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Abstract

In non-life insurance, reserving models for incurred but not reported (IBNR) claims are
extensively studied for estimating and predicting adequate reserves for the company. We
present a Poisson integer-valued autoregressive (INAR) model of order one for closed claim
counts and a compound model based on it in which a mixed gamma distribution for claim
severities is assumed. The compound model we study takes into account both the IBNyR
(incurred but not yet reported) and IBNeR (incurred but not enough reported) claim counts
and their payments. Maximum likelihood techniques are applied for estimating the model
parameters. The simulation study is adopted to illustrate the results of the estimations, and
to compare the performance of different sizes of the loss development triangle. Predictions
based on our proposed model are discussed and the level of estimation accuracy is examined.

Keywords: IBNR; INAR; Maximum likelihood estimation; Loss triangle; Compound model;
Aggregate claims
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Chapter 1

Introduction

In the insurance context, the claim reserve and loss reserve are equivalent, and a reserve
for claims or losses is basically the total amount of money that needs to be put aside for
payments associated with future claims or losses. Loss reserves represent one of the major
liabilities of an insurance company, and hence are important components for companies’
financial evaluation. Studies on modeling claims and predicting reserves have been con-
ducted extensively for past years. The loss reserves in non-life insurance can be divided into
two big components which are Incurred But Not yet Reported (IBNyR) and Incurred But
Not enough Reported (IBNeR) (see, for example, Friedland, 2010 for more details). IBNyR
claims arise from the claims which are yet to be reported whereas IBNeR claims are incurred
from the claims that have been already reported. In general, Incurred But Not Reported
(IBNR) claims refer to IBNyR claims and IBNeR claims. IBNyR and IBNeR claims are
also known as pure IBNR and RBNS (Reported But Not yet Settled) claims, respectively
in the literature. Estimating loss reserves can be done without distinguishing their types;
however, loss reserves can also be estimated as a sum of two separate estimates of IBNyR
and IBNeR claims, which may improve the level of accuracy in estimations.

Organizing IBNR claims data is the first and an important step for estimating loss
reserves. In practice, the loss development triangle (also known as run-off triangle) is a
commonly used method to organize IBNR claims data. As these claims are not paid im-
mediately, there are development periods for claim payments. For example, in automobile
insurance, typical loss development triangle organizes the claims data by the year that the
accident occurs, called the accident year, and the year that the claims are paid or settled,
called the development year. In this way, changes or developments in losses between different
times of evaluation can be estimated.

Various methods and models, both non-parametric and parametric, have been studied
and proposed to estimate loss reserves. One of the most popular and classical methods for
estimating the IBNR claims is the Chain-Ladder (CL) method because of its simplicity.
However, the CL method has a disadvantage of no indication of the variability of results
(see, Mack, 1993). To improve such disadvantage of the classical model, the Double Chain-
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Ladder (DCL) method is proposed in Martinez-Miranda et al. (2012). The DCL method
is formulated in a way to acknowledge the data being used and is capable of dividing
predicted claims reserve into that of IBNR and RBNS using a simple regression approach.
Another disadvantage arisen from the CL method is that the tail estimates are not accurate.
However, by incorporating the method proposed in Bornhuetter-Freguson (1972) with the
DCL method, the tail estimates can be improved (see, Martinez-Miranda et al., 2013).
These popular methods have a strength of simplicity and have been extensively used in
property and casualty insurance practice. However, as they are non-parametric models
and not studied under the stochastic framework, the uncertainty of the estimators is not
assessed and tested. Thus, parametric models have been studied and developed for the
claim reserving. Claim counts and their sizes can be studied with separate models, and
then the total reserve can be estimated by multiplying the estimated ultimate number of
claims and the estimated ultimate size of claims obtained from these two models; this is
referred to as the frequency-severity techniques. The advantage of this technique is that
it can provide potential insight into the claims process (Friedland, 2010). Thus, it can be
used as a reasonable start point to study claim reserve in practice. Another way to study
parametric models for claim reserving is to model the aggregate claims with payments using
a compound model such as Tweedie’s model (see, Wüthrich 2003).

One of the well studied claim reserving models is the Tweedie’s model presented in
Jørgensen and de Souza (1994) where a Tweedie’s compound Poisson model is fitted to
insurance claim data for tarification. Wüthrich (2003) further presents a model for the
normalized incremental payments from the aggregated data by reparameterizing Tweedie’s
model. In fact, Tweedie’s model is a special compound model in which the number of pay-
ments follows a Poisson distribution, and sizes of payment follow a Gamma distribution.
Moreover, Tweedie’s model has been demonstrated to belong to the exponential dispersion
family with variance function V (µ) = µp, p ∈ (1, 2) and dispersion parameter ψ by a re-
parameterization; see, for example, Jørgensen (1987) for more details about exponential
dispersion model. With a constant dispersion parameter, the class of Tweedie’s model con-
sists of three models, over-dispersed Poisson (p = 1), gamma model (p = 2) and compound
Poisson. Details can be found in Wüthrich (2003).

To improve the estimations from the aggregation of data, a stochastic model for loss
reserving is proposed by Verrall et al. (2010) using the run-off triangle of paid claims and
also the number of reported claims. In the study, separate models for IBNeR and IBNyR
claims are derived in terms of the different sources of delays which allow separate prediction
of IBNeR and IBNyR claims. In their paper, it denotes the number of claims paid as Npaid

i,j,k ,
as the part of Ni,j number of claims incurred in period i with j periods delay to be reported
and with k periods of delay to be fully paid. When k = 0, this is the number of claims being
fully paid in the same period as they are reported. The aggregate number of paid claims is
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denoted as

Npaid
i,j =

min(j,d)∑
k=0

Npaid
i,j−k,k,

where d is the maximum periods for IBNeR delay which can be determined from the data.
The two different types of delay, IBNyR delay and IBNeR dealy, are modeled separately by
assuming that Ni,j are independently distributed with an over-dispersed Poisson distribu-
tion, and Npaid

i,j,k |Ni,j are multinomially distributed. Based on this model for number of paid
claims, the paper further presents a model for aggregate incremental claims as

Xi,j =
Npaid
i,j∑
l=1

Y
(l)
i,j ,

where Y (l)
i,j denotes the lth individual claim payment which can be zero.

Although models for claim reserving have become more sophisticated and developed due
to extensive studies, the time series approaches have not been widely employed to model
the claim counts. Kremer (1995) proposes an integer-valued autoregressive (INAR) of order
one model for IBNR claims based on the INAR(1) process proposed in Al-Osh and Alzaid
(1987). More insights and properties of this model as well as methods for estimating model
parameters can be found in Al-Osh and Alzaid (1987).

