, H.-G. (2005). Functional modelling and classification of longitudinal data. Scandi-
navian Journal of Statistics 32 (2), 223–240.

Müller, H.-G. and U. Stadtmüller (2005). Generalized functional linear models. The Annals
of Statistics 33 (2), 774–805.

Murali, T., S. Pacifico, J. Yu, S. Guest, G. G. Roberts, and R. L. Finley (2011). Droid
2011: a comprehensive, integrated resource for protein, transcription factor, rna and gene
interactions for drosophila. Nucleic Acids Research 39 (suppl 1), D736–D743.

Needham, C. J., J. R. Bradford, A. J. Bulpitt, and D. R. Westhead (2007, 08). A primer
on learning in bayesian networks for computational biology. PLOS Computational Biol-
ogy 3 (8), 1–8.

Nie, Y., L. Wang, and J. Cao (2017). Estimating time-varying directed gene regulation
networks. Biometrics 73 (4), 1231–1242.

Nie, Y., L. Wang, B. Liu, and J. Cao (2018). Supervised functional principal component
analysis. Statistics and Computing 28 (3), 713–723.

120

Peng, J. and H.-G. Müller (2008). Distance-based clustering of sparsely observed stochastic
processes, with applications to online auctions. The Annals of Applied Statistics 2 (3),
1056–1077.

Peng, J. and D. Paul (2009). A geometric approach to maximum likelihood estimation of the
functional principal components from sparse longitudinal data. Journal of Computational
and Graphical Statistics 18 (4), 995–1015.

Pezzulli, S. (1993). Some properties of smoothed principal components analysis for func-
tional data. Computational Statistics 8 (1), 1–16.

Phillips, S. M., L. G. Bandini, D. V. Compton, E. N. Naumova, and A. Must (2003).
A longitudinal comparison of body composition by total body water and bioelectrical
impedance in adolescent girls. The Journal of Nutrition 133 (5), 1419–1425.

Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econo-
metric Theory 7 (2), 186–199.

Ramsay, J., G. Hooker, and S. Graves (2009). Functional data analysis with R and MAT-
LAB. Springer, New York.

Ramsay, J. O. and B. W. Silverman (2002). Applied Functional Data Analysis: Methods
and Case Studies. Springer, New York.

Ramsay, J. O. and B. W. Silverman (2005). Functional data analysis. Second Edition.
Springer-Verlag, New York.

Ratcliffe, S. J., G. Z. Heller, and L. R. Leader (2002). Functional data analysis with appli-
cation to periodically stimulated foetal heart rate data. ii: Functional logistic regression.
Statistics in medicine 21 (8), 1115–1127.

Rice, J. and B. Silverman (1991). Estimating the mean and covariance structure nonpara-
metrically when the data are curves. Journal of the Royal Statistical Society. Series
B. 53 (1), 233–243.

Ruby, J. G., C. H. Jan, and D. P. Bartel (2007). Intronic microrna precursors that bypass
drosha processing. Nature 448 (7149), 83–86.

Ruby, J. G., A. Stark, W. K. Johnston, M. Kellis, D. P. Bartel, and E. C. Lai (2007).
Evolution, biogenesis, expression, and target predictions of a substantially expanded set
of drosophila micrornas. Genome Research 17 (12), 1850–1864.

Silverman, B. W. (1996). Smoothed functional principal components analysis by choice of
norm. The Annals of Statistics 24 (1), 1–24.

Song, L., M. Kolar, and E. P. Xing (2009). Keller: estimating time-varying interactions
between genes. Bioinformatics 25 (12), i128–i136.

Steuer, R., J. Kurths, C. O. Daub, J. Weise, and J. Selbig (2002). The mutual information:
detecting and evaluating dependencies between variables. Bioinformatics 18 (2), S231–
S240.

121

Stuart, J. M., E. Segal, D. Koller, and S. K. Kim (2003). A gene-coexpression network for
global discovery of conserved genetic modules. Science 302 (5643), 249–255.

