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Abstract

A hierarchical credibility model is a generalization of the Bühlmann credibility model and
the Bühlmann-Straub credibility model with a tree structure of four or more levels. This
project aims to incorporate the hierarchical credibility theory, which is used in property
and casualty insurance, to model the dependency of multi-population mortality rates. The
forecasting performances of the three/four/five-level hierarchical credibility models are com-
pared with those of the classical Lee-Carter model and its three extensions for multiple
populations (joint-k, cointegrated and augmented common factor Lee-Carter models). Nu-
merical illustrations based on mortality data for both genders of the US, the UK and Japan
with a series of fitting year spans and three forecasting periods show that the hierarchical
credibility approach contributes to more accurate forecasts measured by the AMAPE (av-
erage of mean absolute percentage errors). The proposed model is convenient to implement
and can be further applied to projecting a mortality index for pricing mortality-indexed
securities.

Keywords: Hierarchical Credibility Theory; Bühlmann Credibility Theory; Lee-Carter
Model; Multi-population Mortality Model
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Chapter 1

Introduction

As medical services, health care and living conditions have improved dramatically, the life
expectancy of human have increased over the recent decades, which greatly affects life in-
surance, annuities, pension plans, and social security systems. Policyholders pay premiums
to insurance companies in exchange for financial protections. With accurate forecasts of
mortality rates, the companies can sell their products with competitive premiums, set up
adequate reserves, and maintain financial solvency. However, inaccurate mortality forecasts
may lead insurance companies to financial insolvency due to underpricing or loss of market
shares because of overpricing. Therefore, constructing an effective and accurate mortality
model is essential to pricing and reserving of life insurance, annuities, and mortality-linked
securities.

In a global world, medicine, public health and living environment of developed countries
progress at a similar pace. Therefore, the mortality rates for these well-developed coun-
tries are inclined to be correlated. Especially, within a country, the mortality experience
of the female population is highly correlated to that of the male population since they are
exposed to the same medical and environmental situations. A mortality index is a weighted
average of the realized mortality rates over an age span and both genders of some selected
countries. Recently, mortality-indexed/-linked securities and derivatives, such as longevity
bonds, longevity index, and longevity swaps, are arising. Life insurance companies and pen-
sion providers are interested in those financial securities and derivatives to hedge mortality
and longevity risks. Consequently, building a multi-population mortality model that takes
into account the dependency of multi-population mortality rates and provides a high degree
of accuracy in projecting mortality rates and index is important in these days.

Credibility theory is widely applied in property and casualty insurance, where the cred-
ibility estimate for the next year is a weighted average of the sample mean of the past claim
data of a policyholder and the true mean of claims. The claim data can be severities or
frequencies of claims, and the claim data for all policyholders in a group can be treated as
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a tree structure of three levels. Taking group auto insurance as an example, level one is
the individual claim data in the past years for each policyholder, and level two represents
the group risk to which the policyholder belongs, which is shown within the dashed box of
Figure 1.1. The sample mean is calculated based on the past experiences of a given policy-
holder, and the true mean can be estimated from the past experiences of all policyholders
in the whole group. Tsai and Lin (2017a, b) incorporated the Bühlmann credibility model
to forecast mortality rates for a single population, which provides more accurate forecasts
than the Lee-Carter model.

Level

4

3 Region 1 . . . . Region r . . . . Region R

2 Group 1 . . . . Group g . . . . Group G

1 PH 1 . . . . PH p . . . . PH m

0 Year 1 . . . . Year t . . . . Year n

Business Line

r

Figure 1.1: Five-level tree structure

Hierarchical credibility is similar to the classical credibility theory. Actually, it is a
generalization of the credibility theory with a tree structure of more levels. Using the
same example for illustration, hierarchical credibility can be used to model claim severi-
ties/frequencies in a tree structure of five levels. As the tree structure shown in Figure 1.1,
level two stands for groups with a number of policyholders for each group, and level three
represents regions with a number of groups for each region, operating a specific business
line. The non-parametric Bühlmann estimate follows a procedure where the sample means
are calculated in a hierarchical order from bottom to top: firstly, the sample mean of the
past claim severities/frequencies in level zero for policyholder p of group g in region r is
calculated to get the policyholder sample mean Y r, g, p, • for all policyholders in level one;
secondly, the average of the policyholder sample means Y r, g, p, • over all policyholders of
group g in region r is computed to get the group sample mean Y r, g, •, • (an estimate of
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the true mean of claim severities/frequencies for group g in region r) for all groups in level
two; thirdly, the average of the group sample means Y r, g, •, • over all groups in region r is
calculated to obtain the region sample mean Y r, •, •, • (an estimate of the true mean of claim
severities/frequencies for region r) for all regions in level three; and finally, the average
of the region sample means Y r, •, •, • over all regions is computed to achieve the business
line sample mean Y •, •, •, • (an estimate of the true mean of claim severities/frequencies for
the business line) in level four. Four weights determined by Bühlmann and Gisler (2005),
summing to one, are assigned to the policyholder sample mean Y r, g, p, •, the group sam-
ple mean Y r, g, •, •, the region sample mean Y r, •, •, •, and the business line sample mean
Y •, •, •, •, respectively. The non-parametric hierarchical credibility estimate for region r,
group g, policyholder p and the next year is then obtained by a weighted average of the four
sample means. That is, the credibility estimate is determined by the four sample means and
corresponding weights, and thus each of the past claim data for all policyholders, groups
and regions has a different degree of contribution to the value of the hierarchical credibility
estimate.

We notice that the multi-country mortality data also have a hierarchical structure.
Therefore, the aim of this project is to generalize the Bühlmann credibility mortality model
from a single population to multiple populations by incorporating the hierarchical credibility
approach into multi-country mortality data. To apply the four-level (five-level) hierarchi-
cal credibility to multi-population mortality data, the levels from bottom to top are year,
age, and gender (year, age, gender and country). Same as the Bühlmann credibility model
approach to modelling mortality rates (see Tsai and Lin, 2017a, b), there are two strategies
for forecasting mortality rates for two and more years, the expanding window (EW) and the
moving window (MW). We compare the forecasting performances with an error measure
among the three-level, four-level and five-level hierarchical credibility mortality models and
the classical Lee-Carter model and its three variations for multiple populations. Numeri-
cal illustrations show that the proposed hierarchical credibility approaches produce more
accurate forecasts.

The remainder of this project proceeds as follows: Chapter 2 provides the literature
review on existing single and multi-population mortality models, including the Lee-Carter
model and its extensions, the CBD model and other models; it also reviews the Bühlmann
credibility model and the hierarchical credibility model. In Chapter 3, we introduce the
four-level and five-level hierarchical credibility approaches to modelling multi-population
mortality rates, and apply them to projecting mortality rates for six populations (US male,
US female, UK male, UK female, Japan male and Japan female). Chapter 4 compares
the forecasting performances of the proposed hierarchical approaches with the Bühlmann
credibility mortality model and the Lee-Carter model and its variations for multiple popu-
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lations. The comparisons are shown in seven figures and three tables. Chapter 5 concludes
this project.
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Chapter 2

Literature Review

2.1 Mortality

Over the last few decades, lots of mortality models were developed to provide accurate
predictions of mortality rates. The Lee-Carter model proposed by Lee and Carter (1992)
is a significant milestone. As an effective and most popular mortality model in actuarial
literature, it provides long term forecasting by modelling the logarithm of central death
rate as a function of a period-specific factor and two age-specific parameters. Another
famous mortality model is the Cairns-Blake-Dowd (CBD) model proposed by Cairns et al.
(2006). The CBD model focuses on forecasting post-age-60 mortality rates by a two-factor
stochastic model where one factor has the same influence on all ages and the other factor
has more influence on elder ages than younger ages. Tsai and Yang (2015) introduced a
linear relational approach to modelling mortality rates, which is easy to implement and
understand, and also provides features and potential applications that are not available
in the Lee-Carter and CBD models. Tsai and Lin (2017a, b) incorporated the Bühlmann
credibility theory, which is commonly applied in property and casualty insurance, into
modelling of mortality rates. Comparing its forecasting performances with the Lee-Carter
and CBD models, the model proposed by Tsai and Lin (2017a, b) has better forecasting
performances based on the measure of MAPE.

Numerous extensions of the Lee-Carter and CBD models were developed. Renshaw and
Haberman (2006) generalized the Lee-Carter model to a non-linear model which includes
age-specific cohort effects and age-specific period effects; Li et al. (2009) proposed an exten-
sion of the Lee-Carter model that provides more conservative interval forecasts of the central
death rate by considering individual differences in each age-period cell; Plat (2009) gave a
model that combines some nice features of the Lee-Carter, CBD and Renshaw-Haberman
models while eliminating the disadvantages of those models; Mitchell et al. (2013) intro-
duced a model based on the idea of bilinear modelling of age and time from the original
Lee-Carter model but it suggested to model the change in the logarithm of central death
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rate instead of the level of central death rate. Lin et al. (2015) proposed AR-GARCH
models to forecast mortality rates for a given age and employed a copula method to capture
the inter-age mortality dependence.

Besides the single population mortality models, there are intensive developments in
multi-population mortality models. Various extensions of the Lee-Cater model focus on
modelling the dependency of multi-population mortality rates. Carter and Lee (1992) pro-
posed the joint-k model to reflect the relation between two populations by using a common
time-varying index for both populations. Li and Hardy (2011) suggested that the time-
varying index for population j (j ≥ 2) is linearly related to the time-varying index for the
base population, which is called the cointegrated Lee-Carter model. Li and Lee (2005) gave
the augmented common factor Lee-Carter model to model and forecast mortality rates for
multiple populations in a coherent way, which not only considers the commonalities in the
historical experience but also includes the individual differences in the trends.

Mortality rates in different countries might be correlated with each other. Besides the
extensions of the Lee-Carter model, there are vast literature focusing on multi-population
mortality modelling. Cairns et al. (2011) proposed a Bayesian stochastic mortality model
to deal with the dynamics of mortality rates in a pair of populations, which is designed
for a large population coupled with a small sub-population. It models the difference in the
stochastic factors between two populations using a mean-reverting autoregressive process.
Therefore, the mortality forecasts do not diverge over the long run. This model fully allows
parameter uncertainty and has flexibility to deal with missing data. Zhou et. al (2014) gave
an intuitive extension which models stochastic factors using a vector error correction model.
Yang and Wang (2013) suggested a vector error correction model to deal with multi-country
longevity risk. Kleinow (2015) introduced a common age effect model to govern the multi-
population mortality rates. Copula models have been incorporated into multi-population
mortality rates modelling in the last few years. Wang et. al (2015) captured the mortality
dependence between multi-country mortality rates with a time-varying copula model. The
typical multi-population mortality models, taking the models above as examples, assume
the mortality rates across different countries converge in the long time. Chen et al. (2015)
thought this assumption is too strong to model short-term mortality rates and proposed a
two-stage procedure, an ARMA-GARCH process followed by a one-factor copula model, to
model the mortality dependence for multiple populations.

2.2 Credibility

Credibility theory is widely applied in property and casualty insurance such as auto insur-
ance, workers’ compensation and fire insurance. Bühlmann (1967) proposed a distribution-
free credibility formula to determine the credibility premium based on the past experiences
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of the risks. The premium is calculated by the weighted average of the collective mean and
the individual mean, where the weight is determined by the least expected square devia-
tion of the expected value and its linear estimation. Bühlmann credibility theory has built
the foundation of credibility model. Furthermore, Bühlmann and Straub (1970) extended
the Bühlmann model by allowing unequal number of exposure units for each risk, which
enlarges the applicable situations. For such a model, drivers with different number of years
of experiences can be grouped together to determine their premiums for the next year.

The Bühlmann and Bühlmann-Straub credibility models assume claim counts or sizes
are independent over their associated risks, which simplifies the premium calculations. How-
ever, it is obvious that the assumption is not practical. Over the past few decades, numerous
extensions of Bühlmann and Bühlmann-Straub credibility models were proposed to account
for the dependency of risks. Jewell (1975) modified the credibility formula by using the col-
lateral data, and built a hierarchical model to include the correlation among the risks.
Dannenburg (1995) generalised Jewell’s hierarchical model and introduced the crossed clas-
sification credibility (CCC) model which governs all risk factors symmetrically, with an
assumption that the numbers of risk factors are the same for all contracts. Goulet (2001)
proposed a generalized crossed classification credibility model (GCCC) by allowing a vari-
ous number of risk factors for each contract. To allow the risks to be generally dependent,
Wen and Wu (2011) extended the Bühlmann and Bühlmann-Straub models to a regression
credibility model by re-building the credibility estimators under a general dependence struc-
ture. Yeo and Valdez (2006) and Wen et al. (2009) focused on modelling the dependence
caused by common effects. Poon and Lu (2015) studied the Bühlmann-Straub credibility
model by considering two kinds of dependences, the dependence among risk factors and the
conditional spatial cross-sectional dependence.

Hierarchical structure is frequently used in calculating premiums. The expected ag-
gregate premium of a line of insurance is calculated and then distributed to lower levels,
such as regions and individuals. Bühlmann and Gisler (2005) incorporated the idea of hi-
erarchical structure to the credibility theory to achieve the hierarchical credibility model.
The observations are assumed to be independent conditioning on their next higher level of
risk parameters. It can be seen that the hierarchical credibility is a generalization of the
Bühlmann model and the Bühlmann-Straub model with a higher order of tree structure.
This project applies the hierarchical credibility approach to modelling multi-population
morality rates, which accounts for the dependence among populations and makes decent
contributions to the multi-population mortality modelling.
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Chapter 3

Hierarchical Credibility Mortality
Model

This Chapter applies the hierarchical credibility idea from Bühlmann and Gisler (2005) to
propose a hierarchical credibility mortality model for multi-country populations, which is
a generalization of the non-parametric Bühlmann credibility mortality model for a single
population proposed by Tsai and Lin (2017b).