The use of INAR(1) process for modeling claim counts in risk models presented in
Cossette et al. (2010). The paper considers an insurance portfolio, and defines the aggregate
claim amount in period k as

Wk =
Nk∑
j=1

Bk,j ,

where Nk represents the number of claims in period k, and Bk,j represents the jth claim size
in period k. To incorporate the temporal dependency, they propose an INAR(1) process for
the counts described by

Nk = α ◦Nk−1 + εk,

where N = {Nk, k ∈ N+} is a Poisson autoregressive of order one process with N1 following
a Poisson distribution with mean λ, and ε = {εk, k ∈ N+} is a sequence of independent and
identically distributed (i.i.d.) r.v.’s following a Poisson distribution with mean (1−α)λ and
α ∈ [0, 1] (detailed definition of INAR(1) process is given in Chapter 2). This model can
be interpreted as a sum of the population who arrives in the interval (k − 1, k), and the
population who survives from k − 1 to k. Further, the paper also presents the properties
such as probability and moment generating functions, and an expression for the Lundberg
coefficient under the assumption that claim sizes are exponentially distributed to illustrate
the impact of the dependence parameter α to the risk model. In Cossette et al. (2011), the
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same model is proposed to study the stop-loss premium, value at risk (VaR), and tail value
at risk (TVaR).

Based on a Kremer’s INAR(1) model for IBNR claims, a Poisson integer-valued autore-
gressive model for number of the unclosed claims is proposed by Bai (2016). In the study,
the model parameters are estimated using three non-parametric methods (1) Yuller-Walker
estimation, (2) Conditional Least Squares estimation (CLS) and (3) Iterative Weighted Con-
ditional Least Square estimation (IWCLS). The mean square error prediction is used for
the prediction inference. The assumptions and properties of this model are briefly reviewed
in Chapter 2.

As the number of claims have the temporal dependence, we propose a model for number
of the closed claims using INAR process of order one developed from the idea proposed in
Bai (2016). We further study a compound model with INAR(1) for counts and a mixed
gamma distribution for individual claim sizes. Our model for closed claim counts takes into
account both the IBNyR and IBNeR claims, which can be used to predict the number of
claims expected to be paid out in the future. By incorporating the number of closed claims
with sizes of claim, our compound model can be utilized to estimate the total amount of
future payments which is a major interest of the company’s perspective. We apply maximum
likelihood techniques for estimating the model parameters. As the proposed compound
model is a parametric model and studied under the stochastic framework, the uncertainty
in model parameter estimations can be assessed. A closed rate is introduced in the model
for closed claims count. When the closed rate is equal to 1, all the claims are closed with
payments when they are being reported. In this case, our INAR(1) model for closed claims
counts reduces to a Poisson model, and our proposed compound model is found to be
Tweedie’s compound Poisson model. Thus, our proposed compound model is considered as
a generalization of Tweedie’s model. In many cases, data on number of and sizes of claims are
available; thus, the proposed compound model can make more efficient use of claims data.
We conduct a simulation study to illustrate the parameter estimations and their accuracy
level, and to analyze the prediction results. The mean square prediction error has been used
as a measure for evaluating prediction errors.

The outline of the project is as follows. In Chapter 2, we introduce the basics of loss
development triangle and propose models for closed claim counts and incremental individual
claim sizes. Properties of these models are discussed. Chapter 3 presents the procedure to
apply the maximum likelihood estimation methods. The systems of estimating equations
are derived. In Chapter 4, an algorithm for estimating parameters is presented, and the
prediction method is introduced. Chapter 5 provides the numerical illustration from the
simulation study and the analysis on the predictions. Chapter 6 concludes the project with
a discussion of further research.
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Chapter 2

Model for IBNeR and IBNyR
Claims

The IBNR claims reserving model is mainly used to study the loss development trend or
pattern using the readily available data so the payments for future claims can be well
reserved to reduce the financial loss of the insurance company. The IBNR data is normally
organized by the loss development triangle that is introduced briefly in Section 2.1. As we
have mentioned in Chapter 1, the INAR(1) model for closed IBNR claim counts proposed
in this project is developed from a similar model studied in Bai (2016) for unclosed claim
counts. Before we introduce our model, in Section 2.2, we present a brief review of the model
and its assumptions for the unclosed IBNR claim counts. We then present in Section 2.3
our count model for closed IBNeR and IBNyR claims, model assumptions and properties.
In Section 2.4, models for loss severities are introduced and their properties are presented.
Finally, Section 2.5 presents a compound model for incremental aggregate claims (total
payments) based on the counts and severities models discussed in previous two sections.
Some characteristics of the compound model are also discussed.

2.1 Loss development triangle

The loss development triangle is a commonly used actuarial technique to arrange the IBNR
loss data from the past experience. The most recent accident year and the latest development
year are denoted as I and J , respectively. In general, I and J can be different depending on
the type of the loss data. However, we use I = J in this project for simplicity. The general
loss development triangle, which separate claim figures on two time axes, is illustrated in
Figure 2.1. In this figure, Wi,j can be claim numbers or payments and these figures can
be either incremental or cumulative in accident year i with reporting delay of j years. The
observed data is recorded into upper left triangles of the table by the accident year and the
development year while lower right triangle of the table contains the predictions/estimations
of corresponding quantities. For the individual claim sizes which are studied in Section 2.4,
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Figure 2.1: Loss development triangle

each cell (i, j) in the upper left triangle contains the number of observed individual claim
sizes and in the lower right triangle contains predictions/estimates of individual claim sizes.

2.2 Model for Unclosed Claims

We now review the model proposed in Bai (2016) for unclosed IBNR claim counts. For
the unclosed claim counts, the idea of constant unclosed rate is introduced, and a Poisson
INAR(1) model is assumed. Define Ni,j as the total number of claims that occur in accident
year i and have been reported up to development year j but have not yet been settled at
the end of the development year j. Assumptions for Ni,j model are as follows:

• Unclosed claims Ni,j of different accident years i are independent (i.e., Ni,j⊥Nl,k for
any j and k and i 6= l).

• There exist parameters µ0, ..., µI and γ0, ..., γI such that newly reported claims Ii,j
incurred in accident year i but reported with j years of delay are independently
Poisson distributed with E[Ii,j ] = µiγj , for all 0 ≤ i, j ≤ I, and

∑I
j=0 γj = 1.

In Bai (2016), it is proposed that the unclosed number of claims Ni,j of accident years i
and development year j follows an INAR(1) process such that

Ni,j = ρ ◦Ni,j−1 + Ii,j , 0 ≤ i, j ≤ I, (2.1)

where ρ ◦Ni,j−1 =
∑Ni,j−1
k=1 Yk, Yk

iid∼Bernoulli(ρ) and 0 ≤ ρ ≤ 1, and Ni,−1 = 0. Here, “◦” is
called the binomial thinning operator. We can interpret (2.1) as the sum of unclosed claims
carried from previous year j − 1, and newly reported claims in year j.
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2.3 Closed Claims Counts

The number of closed claims can be seen as the difference of a total number of outstanding
claims in two consecutive development years (say, j − 1 and j). By applying this idea to
unclosed claims, the model for closed claims is derived, and some assumptions presented
for unclosed claims are applied to the model. It turns out that the model for the number of
closed claims is also a Poisson INAR process of order one. Section 2.3.1 lists assumptions
for the closed claims model. Section 2.3.2 presents the characteristics such as conditional
moments, unconditional moments and distribution of closed claims.

2.3.1 Model Assumptions

In the Poisson INAR model proposed by Bai (2016), ρ is interpreted as the unclosed rate.
In other words, we can interpret 1− ρ as the closed rates which can be used to model the
closed claims with the INAR process. We now define the closed claims Ri,j as the total
number of claims occurred in accident year i that incurs payments in development year j.

Assumption 2.3.1.