Teicher, H. and Y. S. Chow (1978). Probability Theory: Independence, Interchangeability,
Martingales. Springer-Verlag, New York.

Thomas, R. (1973). Boolean formalization of genetic control circuits. Journal of Theoretical
Biology 42 (3), 563–585.

Tran, N. M. (2008). An introduction to theoretical properties of functional principal compo-
nent analysis. Ph. D. thesis, Department of Mathematics and Statistics, The University
of Melbourne.

Wand, M. P. and M. C. Jones (1994). Kernel smoothing. Chapman and Hall/CRC, London.

Warde-Farley, D., S. L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz,
C. Grouios, F. Kazi, C. T. Lopes, et al. (2010). The genemania prediction server: biological
network integration for gene prioritization and predicting gene function. Nucleic Acids
Research 38 (suppl 2), W214–W220.

Wood, S. (2006). Generalized additive models: an introduction with R. Chapman and
Hall/CRC, London.

Wu, H., T. Lu, H. Xue, and H. Liang (2014). Sparse additive ordinary differential equa-
tions for dynamic gene regulatory network modeling. Journal of the American Statistical
Association 109 (506), 700–716.

Yao, F., H.-G. Müller, and J.-L. Wang (2005a). Functional data analysis for sparse longi-
tudinal data. Journal of the American Statistical Association 100 (470), 577–590.

Yao, F., H.-G. Müller, and J.-L. Wang (2005b). Functional linear regression analysis for
longitudinal data. The Annals of Statistics 33 (6), 2873–2903.

Ye, Y. (1987). Interior Algorithms for Linear, Quadratic, and Linearly Constrained Non-
Linear Programming. Ph. D. thesis, Department of Earth System Science, Stanford Uni-
versity.

Yuan, M. and Y. Lin (2006). Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B 68 (1), 49–67.

Zambom, A. Z. and M. G. Akritas (2017). NonpModelCheck: An R package for nonpara-
metric lack-of-fit testing and variable selection. Journal of Statistical Software 77 (10),
1–28.

Zhang, X. L., H. Begleiter, B. Porjesz, W. Wang, and A. Litke (1995). Event related
potentials during object recognition tasks. Brain Research Bulletin 38 (6), 531–538.

Zhou, J., N.-Y. Wang, and N. Wang (2013). Functional linear model with zero-value coef-
ficient function at sub-regions. Statistica Sinica 23 (1), 25.

Zhou, X.-H., D. K. McClish, and N. A. Obuchowski (2009). Statistical methods in diagnostic
medicine, Volume 569. John Wiley & Sons.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association 101 (476), 1418–1429.

122

Appendix A

Theoretical Results in Section 3.4

We show the proof of Theorem 3.4.1 and 3.4.2 in Section 4 of the main manuscript in details.
These two theorem shows that the empirical FPCs can be obtained by minimizing the mean
L2 errors to the observed function data xi(t).

Theorem 4.4.1. For any τ > 0, let

β̂(t) = arg min 1
n

n∑
i=1

∣∣∣∣∣∣∣∣xi(t)− α(t)〈β, xi〉
∣∣∣∣∣∣∣∣2 + τ

∫
β2(t)dt (A.1)

subject to ||α||2 = 1, then β̂(t) = cφ̂1(t), where φ̂1(t) is the first empirical eigenfunctions of
the sample covariance function g(s, t) = 1

n

∑n
i=1 xi(s)xi(t) and c is a constant scale factor.

Proof. For given α(t), each xi(t) can be expressed as xi(t) = 〈α, xi〉α(t) + ηi(t), in which
ηi ⊥ α, then the loss function

1
n

n∑
i=1
||xi(t)− α(t)〈β, xi〉||2 + τ

∫
β2(t)dt

= 1
n

n∑
i=1
||
(
〈α, xi〉 − 〈β, xi〉

)
α(t)||2 + τ

∫
β2(t)dt+

n∑
i=1
||ηi(t)||2

= 1
n

n∑
i=1
||
∫

(α(t)− β(t))xi(t)dt||2 + τ

∫
β2(t)dt+

n∑
i=1
||ηi(t)||2, (A.2)