Figure 3.1: A five-level hierarchical tree structure for multi-country populations

Figure 3.1 structures mortality data for multiple countries in a five-level (levels 0−4)
hierarchical tree with the top level (level 4) being the multi-country, which consists of
mortality data from C countries. Each country is broken down into G genders (G = 2).
Within each gender, there are consecutive ages xL, · · · , xU . Finally, each age has yearly
data from year tL to year tU , which is the bottom level (level 0). Denote Ψ the risk
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factor related to countries, Φ the risk factor related to countries and genders and Θ the
risk factor related to countries, genders and ages. Denote mc, g, x, t the central death rate
for country c, gender g, age x and year t. The Lee-Carter model and its three varia-
tions for multiple populations use ln(mc, g, x, t) to model mortality rates. Figure 3.2 shows
that the historical mortality data ln(mc, g, x, t)s from the Human Mortality Database for
the US, the UK and Japan display a downward trend over year t = 1950, · · · , 2010 for
x = 25, 50, 75. As with the Bühlmann credibility mortality model proposed by Tsai and
Lin (2017a, b), we apply the hierarchical credibility approach to modelling Yc, g, x, t =
ln(mc, g, x, t)− ln(mc, g, x, t−1), the yearly decrement of the logarithm of central death rate for
country c, gender g and age x over [t− 1, t], in order to eliminate the downward trend (see
Figure 3.3) and more importantly make the yearly decrement Yc, g, x, t for all t be indepen-
dent and identically distributed given c, g and x. Since we will use indices x = 1, · · · , X
and t = 1, · · · , T for simplifying notations, given mortality data ln(mc, g, x, t)s in an age-year
rectangle [xL, xU ]×[tL, tU ] for a population of country c and gender g, the age span [xL, xU ]
and the year span [tL, tU ] for ln(mc, g, x, t) correspond to [1, X] and [1, T ] for Yc, g, x, t, respec-
tively; that is, Yc, g, x, t

4= ln(mc, g, xL+x−1, tL+t) − ln(mc, g, xL+x−1, tL+t−1) for x = 1, · · · , X
and t = 1, · · · , T , where X = xU − xL + 1 and T = tU − tL. Our goal is to apply a hier-
archical credibility approach to the yearly decrements Yc, g, x, t s to obtain the hierarchical
credibility estimates Ŷc, g, x, T+t for t = 1, · · · , τ . Then the hierarchical credibility estimate
ln(m̂c, g, xL+x−1, tU+τ ) = ln(mc, g, xL+x−1, tU ) +

∑τ
t=1 Ŷc, g, x, T+t.

(a) US Males (b) UK Males (c) Japan Males

(d) US Females (e) UK Females (f) Japan Females

Figure 3.2: ln(mc, g, x, t) against t for age x = 25, 50 and 75
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(a) US Males (b) UK Males (c) Japan Males

(d) US Females (e) UK Females (f) Japan Females

Figure 3.3: Yc, g, x, t = ln(mc, g, x, t)− ln(mc, g, x, t−1) against t for age x = 25, 50 and 75

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

−0.2

−0.1

0.0

0.1

0.2

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le

(a) age x = 25

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le

(b) age x = 50

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.15

−0.10

−0.05

0.00

0.05

0.10

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le

(c) age x = 75

Figure 3.4: Q-Q plots of Yc, g, x, t for UK males

3.1 Assumptions and Notations

This section first gives the assumptions and then the notations for conditional means, mean,
conditional variances and variances for a hierarchical tree based on Chapter 6 of Bühlmann
and Gisler (2005). The assumptions for levels 0–3 of a hierarchical tree are given as follows:

• Level 3: Ψc, c = 1, · · · , C, at level 3 are independent and identically distributed;

• Level 2: given Ψc at level 3 for fixed country c, Φc, g, g = 1, · · · , G, at level 2 are
independent and identically distributed;
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• Level 1: given Φc, g at level 2 for fixed country c and gender g, Θc, g, x, x = 1, · · · , X,
at level 1 are independent and identically distributed; and

• Level 0: given Θc, g, x at level 1 for fixed country c, gender g and age x, Yc, g, x, t,
t = 1, · · · , T , at level 0 are independent and identically distributed.

The Q-Q plots of historical yearly decrements for UK males aged 30, 50 and 70 are
plotted in Figure 3.4 as an example. The Q-Q plots follow the line y = x which indicates
the yearly decrements for all t are independently and identically distributed given country,
gender and age.

First, we denote the mean for level 4 and the conditional means for levels 1–3 below:
• Level 4: µ4

4= E[Yc, g, x, t], the unconditional expectation of Yc, g, x, t for all years t,
ages x, genders g, and countries c at levels 0–3 (the common mean is one of the key
assumptions for the classical Bühlmann credibility model);

• Level 3: µ3(Ψc)
4= E[Yc, g, x, t|Ψc], the conditional expectation of Yc, g, x, t for all years

t, ages x, and genders g at levels 0–2 under country c, given Ψc at level 3;

• Level 2: µ2(Φc, g)
4= E[Yc, g, x, t|Φc, g], the conditional expectation of Yc, g, x, t at for all

years t and ages x at levels 0–1 under gender g and country c, given Φc, g at level 2;
and

• Level 1: µ1(Θc, g, x) 4= E(Yc, g, x, t|Θc, g, x), the conditional expectation of Yc, g, x, t for all
years t at level 0 under age x, gender g and country c, given Θc, g, x at level 1.

By the law of total expectation, we can show that
• µ2(Φc, g) = E[Yc, g, x, t|Φc, g] = E[E(Yc, g, x, t|Θc, g, x)|Φc, g] = E[µ1(Θc, g, x)|Φc, g],

• µ3(Ψc) = E[Yc, g, x, t|Ψc] = E{E[E(Yc, g, x, t|Θc, g, x)|Φc, g]|Ψc} = E[µ2(Φc, g)|Ψc], and

• µ4 = E[Yc, g, x, t] = E{E{E[E(Yc, g, x, t|Θc, g, x)|Φc, g]|Ψc}} = E[µ3(Ψc)].

Next, we denote the following conditional variances for levels 1–3:
• Level 3: σ2

3(Ψc)
4= V ar[µ2(Φc, g)|Ψc] = E{[µ2(Φc, g) − µ3(Ψc)]2|Ψc}, the conditional

variance of µ2(Φc, g) at level 2 given Ψc at level 3;

• Level 2: σ2
2(Φc, g)

4= V ar[µ1(Θc, g, x)|Φc, g] = E{[µ1(Θc, g, x) − µ2(Φc, g)]2|Φc, g}, the
conditional variance of µ1(Θc, g, x) at level 1 given Φc, g at level 2; and

• Level 1: σ2
1(Θc, g, x)
wc, g, x, t

4= V ar[Yc, g, x, t|Θc, g, x] = E{[Yc, g, x, t − µ1(Θc, g, x)]2|Θc, g, x}, the

conditional variance of Yc, g, x, t at level 0 given Θc, g, x at level 1, where wc, g, x, t is a
known exposure unit and not necessarily equal for all c, g, x and t (the traditional
Bühlmann-Straub credibility model allows unequal exposure units for more applica-
tions, but the Bühlmann one requires equal exposure units).

Last, the variance for level 3 and the expected conditional variances for levels 0–2 are
denoted as follows:
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• Level 3: σ2
3
4= V ar[µ3(Ψc)], the variance of µ3(Ψc) at level 3;

• Level 2: σ2
2
4= E[σ2

3(Ψc)] = E{V ar[µ2(Φc, g)|Ψc]}, the expectation of the conditional
variance of µ2(Φc, g) at level 2 given Ψc at level 3;

• Level 1: σ2
1
4= E[σ2

2(Φc, g)] = E{V ar[µ1(Θc, g, x)|Φc, g]}, the expectation of the condi-
tional variance of µ1(Θc, g, x) at level 1 given Φc, g at level 2; and

• Level 0: σ2
0
4= E[σ2

1(Θc, g, x)] = E{wc, g, x, t · V ar[Yc, g, x, t|Θc, g, x]}, the expectation of
wc, g, x, t times the conditional variance of Yc, g, x, t at level 0 given Θc, g, x at level 1.

It can be shown by the law of total expectation that σ2
0 = E{wc, g, x, t · [Yc, g, x, t −

µ1(Θc, g, x)]2}, σ2
1 = E{[µ1(Θc, g, x) − µ2(Φc, g)]2}, σ2

2 = E{[µ2(Φc, g) − µ3(Ψc)]2}, and σ2
3 =

E{[µ3(Ψc)− µ4]2}.

Note that by the law of total variance, we have

V ar[µ2(Φc, g)] = E{V ar[µ2(Φc, g)|Ψc]}+ V ar{E[µ2(Φc, g)|Ψc]}

= σ2
2 + V ar[µ3(Ψc)] = σ2

2 + σ2
3,

and

V ar[µ1(Θc, g, x)] = E{V ar[µ1(Θc, g, x)|Φc, g]}+ V ar{E[µ1(Θc, g, x)|Φc, g]}

= σ2
1 + V ar[µ2(Φc, g)] = σ2

1 + σ2
2 + σ2

3.

3.2 Model Prediction

The estimation of structural parameters and determination of credibility factors given in
Bühlmann and Gisler (2005) are quite complicated, and thus are placed in Appendix B.

When wc, g, x, t = 1 (equal exposure units) for c = 1, · · · , C, g = 1, · · · , G, x = 1, · · · , X,
and t = 1, · · · , T , the hierarchical credibility estimate of the decrement over [T, T + 1] in
the logarithm of central death rate for country c, gender g and age x under this special case
(refer to (A.6)) is

Ŷc, g, x, T+1 = α̂(1) · Y c, g, x, • + [(1− α̂(1)) · α̂(2)] · Y c, g, •, •

+[(1− α̂(1)) · (1− α̂(2)) · α̂(3)] · Y c, •, •, •

+[(1− α̂(1)) · (1− α̂(2)) · (1− α̂(3))] · Y •, •, •, •, (3.1)

where the expressions for α̂(1), α̂(3) and α̂(3) in (3.1) are given in Table B.3. Note that
Ŷc, g, x, T+1 is the credibility-factor-weighted average of

• Y c, g, x, • = 1
T

∑T
t=1 Yc, g, x, t = 1

T

∑T
t=1[ln(mc, g, xL+x−1, tL+t) − ln(mc, g, xL+x−1, tL+t−1)]

(the average annual decrement of {ln(mc, g, xL+x−1, tL+t) : t = 0, · · · , T}, the age time
series over [0, T ] for age x under gender g and country c);
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(a) US Males, age 50 (b) UK Males, age 50 (c) Japan Males, age 50

(d) US Females, age 50 (e) UK Females, age 50 (f) Japan Females, age 50

Figure 3.5: Time series for four different levels

• Y c, g, •, • = 1
T

∑T
t=1 Y c, g, •, t = 1

T

∑T
t=1[ln(mc, g, •, tL+t)− ln(mc, g, •, tL+t−1)] (the average

annual decrement of {ln(mc, g, •, tL+t) = 1
X

∑X
x=1 ln(mc, g, xL+x−1, tL+t) : t = 0, · · · , T},

the gender time series over [0, T ] for gender g under country c);
• Y c, •, •, • = 1

T

∑T
t=1 Y c, •, •, t = 1

T

∑T
t=1[ln(mc, •, •, tL+t)− ln(mc, •, •, tL+t−1)] (the average

annual decrement of {ln(mc, •, •, tL+t) = 1
G

∑G
g=1 ln(mc, g, •, tL+t) : t = 0, · · · , T}, the

country time series over [0, T ] for country c); and
• Y •, •, •, • = 1

T

∑T
t=1 Y •, •, •, t = 1

T

∑T
t=1[ln(m•, •, •, tL+t)− ln(m•, •, •, tL+t−1)] (the average

annual decrement of {ln(m•, •, •, tL+t) = 1
C

∑C
c=1 ln(mc, •, •, tL+t) : t = 0, · · · , T}, the

multi-country time series over [0, T ] for all C countries).

Figure 3.5 displays time series for four different levels: {ln(mc, g, 50, 1950+t) : t = 0, · · · , 60},
the age time series for age 50 under gender g and country c; {ln(mc, g, •, 1950+t) : t =
0, · · · , 60}, the gender time series for gender g under country c; {ln(mc, •, •, 1950+t) : t =
0, · · · , 60}, the country time series for country c; and {ln(m•, •, •, 1950+t) : t = 0, · · · , 60},
the multi-country (US, UK and Japan) time series. Taking the first-order difference of
each time series to get the yearly decrement data and then calculating the average of the
resulting yearly decrements for each level produces Y c, g, x, • (called the age sample mean),
Y c, g, •, • (called the gender sample mean), Y c, •, •, • (called the country sample mean), and
Y •, •, •, • (called the multi-country sample mean).
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(a) Expanding Window (EW) (b) Moving Window (MW)

Figure 3.6: Expanding Window (EW) and Moving Window (MW)

The expression in (3.1) gives the hierarchical credibility estimate Ŷc, g, x, T+1 for country
c, gender g and age x in year T+1. To obtain the hierarchical credibility estimate Ŷc, g, x, T+τ

for year T + τ (τ ≥ 2), which is denoted by

Ŷc, g, x, T+τ = α̂(1)
τ · Y

T+τ
c, g, x, • + [(1− α̂(1)

τ ) · α̂(2)
τ ] · Y T+τ

c, g, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · α̂(3)
τ ] · Y T+τ

c, •, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · (1− α̂(3)
τ )] · Y T+τ

•, •, •, •, (3.2)

we adopt the same two strategies, the expanding window (EW) strategy and the moving
window (MW) strategy, as those in the Bühlmann credibility mortality model of Tsai and
Lin (2017b).