• The newly reported claims in accident year i and development year j are not closed
within the same development year

• Closed claims Ri,j for different accident year i are mutually independent from each
other

• Each claim is settled with a single payment; there are no such claims being paid in
partial payments.

Under Assumption 2.3.1, we have zero number of claims when j = 0, and the closed
claims Ri,j can be defined as

Ri,j = Ni,j−1 − ρ ◦Ni,j−1 = (1− ρ) ◦Ni,j−1, 0 ≤ i, j ≤ I (2.2)

In (2.2), Ri,j can be interpreted as the total number of claims from the last development
year carried to the current year at closed rate (1 − ρ). Note that by using (2.1) and (2.2),
Ri,j has the following decomposition:

Ri,j = (1− ρ) ◦Ni,j−1

= (1− ρ) ◦ (ρ ◦Ni,j−2 + Ii,j−1)

= (1− ρ) ◦ ρ ◦Ni,j−2 + (1− ρ) ◦ Ii,j−1

= ρ ◦Ri,j−1 + (1− ρ) ◦ Ii,j−1, 0 ≤ i, j ≤ I, (2.3)

where Ii,j−1 is the newly reported claims Ii,j−1 for accident year i and development year
j − 1. That is, the total number of closed claims Ri,j is the sum of number of reopened
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claims in year j − 1 that have (incurred) payments in development year j, i.e., IBNeR
claims, and the number of newly reported number of claims in year j − 1 that are closed
in year j at the rate of 1− ρ i.e., IBNyR claims. Moreover, from (2.3) we can see that Ri,j
also follows an INAR(1) process with innovations follow a compound Poisson distribution
with the following additional assumptions:

Assumption 2.3.2.

• Ii,j−1 for 0 ≤ i ≤ I, 1 ≤ j ≤ I + 1 are independently Poisson distributed with
E[Ii,j−1] = µiγj−1 , and there exist parameters µ0, µ1, ..., µI and γ0, γ1, ...γI such that
I∑
j=0

γj = 1

• The closed claims Ri,j follows an INAR(1) process as proposed in (2.3) with
ρ ◦ Ri,j−1 =

∑Ri,j−1
k=1 Yk and (1 − ρ) ◦ Ii,j−1 =

∑Ii,j−1
k=1 Zk follows Compound Poisson

distribution, where Yk and Zk are Bernoulli distributed with mean ρ and (1 − ρ)
respectively.

• Zk and Ri,j−1 are independent to Ii,j−1

• Ri,−1 = 0 and Ii,−1 = 0; thus, Ri,0 = 0 and Ri,1 = (1− ρ) ◦ Ii,0

Note that the definition of thinning operator ρ ◦ (1 − ρ) ◦ R = ρ · (1 − ρ) ◦ R (see, Ristić,
2013). We now give following remarks regarding the model we have proposed.

Remark 2.3.1.

• Although the claim settlements may often involve more than one payments or annuity-
type payments in practice to settle the claims, we assumed that the claims are
closed/settled with one payment per claim for the sake of simplicity. Also, we be-
lieve that the studies under this assumption should provide some useful insights for
further investigations.

• The mean of newly reported claims in accident year i and development year j − 1 is
the product of µi and γj−1 in Poisson INAR(1) process for closed claims. Similar to
the interpretation presented in Bai (2016), µi is the total expected number of claims
in accident year i and γj−1 is the fraction of the claims reported in development year
j − 1.

• In this project, a closed rate ρ is assumed to be constant for the purpose of simplicity.
However, this may not be the reasonable assumption in practice as there are many
other factors varying the number of closed claims. The large portion of total number
of claims are usually settled quickly, and the complicated cases may take longer to
get settled which implies that the closed rate ρ may depend on development year

8



j. For example, the complicated case often involve litigation which requires a longer
period to be settled. Also, there are 1) the change of line of business, 2) the change of
environmental factors, 3) the change of technology which may require different closed
rates for different accident years.

• We assume that the newly reported claims are not closed within the same year; al-
though, this may not be always true. The short tail business such as property insurance
is an example of which losses are settled within a relatively short period of time. For
this case, the estimation of claim counts may be underestimated by not including the
newly reported claims which are settled within the same year.

2.3.2 Properties

The proposed Poisson INAR(1) model for closed claims has following properties.

Proposition 2.3.1. The closed number of claims Ri,j can be written as a summation of
newly reported claims in the past development years j − k, 1 ≤ k ≤ j, that is,

Ri,j =
j∑

k=1

(
(1− ρ)ρk−1

)
◦ Ii,j−k, 0 ≤ i, j ≤ I (2.4)

where Ri,0 = 0

Proof. From (2.2), we have

Ri,j = (1− ρ) ◦Ni,j−1

= (1− ρ) ◦ (ρ ◦Ni,j−2 + Ii,j−1)

= (1− ρ) ◦ (ρ ◦ (ρ ◦Ni,j−3 + Ii,j−2) + Ii,j−1)

= (1− ρ) ◦ (ρ2 ◦Ni,j−3 + ρ ◦ Ii,j−2) + Ii,j−1)
...

=
j−1∑
k=0

(1− ρ) ◦ ρk−1 ◦ Ii,j−(k+1)

=
j∑

k=1
(1− ρ) ◦ ρk−1 ◦ Ii,j−k.

Noting the fact that

(1− ρ) ◦ ρk−1 ◦ Ii,j−k
d=
(
(1− ρ)ρk−1

)
◦ Ii,j−k,

where notation “ d=” means that both sides follow a same distribution, we then obtain (2.4).
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According to (2.4), the closed claims Ri,j can be expressed as the summation of closed
claims from all the newly reported claims with the delay of 1, 2, ..., j − 1 years. The prob-
ability of the newly reported number of claims with delay j − k being closed in year k is
(1 − ρ)ρk−1. Moreover, the closed claims Ri,j , given the total number of unclosed claims
Ni,j−h, can be rewritten as

Ri,j =
h−1∑
k=1

(
(1− ρ)ρk−1

)
◦ Ii,j−k +

(
(1− ρ)ρh−1

)
◦Ni,j−h, (2.5)

and the closed claims Ri,j , given the total number of closed claims Ri,j−h, can be rewritten
as

Ri,j =
h∑
k=1

(
(1− ρ)ρk−1

)
◦ Ii,j−k + ρh ◦Ri,j−h (2.6)

depending on the given information of past experience. The closed claims with known
number of unclosed claims Ni,j−h in (2.5) can be interpreted as the summation of number
of closed claims from all newly reported number of claims with the delay of j − k years for
k = 1, 2, ..., h − 1 and the closed claims in development year j − h from the total number
of unclosed claims in the past. The probability of being closed for each unclosed claim
in Ni,j−h in development year j is the same as to the probability of being unclosed until
development year j − 1 and being closed in following year which is (1− ρ)ρh−1. The closed
claims Ri,j with given Ri,j−h in (2.6) can be interpreted as the summation of the number
of closed claims from all newly reported number of claims with the delay of j − k years
for k = 1, 2, ..., h, and the number of reopened claims from the closed claims which incur
payments in development year j − h.