Note that the last term in (A.2) does not depend on β(t). Therefore, minimizing (A.2) is
equivalent to minimizing the sum of those first two terms. In addition, we can express both
α(t) and β(t) using the functional principal components φ = (φ1(t), . . . , φK(t)) obtained
by decomposing the sample covariance function g(s, t) = 1

n

∑n
i=1 xi(s)xi(t) of the functional

data. To show that α(t) and β(t) can be expanded using φ, we denote α(t) = α1(t) +α2(t)
and β(t) = β1(t) + β2(t), in which α1(t) = aT1 φ, α2(t) ⊥ span{φ1, . . . , φK}, β1(t) = bT1 φ,

123

and β2(t) ⊥ span{φ1, . . . , φK}. Then α2(t) ⊥ xi(t) and β2(t) ⊥ xi(t). The loss function

1
n

n∑
i=1
||
∫

(α(t)− β(t))xi(t)dt||2 + τ

∫
β2(t)dt

= 1
n

n∑
i=1
||
∫
α1(t)xi(t)dt−

∫
β1(t)xi(t)dt||2 + τ

∫
β2

1(t)dt+ τ

∫
β2

2(t)dt

= 1
n

n∑
i=1
||aT1 si − bT1 si||2 + τ ||b1||2 + τ ||β2||2

= 1
n
||Sa1 − Sb1||2 + τ ||b1||2 + τ ||β2||2,

where si = (
∫
xi(t)φ1(t)dt, . . . ,

∫
xi(t)φK(t)dt)T , and S = (s1, s2, . . . , sn)T is an n×K score

matrix. Then the above loss function becomes a ridge regression problem with the solution

b̂1 = (STS + nτI)−1STSa1 and β̂2(t) ≡ 0.

Substituting the estimate β̂(t) = b̂T1 φ(t) into the loss function, we have

1
n

n∑
i=1
||xi(t)− α(t)

∫
β̂(t)xi(t)dt||2 + τ

∫
β̂2(t)dt

= 1
n

n∑
i=1
||sTi φ(t)− (aT1 φ(t) + α2(t))b̂T1 si||2 + τ b̂T1 b̂1

= 1
n

n∑
i=1
||sTi φ(t)− b̂T1 siaT1 φ(t)||2 + τ b̂T1 b̂1 + 1

n

n∑
i=1
||α2(t)b̂T1 si||2

= 1
n

n∑
i=1
||si − a1b̂T1 si||2 + τ b̂T1 b̂1 + 1

n

n∑
i=1
||α2(t)b̂T1 si||2

=Tr(STS)− 2aT1 STSb̂1 + b̂T1 (nτI + STS)b̂1 + 1
n

n∑
i=1
||α2(t)b̂T1 si||2

=Tr(STS)− aT1 STS(nτI + STS)−1STSa1 + 1
n

n∑
i=1
||α2(t)b̂T1 si||2. (A.3)

The last term in (A.3) is reduced to zero only when α2(t) = 0. In addition, since

STS(nτI + STS)−1STS = diag(λ2
1

nτ + λ1
, . . . ,

λ2
K

nτ + λK
),

the second term in (A.3) is maximized when α̂1 = (1, 0, 0, . . . , 0), due to the fact that
λ1 ≥ λ2 ≥ . . . ≥ λK . Therefore, α̂(t) = φ1(t) and β̂(t) = λ1

nτ+λ1
φ1(t).

The next theorem extends Theorem 3.4.1 into the first J leading FPCs.

Theorem 4.4.2. Let α(t) = (α1(t), . . . , αJ(t)) and β(t) = (β1(t), . . . , βJ(t)). For any τ > 0,
let

(α̂(t), β̂(t)) = arg min 1
n

n∑
i=1
||xi(t)−

J∑
j=1

αj(t)〈βj , xi〉dt||2 + τ
J∑
j=1

∫
β2
j (t)dt

124

subject to 〈αi, αj〉 = δij and δij is the Kronecker delta, then β̂j(t) = cjφ̂j(t), j = 1, . . . , J ,
where φ̂j(t) is the j-th empirical eigenfunctions of the sample covariance function g(s, t) =
1
n

∑n
i=1 xi(s)xi(t) and cj is a scale factor.