Strategy EW: Expanding window by one year

The EW strategy expands the original fitting year span by τ − 1 years to [1, T + τ − 1]
from [1, T ] by adding {Ŷc, g, x, T+1, · · · , Ŷc, g, x, T+τ−1} to the end of {Yc, g, x, 1, · · · , Yc, g, x, T }
for all c, g and x; see Figure 3.6 (a).

First, the average annual decrement over the year span [1, T + τ − 1] for country c,
gender g and age x, Y T+τ

c, g, x, •, τ ≥ 2, is calculated by

Y
T+τ
c, g, x, • = 1

T + τ − 1

[ T∑
t=1

Yc, g, x, t +
T+τ−1∑
t=T+1

Ŷc, g, x, t

]
. (3.3)

The quantities Y T+τ
c, g, •, •, Y

T+τ
c, •, •, •, and Y

T+τ
•, •, •, • are obtained, using the same formula as

τ = 1, by
Y
T+τ
c, g, •, • = 1

X

X∑
x=1

Y
T+τ
c, g, x, •, (3.4)

Y
T+τ
c, •, •, • = 1

G

G∑
g=1

Y
T+τ
c, g, •, •, (3.5)
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and

Y
T+τ
•, •, •, • = 1

C

C∑
c=1

Y
T+τ
c, •, •, •. (3.6)

Next, α̂(1)
τ , the credibility factor assigned to Y T+2

c, g, x, •, is calculated as

α̂(1)
τ = (T + τ − 1) · σ̂2

1
(T + τ − 1) · σ̂2

1 + σ̂2
0
. (3.7)

The other two credibility factors α̂(2)
τ and α̂(3)

τ are given by

α̂(2)
τ = X · α̂(1)

τ · σ̂2
2

X · α̂(1)
τ · σ̂2

2 + σ̂2
1

= X (T + τ − 1) · σ̂2
2

X (T + τ − 1) · σ̂2
2 + (T + τ − 1) · σ̂2

1 + σ̂2
0
, (3.8)

and

α̂(3)
τ = G · α̂(2)

τ · σ̂2
3

G · α̂(2)
τ · σ̂2

3 + σ̂2
2

= GX (T + τ − 1) · σ̂2
3

GX (T + τ − 1) · σ̂2
3 +X (T + τ − 1) · σ̂2

2 + (T + τ − 1) · σ̂2
1 + σ̂2

0
. (3.9)

Also note that the values of σ̂2
0, σ̂2

1, σ̂2
2, σ̂2

3 are unchanged as τ increases.

Finally, the hierarchical credibility estimate Ŷc, g, x, T+τ for country c, gender g and age
x in year T + τ is obtained by (3.2).

Strategy MW: Moving window by one year

The MW strategy moves the original fitting year span by τ−1 years to [τ, T+τ−1] from
[1, T ] by appending the hierarchical credibility estimates {Ŷc, g, x, T+1, . . . , Ŷc, g, x, T+τ−1} to
and removing {Ŷc, g, x, 1, · · · , Ŷc, g, x, τ−1} from {Yc, g, x, 1, · · · , Yc, g, x, T } for all c, g and x where
Ŷc, g, x, t = Yc, g, x, t for t ≤ T ; see Figure 3.6 (b).

First, we obtain Y T+τ
c, g, x, •, the average annual decrement over the year span [τ, T +τ −1]

for country c, gender g and age x, by

Y
T+τ
c, g, x, • = 1

T

T+τ−1∑
t=τ

Ŷc, g, x, t, (3.10)

and Y T+τ
c, g, •, •, Y

T+τ
c, •, •, •, and Y

T+τ
•, •, •, • are calculated using (3.4), (3.5) and (3.6), respectively.

Next, the credibility factor assigned to Y T+τ
c, g, x, • is achieved by α̂(1)

τ = T · σ̂2
1

T · σ̂2
1 + σ̂2

0
. As

σ̂2
0, σ̂2

1, σ̂2
2, σ̂2

3 are unchanged for all τ , we have α̂(1)
τ = α̂(1), α̂(2)

τ = α̂(2) and α̂
(3)
τ = α̂(3).

Therefore, α̂(1)
τ , α̂(2)

τ and α̂
(3)
τ are constant in τ under the MW strategy. Finally, we can

calculate Ŷc, g, x, T+τ , the decrement over [T + τ −1, T + τ ] in the logarithm of central death
rate for country c, gender g and age x, using (3.2).
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3.3 Properties

In this section, we propose some properties for the EW and MW strategies with two propo-
sitions under the five-level and four-level hierarchical credibility mortality models. The
proofs of Propositions 1 and 2 under these two models are similar, so we only give proofs
of Proposition 1 for the five-level hierarchical credibility mortality model in Appendix C.

Proposition 1. (a) Under the EW and MW strategies, the average of the hierarchical cred-
ibility estimates Ŷc, g, x, T+τ s over ages 1, · · · , X, genders 1, · · · , G, and countries 1, · · · , C
for year T + τ equals the average of Y T+τ

c, g, x, • (given in (3.10)) over the same age, gender
and country spans for year T + τ . Specifically,

1
C ·G ·X

C∑
c=1

G∑
g=1

X∑
x=1

Ŷc, g, x, T+τ = 1
C ·G ·X

C∑
c=1

G∑
g=1

X∑
x=1

Y
T+τ
c, g, x, • = Y

T+τ
•, •, •, •, τ = 1, 2, · · · .

(b) Under the EW strategy, the overall average of the hierarchical credibility estimates for
year T + τ , Y T+τ

•, •, •, •, τ = 1, 2, · · · , are constant in τ , i.e., Y T+τ
•, •, •, • = Y

T+1
•, •, •, •, τ = 2, 3, · · · .

(c) Under the EW strategy, the hierarchical credibility estimate Ŷc, g, c, T+τ is constant for
τ = 1, 2, · · · ; that is, Ŷc, g, x, T+τ = Ŷc, g, x, T+1, τ = 2, 3, · · · .

From Proposition 1 (c), under the EW strategy we have

ln(m̂c, g, xL+x−1, tU+τ ) = ln(mc, g, xL+x−1, tU ) +
τ∑
t=1

Ŷc, g, x, T+t

= ln(mc, g, xL+x−1, tU ) + (Ŷc, g, x, T+1) · τ,

which shows that ln(m̂c, g, xL+x−1, tU+τ ) is a linear function of τ with slope Ŷc, g, x, T+1 and
intercept ln(mc, g, xL+x−1, tU ).

Proposition 2 below gives the properties under a four-level hierarchical credibility mor-
tality model.

Proposition 2. (a)Under the EW and MW strategies, the average of the hierarchical cred-
ibility estimates Ŷg, x, T+τ s over ages 1, · · · , X and genders 1, · · · , G for year T + τ equals
the average of Y T+τ

g, x, • over the same age and gender spans for year T + τ . Specifically,

1
G ·X

G∑
g=1

X∑
x=1

Ŷg, x, T+τ = 1
G ·X

G∑
g=1

X∑
x=1

Y
T+τ
g, x, • = Y

T+τ
•, •, •, τ = 1, 2, · · · .

(b)Under the EW strategy, the overall average of the hierarchical credibility estimates
for year T + τ , Y T+τ

•, •, •, τ = 1, 2, · · · , are constant in τ , i.e., Y T+τ
•, •, • = Y

T+1
•, •, •, τ = 2, 3, · · · .

(c)Under the EW strategy, the hierarchical credibility estimate Ŷg, c, T+τ is constant for
τ = 1, 2, · · · ; that is, Ŷg, x, T+τ = Ŷg, x, T+1, τ = 2, 3, · · · .
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Chapter 4

Numerical Illustrations

This chapter applies the model and parameter estimations introduced in Chapter 3 to fore-
casting mortality rates for both genders of three developed countries for illustrations. The
mortality data are obtained from the Human Mortality Database (HMD). We fit three-level,
four-level, and five-level hierarchical credibility models with a wide age span and a series of
fitting year spans, and make out-of-sample forecasts for future consecutive years. The same
data set is also fitted to the classical Lee-Carter model, the joint-k, the cointegrated, and
the augmented common factor Lee-Carter models (please refer to Appendix A) with six
populations and two populations of each of three countries, respectively. The forecasting
performance is measured by the average of mean absolute percentage error (AMAPE), which
shows that all of the three-level, four-level and five-level hierarchical credibility mortality
models overall outperform the classical and three multi-population Lee-Carter models.

The structure of this chapter is as follows. Section 4.1 gives the assumptions for numer-
ical examples. In Section 4.2, the definition and formula of AMAPE are presented. Lastly,
seven figures and three tables are provided in Section 4.3 to numerically compare the fore-
casting performances of the underlying mortality models; some informative observations
from the figures and tables are also summarized in this section.

4.1 Model Assumptions

4.1.1 Mortality Data

The mortality data applied in this project come from the Human Mortality Database (HMD,
www.mortality.org), which is a public database providing detailed mortality and population
data for thirty-nine countries or areas around the world. This database contains data such
as birth counts, death counts, and life tables for male or female. The six populations used
in this project are both genders of the US, the UK, and Japan.
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For each of the three-level, four-level, and five-level hierarchical credibility models, the
EW and MW strategies are adopted to forecast mortality rates for 10, 20 and 30 years.
We denote EW-l and MW-l for the EW and MW strategies, respectively, under the l-level
hierarchical credibility model where l = 3, 4, 5. The three-level hierarchical credibility model
with a tree structure of year, age and population (male or female of a country) is applied to
each of the six populations. Under the four-level (five-level) hierarchical credibility model,
the tree structure from the bottom to the top is specified as year, age, gender and country
(year, age, gender, country and multi-country), and is applied to two genders of each of
three countries (all six populations). To compare the forecasting performance of the three-
level hierarchical credibility models, the mortality data for each of the six populations are
respectively fitted to the classical Lee-Carter model, which is denoted as LC1-Ind; and
to compare the forecasting performance of the four-level (five-level) hierarchical credibility
model, the mortality data for both genders of each of three countries (six populations) are
respectively fitted to the joint-k, the cointegrated, and the augmented common factor Lee-
Carter models with the male of a country (the US male) as the base population for the
cointegrated Lee-Carter model, which are denoted by LC2-JoK, LC2-CoI and LC2-ACF
(LC6-JoK, LC6-CoI and LC6-ACF).

4.1.2 Age Span, Fitting Year Span, and Forecasting Year Span

Let [T1, T2] be the study period where mortality rates are available. Assume that we stand
at the end of year tU and would like to fit the models with mortality data in the rectangle
[xL, xU ] × [tL, tU ], project mortality rates for the rectangle [xL, xU ] × [tU + 1, T2], and
evaluate the forecast performances of the underlying mortality models. Below are detailed
assumptions.

• For the age span [xL, xU ], we choose 20-84, i.e. xL = 20 and xU = 84 and the length
of the age span m = 65.

• For the study period [T1, T2], we use a 63-year period 1951 − 2013, i.e., T1 = 1951
and T2 = 2013 which is the most recent year where the mortality rates are available
for both genders of the US, the UK, and Japan.

• For the fitting year spans [tL, tU ], a series of periods, [1951, tU ], . . . , [tU − 4, tU ], are
selected where tU takes three values, 1983, 1993 and 2003, and the shortest period
[tU − 4, tU ] is five years.

• For the forecasting year span [tU + 1, T2], we choose [2004, 2013] (10 years wide),
[1994, 2013] (20 years wide) and [1984, 2013] (30 years wide).

The following table displays the three forecasting year spans conducted in this project.
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Table 4.1: Summary of the fitting and forecasting year spans

Fitting year spans [tL, tU ]

[1951, 2003] [1951, 1993] [1951, 1983]
[1952, 2003] [1952, 1993] [1952, 1983]

...
...

...
[1999, 2003] [1989, 1993] [1979, 1983]

Ending year of fitting year spans tU 2003 1993 1983
Number of fitting year spans J 49 39 29

Forecasting year spans [tU + 1, T2] [2004, 2013] [1994, 2013] [1984, 2013]
Width of forecasting year spans T2 − tU 10 20 30

4.2 Forecasting Measurements

We compare the forecasting performances of the hierarchical credibility models with the clas-
sical, the joint-k, the cointegrated, and the augmented common factor Lee-Carter models by
the measure of mean absolute percentage error (MAPE), which is a common measurement
as used in Tsai and Lin (2017a, b). Specifically, the MAPE

[tL, tU ]
c, g, [tU+1, T2] for gender g and

country c over the forecasting age-year window [xL, xU ]× [tU + 1, T2] with the fitting year
span [tL, tU ] is defined by

MAPE
[tL, tU ]
c, g, [tU+1, T2] = 1

T2 − tU
· 1
m

T2−tU∑
τ=1

xU∑
x=xL

∣∣∣∣∣ q̂c, g, x, tU+τ − qc, g, x, tU+τ
qc, g, x, tU+τ

∣∣∣∣∣ , (4.1)

where q̂c, g, x, tU+τ is the forecast mortality rate, qc, g, x, tU+τ is the observed mortality rate,
and q̂c, g, x, tU+τ = 1−e−m̂c, g, x, tU+τ is based on the assumption of constant force of mortality
over [x, x + 1] × [tU + τ, tU + τ + 1]. The value of MAPE

[tL, tU ]
c, g, [tU+1, T2] largely depends

on the fitting year span [tL, tU ]. To evaluate the overall forecasting performance of a
mortality model, we average the MAPE

[tL, tU ]
c, g, [tU+1, T2] over the fitting year spans [tL, tU ] for

tL = T1, T1 + 1, · · · , tU − 4 to get the AMAPEc, g, [tU+1, T2]. Specifically,

AMAPEc, g, [tU+1, T2] = 1
tU − 4− T1 + 1

tU−4∑
tL=T1

MAPE
[tL, tU ]
c, g, [tU+1, T2].

A smaller AMAPEc, g, [tU+1, T2] produced from a mortality model indicates an overall
more accurate forecast for the period [tU + 1, T2]. The underlying mortality models in this
project will be ranked based on the AMAPEc, g, [tU+1, T2].