Proposition 2.3.2. The conditional probability function for closed number of claims Ri,j
is given by

P(Ri,j = ri,j |Ri,j−1 = ri,j−1) =
Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(ri,j , y, i∗) ·R(ri,j , y, i∗; ρ) · Λ(i∗;µi, γj−1)

(2.7)

where 

Mi,j = min{ri,j−1, ri,j},
c(ri,j , y, i∗) =

(ri,j−1
y

)
·
( i∗

ri,j−y
)
,

R(ri,j , y, i∗; ρ) = ρi
∗−(ri,j−2y) · (1− ρ)ri,j−1+(ri,j−2y),

Λ(i∗;µi, γj−1) = e−µiγj−1 ·(µiγj−1)i∗

i∗! .

(2.8)
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Proof. From (2.3), we see that random variable Ri,j is a sum of two random variables. Then,
the conditional probability function can be written as using convolution.

P(Ri,j = ri,j
∣∣Ri,j−1 = ri,j−1) = P

(
ρ ◦Ri,j−1 + (1− ρ) ◦ Ii,j−1 = ri,j

∣∣Ri,j−1 = ri,j−1
)

= P

ri,j−1∑
k=1

Yk +
Ii,j−1∑
k=1

Zk = ri,j


=

Mi,j∑
y=0

P(ri,j−1∑
k=1

Yk = y

)
· P

Ii,j−1∑
k=1

Zk = ri,j − y

 (2.9)

where Mi,j = min{ri,j−1, ri,j}.
According to Assumption 2.3.1, we have

P
(ri,j−1∑

k=1
Yk = y

)
=
(ri,j−1

y

)
· ρy · (1− ρ)ri,j−1−y (2.10)

and

P

Ii,j−1∑
k=1

Zk = ri,j − y


=

∞∑
i∗=ri,j−y

P
Ii,j−1∑

k=1
Zk = ri,j − y

∣∣ Ii,j−1 = i∗

 · P (Ii,j−1 = i∗)


=

∞∑
i∗=ri,j−y

[( i∗

ri,j−y
)
· (1− ρ)ri,j−y · ρi∗−(ri,j−y) ·

(
e−µiγj−1 · (µiγj−1)i∗

i∗!

)]
(2.11)

By substituting (2.9) with (2.10) and (2.11) and after rearranging the parameters, the
probability function for Ri,j can be rewritten as

P(Ri,j = ri,j |Ri,j−1 = ri,j−1) =
Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(ri,j , y, i∗) ·R(ri,j , y, i∗; ρ) · Λ(i∗;µi, γj−1)

where functions c, R and Λ are given by (2.8).

Note that there is no closed claims in the first development year (i.e. j = 0) by the
assumption; thus, Mi,1 is always zero. We can treat this as a special case, and rewrite the
unconditional distribution of Ri,1 as

P(Ri,1 = ri,1) =
∞∑

i∗=ri,1
c(ri,1, 0, i∗) ·R(ri,1, 0, i∗; ρ) · Λ(i∗;µi, γ0)
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where 
c(ri,1, y, i∗) =

( i∗
ri,1

)
,

R(ri,1, y, i∗; ρ) = ρi
∗−ri,1 · (1− ρ)ri,1 ,

Λ(i∗;µi, γ0) = e−µiγ0 ·(µiγ0)i∗

i∗! .

Proposition 2.3.3. The unconditional mean, variance and auto-covariance of Ri,j ’s are
given by

E [Ri,j ] = µi

j∑
k=1

(1− ρ)ρk−1 · γj−k, (2.12)

Var [Ri,j ] = µi

j∑
k=1

(1− ρ)ρk−1 · γj−k, (2.13)

Cov [Ri,j , Ri,j−h] = (1− ρ)ρh · µi
j−h∑
k=1

ρk−1 · γj−k−h. (2.14)

Proof. Since
(
(1− ρ)ρk−1

)
◦ Ii,j−k follows a binomial distribution, conditioning on that

Ii,j−k is known, with parameters Ii,j−k and (1 − ρ)ρk−1, we have the following conditional
mean and variance:

E
[(

(1− ρ)ρk−1
)
◦ Ii,j−k

∣∣ Ii,j−k] = (1− ρ)ρk−1 · Ii,j−k, (2.15)

Var
[(

(1− ρ)ρk−1
)
◦ Ii,j−k

∣∣ Ii,j−k] = (1− ρ)ρk−1
(
1− (1− ρ) · ρk−1

)
· Ii,j−k. (2.16)

By taking the expectation on both sides of (2.4) and using (2.15), we have

E [Ri,j ] = E

 j∑
k=1

(
(1− ρ)ρk−1

)
◦ Ii,j−k


=

j∑
k=1

E
[
E
[(

(1− ρ)ρk−1
)
◦ Ii,j−k

∣∣ Ii,j−k]]

=
j∑

k=1
E
[
(1− ρ)ρk−1 · Ii,j−k

]

=
j∑

k=1
(1− ρ)ρk−1 · µiγj−k,

which proves (2.12).
To prove variance expression (2.13), by using (2.15) and (2.16) we first get

Var
[(

(1− ρ)ρk−1
)
◦ Ii,j−k

]
= Var

[
E
[(

(1− ρ)ρk−1
)
◦ Ii,j−k

∣∣ Ii,j−k]]+ E
[
Var

[(
(1− ρ)ρk−1

)
◦ Ii,j−k

∣∣ Ii,j−k]]
12



=
(
(1− ρ)ρk−1

)2
Var [Ii,j−k] + (1− ρ)ρk−1 ·

(
1− (1− ρ) · ρk−1

)
E [Ii,j−k]

=
(
(1− ρ)ρk−1

)2
· µiγj−k + (1− ρ)ρk−1 ·

(
1− (1− ρ)ρk−1

)
· µiγj−k

= µi(1− ρ)ρk−1 · γj−k.

Since Ii,j ’s are independently distributed for any 0 ≤ i, j ≤ I,
(
(1− ρ)ρk−1

)
◦ Ii,j−k, for

k = 1, 2, ..., j are also independent from each other. Then the variance expression of Ri,j
(2.13) follows immediately.

For the covariance of Ri,j and Ri,j−h for h ≥1, we first rewrite Ri,j and Ri,j−h, similar
to (2.5) and (2.4), respectively, as

Ri,j =
h∑
k=1

(
(1− ρ)ρk−1

)
◦ Ii,j−k +

(
(1− ρ)ρh

)
◦Ni,j−h−1, (2.17)

Ri,j−h =
j−h∑
k=1

(
(1− ρ)ρk−1

)
◦ Ii,j−h−k

=
j∑

k∗=h+1

(
(1− ρ)ρk∗−h−1

)
◦ Ii,j−k∗ . (2.18)

As Ii,j ’s are assumed to be independently Poisson distributed for 0 ≤ i, j ≤ I, noting (2.17)
and (2.18) we get

Cov[Ri,j , Ri,j−h] = Cov
[
h−1∑
k=1

(
(1− ρ)ρk−1

)
◦ Ii,j−k +

(
(1− ρ)ρh

)
◦Ni,j−h−1, Ri,j−h

]
= Cov

[(
(1− ρ)ρh

)
◦Ni,j−h−1, Ri,j−h

]
= Cov

[
ρh ◦Ri,j−h, Ri,j−h

]
= E

[
Cov

[
ρh ◦Ri,j−h, Ri,j−h

∣∣∣Ri,j−h]]
+ Cov

[
E
[
ρh ◦Ri,j−h

∣∣∣Ri,j−h] ,E [Ri,j−h∣∣∣Ri,j−h]]
= 0 + Cov

[
ρh ·Ri,j−h, Ri,j−h

]
= Cov

[
ρh ·Ri,j−h, Ri,j−h

]
= ρh ·Var[Ri,j−h]

and then (2.14) follows by using expression (2.13).