Proof. For given α(t), each xi(t) can be expressed as xi(t) =
∑J
j=1〈xi, αj〉αj(t) + ηi(t), in

which ηi ⊥ span{α1, . . . , αJ}, then

1
n

n∑
i=1
||xi(t)−

J∑
j=1

αj(t)〈βj , xi〉dt||2 + τ
J∑
j=1

∫
β2
j (t)dt

= 1
n

n∑
i=1
||
(
〈α(t), xi(t)〉 − 〈β(t), xi(t)〉

)T
α||2 + τ ||β||2 +

n∑
i=1
||ηi(t)||2

= 1
n

n∑
i=1
||〈α, xi(t)〉 − 〈β, xi(t)〉||2 + τ ||β||2 +

n∑
i=1
||ηi(t)||2.

Due to the fact that αj(t) is orthogonal to each other, we can maximize the above loss
function for each βj(t), j = 1, . . . , J separately. More specifically,

β̂j(t) = arg min 1
n

n∑
i=1
||〈αj(t), xi(t)〉 − 〈βj(t), xi(t)〉||2 + τ ||βj(t)||2.

Similarly, we can express both βj(t) and αj(t) using the FPCs φ(t) as βj(t) = bTj φ(t) and
αj(t) = aTj φ(t). Then the solution is given as

b̂j = (STS + nτI)−1STSaj ,

in which si = (
∫
xi(t)φ1(t)dt, . . . ,

∫
xi(t)φK(t)dt)T and S = (s1, s2, . . . , sn)T is an n × K

score matrix. Now substituting b̂j into the loss function, we have

1
n

n∑
i=1
||xi(t)−

J∑
j=1

αj(t)〈βj , xi〉dt||2 + τ
J∑
j=1

∫
β2
j (t)dt

=Tr(STS)− 2Tr(aTSTSb̂) + Tr(b̂T (STS + nτI)b̂

=Tr(STS)− 2
J∑
j=1

Tr(aTj STSb̂j) +
J∑
j=1

Tr(b̂Tj (STS + nτI)b̂j)

=Tr(STS)−
J∑
j=1

Tr(aTj STS(STS + nτI)−1STSaj).

Note that
STS(STS + τI)−1STS = diag(τ2

1
nτ + λ1

, . . . ,
λ2
K

nτ + λK
),

so the loss function is minimized when α̂j(t) = φ̂j(t) and β̂j(t) = λj

λj+nτ φ̂j(t).

125

Appendix B

Theoretical Results in Section 4.2
and Section 4.4

Theorem 4.2.1. For any given value of M

{ψ̂1, . . . , ψ̂M} = arg min 1
n

n∑
i=1

(∫
[xi(t)−

M∑
m=1

αmiψm(t)]2dt
)
, (B.1)

with subject to 〈ψi, ψj〉 = δij . Then {ψ̂1, . . . , ψ̂M} is the first M eigenfunctions of K̂(s, t) =
1
n

∑
i=1[xi(s)xi(t)] and αki = 〈xi, ψk〉.

Proof. We start with M = 1, then the problem above becomes

ψ̂1 = arg min 1
n

n∑
i=1

(∫
[xi(t)− α1iψ1(t)]2dt

)
,

subject to ||ψ1||2 = 1. For every xi(t), we can express it as xi(t) = 〈xi, ψ〉ψ1(t) + ηi(t), in
which ηi ⊥ ψ1.