4.3 Numerical Results

Based on mortality data from the Human Mortality Database, we produce seven figures
and construct three tables for three forecasting year spans [2004, 2013], [1994, 2013] and
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[1984, 2013]. Figures 4.1–4.6 display the MAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL, where tU =

2003, 1993, 1983 for three forecasting year spans, for each of six populations (US male,
US female, UK male, UK female, Japan male and Japan female), respectively, and Fig-
ure 4.7 exhibits the average of the MAPE

[tL, tU ]
c, g, [tU+1, 2013] over the six populations against

tL. Within each figure, the MAPE
[tL, tU ]
c, g, [tU+1, 2013] plots for three forecasting year spans are

shown in three rows, and those for a single population, two populations, and six populations
to which the models are respectively fitted are given in three columns. Specifically, the first
column displays the MAPE

[tL, tU ]
c, g, [tU+1, 2013] against tL (the start year of the fitting year span)

for the three-level hierarchical credibility model and the classical Lee-Carter model for a
single population; the second column exhibits the MAPE

[tL, tU ]
c, g, [tU+1, 2013] against tL for the

four-level hierarchical credibility model and the three Lee-Carter models for two popula-
tions; and the third column presents the MAPE

[tL, tU ]
c, g, [tU+1, 2013] against tL for the five-level

hierarchical credibility model and the three Lee-Carter models for six populations. Note
that the MAPE

[tL, tU ]
c, g, [tU+1, 2013] under the three Lee-Carter models for two populations and

six populations are different. For the two-population graphs, the joint-k, the cointegrated,
and the augmented common factor Lee-Carter models are fitted into both genders of a
country; for example, the three Lee-Carter models are applied to both genders of the US,
and the corresponding MAPE

[tL, tU ]
c, g, [tU+1, 2013] for the US male and female are given in (b),

(e) and (h) of Figures 4.1 and 4.2, respectively. For the six-population graphs, the joint-k,
the cointegrated, and the augmented common factor Lee-Carter models are fitted to all six
populations, and the corresponding MAPE

[tL, tU ]
c, g, [tU+1, 2013] for the US male and female are

given in (c), (f) and (i) of Figures 4.1 and 4.2, respectively. Observations from the figures
are summarized below.

• The MAPE
[tL, tU ]
c, g, [tU+1, T2] values for the hierarchical credibility models and Lee-Carter

models are generally decreasing in tU , which means the wider the forecasting period,
the higher the MAPE

[tL, tU ]
c, g, [tU+1, T2] value.

• The MAPE
[tL, tU ]
c, g, [tU+1, T2] values for all models and two strategies are neither mono-

tonically decreasing nor increasing with tL (the start year of the fitting year span),
i.e., the MAPE

[tL, tU ]
c, g, [tU+1, T2] values depend on the length and location of the fitting

year span. The pattern of MAPE
[tL, tU ]
c, g, [tU+1, T2] curves largely depends on the data

set. For example, the MAPE
[tL, tU ]
c, g, [tU+1, T2] curve for the MW strategy in Figure 4.2

(h) increases for the first twenty tL values, then decreases for the next five tL values,
and finally increases in the last few tL values. However, Figure 4.3 (h) shows the
MAPE

[tL, tU ]
c, g, [tU+1, T2] curve for the MW strategy is decreasing in tL except for a few tL

values at both ends of the domain. Since we do not know which fitting year span will
result in the lowestMAPE

[tL, tU ]
c, g, [tU+1, T2], we calculate the AMAPEc, g, [tU+1, T2] (the av-

erage of theMAPE
[tL, tU ]
c, g, [tU+1, T2] over all values of tL) and use it to rank the underlying

mortality models for their forecasting performances.
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• The MAPE
[tL, tU ]
c, g, [tU+1, T2] values for the EW and MW strategies of the hierarchical

credibility models are overall lower than those for the Lee-Carter models except for a
few cases, for example Figure 4.1 (i) for the US male, Figure 4.2 (i) for the US female,
and Figure 4.5 (h) for the Japan male; the corresponding AMAPEc, g, [tU+1, T2] values
are shown in Table 4.4. Moreover, theMAPE

[tL, tU ]
c, g, [tU+1, T2] curves for the MW strategy

look smoother in tL than the EW one.
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Figure 4.1: MAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for US Male with age span 20–84

21



1950 1960 1970 1980 1990 2000
0.04

0.05

0.06

0.07

0.08

0.09

0.10

EW MW Ind

(a) tU = 2003 single population
1950 1960 1970 1980 1990 2000

0.04

0.05

0.06

0.07

0.08

0.09

0.10

EW MW JoK CoI ACF

(b) tU = 2003, two populations

1950 1960 1970 1980 1990 2000
0.04

0.05

0.06

0.07

0.08

0.09

0.10

EW MW JoK CoI ACF

(c) tU = 2003, six populations

1950 1960 1970 1980 1990
0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

EW MW Ind

(d) tU = 1993, single population
1950 1960 1970 1980 1990

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

EW MW JoK CoI ACF

(e) tU = 1993, two populations

1950 1960 1970 1980 1990
0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12
EW MW JoK CoI ACF

(f) tU = 1993, six populations

1950 1955 1960 1965 1970 1975 1980
0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23 EW

MW

Ind

(g) tU = 1983, single population
1950 1955 1960 1965 1970 1975 1980

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23 EW

MW

JoK

CoI

ACF

(h) tU = 1983, two populations

1950 1955 1960 1965 1970 1975 1980
0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23 EW

MW

JoK

CoI

ACF

(i) tU = 1983, six populations

Figure 4.2: MAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for US Female with age span 20–84
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Figure 4.3: MAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for UK Male with age span 20–84
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Figure 4.4: MAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for UK Female with age span 20–84
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Figure 4.5: MAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for Japan Male with age span 20–84
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Figure 4.6: MAPE
[tL, tU ]
c, g, [tU+1, 2013] against tL for Japan Female with age span 20–84
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Figure 4.7: The average of MAPE
[tL, tU ]
c, g, [tU+1, 2013] over six populations against tL with age

span 20–84

Below are observations from Tables 4.2–4.4, which exhibit the AMAPEc, g, [tU+1, 2013],
the “Avg 2” (the average of the AMAPEc, g, [tU+1, 2013] over both genders of a country)
and the “Avg 6” (the average of the AMAPEc, g, [tU+1, 2013] over all six populations) for
tU = 2003, 1993 and 1983, respectively.
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• Observing the values in Tables 4.2–4.4, it is obvious that the AMAPEc, g, [tU+1, 2013]

values become larger as the length of the forecasting year span increases from 10
to 30 years, which is consistent with the observations in Figures 4.1–4.6 that the
MAPE

[tL, tU ]
c, g, [tU+1, T2] values increase in the width of the forecasting year span.

• Based on the average of the AMAPEc, g, [tU+1, 2013] over six populations (“Avg 6”),
we observe that the hierarchical credibility model with more levels provides more
accurate forecasting performance. However, this conclusion does not apply to “Avg
2” (the average of the AMAPEc, g, [tU+1, 2013] over both genders of a country). The
forecasting performance ranking based on “Avg 2” depends on country. For example,
according to the “Avg 2” in Table 4.4 for the forecasting period [1984, 2013], the five-
level hierarchical credibility model has the worst forecast accuracy and the four-level
one performs the best for the US, whereas the five-level hierarchical credibility model
has the best forecast accuracy and the four-level one performs the worst for Japan.
• The AMAPEc, g, [tU+1, 2013] values and their averages “Avg 6” and “Avg 2” under both
of the EW and MW strategies, given the same level of the hierarchical credibility
model, are close to each other.
• Among the three Lee-Carter models applied to six populations, “Avg 6” (the average of
the AMAPEc, g, [tU+1, 2013] over all six populations) shows that the augmented common
factor model LC6-ACF is the most accurate for the forecasting periods [2004, 2013]
and [1984, 2013], the cointegrated model LC6-CoI performs the best for the forecasting
period [1994, 2013], and the joint-k model LC6-JoK is the least accurate for all three
forecasting periods. Moreover, the LC2-JoK model outperforms the LC6-JoK model
for all three forecasting periods, the LC2-CoI model is better than the LC6-CoI model
for [2004, 2013] and [1984, 2013], and the LC2-ACF model is worse than the LC6-ACF
model for [2004, 2013] and [1984, 2013].
• From Tables 4.2–4.4, we observe that most of the AMAPEc, g, [tU+1, 2013] values under

the hierarchical credibility models for all three forecasting periods and six popula-
tions are lower than those under the Lee-Carter models. As a result, the averages
of the AMAPEc, g, [tU+1, 2013] over both genders of a country and over six popula-
tions for all the three forecasting periods under the hierarchical credibility models
are far lower than those under the Lee-Carter models. For example, for the 30-year
forecasting period [1984, 2013], the averages of the AMAPEc, g, [tU+1, 2013] over six
populations for the joint-k, the cointegrated, and the augmented common factor Lee-
Carter models applied to six populations and two populations and for the classical Lee-
Carter model applied to a single population are 19.57% (LC6-Jok), 17.97% (LC6-CoI),
17.26% (LC6-ACF), 18.40% (LC2-Jok), 17.92% (LC2-CoI), 18.41% (LC2-ACF) and
18.25% (LC1-Ind), respectively, whereas those for the EW and MW strategies under
the five/four/three-level hierarchical credibility models are 14.01% (EW-5), 14.02%
(MW-5), 14.60% (EW-4), 14.28% (MW-4), 15.03% (EW-3) and 14.55% (MW-3), re-
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spectively. Therefore, the numerical illustrations highly support the conclusion that
the hierarchical credibility models outperform the Lee-Carter models.

AMAPE Country US UK Japan
Model Avg 6 M F Avg 2 M F Avg 2 M F Avg 2

Hierarchical Credibility (HC) model
EW-5 6.63 5.58 4.92 5.25 9.48 7.87 8.68 5.74 6.20 5.97
MW-5 6.66 5.60 4.93 5.26 9.57 7.95 8.76 5.77 6.16 5.97
EW-4 7.23 6.36 5.53 5.95 9.86 8.24 9.05 5.86 7.52 6.69
MW-4 7.16 6.41 5.56 5.99 9.79 8.17 8.98 5.76 7.27 6.52
EW-3 7.47 6.00 6.04 6.02 9.78 8.33 9.06 5.83 8.85 7.34
MW-3 7.41 5.96 6.14 6.05 9.61 8.36 8.98 5.85 8.54 7.19

Lee-Carter model applied to all six populations (LC6)
LC6-JoK 10.61 10.27 8.54 9.40 15.10 10.23 12.66 7.98 11.56 9.77
LC6-CoI 9.69 9.23 8.57 8.90 12.64 9.79 11.22 7.93 9.95 8.94
LC6-ACF 9.22 7.46 8.45 7.96 13.94 8.24 11.09 6.26 10.96 8.61

Lee-Carter model applied to both genders of a country (LC2)
LC2-JoK 9.77 10.06 8.75 9.41 12.95 8.89 10.92 7.61 10.39 9.00
LC2-CoI 9.59 9.23 8.57 8.90 12.28 9.32 10.80 7.63 10.50 9.06
LC2-ACF 9.60 9.58 8.25 8.92 12.16 9.26 10.71 7.57 10.77 9.17

Lee-Carter model applied to a single population (LC1)
LC1-Ind 9.64 9.23 8.57 8.90 12.28 9.36 10.82 7.63 10.77 9.20

Table 4.2: AMAPEc, g, [2004,2013]s (%)

AMAPE Country US UK Japan
Model Avg 6 M F Avg 2 M F Avg 2 M F Avg 2

Hierarchical Credibility (HC) model
EW-5 10.41 10.12 7.56 8.84 14.00 9.05 11.53 8.52 13.18 10.85
MW-5 10.55 10.41 7.13 8.77 14.39 9.45 11.92 8.66 13.24 10.95
EW-4 11.85 13.77 6.05 9.91 14.94 10.03 12.48 12.19 14.10 13.15
MW-4 11.74 14.39 6.12 10.26 15.07 10.14 12.61 11.17 13.56 12.37
EW-3 11.98 14.97 6.14 10.55 15.57 9.50 12.53 10.05 15.63 12.84
MW-3 11.81 15.04 6.32 10.68 15.48 9.79 12.63 9.49 14.75 12.12

Lee-Carter model applied to all six populations (LC6)
LC6-JoK 14.71 16.64 9.59 13.11 19.11 13.63 16.37 12.93 16.37 14.65
LC6-CoI 13.98 16.48 8.32 12.40 18.71 13.81 16.26 11.31 15.27 13.29
LC6-ACF 14.25 18.19 8.95 13.57 18.92 10.75 14.83 11.30 17.39 14.34

Lee-Carter model applied to both genders of a country (LC2)
LC2-JoK 14.31 16.75 8.55 12.65 17.64 13.05 15.34 13.19 16.71 14.95
LC2-CoI 14.14 16.48 8.32 12.40 17.43 13.12 15.28 12.74 16.73 14.73
LC2-ACF 14.02 16.36 7.61 11.98 17.34 13.01 15.17 12.68 17.14 14.91

Lee-Carter model applied to a single population (LC1)
LC1-Ind 14.23 16.48 8.50 12.49 17.43 13.07 15.25 12.74 17.14 14.94

Table 4.3: AMAPEc, g, [1994, 2013]s (%)
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AMAPE Country US UK Japan
Model Avg 6 M F Avg 2 M F Avg 2 M F Avg 2

Hierarchical Credibility (HC) model
EW-5 14.01 13.57 17.33 15.45 16.94 10.63 13.78 10.69 14.90 12.79
MW-5 14.02 13.48 18.26 15.87 16.44 10.60 13.52 10.85 14.50 12.67
EW-4 14.60 11.45 13.42 12.44 18.00 10.03 14.01 17.63 17.09 17.36
MW-4 14.28 11.63 15.38 13.50 17.03 9.53 13.28 16.12 15.98 16.05
EW-3 15.03 11.71 15.41 13.56 19.26 9.56 14.41 13.88 20.39 17.13
MW-3 14.55 11.83 16.37 14.10 17.98 9.58 13.78 12.62 18.94 15.78