From Proposition 2.3.3, we have that the unconditional expectation of Ri,j is the same
as the unconditional variance. This draws conclusion that the Poisson INAR(1) model is
a non-dispersed model which is not a desired property to have for claim counts model.
In addition, we can get the conditional expectation and variance of Ri,j , given Ri,j−h, as
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follows:

E
[
Ri,j

∣∣Ri,j−h = ri,j−h
]

= (1− ρ)
(

h∑
k=1

ρk−1 · γj−k

)
µi + ρhri,j−h, (2.19)

Var
[
Ri,j

∣∣Ri,j−h = ri,j−h
]

= (1− ρ)
(

h∑
k=1

ρk−1 · γj−k

)
µi + ρh(1− ρh) · ri,j−h (2.20)

2.4 Individual Claim Size

There are often payments with the amount of zero, so-called “zero-claims" in non-life insur-
ance; thus, we allow the presence of zero-claims for the individual claim size model. For claim
size distribution, Weibull, Exponential, Gamma, and Pareto distribution can be adopted
depending on the characteristics of the data observed. However, inspired by Tweedie’s com-
pound Poisson model (see also Margraf 2017), we focus on Gamma distribution for claim
sizes in this project.

2.4.1 Model Assumptions

Let X(l)
i,j be the individual claim size of the payment for lth claim in accident year i and

development year j. We assume that individual claim size X(l)
i,j follows a zero adjusted

gamma distribution (ZAGA) (or mixed gamma distribution) with parameter qi,j being the
probability of zero-claims that is P

(
X

(l)
i,j = 0

)
= qi,j to allow the presence of zero-claims.

Assumption 2.4.1.

• Conditioning on that the claim amount paid is non-zero, the individual claim sizes
(payments) follow a gamma distribution with mean τi,j > 0 and shape parameter
α > 0 that is,

X
(l)
i,j

∣∣X(l)
i,j > 0 ∼ gamma

(
α,

α

τi,j

)
, l = 1, 2, ....

Denote its density function as fXi,j |Xi,j>0(x;α, τi,j).

• The sequence of individual sizes {X(l)
i,j , l ∈ N+} are independent and identically dis-

tributed for any fixed i and j, 0 ≤ i, j ≤ I with a mixed gamma distribution; its
density function can be expressed as

fXi,j (x; qi,j , α, τi,j) =


qi,j , if x = 0

(1− qi,j) · fXi,j |Xi,j>0(x;α, τi,j), if x > 0
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= qi,j · 1{x=0} + (1− qi,j) ·

(
α
τi,j

)α
Γ(α) (x)α−1e

− α
τi,j

x
, x ≥ 0.

(2.21)

Remark 2.4.1.

• Although it is reasonable to assume that the probability of zero payments qi,j depends
on both the accident year and development year, in this project, we assume that the
probability of zero claims only depends on development year j for the simplicity for
maximum likelihood estimations in next chapter.

• In the paper proposed by Margraf (2017), given that the individual payments are
non-zero, the conditional mean µi,j and the conditional variance σi,j are assumed to
be depending on accident year i and development year j. Thus, new parameters for
the different inflation rates γi and δi are introduced, and the conditional mean and
the conditional variance are denoted as µi,j = µγiδj and σ2

i,j = σ2γ2
i δ

2
j .

• Generally, the mean of total claim size in each cell (i, j) may be different for different
values of i and j. Further, it is reasonable to have two different factors that impact
the mean of total claim size for accident year i and development year j. However,
in this project, we assume that there is only a constant inflation δ, which is known
from the past experience, impacting the claim size for different i and j, and define the
individual claim size in cell (i, j) as

X
(l)
i,j

d= X
(l)
0,1 · δ

i+j−1. (2.22)

where,X(l)
0,1 follows a mixed gamma distribution with mean τ > 0 and shape parameter

α > 0 with a mass probability at zero qj that is P
(
X

(l)
0,1 = 0

)
= qj . Since we assume

that the claims are not closed within the same year, there is no closed claim when
j = 0. Thus, a constant inflation is applied to X(l)

0,1, the size of claims in first calender
year, depends on different calender year i + j. This model for claim sizes is used in
later chapter for estimating model parameters and simulation studies.

2.4.2 Properties

The proposed zero adjusted gamma model for individual claim size has following properties.

Proposition 2.4.1. The mean and variance of X(l)
i,j are obtained as

E
[
X

(l)
i,j

]
= (1− qi,j) · τi,j , (2.23)

Var
[
X

(l)
i,j

]
= (1− qi,j) · τ2

i,j

( 1
α

+ qi,j

)
. (2.24)
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As first and second moment are zero conditioning on X
(l)
i,j = 0, the first and second

moment can be explicitly derived by multiplying the probability of non-zero claims and
integration of gamma density function.

2.5 Incremental Aggregate Claims

Recall that Ri,j is the number of closed claims incurred in accident year i and payments
are made in development year j, and X(l)

i,j is the size of the lth claim payment which have
been studied in Sections 2.3 and 2.4, respectively. In this section, we combine these two
models to study the total amount of payments for those claims incurred in accident year i
and payments are made in development year j. This latter random variable is called in this
project as the incremental aggregate claims in cell (i, j), and denoted by Si,j . Clearly, we
have

Si,j =
Ri,j∑
l=1

X
(l)
i,j .

It is the total (aggregate) incremental paid payments for claims that occur in accident year
i and have been “closed" in development year j where these closed claims may be re-opened
and then re-closed in the future development years.

2.5.1 Model Assumptions

As we have discussed in previous sections, we use a Poisson INAR(1) model for the number
of closed claims Ri,j . For the sizes of claims X(l)

i,j , a zero adjusted gamma distribution is
used to model the individual claim payments for each cell of (i, j). We present below the
assumptions for the incremental aggregate claims model.

Assumption 2.5.1.

• Closed number of claims Ri,j of different accident years i are independent, and it
follows an INAR(1) process such that

Ri,j = ρ ◦Ri,j−1 + (1− ρ) ◦ Ii,j−1, 0 ≤ i, j ≤ I,

with Ri,0 = 0.

• Assumption 2.3.1 is applied

• Th individual claim sizes X(l)
i,j , l ∈ N+ are i.i.d. random variables for each cell (i, j)

and X
(1)
i,j follows a mixed gamma distribution with mean τi,j > 0, shape parameter

α > 0 and a mass probability of qi,j at zero.

• Ri,j and X(l)
i,j ’s are independent for any i and j.
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Remark 2.5.1.

• The assumption of independence between Ri,j and X(l)
i,j may not be valid in practice.

For claims with longer development year, the number of closed claim is likely to
be decreased where as the amount of payments are larger for the same reason as
mentioned in Remark 2.4.1. However, the assumption is made for the simplicity, and
we believe that the model with this assumption provides the useful insights for the
future investigations.

2.5.2 Properties

The proposed model for incremental aggregate claim have following properties.