1
n

n∑
i=1

(∫
[xi(t)− α1iψ1(t)]2dt

)
= 1
n

(∫
[〈xi, ψ1〉ψ1(t) + ηi(t)− α1iψ1(t)]2dt

)

= 1
n

n∑
i=1

(∫
[(〈xi, ψ1〉 − α1i)ψ1(t) + ηi(t)]2dt

)

= 1
n

n∑
i=1

∫ [
(〈xi, ψ1〉 − α1i)ψ1(t)

]2
dt+ 1

n

n∑
i=1

∫
η2
i (t)dt

126

The first term is minimized when α1i = 〈xi, ψ1〉 and the second term is minimized only
when ψ(t) is the first eigenfunction of K̂(s, t). This is because

1
n

n∑
i=1

(∫
[xi(t)− 〈xi, ψ1〉ψ1(t)]2dt

)
= 1
n

n∑
i=1

(∫
xi(t)2dt− 2

∫
〈xi, ψ1〉xi(t)ψ1(t)dt

+ 〈xi, ψ1〉2
∫
ψ2

1(t)dt
)

= 1
n

n∑
i=1

∫
x2
i (t)dt−

1
n

n∑
i=1
〈xi, ψ1〉2

= 1
n

n∑
i=1

∫
x2
i (t)dt−

1
n

n∑
i=1

∫
xi(t)ψ1(t)dt

∫
xi(s)ψ1(s)ds

= 1
n

n∑
i=1

∫
x2
i (t)dt−

1
n

n∑
i=1

∫ ∫
xi(t)ψ1(t)xi(s)ψ1(s)dsdt

= 1
n

n∑
i=1

∫
x2
i (t)dt−

∫ ∫
ψ1(t)K̂(s, t)ψ1(s)dsdt.

We can easily see that the second term is maximized when ψ1(t) is the first eigenfunction
of K̂(s, t) .

WhenM > 1, we can write each xi(t) =
∑M
m=1〈xi, ψm〉ψm(t)+ηi(t) and ηi ⊥ span{ψ1, . . . , ψM}.

Following the same strategy, we can first show that αmi = 〈xi, ψm〉. Then the problem be-
comes minimizing

1
n

n∑
i=1

(∫
[xi(t)−

M∑
m=1
〈xi, ψm〉ψm(t)]2dt

)
= 1
n

n∑
i=1

∫
x2
i (t)dt−

M∑
m=1

∫ ∫
ψm(t)K̂(s, t)ψm(s)dsdt,

which is equivalent to maximizing the second term. It is only when ψ̂1, . . . , ψ̂K are the first
K leading eigenfunctions of the sample covariance function K̂(s, t) that the second term is
maximized.

Lemma 4.4.1. Let (mi) be independent positive random variables with mean 1 and∑∞
i=1 E(mi− 1)2/i2 <∞. For any sequence (ai) of positive numbers such that

∑∞
i=1 E(mi−

1)2a2
i /i

2 <∞ we have

lim
n→∞

1
n

n∑
i=1

ai = lim
n→∞

1∑n
i=1mi

n∑
i=1

miai a.s.

Proof. Since
∑n
i=1mi/n→ 1 a.s. under the assumption and by Kolmogorov’s strong law of

large numbers, e.g. Theorem 1, p. 121 in Teicher and Chow (1978), it suffices to prove that

lim
n→∞

1
n

n∑
i=1

(mi − 1)ai = 0 a.s.

Another application of Kolmogorov’s strong law of large numbers completes the proof.

127

Lemma 4.4.2. Let {mij : i = 1, 2, . . . , j = 1, 2, . . .} be positive random variables. For each
j = 1, 2, . . ., {mij : i = 1, 2, . . .} are independently and identically distributed with mean 1
and finite variance. Then for any infinite matrix A = [Aij], with λj = limn

1
n

∑n
i=1 a

2
ij exists

for each j, as n→∞,

lim
n→∞

1
n

n∑
i=1

∞∑
j=1

a2
ij = lim

n→∞
1
n

n∑
i=1

∞∑
j=1

a2
ijmij =

∞∑
j=1

λj .