Lee-Carter model applied to all six populations (LC6)
LC6-JoK 19.57 14.43 17.01 15.72 24.29 16.90 20.60 19.99 24.79 22.39
LC6-CoI 17.97 13.43 15.60 14.52 23.86 17.15 20.51 16.39 21.37 18.88
LC6-ACF 17.26 12.32 16.15 14.24 23.02 13.30 18.16 15.36 23.43 19.40

Lee-Carter model applied to both genders of a country (LC2)
LC2-JoK 18.40 13.42 17.11 15.27 22.63 16.59 19.61 17.99 22.61 20.30
LC2-CoI 17.92 13.43 15.60 14.52 22.53 16.62 19.58 17.05 22.26 19.65
LC2-ACF 18.41 14.32 16.49 15.41 22.43 16.89 19.66 16.90 23.46 20.18

Lee-Carter model applied to a single population (LC1)
LC1-Ind 18.25 13.43 16.26 14.85 22.53 16.78 19.66 17.05 23.44 20.24

Table 4.4: AMAPEc, g, [1984, 2013]s (%)

In summary, a hierarchical credibility model with more levels produces better prediction
results, and the EW and MW strategies have similar forecasting performances. Regardless
of the length of the fitting year span and forecasting year span, the hierarchical credibility
models overall provide more accurate forecasts than the Lee-Carter models. Therefore,
we conclude that the hierarchical credibility model is an effective approach to modelling
multi-population mortality rates.
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Chapter 5

Conclusions

This project applies the hierarchical credibility theory with tree structures of three, four and
five levels to modelling multi-population mortality rates. The five-level tree structure from
the bottom to the top is “year t”, “age x”, “gender g”, “country c” and “multi-country”,
and the four-level tree structure is “year t”, “age x”, “gender g” and “country c”. The
hierarchical credibility mortality models are fitted with male and female mortality data of
three developed countries (the US, the UK, and Japan) from the Human Mortality Database
for an age span 25–84 and a series of fitting year spans. The classical Lee-Carter model and
its three extensions for multiple populations (joint-k, cointegrated and augmented common
factor) are also fitted with the same data set for comparisons.

The formula for Ŷc, g, x, T+1, the hierarchical credibility estimate of the decrement over
[T, T + 1] in the logarithm of central death rate for country c, gender g and age x, under
a five-level hierarchical structure for the special case (wc, g, x, t = 1 for all c = 1, · · · , C,
g = 1, · · · , G, x = 1, · · · , X, and t = 1, · · · , T ) is a credibility-factor-weighted average of
Y c, g, x, •, Y c, g, •, •, Y c, •, •, • and Y •, •, •, •, the average annual decrements of the time series
{ln(mc, g, xL+x−1, tL+t)}, {ln(mc, g, •, tL+t)}, {ln(mc, •, •, tL+t)} and {ln(m•, •, •, tL+t)} for four
different levels. For the hierarchical mortality model, we also adopt the expanding window
(EW) and moving window (MW) strategies proposed by Tsai and Lin (2017a, b) to forecast
mortality rates for two or more years. Under the expanding window strategy, the hierarchi-
cal credibility estimate Ŷc, g, x, T+τ = Ŷc, g, x, T+1 for τ = 2, 3, · · · . Thus, ln(m̂c, g, xL+x−1, tU+τ )
is a linear function of τ with slope Ŷc, g, x, T+1 and intercept ln(mc, g, xL+x−1, tU ).

The forecasting performance is measured by the MAPE resulting from a single fitting
year span. Based on the figures displayed in Chapter 4, we conclude that models have larger
MAPEs as the forecasting year span gets wider. Since we do not know which fitting year
span will produce the lowest MAPE, and actually the MAPE varies largely in the fitting year
span, we rank the models according to AMAPE, the average of MAPEs over all the fitting
year spans. From Tables 4.2–4.4, we conclude that the hierarchical credibility model with
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more levels overall yields better prediction, which means that modelling mortality rates for
multiple countries together with a five-level hierarchical tree structure can produce overall
more accurate prediction than modelling those for a single population separately with a
three-level hierarchical tree structure. Moreover, regardless of the forecasting year span of
10-, 20- or 30-year width, the hierarchical credibility models overall provide higher accurate
forecasting results than the Lee-Carter models.

The proposed model contributes to the literature of multi-population mortality mod-
elling by incorporating the hierarchical credibility theory, which is widely used in property
and casualty insurance, to model multi-population mortality rates. The model is conve-
nient to implement, and can be applied to a hierarchical tree of any arbitrary level to fit
a data set. It is a generalization of the credibility mortality model proposed by Tsai and
Lin (2017b), which can be considered as having a three-level tree structure with popula-
tion, year and age. The mortality rates predicted from the hierarchical credibility mortality
model for multiple populations can be further used to construct a mortality index for more
accurately pricing mortality-indexed securities.
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Appendix A

Lee-Carter model and its three
extensions for multiple populations

A.1 Independent Lee-Carter model

Lee and Carter (1992) introduced the famous Lee-Carter model to forecast mortality rates.
It models the natural logarithm of the central death rate using a bilinear function of two
age-specific factors and one time-varying factor. The model for a specific population i is
presented as follows:

ln(mi, x, t) = αi, x + βi, x × ki, t + εi, x, t, x = xL, · · · , xU , t = tL, · · · , tU ,

where αi, x is the average age-specific mortality factor at age x for population i, ki, t is the
index of the mortality level in year t for population i, βi, x is the age-specific reaction to
ki, t at age x for population i, and the model errors for population i, εi, x, t, t = tL, · · · , tU ,
capturing the age-specific effects not reflected in the model, are assumed independent and
identically distributed.

The independent Lee-Carter model is subject to two constraints,
∑tU
t=tL ki, t = 0 and∑xU

x=xL βi, x = 1. The first constraint leads the estimate of αi, x to

α̂i, x =
∑tU
t=tL ln(mi, x, t)
tU − tL + 1 , x = xL, · · · , xU ,

and the second constraint gives the estimate of k̂i, t as

k̂i, t =
xU∑
x=xL

[ln(mi, x, t)− α̂i, x], t = tL, · · · , tU .
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Finally, to get β̂i, x, we regress [ln(mi, x, t)− α̂i, x] on k̂i, t without the constant term for each
age x.

The time-varying index k̂i, t is the key to project future mortality rates. Lee and Carter
(1992) suggested to model the time-varying index k̂i, t by a random walk with drift θi, that
is, k̂i, t = k̂i, t−1 + θi + εi, t, where the time trend errors εi, t, t = tL, · · · , tU , are assumed
to follow an independent and identically distributed, and independent of the model errors
εi, x, t. The assumption above implies that (k̂i, t − k̂i, t−1) are independent and identically
distributed for all t, and the parameter θi can be estimated by

θ̂i = 1
tU − tL

tU∑
t=tL+1

(k̂i, t − k̂i, t−1) = k̂i, tU − k̂i, tL
tU − tL

.

The natural logarithm of the central death rate for age x in year tU + τ and population i is
forecasted by

ln(m̂i, x, tU+τ ) = α̂i, x + β̂i, x × k̂i, tU+τ = α̂i, x + β̂i, x × (k̂i, tU + τ × θ̂i)

= ln(m̂i, x, tU ) + (β̂i, x × θ̂i)× τ, τ = 1, 2, · · · ,

a linear function of τ with intercept ln(m̂i, x, tU ) and slope (β̂i, x × θ̂i), where ln(m̂i, x, tU ) =
α̂i, x + β̂i, x × k̂i, tU . Then, the projected central death rate is given by

m̂i, x, tU+τ = exp[α̂i, x + β̂i, x × (k̂i, tU + τ × θ̂i)],

and the predicted one-year death rate for age x in year tU + τ and population i is given as

q̂i, x, tU+τ = 1− exp[− exp(α̂i, x + β̂i, x × (k̂i, tU + τ × θ̂i))].

A.2 Joint-k Lee-Carter model

Carter and Lee (1992) proposed the joint-k model to govern the co-movements among the
mortality rates for multiple populations. The joint-k model is constructed in the same
way as the independent Lee-Carter model except that the time-varying index ki, t = kt,
i = 1, · · · , r. The logarithm of central death rates, ln(mi, x, t), for lives aged x in year t and
population i can be expressed as

ln(mi, x, t) = αi, x + βi, x × kt + εi, x, t, i = 1, · · · , r, x = xL, · · · , xU , t = tL, · · · , tU ,

where αi, x is the average age-specific mortality factor at age x for population i, βi, x is the
age-specific reaction to kt at age x for population i, kt is the common index of the mortality
level in year t, and the model errors εi, x, t, t = tL, · · · , tU , capturing the age-specific effects
not reflected in the model, are assumed independent and identically distributed.
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There are two constraints
∑tU
t=tL kt = 0 and

∑r
i=1

∑xU
x=xL βi, x = 1 for the joint-k Lee-

Carter model. The first constraint
∑tU
t=tL kt = 0 gives the estimate of αx,

α̂i, x =
∑tU
t=tL ln(mi, x, t)
tU − tL + 1 , x = xL, · · · , xU ,

and the second constraint
∑r
i=1

∑xU
x=xL βi, x = 1 implies the estimate of kt,

k̂t =
r∑
i=1

xU∑
x=xL

[ln(mi, x, t)− α̂i, x], t = tL, · · · , tU .

Finally, we regress [ln(mi, x, t)− α̂i, x] on k̂t without the constant term for each age x to
obtain β̂i, x.

The common time-varying index k̂t is assumed to follow a random walk with drift θ for
mortality prediction: k̂t = k̂t−1 + θ + εt, where the time trend errors ε t, t = tL + 1, · · · , tU ,
are assumed independent and identically distributed, and independent of the model errors
εi, x, t. Then we can estimate the drift parameter θ with

θ̂ = 1
tU − tL

tU∑
t=tL+1

(k̂t − k̂t−1) = k̂tU − k̂tL
tU − tL

.

The logarithm of the projected central death rate for age x in year tU + τ and population
i is given by

ln(m̂i, x, tU+τ ) = α̂i, x + β̂i, x × (k̂tU + τ × θ̂) = ln(m̂i, x, tU ) + (β̂i, x × θ̂)× τ, τ = 1, 2, · · · ,

a linear function of τ with intercept ln(m̂i, x, tU ) and slope (β̂i, x · θ̂), where ln(m̂i, x, tU ) =
α̂i, x + β̂i, x × k̂tU .

A.3 Cointegrated Lee-Carter model

Unlike the joint-k model, which assumes that all populations have the common time-varying
index k, the cointegrated model proposed by Li and Hardy (2011) assumes the time-varying
index for population i (i > 2) is linearly related to the time-varying index for population 1,
the base population. Therefore, the time-varying index for population i (i > 2) needs to be
re-estimated in this model.

Assume that the mortality rate for lives aged x in year t and population i follows the
independent Lee-Carter model as follows:

ln(mi, x, t) = αi, x + βi, x × ki, t + εi, x, t, i = 1, · · · , r, x = xL, · · · , xU , t = tL, · · · , tU .

There are two constraints
∑tU
t=tL ki, t = 0 and

∑xU
x=xL βi, x = 1, i = 1, · · · , r, for the

cointegrated Lee-Carter model. The estimate of αi, x can be obtained by the constraint
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∑tU
t=tL ki, t = 0 as

α̂i, x =
∑tU
t=tL ln(mi, x, t)
tU − tL + 1 , x = xL, · · · , xU ,

and ki, t can be estimated with the remaining constraint
∑xU
x=xL βi, x = 1 as

k̂i, t =
xU∑
x=xL

[ln(mi, x, t)− α̂i, x], x = xL, · · · , xU .

Again, we regress [ln(mi, x, t)− α̂i, x] on k̂i, t without the constant term for each age x to get
β̂i, x.

The time trend k̂i, t is assumed to follow a random walk with drift θi for mortality
prediction: k̂i, t = k̂i, t−1 + θi + εi, t, where the time trend errors εi, t, t = tL + 1, · · · , tU ,
are assumed independent and identically distributed, and independent of the model errors
εi, x, t. Then the drift parameter θi for population i can be estimated by θ̂i = (k̂i, tU −
k̂i, tL)/(tU − tL), i = 1, · · · , r.

The cointegrated Lee-Carter model assumes there is a linear relationship plus an error
term ei, t between k̂1, t and k̂i, t for i = 2, · · · , r. Specifically, k̂i, t = ai + bi × k̂1, t + ei, t, i =
2, · · · , r. Then we re-estimate ki, t using the simple linear regression as ˆ̂

ki, t = âi+b̂i×k̂1, t for
i = 2, · · · , r, implying that the estimate of the drift of the time-varying index for population
i, ˆ̂
θi, is given by

ˆ̂
θi =


1

tU − tL

tU∑
t=tL+1

(k̂1, t − k̂1, t−1) = k̂1, tU − k̂1, tL
tU − tL

= θ̂1, i = 1,

ˆ̂
ki, tU −

ˆ̂
ki, tL

tU − tL
= b̂i ×

k̂1, tU − k̂1, tL
tU − tL

= b̂i × θ̂1, i = 2, · · · , r.

The logarithm of the forecasted central death rates for lives aged x in year tU + τ and
population i is given as

ln(m̂i, x, tU+τ ) = α̂i, x + β̂i, x × (k̂i, tU + τ × ˆ̂
θi) = ln(m̂i, x, tU ) + (β̂i, x × ˆ̂

θi)× τ, τ = 1, 2, · · · ,

a linear function of τ with intercept ln(m̂i, x, tU ) and slope (β̂i, x · ˆ̂
θi), where ln(m̂i, x, tU ) =

α̂i, x + β̂i, x × k̂i, tU .