Proposition 2.5.1. The mean and variance of Si,j are obtained as

E [Si,j ] = (1− qi,j) ·

 j∑
k=1

(1− ρ)ρk−1 · γj−k

 · µi · τi,j (2.25)

Var [Si,j ] , = (1− qi,j) ·
(

1 + 1
α

)
·

 j∑
k=1

(1− ρ)ρk−1 · γj−k

 · µi · τ2
i,j .

Proof. Since X
(l)
i,j , l ∈ N+ are independent and zero adjusted gamma distributed with

P
(
X

(l)
i,j = 0

)
= qi,j , the conditional mean and variance of Si,j given Ri,j can be obtained as

E
[
Si,j

∣∣Ri,j] = E

Ri,j∑
l=1

X
(l)
i,j

∣∣Ri,j
 = Ri,j · τi,j(1− qi,j) (2.26)

Var
[
Si,j

∣∣Ri,j] = Var

Ri,j∑
l=1

X
(l)
i,j

∣∣Ri,j
 = Ri,j · (1− qi,j)τ2

i,j

( 1
α

+ qi,j

)
(2.27)

By taking the expectation on both sides of (2.26) and (2.27) and using the results given
in Propositions 2.4.1 and 2.3.3, we have

E [Si,j ] = E

E
Ri,j∑
l=1

X
(l)
i,j

∣∣Ri,j


= E [Ri,j · (1− qi,j) · τi,j ]

= (1− qi,j)τi,j · E [Ri,j ]

= (1− qi,j)τi,j

 j∑
k=1

(1− ρ) · ρk−1 · γj−k

 · µi
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and

Var [Si,j ] = Var

Ri,j∑
k=1

X
(l)
i,j


= Var

E
Ri,j∑
k=1

X
(l)
i,j

∣∣Ri,j
+ E

Var
Ri,j∑
k=1

X
(l)
i,j

∣∣Ri,j


= Var [Ri,j · (1− qi,j)τi,j ] + E
[
Ri,j · (1− qi,j)τ2

i,j

( 1
α

+ qi,j

)]
= (1− qi,j)2 · τ2

i,j ·Var [Ri,j ] + (1− qi,j) · τ2
i,j

( 1
α

+ qi,j

)
· E [Ri,j ]

= (1− qi,j)τ2
i,j

(
1− qi,j + 1

α
+ qi,j

)
· E [Ri,j ]

= (1− qi,j)τ2
i,j

(
1 + 1

α

)
·

 j∑
k=1

(1− ρ) · ρk−1 · γj−k

µi.

According to (2.25), variance of Si,j can be rewritten as a function of an expectation as

Var [Si,j ] , = τi,j ·
(

1 + 1
α

)
· E [Si,j ] .

In the case that the mean of individual claims τi,j is more than 1, and α > 0 by the
assumption. Therefore, τi,j ·

(
1 + 1

α

)
> 1, and it is concluded that the compound model

based on the Poisson INAR(1) model for claims counts with a mixed gamma distribution
for the size is an over-dispersed model which is one of the desired properties for the model
for incremental aggregate claims.
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Chapter 3

Estimation of Model Parameters

The replicated time series model of INAR of order one has been studied in Silva (2005). From
all the parameter estimation methods discussed in there, we adopt the maximum likelihood
estimation method for estimating parameters of Poisson INAR(1) model for claim counts
Ri,j and compound INAR(1) model for incremental aggregate claims Si,j . In Section 3.1,
further assumptions mentioned in Remark 2.4.1 are introduced. Sections 3.3 and 3.4 present
the estimation of parameters of these models using MLE technique.

3.1 Additional Assumptions and Simplifications

As we have mentioned in Remark 2.4.1, a special severity model is to be used in this chapter
for illustrating the MLE technique. In this model, the probability of zero-claims depends
only on j and the constant inflation is an only factor having an impact on individual claim
sizes in different accident years as well as different development years. Using (2.21), we can
write the probability density function of X(l)

i,j as

fXi,j (x; qj , α, τ, δ) =


qj , if x = 0

(1− qj) · fX(l)
i,j |X

(l)
i,j>0(x;α, τ, δ), if x > 0

= qj · 1{x=0} + (1− qj) ·

(
α

τδi+j−1

)α
Γ(α) xα−1e

− α

τδi+j−1 x, x ≥ 0, (3.1)

where we assume that X(l)
0,1
∣∣X(l)

0,1 > 0 ∼ gamma(α, ατ ), that is,

fXi,j |Xi,j>0(x;α, τi,j) =

(
α
τi,j

)α
Γ(α) (x)α−1e

− α
τi,j

x
, x > 0.
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By our relationship assumption (2.22), when X(l)
i,j > 0, we have

FXi,j (x;α, τ) = P
(
X

(l)
i,j < x

)
= P

(
X

(l)
0,1 · δ

i+j−1 < x
)

= P
(
X

(l)
0,1 <

x

δi+j−1

)
,

and then by taking the derivative on both side w.r.t. x, we have

fXi,j (x;α, τ) = d

dx
P
(
X

(l)
0,1 <

x

δi+j−1

)
= 1
δi+j−1 fX(l)

0,1
( x

δi+j−1 ;α, τ)

=

(
α

τδi+j−1

)α
Γ(α) xα−1e

− α

τδi+j−1 x.

From (3.1), we can notice that X(l)
i,j |X

(l)
i,j > 0 has gamma distribution with shape pa-

rameter α and scale parameter α
τδi+j−1 . Thus, unconditional mean and variance of X(l)

i,j can
be easily obtained as

E
[
X

(l)
i,j

]
= (1− qj) · τδi+j−1, (3.2)

Var
[
X

(l)
i,j

]
= (1− qj) · (τδi+j−1)2

( 1
α

+ qj

)
. (3.3)

by replacing τi,j and qi,j with τδi+j−1 and qj respectively in (2.23) and (2.24).
In this project, the constant inflation is a known factor from past experience. The in-

flation rate can be treated as an unknown factor and non-constant; it can be studied and
modeled separately using past data for inflation rates to forecast future inflation.

3.2 Data and Notation

For simplicity, we denote by AI = {(i, j) ∈ N0×N : 0 ≤ i+ j ≤ I}. Then we can define the
number of closed claims that are observed as DI = {Ri,j : (i, j) ∈ AI}, and all the amounts
of individual claim payments paid by the insurer as ∆I = {X(l)

i,j : 1 ≤ l ≤ Ri,j , (i, j) ∈ AI}.
For notation simplicity, we define the following sets of parameters in our model:

µ = {µ0, µ1, ..., µI−1},

γ = {γ0, γ1, ..., γI−1},

q = {q1, q2, ..., qI},

20



and further define the following

θ = {ρ,µ,γ, q, α, τ},

as the set of parameters that need to be estimated.
As we assume that Ri,j and X(l)

i,j ’s are independent, we can write the likelihood function
as

LDI ,∆I
(θ) = LDI (ρ,µ,γ)× L∆I |DI (q, α, τ) .

Since LDI and L∆I |DI are functions of different parameters, we can study maximum like-
lihood functions separately to maximize LDI ,∆I

(see, for example, Verrall et al., 2010 and
Gao et al., 2013).