Proof. First note that limn→∞
1
n

∑n
i=1 a

2
ij <∞ implies

∑∞
i=1 a

2
ij/i

2 <∞. The conditions in
Lemma 4.4.1 for {mij : i = 1, 2, . . .} read

∞∑
i=1

E(mij − 1)2/i2 <∞

∞∑
i=1

E(mij − 1)2a2
ij/i

2 <∞,

which are true by assumption. Hence for fixed p, we have from Lemma 4.4.1, almost surely,

lim
n→∞

1
n

n∑
i=1

p∑
j=1

a2
ij = lim

n→∞
1
n

n∑
i=1

p∑
j=1

a2
ijmij .

Since by Tonelli’s theorem,

lim
n

lim
p

1
n

n∑
i=1

p∑
j=1

a2
ij = lim

p
lim
n

1
n

n∑
i=1

p∑
j=1

aij ,

and
lim
n

lim
p

1
n

n∑
i=1

p∑
j=1

a2
ijmij = lim

p
lim
n

1
n

n∑
i=1

p∑
j=1

aijmij , a.s.

the proof is complete.

Lemma 4.4.3. For a matrix An×p = [aij], the r-rank with r ≤ min(n, p) approximation of
A under the Frobenius norm of matrices is Ã =

∑r
i=1 αi ⊗ βi where αi and βi are the r left

and r right singular eigenvectors of A; i.e. the eigenvectors of AAT and ATA.

Proof. By singular value decomposition of A, we can write A =
∑min(n,p)
k=1 dkuk ⊗ vk, where

(uk)nk=1 and (vk)pk=1 are orthogonal basis in Rn and Rp. Hence A−
∑r
i=1αi⊗βi has minimum

squared Frobenius norm
∑min(n,p)
i=r+1 d2

i with minimizing αi = diui and βi = vi.

Remark 1. If A has orthogonal columns, ATA has unit basis vectors as eigenvectors; i.e.,
the βi’s are ei ∈ Rp, where ei has only the i-th entry non-zero, with value 1.

128

Given sparse observations of functional data yij = xi(tij) + εij , where the observation times
tij , j = 1, . . . , ni, for subject i are uniformly drawn from [0, 1], recall the objective function

Ln(α, ψ) = 1
n

n∑
i=1

1
ni

ni∑
j=1

[yij − αiψ(tij)]2 (B.2)

where α = (αi) ∈ Rn and ψ(t) is a function on [0, 1] with constraint
∫ 1

0 ψ
2(t)d t = 1.

Theorem 4.4.1. Let the Mercer expansion with kernel k(s, t) = EX(s)X(t) of the stochas-
tic process X(t) be {λk, ψ0

k : k = 1, 2, · · · }. Assume
∑
k λk < ∞ and

∫ 1
0 [ψ0

k(t)]4d t < ∞ for
each k = 1, 2, · · · , then the minimizer ψ̂(t) of Ln converges to ψ0

1(t) in L2(0, 1) almost surely
as n→∞.

Proof. Since Ψ0 := {ψ0
k : k = 1, 2, · · · } is a complete orthonorml system in L2[0, 1], we

represnet ψ(t) as ψ(t) = βTΨ0 for coefficient vector β = (βi). We also represent xi(t) =∑∞
k=1 aikψ

0
k(t) for i = 1, · · · , n, then (B.2) becomes

Ln(α,β) = 1
n

n∑
i=1

1
ni

ni∑
j=1

[yij − αiψ(tij)]2

= 1
n

n∑
i=1

∞∑
k=1

(aik − αiβk)2mik

+ −2
n

n∑
i=1

∞∑
k=1

(aik − αiβk)
1
ni

ni∑
j=1

εij

+ 1
n

n∑
i=1

1
ni

ni∑
j=1

ε2ij

where mik = 1
ni

∑ni
j=1 [ψ0

k(tij)]2. Since εij are i.i.d. mean zero normal errors, the second term
in the last equality in the above display converges to 0 and the third σ2 by strong law of
large numbers. Since tij are uniformly drawn from [0, 1], then