A.4 Augmented common factor Lee-Carter model

To deal with the divergence in forecasting multi-population mortality rates over the long-
term, Li and Lee (2005) proposed the augmented common factor model which not only
considers the commonalities in the historical experience but also includes the individual
differences in the trends.
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First, the independent Lee-Carter model is modified to a common factor model by
setting a common age-specific term βx (βi, x = βx) and a uniform time-varying index kt

(ki, t = kt) for all populations as follows:

ln(mi, x, t) = αi, x + βx × kt + εi, x, t, i = 1, · · · , r, x = xL, · · · , xU , t = tL, · · · , tU ,

subject to two constraints,
∑tU
t=tL kt = 0 and

∑r
i=1

∑xU
x=xL wi βx = 1, where wi, set to be 1/r

in this paper, is the weight for population i and
∑r
i=1wi = 1. We can similarly estimate

αi, x by

α̂i, x =
∑tU
t=tL ln(mi, x, t)
tU − tL + 1 , x = xL, · · · , xU ,

and kt as

k̂t =
r∑
i=1

xU∑
x=xL

wi × [ln(mi, x, t)− α̂i, x], t = tL, · · · , tU .

Then β̂x can be similarly obtained by regressing
∑r
i=1wi× [ln(mi, x, t)− α̂i, x] on k̂t without

the constant term for each age x.

To include the individual differences in the trends, Li and Lee (2005) added a factor
β′i, x × k′i, t to the common factor model to get

ln(mi, x, t) = αi, x + βx × kt + β′i, x × k′i, t + εi, x, t,

with an extra constraint
∑xU
x=xL β

′
i, x = 1, which is called the augmented common factor

model. The extra constraint implies k̂′i, t =
∑xU
x=xL [ln(mi, x, t)− α̂i, x− β̂x× k̂t], and β̂′i, x can

be obtained by regressing [ln(mi, x, t)− α̂i, x− β̂x× k̂t] on k̂′i, t without the constant term for
each age x.

Similarly, we assume that both time trends k̂t and k̂′i, t follow a random walk with drifts
θ and θ′i, respectively. Specifically, k̂t = k̂t−1 + θ + εt, and k̂′i, t = k̂′i, t−1 + θ′i + εi, t, where
each of the time trend errors εt and εi, t, t = tL + 1, · · · , tU , are assumed independent and
identically distributed, and all of the three error terms, εi, x, t, εt and εi, t, are assumed
to be independent. Again, the drift parameters θ and θ′i can be similarly estimated by
θ̂ = (k̂tU − k̂tL)/(tU − tL) and θ̂′i = (k̂′i, tU − k̂

′
i, tL

)/(tU − tL).

Finally, the logarithm of the predicted central death rates for lives aged x in year tU + τ

and population i can be expressed as

ln(m̂i, x, tU+τ ) = α̂i, x + β̂x × (k̂tU + τ × θ̂) + β̂′i, x × (k̂′i, tU + τ × θ̂′i)

= ln(m̂i, x, tU ) + (β̂x × θ̂ + β̂′i, x × θ̂′i)× τ, τ = 1, 2, · · · ,

a linear function of τ with intercept ln(m̂i, x, tU ) and slope (β̂x·θ̂+β̂′i, x·θ̂′i), where ln(m̂i, x, tU ) =
α̂i, x + β̂x × k̂tU + β̂′i, x × k̂′i, tU .
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Appendix B

Estimation of structural
parameters and credibility factors
for the hierarchical credibility
model

Credibility estimators

From Section 6.4 of Bühlmann and Gisler (2005), to find the hierarchical credibility
estimator Ŷc, g, x, T+1 for age x and gender g and country c in year T + 1, we need to first
find the credibility estimators Ŷc, g and Ŷc, g, x. All three credibility estimators Ŷc, g, Ŷc, g, x
and Ŷc, g, x, T+1 can be seen as weighted averages of Bs (B(3)

c , B(2)
c, g and B

(1)
c, g, x) and the

overall mean µ̂4 as follows:

Ŷc, g = α̂(3)
c ·B(3)

c + (1− α̂(3)
c ) · µ̂4, (A.1)

Ŷc, g, x = α̂(2)
c, g ·B(2)

c, g + (1− α̂(2)
c, g) · Ŷc, g (A.2)

= α̂(2)
c, g ·B(2)

c, g + [(1− α̂(2)
c, g) · α̂(3)

c ] ·B(3)
c + [(1− α̂(2)

c, g) · (1− α̂(3)
c )] · µ̂4,

and
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Ŷc, g, x, T+1

= α̂(1)
c, g, x ·B(1)

c, g, x + (1− α̂(1)
c, g, x) · Ŷc, g, x (A.3)

= α̂(1)
c, g, x ·B(1)

c, g, x + [(1− α̂(1)
c, g, x) · α̂(2)

c, g] ·B(2)
c, g + [(1− α̂(1)

c, g, x) · (1− α̂(2)
c, g)] · Ŷ c, g

= α̂(1)
c, g, x ·B(1)

c, g, x + [(1− α̂(1)
c, g, x) · α̂(2)

c, g] ·B(2)
c, g + [(1− α̂(1)

c, g, x) · (1− α̂(2)
c, g) · α̂(3)

c ] ·B(3)
c

+[(1− α̂(1)
c, g, x) · (1− α̂(2)

c, g) · (1− α̂(3)
c )] · µ̂4,

where α̂(1)
c, g, x, α̂(2)

c, g and α̂
(3)
c are the corresponding credibility factors for levels one, two

and three, respectively. The expressions for B(1)
c, g, x, B(2)

c, g and B(3)
c , the credibility factors

(α̂(1)
c, g, x, α̂(2)

c, g and α̂(3)
c ), and µ̂4 by theorem 6.4 of Bühlmann and Gisler (2005) are given in

Table B.1.

B
(1)
c, g, x =

T∑
t=1

wc, g, x, t

w
(1)
c, g, x

· Yc, g, x, t w
(1)
c, g, x =

T∑
t=1

wc, g, x, t α̂
(1)
c, g, x = w

(1)
c, g, x · σ̂2

1

w
(1)
c, g, x · σ̂2

1 + σ̂2
0

B
(2)
c, g =

X∑
x=1

α̂
(1)
c, g, x

w
(2)
c, g

·B(1)
c, g, x w

(2)
c, g =

X∑
x=1

α̂(1)
c, g, x α̂

(2)
c, g = w

(2)
c, g · σ̂2

2

w
(2)
c, g · σ̂2

2 + σ̂2
1

B
(3)
c =

G∑
g=1

α̂
(2)
c, g

w
(3)
c

·B(2)
c, g w

(3)
c =

G∑
g=1

α̂(2)
c, g α̂

(3)
c = w

(3)
c · σ̂2

3

w
(3)
c · σ̂2

3 + σ̂2
2

µ̂3 =
C∑
c=1

α̂
(3)
c

w(4) ·B
(3)
c w(4) =

C∑
c=1

α̂(3)
c

Table B.1: Formulas for B(1)
c, g, x, B(2)

c, g, B(3)
c , α̂(1)

c, g, x, α̂(2)
c, g, α̂(3)

c and µ̂4

Estimation of the structural parameters

We observe from Table B.1 that

• B(1)
c, g, x =

T∑
t=1

wc, g, x, t

w
(1)
c, g, x

· Yc, g, x, t for level 1 is an exposure-unit-weighted average of

Yc, g, x, ts over all years t at level 0 under age x, gender g and country c with the weight
[wc, g, x, t/w(1)

c, g, x], where w(1)
c, g, x is the sum of the level-zero exposure units wc, g, x, t for

t = 1, · · · , T .

• B(2)
c, g =

X∑
x=1

α̂
(1)
c, g, x

w
(2)
c, g

·B(1)
c, g, x for level 2 is a credibility-factor-weighted average of B(1)

c, g, xs

at level 1 with weight [α̂(1)
c, g, x/w

(2)
c, g], where w(2)

c, g is the sum of the level-one credibility

factors α̂(1)
c, g, x for x = 1, · · · , X; since B(2)

c, g =
X∑
x=1

T∑
t=1

α̂
(1)
c, g, x

w
(2)
c, g

· wc, g, x, t
w

(1)
c, g, x

· Yc, g, x, t, it is

also a weighted average of Yc, g, x, ts for all ages x and years t at levels 0–1 under gender
g and country c.
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• B(3)
c =

G∑
g=1

α̂
(2)
c, g

w
(3)
c

· B(2)
c, g for level 3 is a credibility-factor-weighted average of B(2)

c, gs at

level 2 with weight [α̂(2)
c, g/w

(3)
c ], where w(3)

c is the sum of the level-two credibility factors

α̂
(2)
c, g for g = 1, · · · , G; because B(3)

c =
G∑
g=1

X∑
x=1

T∑
t=1

α̂
(2)
c, g

w
(3)
c

· α̂
(1)
c, g, x

w
(2)
c, g

· wc, g, x, t
w

(1)
c, g, x

· Yc, g, x, t, it is

also a weighted average of Yc, g, x, ts for all genders g, ages x and years t at levels 0–2
under country c.

• µ̂4 =
C∑
c=1

α̂
(3)
c

w(4) ·B
(3)
c for level 4 is a credibility-factor-weighted average of B(3)

c s at level 3

with weight [α̂(3)
c /w(4)], where w(4) is the sum of the level-three credibility factors α̂(3)

c

for c = 1, · · · , C; furthermore, µ̂4 =
C∑
c=1

G∑
g=1

X∑
x=1

T∑
t=1

α̂
(3)
c

w(4) ·
α̂

(2)
c, g

w
(3)
c

· α̂
(1)
c, g, x

w
(2)
c, g

·wc, g, x, t
w

(1)
c, g, x

·Yc, g, x, t

is also a weighted average of Yc, g, x, ts for all countries c, genders g, ages x and years
t at levels 0–3.

σ2
0 = E[σ2

1(Θc, g, x)] σ2
1(Θc, g, x) = wc, g, x, t · V ar[Yc, g, x, t|Θc, g, x]

σ̂2
0 = 1

C ·G ·X

C∑
c=1

G∑
g=1

X∑
x=1

σ̂2
1(Θc, g, x) σ̂2

1(Θc, g, x) 4= 1
T − 1

T∑
t=1

wc, g, x, t · [Yc, g, x, t −B(1)
c, g, x]2

σ2
1 = E{V ar[µ1(Θc, g, x)|Φc, g]} z

(1)
c, g =

X∑
x=1

w(1)
c, g, x, B

(1)
c, g, • =

X∑
x=1

w
(1)
c, g, x

z
(1)
c, g

·B(1)
c, g, x

c
(1)
c, g = X − 1

X
·
{ X∑
x=1

w
(1)
c, g, x

z
(1)
c, g

·
[

1− w
(1)
c, g, x

z
(1)
c, g

]}−1

σ̂2
1 = 1

C ·G

C∑
c=1

G∑
g=1

max[ T̂ (1)
c, g, 0] T̂

(1)
c, g = c

(1)
c, g ·

{
X

X − 1

X∑
x=1

w
(1)
c, g, x

z
(1)
c, g

[
B(1)
c, g, x −B

(1)
c, g, •

]2

− X

z
(1)
c, g

· σ̂2
0

}

σ2
2 = E{V ar[µ2(Φc, g)|Ψc]} z

(2)
c =

G∑
g=1

w(2)
c, g, B

(2)
c, • =

G∑
g=1

w
(2)
c, g

z
(2)
c

·B(2)
c, g

c
(2)
c = G− 1

G
·
{ G∑
g=1

w
(2)
c, g

z
(2)
c

·
[

1− w
(2)
c, g

z
(2)
c

]}−1

σ̂2
2 = 1

C

C∑
c=1

max[ T̂ (2)
c , 0] T̂

(2)
c = c

(2)
c ·

{
G

G− 1

G∑
g=1

w
(2)
c, g

z
(2)
c

[
B(2)
c, g −B

(2)
c, •

]2

− G

z
(2)
c

· σ̂2
1

}

σ2
3 = V ar[µ3(Ψc)] z(3) =

C∑
c=1

w(3)
c , B

(3)
• =

C∑
c=1

w
(3)
c

z(3) ·B
(3)
c

c(3) = C − 1
C
·
{ C∑
c=1

w
(3)
c

z(3) ·
[

1− w
(3)
c

z(3)

]}−1

σ̂2
3 = max[ T̂ (3), 0] T̂ (3) = c(3) ·

{
C

C − 1

C∑
c=1

w
(3)
c

z(3)

[
B(3)
c −B

(3)
•

]2

− C

z(3) · σ̂
2
2

}

Table B.2: Hierarchical credibility estimation of σ2
0, σ2

1, σ2
2 and σ2

3
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It is possible that T̂ (1)
c, g , T̂ (2)

c or T̂ (3) given in Table B.2 is negative because of a subtrac-
tion. In this case, we set it to zero. Note that for a four-level tree structure, we can set
α̂

(3)
c = 1 and do not need to calculate µ̂4 and w(4) in Table B.1. Similarly, to obtain the

corresponding formula (A.3) for a three-level tree structure which is the Bühlmann-Straub
credibility model, we let α̂(3)

c = α̂
(2)
c, g = 1 and it is not necessary to calculate B(3)

c , w(3)
c , µ̂4

and w(4).

To get the credibility estimate Ŷc, g, x, T+1 in (A.3), we need the estimates σ̂2
0, σ̂2

1, σ̂2
2 and

σ̂2
3. The estimation of σ2

0, σ2
1, σ2

2 and σ2
3 is given in Table B.2. For the detailed estimation,

please refer to Section 6.6 of Bühlmann and Gisler (2005). From the formulas in Table B.2,
we notice that the values of σ̂2

1, σ̂2
2 and σ̂2

3 can be zero, which leads to the values of α̂(1)
c, g, x,

α̂
(2)
c, g and α̂(3)

c being zero, respectively. Since the structural parameters are estimated from
the bottom to the top of the tree structure, it is easy to extend them to a tree structure with
higher levels. However, a hierarchical tree structure with higher levels has more structural
parameters. As suggested by Bühlmann and Gisler (2005), one should be careful choosing
the number of levels in the hierarchical credibility model.