3.3 Maximum Likelihood Estimation of Count parameters

The likelihood function of all observed counts {Ri,j ; (i, j) ∈ AI} is given by

LDI (ρ,µ,γ) =
I−1∏
i=0

P (Ri,1 = ri,1)
I−i∏
j=2

P (Ri,j = ri,j |Ri,j−1 = ri,j−1)


=
(
I−1∏
i=0

P (Ri,1 = ri,1)
)I−1∏

i=0

I−i∏
j=2

P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

 . (3.4)

Using expression (2.7), the corresponding log-likelihood function can be easily obtained by
taking logarithms on both sides of (3.4) as

lDI (ρ,µ,γ) =
I−1∑
i=0

log (P (Ri,1 = ri,1)) +
I−1∑
i=0

I−i∑
j=2

log (P (Ri,j = ri,j |Ri,j−1 = ri,j−1)) (3.5)

=
I−1∑
i=0

I−i∑
j=1

log

Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(ri,j , y, i∗) ·R(ri,j , y, i∗; ρ) · Λ(i∗;µi, γj−1)

 ,
where Mi,j = min{ri,j−1, ri,j} and functions c, R and Λ are given by (2.8).

Since c, R and Λ are functions of different parameters, we can easily get partial deriva-
tives of the log-likelihood function (3.5) with respect to (w.r.t.) parameters ρ, µi and γj−1,
respectively. By setting each of these partial derivatives equal to zero, we can get maximum
likelihood estimating equation for ρ, µi’s and γj−1’s for 0 ≤ i ≤ I − 1, 1 ≤ j ≤ I, and we
state the results in the theorem below.

21



Theorem 3.3.1. The maximum likelihood estimations of parameters ρ, µi’s and γj ’s satisfy
the following system of estimating equations:

ρ =

I−1∑
i=0

(
µi

I−i∑
j=1

γj−1 + 2
I−i∑
j=2

Mi,j∑
y=0

∞∑
i∗=ri,j−y

Hi,j(y, i∗; ρ, µi, γj−1) · y
)
− r•,•

I−1∑
i=0

I−i∑
j=1

(µiγj−1 + ri,j−1)
(3.6)

µi =

I−i∑
j=1

Mi,j∑
y=0

∞∑
i∗=ri,j−y

Hi,j(y, i∗; ρ, µi, γj−1) · i∗

I−i∑
j=1

γj−1

, i = 0, 1, ..., I − 1, (3.7)

γj−1 =

I−j∑
i=0

Mi,j∑
y=0

∞∑
i∗=ri,j−y

Hi,j(y, i∗; ρ, µi, γj−1) · i∗

I−j∑
i=0

µi

, j = 1, 2, ..., I, (3.8)

where function Hi,j is defined as

Hi,j(y, i∗; ρ, µi, γj−1) = c(ri,j , y, i∗) ·R(ri,j , y, i∗; ρ) · Λ(i∗;µi, γj−1)
P (Ri,j = ri,j |Ri,j−1 = ri,j−1) , (3.9)

0 ≤ i ≤ I − 1, 1 ≤ j ≤ I, 0 ≤ y ≤Mi,j and ri,j − y ≤ i∗ <∞,

in which the expression of conditional probability P (Ri,j = ri,j |Ri,j−1 = ri,j−1) is given by
(2.7) and functions c, R and Λ are showed in (2.8), and

r•,• =
I−1∑
i=0

I−i∑
j=1

ri,j ,

which is the total observed number of closed claims in the upper left triangle. We also note
that for any function f ,

∑b
i=a f(i) = 0 if a > b.

Proof. First, we find the partial derivatives of R(y, i∗; ρ) w.r.t. ρ, and Λ(i∗;µi, γj−1) w.r.t. µi
and γj−1 as follows:

∂

∂ρ
R(y, i∗; ρ) = ∂

∂ρ

(
ρi

∗−(ri,j−2y) · (1− ρ)ri,j−1+(ri,j−2y)
)

= ρi
∗−(ri,j−2y) · (1− ρ)ri,j−1+(r1−2y) · i

∗ − ri,j + 2y − i∗ · ρ− ri,j−1 · ρ)
ρ · (1− ρ)

= R(y, i∗; ρ) · i
∗(1− ρ)− ri,j + 2y − ri,j−1 · ρ

ρ · (1− ρ) , y ≥ 0 (3.10)

∂

∂µi
Λ(i∗;µi, γj−1) = ∂

∂µi

(
e−µiγj−1 · (µiγj−1)i∗

i∗!

)
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= (−γj−1)e
−µiγj−1 · (µiγj−1)i∗

i∗! + e−µiγj−1 · (µiγj−1)i∗−1

(i∗ − 1)! · γj−1

= Λ(i∗;µi, γj−1) ·
(
i∗

µi
− γj−1

)
, (3.11)

∂

∂γj−1
Λ(i∗;µi, γj−1) = ∂

∂γj−1

(
e−µiγj−1 · (µiγj−1)i∗

i∗!

)

= Λ(i∗;µi, γj−1) ·
(

i∗

γj−1
− µi

)
. (3.12)

From (3.10)-(3.12), we can also get

∂

∂ρ
P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

=
Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(y, i∗) ·
(
∂

∂ρ
R(y, i∗; ρ)

)
· Λ(i∗, µi, γj−1)

=
Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(y, i∗) ·R(y, i∗; ρ) · Λ(i∗, µi, γj−1) · i
∗(1− ρ)− ri,j + 2y − ri,j−1 · ρ

ρ · (1− ρ) ,

(3.13)
∂

∂µi
P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

=
Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(y, i∗) ·R(y, i∗; ρ) ·
(
∂

∂µi
Λ(i∗;µi, γj−1)

)

=
Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(y, i∗) ·R(y, i∗; ρ) · Λ(i∗;µi, γj−1) ·
(
i∗

µi
− γj−1

)
, (3.14)

∂

∂γj−1
P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

=
Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(y, i∗) ·R(y, i∗; ρ) · Λ(i∗;µi, γj−1) ·
(

i∗

γj−1
− µi

)
, j = 1, 2, ...I.

(3.15)

Then taking the partial derivative of loglikelihood function (3.5) w.r.t. ρ, using (3.13),
and noting the definition of Hi,j given by (3.9) and

Mi,j∑
y=1

∞∑
i∗=ri,j−y

Hi,j(y, i∗; ρ, µi, γj−1) = 1, for 0 ≤ i ≤ I − 1, 1 ≤ j ≤ I,
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give

∂lDI
∂ρ

=
I−1∑
i=0

∂
∂ρP (Ri,1 = ri,1)
P (Ri,1 = ri,1) +

I−1∑
i=0

I−i∑
j=2

∂
∂ρP (Ri,j = ri,j |Ri,j−1 = ri,j−1)
P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

= 1
ρ

I−1∑
i=0

I−i∑
j=1

[Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(y, i∗) ·R(y, i∗; ρ) · Λ(i∗;µi, γj−1) · (i∗ + 2y
1−ρ)

P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

− (ri,j + ρ · ri,j−1)
1− ρ

Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(y, i∗) ·R(y, i∗; ρ) · Λ(i∗;µi, γj−1)
P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

= 1
ρ

I−1∑
i=0

I−i∑
j=1

Mi,j∑
y=0

∞∑
i∗=ri,j−y

Hi,j(y, i∗; ρ, µi, γj−1) ·
(
i∗ + 2y

1− ρ

)
− ri,j + ρ · ri,j−1

1− ρ



= 1
ρ

I−1∑
i=0

I−i∑
j=1

Mi,j∑
y=0

∞∑
i∗=ri,j−y

Hi,j(y, i∗; ρ, µi, γj−1) ·
(
i∗ + 2y

1− ρ

)
−
r•,• + ρ

I−1∑
i=0

I−i∑
j=1

ri,j−1

ρ(1− ρ) .