Emik = 1
ni

ni∑
j=1

∫ 1

0
[ψ0
k(tij)]2 dtij = 1,

as ψk are constrained to have norm 1 in L2[0, 1]. By Lemma 2, almost surely,

lim
n→∞

1
n

n∑
i=1

∞∑
k=1

(aik − αiβk)2mik = lim
n→∞

1
n

n∑
i=1

∞∑
k=1

(aik − αiβk)2 =: L(α,β)

hence the minimizer β̂ of Ln(α,β) will converge to the minimizer β of L(α,β) (as Ln(α,β)
are convex functions of (α,β), see e.g. the Convexity Lemma in Pollard (1991)), which is
the first eigenvector of ATA, with A = (aik)k=1,2,...

i=1,2,... and we know A has orthogonal columns,
thus β = (1, 0, · · ·). Hence ψ̂(t) := β̂

TΨ0(t) converges to ψ0
1(t) in L2[0, 1] almost surely.

129

Theorem 4.4.2. The minimizers ψ̂l(t), l = 1, · · · ,M , of the loss function

Ln({αl, ψl}Ml=1) = 1
n

n∑
i=1

1
ni

ni∑
j=1

[yij −
M∑
l=1

αilψl(tij)]2 (B.3)

converges to ψ0
l (t), l = 1, · · · ,M in L2[0, 1] almost surely as n→∞.

Proof. We denote βl as the coefficients of projection of ψl(t) on the basis (ψ0
k) of L2[0, 1],

then the objective function (B.3) becomes

Ln({αl,βl}Ml=1) = 1
n

n∑
i=1

∞∑
k=1

(aik − (
M∑
l=1
αl ⊗ βl)ik)2mik + oP (1)

which have minimizers β̂l such that β̂l → el in `2 for each 1 ≤ l ≤M by the same argument
as for M = 1.

130

	Approval
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Supervised Functional Principal Components Analysis
	Introduction
	Estimating Functional Linear Models using FPCA
	Method
	Supervised FPCA
	Smooth Supervised FPCA
	Computational Details
	Binary Response Variable
	Functional Regression

	Application
	Simulation Studies
	The First Simulation Study
	The Second Simulation Study

	Summary

	Sparse Functional Principal Components Analysis
	Introduction
	Sparse Functional Principal Component Analysis
	Sparsity Penalty
	Connection to the Conventional FPCA

	Estimation Method
	Estimate j(t) for Given j(t)
	Estimate j(t) for Given j(t)
	Detailed Algorithms
	Choosing Tuning Parameters
	Adjusted Total Variance Explained

	Theoretical Results
	Application
	Simulation Study
	Summary

	Recovering the Underlying Trajectory from Sparse and Irregular Longitudinal Data
	Introduction
	Functional Empirical Component Analysis
	Sparse Orthonormal Approximation Method
	Estimating the First FEC
	Estimating the First and Second FECs
	Estimating More FECs
	Smoothness Regulation
	Selecting the Number of FECs

	Theoretical Results
	Application: Longitudinal CD4 Percentages
	Simulations
	Summary

	Estimating Derivatives from Sparse and Irregularly Longitudinal Data
	Introduction
	Derivative Functional Empirical Component Analysis
	Estimation Method
	Estimating the first DeFEC
	Estimating the first and the second DeFECs
	Estimating More DeFECs
	Smoothness Regulation
	Determine the Number of DeFECs

	Real Data Application
	Simulation Studies
	Conclusions

	Sparse Functional Single Index Model
	Introduction
	Methodology
	A sparse Functional Single Index Model
	Sparsity Penalty

	Summary of Computing Algorithm
	Estimating the Link Function g()
	Estimating the Index Function (t)
	Tuning Parameter Selection

	Application
	Simulation
	Summary

	Estimation of Directed Time-varying Gene Regulation Network
	Introduction
	Method
	An ODE Model for Time-Varying Directed Gene Regulation Networks
	Sparsity Penalty
	Roughness Penalty
	Parameter Estimation
	Identifiability Issue
	Choose Tuning parameters
	Derivative Estimation

	Application
	Simulation
	Summary

	Bibliography
	Appendix Theoretical Results in Section 3.4
	Appendix Theoretical Results in Section 4.2 and Section 4.4