It is obvious that the tree structure of the hierarchical credibility model covers that of
the Bühlmann-Straub credibility model, which can be obtained by applying a three-level
tree structure with only levels zero, one and two in Figure 3.1 for a specific population
of country c and gender g. Therefore, the five-level hierarchical credibility model is a
generalization of the Bühlmann-Straub credibility model. Given a specific population of
country c and gender g for a three-level hierarchical tree structure, the Bühlmann-Straub
credibility model reduces to the Bühlmann one if we further set wc, g, x, t = 1 for x = 1, · · · , X
and t = 1, · · · , T .

Next, we give a special case where all of the exposure units wc, g, x, ts are set to 1 (equal
exposure units). We will use this special case for our hierarchical credibility mortality
model.

A special case

If wc, g, x, t = 1 for all c = 1, · · · , C, g = 1, · · · , G, x = 1, · · · , X, and t = 1, · · · , T , then the
quantities in Tables B.1 and B.2 simplify to those in Tables B.3 and B.4. Moreover, the
credibility factors α̂(1)

c, g, x, α̂(2)
c, g and α̂(3)

c become subscript-free ones α̂(1), α̂(2) and α̂(3), and
B

(1)
c, g, x, B(2)

c, g, B(3)
c , and µ̂4 simplify to Y c, g, x, •, Y c, g, •, •, Y c, •, •, • and Y •, •, •, •, respectively.

Note that
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Table B.3: Formulas for B(1)
c, g, x, B(2)

c, g, B(3)
c , α̂(1)

c, g, x, α̂(2)
c, g, α̂(3)

c and µ̂4 under all wc, g, x, t = 1

B
(1)
c, g, x = 1

T

T∑
t=1

Yc, g, x, t
4= Y c, g, x, • w

(1)
c, g, x = T

4= w(1) α̂
(1)
c, g, x = T · σ̂2

1
T · σ̂2

1 + σ̂2
0

4= α̂(1)

B
(2)
c, g = 1

X

X∑
x=1

B(1)
c, g, x

4= Y c, g, •, • w
(2)
c, g = X · α̂(1) α̂

(2)
c, g = X · α̂(1) · σ̂2

2
X · α̂(1) · σ̂2

2 + σ̂2
1

4= α̂(2)

B
(3)
c = 1

G

G∑
g=1

B(2)
c, g
4= Y c, •, •, • w

(3)
c = G · α̂(2) α̂

(3)
c = G · α̂(2) · σ̂2

3
G · α̂(2) · σ̂2

3 + σ̂2
2

4= α̂(3)

µ̂3 = 1
C

C∑
c=1

B(3)
c
4= Y •, •, •, • w(4) = C · α̂(3)

• Y c, g, x, • (called the age sample mean) for level 1 is the average of Yc, g, x, ts at level 0
for t = 1, · · · , T , or the average of all entries Yc, g, x, ts (t = 1, · · · , T ) in a 1 × T row
vector, for age x under gender g and country c;
• Y c, g, •, • (called the gender sample mean) for level 2 is the average of Y c, g, x, • at level 1
for x = 1, · · · , X, or the average of all entries Yc, g, x, ts (x = 1, · · · , X and t = 1, · · · , T )
in an (X × T ) matrix or rectangle, for gender g under country c,
• Y c, •, •, • (called the country sample mean) for level 3 is the average of Y c, g, •, • at level
2 for g = 1, · · · , G, or the average of all entries Yc, g, x, ts (g = 1, · · · , G, x = 1, · · · , X,
and t = 1, · · · , T ) in a (G×X × T ) matrix or solid, for country c; and
• Y •, •, •, • (called the multi-country sample mean) for level 4 is the average of Y c, •, •, •

at level 3 for c = 1, · · · , C, or the average of all entries Yc, g, x, ts (c = 1, · · · , C,
g = 1, · · · , G, x = 1, · · · , X, and t = 1, · · · , T ) in a C × G × X × T matrix or in C
(G×X × T ) solids for the multi-country population.

Under this special case that all wc, g, x, t = 1, (A.1)–(A.3) turn out to

Ŷc, g = α̂(3) · Y c, •, •, • + (1− α̂(3)) · Y •, •, •, •, (A.4)

Ŷc, g, x = α̂(2) · Y c, g, •, • + (1− α̂(2)) · Ŷc, g
= α̂(2) · Y c, g, •, • + [(1− α̂(2)) · α̂(3)] · Y c, •, •, • + [(1− α̂(2)) · (1− α̂(3))] · Y •, •, •, •,

(A.5)

and
Ŷc, g, x, T+1 = α̂(1) · Y c, g, x, • + (1− α̂(1)) · Ŷc, g, x

= α̂(1) · Y c, g, x, • + [(1− α̂(1)) · α̂(2)] · Y c, g, •, •

+[(1− α̂(1)) · (1− α̂(2)) · α̂(3)] · Y c, •, •, •

+[(1− α̂(1)) · (1− α̂(2)) · (1− α̂(3))] · Y •, •, •, •. (A.6)
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σ2
0 = E[σ2

1(Θc, g, x)] σ2
1(Θc, g, x) = V ar[Yc, g, x, t|Θc, g, x]

σ̂2
0 = 1

C ·G ·X

C∑
c=1

G∑
g=1

X∑
x=1

σ̂2
1(Θc, g, x) σ̂2

1(Θc, g, x) 4= 1
T − 1

T∑
t=1

[
Yc, g, x, t − Y c, g, x, •

]2

σ2
1 = E{V ar[µ1(Θc, g, x)|Φc, g]} z

(1)
c, g = X · T , B

(1)
c, g, • = Y c, g, •, •, c

(1)
c, g = 1

σ̂2
1 = 1

C ·G

C∑
c=1

G∑
g=1

max[ T̂ (1)
c, g, 0] T̂

(1)
c, g = 1

X − 1

X∑
x=1

[
Y c, g, x, • − Y c, g, •, •

]2

− σ̂
2
0
T

σ2
2 = E{V ar[µ2(Φc, g)|Ψc]} z

(2)
c = G ·X · α̂(1), B

(2)
c, • = Y c, •, •, •, c

(2)
c = 1

σ̂2
2 = 1

C

C∑
c=1

max[ T̂ (2)
c , 0] T̂

(2)
c = 1

G− 1

G∑
g=1

[
Y c, g, •, • − Y c, •, •, •

]2

−
[
σ̂2

1
X

+ σ̂2
0

X · T

]
σ2

3 = V ar[µ3(Ψc)] z(3) = C ·G · α̂(2), B
(3)
• = Y •, •, •, •, c(3) = 1

σ̂2
3 = max[ T̂ (3), 0] T̂ (3) = 1

C − 1

C∑
c=1

[
Y c, •, •, • − Y •, •, •, •

]2

−
[
σ̂2

2
G

+ σ̂2
1

G ·X + σ̂2
0

G ·X · T

]
Table B.4: Hierarchical credibility estimation of σ2

0, σ2
1, σ2

2 and σ2
3 under all wc, g, x, t = 1

From (A.4)–(A.6), we observe that

• the common credibility estimate Ŷc, g for all genders g (g = 1, · · · , G) at level 2 under
country c at level 3 is a weighted average of Y c, •, •, • and Y •, •, •, •;
• the common credibility estimate Ŷc, g, x for all ages x (x = 1, · · · , X) at level 1 under

gender g at level 2 and country c at level 3 is a weighted average of Y c, g, •, • and Ŷc, g,
which results in a weighted average of Y c, g, • •, Y c, •, •, • and Y •, •, •, •; and
• the credibility estimate Ŷc, g, x, T+1 for year T + 1 at level 0 under age x at level 1,
gender g at level 2, and country c at level 3 is a weighted average of Y c, g, x, • and
Ŷc, g, x, which leads to a weighted average of Y c, g, x, •, Y c, g, •, •, Y c, •, •, • and Y •, •, •, •.

We use subscripts (g, x, t) for gender g and age x in year t for a four-level hierarchical
structure being applied to a country. The structural parameters for a four-level hierarchical
tree can also be estimated from those for the five-level hierarchical tree by setting C = 1
(for a specific country) and α̂(3) = 1, and we do not need to calculate T̂ (3) and σ̂2

3 in Table
B.4. Then the hierarchical credibility estimate of the decrement in the logarithm of central
death rate over [T, T + 1] for gender g and age x under the special case is

Ŷg, x, T+1 = α̂(1) · Y g, x, • + [(1− α̂(1)) · α̂(2)] · Y g, •, • + [(1− α̂(1)) · (1− α̂(2))] · Y •, •, •, (A.7)

where Y g, x, • = 1
T

∑T
t=1 Y g, x, t, Y g, •, • = 1

X

∑X
x=1 Y g, x, • = 1

X·T
∑X
x=1

∑T
t=1 Yg, x, t, and

Y •, •, • = 1
G

G∑
g=1

Y g, •, • = 1
G ·X · T

G∑
g=1

X∑
x=1

T∑
t=1

Yg, x, t.
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Note that σ̂2
0, σ̂2

1 and σ̂2
2 in the expressions for α̂(1) and α̂(2) (see Tables B.3 and B.4) become

σ̂2
0 = 1

G ·X

G∑
g=1

X∑
x=1

[ 1
T − 1

T∑
t=1

(Yg, x, t − Y g, x, •)2
]
,

σ̂2
1 = 1

G

∑G
g=1 max[T̂ (1)

g , 0] and σ̂2
2 = max[T̂ (2), 0], where

T̂ (1)
g = 1

X − 1

X∑
x=1

[
Y g, x, • − Y g, •, •

]2
− σ̂

2
0
T
,

and

T̂ (2) = 1
G− 1

G∑
g=1

[
Y g, •, • − Y •, •, •

]2
−
[
σ̂2

1
X

+ σ̂2
0

X · T

]
.

If C = G = 1 (mortality data are applied to a specific population of gender and coun-
try), the five-level hierarchical structure reduces to three-level one, and the non-parametric
classical Bühlmann credibility model recovers. In this case, µ1(Θc, g, x) = E[Yc, g, x, t|Θc, g, x],
σ2

1(Θc, g, x) = V ar[Yc, g, x, t|Θc, g, x], µ2(Φc, g) = E[E(Yc, g, x, t|Θc, g, x)|Φc, g], σ2
0 = E[σ2

1(Θc, g, x)],
and σ2

1 = E{V ar[µ1(Θc, g, x)|Φc, g]} become (we use subscripts (x, t) for age x in year t un-
der a three-level hierarchical structure, and ignore subscripts (c, g) = (1, 1) for simplifying
notations)

• µ1(Θx) = E[Yx, t|Θx], the hypothetical mean;
• σ2

1(Θx) = V ar[Yx, t|Θx], the process variance;
• µ2 = E[µ1(Θx)] = E[E(Yx, t|Θx)] = E[Yx, t], the expected value of the hypothetical

means;
• σ2

0 = E[σ2
1(Θx)], the expected value of the process variance; and

• σ2
1 = V ar[µ1(Θx)], the variance of the hypothetical mean.

Then the non-parametric Bühlmann credibility estimate of the decrement in the logarithm of
central death rate for age x over [T, T+1], Ŷx, T+1, can be obtained by setting α̂(2) = α̂(3) = 1
in (A.6) as (see also Tsai and Lin (2017b) and Klugman et al. (2012))

Ŷx, T+1 = α̂(1) · Y x, • + (1− α̂(1)) · Y •, •, (A.8)

where Y x, • = 1
T

∑T
t=1 Yx, t and µ̂2 = Y •, • = 1

X

∑X
x=1 Y x, • = 1

X·T
∑X
x=1

∑T
t=1 Yx, t. Note

that σ̂2
0 and σ̂2

1 (given in Table B.4) in the expression for α̂(1) (see Table B.3) become

σ̂2
0 = 1

X

X∑
x=1

[ 1
T − 1

T∑
t=1

(
Yx, t − Y x, •

)2]
,

and σ̂2
1 = max[T̂ (1), 0], where

T̂ (1) = 1
X − 1

X∑
x=1

[
Y x, • − Y •, •

]2
− σ̂

2
0
T
.
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Appendix C

Proof of Proposition 1

C.1 Proof of Proposition 1 (a)

Proof: By (3.2),
C∑
c=1

G∑
g=1

X∑
x=1

Ŷc, g, x, T+τ = α̂(1)
τ

C∑
c=1

G∑
g=1

X∑
x=1

Y
T+τ
c, g, x, • + [(1− α̂(1)

τ ) · α̂(2)
τ ]

C∑
c=1

G∑
g=1

X∑
x=1

Y
T+τ
c, g, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · α̂(3)
τ ]

C∑
c=1

G∑
g=1

X∑
x=1

Y
T+τ
c, •, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · (1− α̂(3)
τ )]

C∑
c=1

G∑
g=1

X∑
x=1

Y
T+τ
•, •, •, •

= α̂(1)
τ · C ·G ·X · Y

T+τ
•, •, •, • + [(1− α̂(1)

τ ) · α̂(2)
τ ] · C ·G ·X · Y T+τ

•, •, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · α̂(3)
τ ] · C ·G ·X · Y T+τ

•, •, •, •

+[(1− α̂(1)
τ ) · (1− α̂(2)

τ ) · (1− α̂(3)
τ )] · C ·G ·X · Y T+τ

•, •, •, •

= C ·G ·X · Y T+τ
•, •, •, •.

Dividing (C ·G ·X) on both sides, we have for τ = 1, 2, · · · ,

1
C ·G ·X

C∑
c=1

G∑
g=1

X∑
x=1

Ŷc, g, x, T+τ = Y
T+τ
•, •, •, • = 1

C ·G ·X

C∑
c=1

G∑
g=1

X∑
x=1

Y
T+τ
c, g, x, •.

C.2 Proof of Proposition 1 (b)

Proof: This proposition is proved by mathematical induction on τ . First, for τ = 2, by
definition, (3.3) and Proposition 1,
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Y
T+2
•, •, •, • = 1

C ·G ·X

C∑
c=1

G∑
g=1

X∑
x=1

Y
T+2
c, g, x, •

= 1
C ·G ·X · (T + 1)

C∑
c=1

G∑
g=1

X∑
x=1

[ T∑
t=1

Yc, g, x, t + Ŷc, g, x, T+1

]

= T

T + 1 · Y
T+1
•, •, •, • + 1

T + 1Y
T+1
•, •, •, • = Y

T+1
•, •, •, •.

Next, assume that Y T+τ
•, •, •, • = Y

T+1
•, •, •, • holds. Then (3.3) and Proposition 1 lead to

Y
T+τ+1
•, •, •, • = 1

C ·G ·X

C∑
c=1

G∑
g=1

X∑
x=1

Y
T+τ+1
c, g, x, •

= 1
C ·G ·X · (T + τ)

C∑
c=1

G∑
g=1

X∑
x=1

[( T∑
t=1

Yc, g, x, t +
T+τ−1∑
t=T+1

Ŷc, g, x, t

)
+ Ŷc, g, x, T+τ

]

= 1
C ·G ·X · (T + τ)

C∑
c=1

G∑
g=1

X∑
x=1

[
(T + τ − 1) · Y T+τ

c, g, x, • + Ŷc, g, x, T+τ
]

= T + τ − 1
T + τ

· Y T+τ
•, •, •, • + 1

T + τ
Y
T+τ
•, •, •, • = Y

T+1
•, •, •, •.

Therefore, we prove that Y T+τ
•, •, •, • = Y

T+1
•, •, •, • for τ = 2, 3, · · · under the EW strategy.

C.3 Proof of Proposition 1 (c)

Proof: Let fτ = (T + τ) · σ̂2
1 + σ̂2

0, gτ = X · (T + τ) · σ̂2
2 + fτ and hτ = G ·X · (T + τ) · σ̂2

3 + gτ .
Then by (3.7), (3.8) and (3.9), we have

α̂
(1)
τ = fτ−1−σ̂2

0
fτ−1

, 1− α̂(1)
τ = σ̂2

0
fτ−1

, (1− α̂(1)
τ ) α̂(2)

τ = σ̂2
0(gτ−1−fτ−1)
fτ−1·gτ−1

,

α̂
(2)
τ = gτ−1−fτ−1

gτ−1
, 1− α̂(2)

τ = fτ−1
gτ−1

, (1− α̂(1)
τ ) (1− α̂(2)

τ ) α̂(3)
2 = σ̂2

0(hτ−1−gτ−1)
gτ−1·hτ−1

,

α̂
(3)
τ = hτ−1−gτ−1

hτ−1
, 1− α̂(3)

τ = gτ−1
hτ−1

, (1− α̂(1)
τ ) (1− α̂(2)

τ ) (1− α̂(3)
2 ) = σ̂2

0
hτ−1

.

From (3.2), we can express Ŷc, g, x, T+τ as

Ŷc, g, x, T+τ

= 1
fτ−1 gτ−1 hτ−1

[
gτ−1 hτ−1 (fτ−1 − σ̂2

0) · Y T+τ
c, g, x, • + σ̂2

0 (gτ−1 − fτ−1)hτ−1 · Y
T+τ
c, g, •, •

+σ̂2
0 (hτ−1 − gτ−1) fτ−1 · Y

T+τ
c, •, •, • + σ̂2

0 fτ−1 gτ−1 · Y
T+τ
•, •, •, •

]
. (C.1)
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Our goal is to show fτ gτ hτ ·Ŷc, g, x, T+τ+1 = fτ gτ hτ ·Ŷc, g, x, T+τ , which implies Ŷc, g, x, T+τ+1 =
Ŷc, g, x, T+τ , τ = 1, 2, · · · , and thus Ŷc, g, x, T+τ = Ŷc, g, x, T+1, τ = 2, 3, · · · . First, we let

DIFF = fτ gτ hτ · Ŷc, g, x, T+τ+1 − fτ−1 gτ−1 hτ−1 · Ŷc, g, x, T+τ .

Then our goal changes to prove

fτ gτ hτ · Ŷc, g, x, T+τ = fτ gτ hτ · Ŷc, g, x, T+τ+1 = fτ−1 gτ−1 hτ−1 · Ŷc, g, x, T+τ +DIFF,

or equivalently, DIFF = (fτ · gτ · hτ − fτ−1 · gτ−1 · hτ−1) · Ŷc, g, x, T+τ .

By (C.1), DIFF is the sum of the following four expressions (C.2)−(C.5):

gτ hτ (fτ − σ̂2
0) · Y T+τ+1

c, g, x, • − gτ−1 hτ−1 (fτ−1 − σ̂2
0) · Y T+τ

c, g, x, •

= σ̂2
1

[
gτhτ

( T∑
t=1

Yc, g, x, t +
T+τ∑
t=T+1

Ŷc, g, x, t

)
−gτ−1hτ−1

( T∑
t=1

Yc, g, x, t +
T+τ−1∑
t=T+1

Ŷc, g, x, t

)]

= σ̂2
1

[
(gτ hτ − gτ−1 hτ−1)

( T∑
t=1

Yc, g, x, t +
T+τ−1∑
t=T+1

Ŷc, g, x, t

)
+gτ hτ · Ŷc, g, x, T+τ

]
= (gτ hτ − gτ−1 hτ−1) (fτ−1 − σ̂2

0) · Y T+τ
c, g, x, • + σ̂2

1 gτ hτ · Ŷc, g, x, T+τ , (C.2)

σ̂2
0(gτ − fτ )hτ · Y

T+τ+1
c, g, •, • − σ̂2

0 (gτ−1 − fτ−1)hτ−1 · Y
T+τ
c, g, •, •

= σ̂2
0 σ̂

2
2

[
hτ

X∑
x=1

( T∑
t=1

Yc, g, x, t +
T+τ∑
t=T+1

Ŷc, g, x, t

)
−hτ−1

X∑
x=1

( T∑
t=1

Yc, g, x, t +
T+τ−1∑
t=T+1

Ŷc, g, x, t

)]

= σ̂2
0σ̂

2
2

[
(hτ − hτ−1)

X∑
x=1

( T∑
t=1

Yc, g, x, t +
T+τ−1∑
t=T+1

Ŷc, g, x, t

)
+hτ

X∑
x=1

Ŷc, g, x, T+τ

]

= σ̂2
0 (hτ − hτ−1) (gτ−1 − fτ−1) · Y T+τ

c, g, •, • + σ̂2
0 σ̂

2
2 hτ

X∑
x=1

Ŷc, g, x, T+τ , (C.3)
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σ̂2
0 (hτ − gτ ) fτ · Y

T+τ+1
c, •, •, • − σ̂2

0 (hτ−1 − gτ−1) fτ−1 · Y
T+τ
c, •, •, •

= σ̂2
0 σ̂

2
3

[
fτ

G∑
g=1

X∑
x=1

( T∑
t=1

Yc, g, x, t +
T+τ∑
t=T+1

Ŷc, g, x, t

)

− fτ−1

G∑
g=1

X∑
x=1

( T∑
t=1

Yc, g, x, t +
T+τ−1∑
t=T+1

Ŷc, g, x, t

)]

= σ̂2
0 σ̂

2
3

[
(fτ − fτ−1)

G∑
g=1

X∑
x=1

( T∑
t=1

Yc, g, x, t +
T+τ−1∑
t=T+1

Ŷc, g, x, t

)
+fτ

G∑
g=1

X∑
x=1

Ŷc, g, x, T+τ

]

= σ̂2
0 (fτ − fτ−1) (hτ−1 − gτ−1) · Y T+τ

c, •, •, • + σ̂2
0 σ̂

2
3fτ

G∑
g=1

X∑
x=1

Ŷc, g, x, T+τ , (C.4)

σ̂2
0 fτgτ · Y

T+τ+1
•, •, •, • − σ̂2

0 fτ−1 gτ−1 · Y
T+τ
•, •, •, • = σ̂2

0 (fτ gτ − fτ−1 gτ−1) · Y T+τ
•, •, •, •. (C.5)

Next,

fτgτhτ−fτ−1gτ−1hτ−1 = (fτ−1+σ̂2
1)gτhτ−fτ−1gτ−1hτ−1 = σ̂2

1gτhτ+fτ−1(gτhτ−gτ−1hτ−1),

and

(fτgτhτ−fτ−1gτ−1hτ−1)·Ŷc, g, x, T+τ = σ̂2
1gτhτ ·Ŷc, g, x, T+τ+fτ−1(gτhτ−gτ−1hτ−1)·Ŷc, g, x, T+τ .

(C.6)
The first term of (C.6) cancels out the second term of (C.2), and the second term of (C.6)
by (C.1) gives

(gτhτ − gτ−1hτ−1)(fτ−1 − σ̂2
0) · Y T+τ

c, g, x, • + σ̂2
0

gτ−1
(gτhτ − gτ−1hτ−1)(gτ−1 − fτ−1) · Y T+τ

c, g, •, •

+ σ̂2
0

gτ−1hτ−1
(gτhτ − gτ−1hτ−1)(hτ−1 − gτ−1)fτ−1 · Y

T+τ
c, •, •, •

+ σ̂2
0

hτ−1
(gτhτ − gτ−1hτ−1)fτ−1 · Y

T+τ
•, •, •, •. (C.7)
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The first term of (C.7) cancels out the first term of (C.2), so the remaining task is to prove
that the sum of the last three terms of (C.7) equals the sum of (C.3), (C.4) and (C.5). Since

X∑
x=1

Ŷc, g, x, T+τ = X

fτ−1gτ−1hτ−1

{[
gτ−1hτ−1(fτ−1 − σ̂2

0) + σ̂2
0(gτ−1 − fτ−1)hτ−1

]
· Y T+τ

c, g, •, •

+ σ̂2
0(hτ−1 − gτ−1)fτ−1 · Y

T+τ
c, •, •, • + σ̂2

0fτ−1gτ−1 · Y
T+τ
•, •, •, •

}
= X

fτ−1gτ−1hτ−1

[
fτ−1hτ−1(gτ−1 − σ̂2

0) · Y T+τ
c, g, •, •

+ σ̂2
0(hτ−1 − gτ−1)fτ−1 · Y

T+τ
c, •, •, • + σ̂2

0fτ−1gτ−1 · Y
T+τ
•, •, •, •

]
=X(gτ−1 − σ̂2

0)
gτ−1

· Y T+τ
c, g, •, • + Xσ̂2

0(hτ−1 − gτ−1)
gτ−1hτ−1

· Y T+τ
c, •, •, • + Xσ̂2

0
hτ−1

· Y T+τ
•, •, •, •

(C.8)

and

G∑
g=1

X∑
x=1

Ŷc, g, x, T+τ = GX

fτ−1gτ−1hτ−1

{[
fτ−1hτ−1(gτ−1 − σ̂2

0) + σ̂2
0(hτ−1 − gτ−1)fτ−1

]
· Y T+τ

c, •, •, •

+ σ̂2
0fτ−1gτ−1 · Y

T+τ
•, •, •, •

}
=GX(hτ−1 − σ̂2

0)
hτ−1

· Y T+τ
c, •, •, • + GXσ̂2

0
hτ−1

· Y T+τ
•, •, •, •, (C.9)

comparing the coefficients of Y T+τ
c, g, •, •, Y

T+τ
c, •, •, • and Y

T+τ
•, •, •, • in the last three terms of (C.7)

with those in (C.3), (C.4) and (C.5) associated with (C.8) and (C.9), it is sufficient to show

1. coefficient of Y T+τ
c, g, •, •:

σ̂2
0

gτ−1
(gτhτ − gτ−1hτ−1)(gτ−1− fτ−1) = σ̂2

0(hτ −hτ−1)(gτ−1− fτ−1) + Xσ̂2
0σ̂

2
2hτ (gτ−1 − σ̂2

0)
gτ−1

;

(C.10)

2. coefficient of Y T+τ
c, •, •, •:

σ̂2
0

gτ−1 hτ−1
(gτhτ − gτ−1hτ−1)(hτ−1 − gτ−1)fτ−1

= Xσ̂4
0σ̂

2
2hτ (hτ−1 − gτ−1)
gτ−1hτ−1

+ σ̂2
0(fτ − fτ−1)(hτ−1 − gτ−1) + GXσ̂2

0σ̂
2
3fτ (hτ−1 − σ̂2

0)
hτ−1

;

(C.11)

3. coefficient of Y T+τ
•, •, •, •:

σ̂2
0

hτ−1
(gτhτ − gτ−1hτ−1)fτ−1 = X σ̂4

0 σ̂
2
2 hτ

hτ−1
+ GX σ̂4

0 σ̂
2
3 fτ

hτ−1
+ σ̂2

0 (fτ gτ − fτ−1 gτ−1). (C.12)
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After rearrangement and simplification, the three equations (C.10), (C.11) and (C.12)
we need to show become

(gτ−1 − fτ−1)(gτ − gτ−1) = Xσ̂2
2(gτ−1 − σ̂2

0),

(hτ−1 − gτ−1)(fτ−1gτhτ − fτgτ−1hτ−1 −Xσ̂2
0σ̂

2
2hτ ) = GXσ̂2

3fτgτ−1(hτ−1 − σ̂2
0),

gτ (fτ−1hτ − fτhτ−1) = Xσ̂2
0(σ̂2

2hτ +Gσ̂2
3fτ ),

respectively, which can be verified directly by the definitions of fτ , gτ and hτ .
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