(3.16)

Now, taking the partial derivative of (3.5) w.r.t. µi and using (3.14) give

∂lDI
∂µi

=
∂
∂µi

P (Ri,1 = ri,1)
P (Ri,1 = ri,1) +

I−i∑
j=2

∂
∂µi

P (Ri,j = ri,j |Ri,j−1 = ri,j−1)
P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

= 1
µi

I−i∑
j=1

Mi,j∑
y=0

∞∑
i∗=ri,j−y

Hi,j(y, i∗; ρ, µi, γj−1) · i∗ −
I−i∑
j=1

γj−1. (3.17)

Similarly, by taking the partial derivative of loglikelihood function (3.5) w.r.t. γj−1 for
j = 1, 2, ..., I, respectively, and using (3.15), we get

∂lDI
∂γj−1

=
I−j∑
i=0

∂
∂γP (Ri,j = ri,j |Ri,j−1 = ri,j−1)
P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

=
I−j∑
i=0

Mi,j∑
y=0

∞∑
i∗=ri,j−y

c(y, i∗) ·R(y, i∗; ρ) · Λ(i∗;µi, γj−1) ·
(

i∗

γj−1
− µi

)
P (Ri,j = ri,j |Ri,j−1 = ri,j−1)

= 1
γj−1

I−1∑
i=0

Mi,j∑
y=0

∞∑
i∗=ri,j−y

Hi,j(y, i∗; ρ, µi, γj−1) · i∗ −
I−1∑
i=0

µi. (3.18)

Finally, estimating equations (3.7) and (3.8) can be easily obtained by letting (3.17) and
(3.18) be zero, and estimating equation (3.6) can be obtained by setting (3.16) to be zero
and using equation (3.7).

24



3.4 Maximum Likelihood Estimation of Severity parameters

Assume that there are zi,j number of claims with zero payment paid in accident year i and
development year j. Furthermore, knowing ri,j number of closed claims in accident year i
and development year j, we denote the observed positive claim payments as {x(l)

i,j : l =
1, 2, . . . , ri,j − zi,j}. As we assume that X(l)

i,j ’s are independent and identically distributed
for l ≥ 1, the likelihood function of claim sizes given the count values is given by

L∆I |DI (q, α, τ) =
I−1∏
i=0

I−i∏
j=1

LXi,j |Ri,1 (qj , α, τ)

=
I−1∏
i=0

I−i∏
j=1

q
zi,j
j ·

ri,j−zi,j∏
l=1

[
(1− qj)

( α
τδi+j−1 )α

Γ(α) (x(l)
i,j)

α−1e
− α

τδi+j−1 x
(l)
i,j

]

=
I−1∏
i=0

I−i∏
j=1

q
zi,j
j (1− qj)ri,j−zi,j

(
( α
τδi+j−1 )α

Γ(α)

)ri,j−zi,j
(x∗i,j)α−1e

− α

τδi+j−1 xi,j ,

where

xi,j =
ri,j−zi,j∑
l=1

x
(l)
i,j x∗i,j =

ri,j−zi,j∏
l=1

x
(l)
i,j .

Its log-likelihood function is

l∆I |DI (q, α, τ, )

=
I−1∑
i=0

I−i∑
j=1

log

qzi,jj (1− qj)ri,j−zi,j
(

( α
τδi+j−1 )α

Γ(α)

)ri,j−zi,j
(x∗i,j)α−1e

− α

τδi+j−1 xi,j


=

I−1∑
i=0

I−i∑
j=1

[
zi,j log(qj) + (ri,j − zi,j) log(1− qj)

+ (ri,j − zi,j) [α (log(α)− log(τ)− (i+ j − 1) log(δ))− log Γ(α)]

+ (α− 1) log(x∗i,j)−
α

τδi+j−1xi,j
]
. (3.19)

The same technique is applied to get the parameter estimations as we have done in the
previous section. The results are stated in the theorem below.

Theorem 3.4.1. The maximum likelihood estimation of parameter α̂ and δ̂ can be obtained
from the following equations:

log(α̂)− ψ(α̂) + 1 =

I−1∑
i=0

I−i∑
j=1

[
(ri,j − zi,j) (log(τ̂) + (i+ j − 1) log(δ))− log(x∗i,j) + xi,j

τ̂ δi+j−1

]
r∗•,•

,

(3.20)
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where ψ(α) = Γ′(α)/Γ(α) is the digamma function, and the maximum likelihood estimations
of parameters q̂j ’s and τ̂ are given by

q̂j =

I−j∑
i=0

zi,j

I−j∑
i=0

ri,j

, j = 1, 2, ..., I, (3.21)

τ̂ = 1
r∗•,•

I−1∑
i=0

I−i∑
j=1

xi,j
δi+j−1 , (3.22)

where

r∗•,• =
I−1∑
i=0

I−i∑
j=1

(ri,j − zi,j),

is the total observed number of closed claims with non-zero payments in the upper right
triangle.

Proof. By taking the partial derivative of log-likelihood function (3.19) w.r.t. qi,j , α and
τi,j , respectively, we have

∂l∆I |DI
∂α

= (log(α)− ψ(α) + 1) ·
I∑
i=0

I−i∑
j=1

(ri,j − zi,j)

−
I∑
i=0

I−i∑
j=1

[
(ri,j − zi,j) · (log(τ) + (i+ j − 1) log(δ))− log(x∗i,j) + xi,j

τδi+j−1

]
,

∂l∆I |DI
∂qj

=
I−j∑
i=0

(
zi,j
qj
− ri,j − zi,j

1− qj

)
,

∂l∆I |DI
∂τ

=
I−i∑
j=1

(ri,j − zi,j)
(
−α
τ

)
+ α

τ2δi+j−1 · xi,j .

Letting above three equations be zero yields (3.20)-(3.22).
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Chapter 4

Estimating Process and Prediction

In the previous chapter, the system of equations for estimating model parameters using the
MLE technique has been presented. Section 4.1 presents the algorithms to estimate model
parameters, and Section 4.2 presents how the estimations of model parameters can be used
to predict incremental aggregate claims in cells on the lower right triangle.

4.1 Parameter Estimating Process

The maximum likelihood estimations for τ and q can be estimated explicitly from (3.21)
and (3.22), respectively, with the observed data. Then, α is estimated by solving (3.20) with
τ̂ and q̂. However, ρ, µ, and γ are estimated using an iterative process with the system of
estimating equations in Theorem 3.3.1 because they are dependent to each other.

Algorithm 4.1.1. We denote ρ̂n, µ̂n = {µ̂n0 , µ̂n1 , ..., µ̂nI−1} , and γ̂n = {γ̂n0 , γ̂n1 , ..., γ̂nI−1} as
a set of estimated parameters in nth iteration, and the algorithm of iterative process for
estimating ρ, µ, and γ is as follows:

• First, find a set of reasonable starting values for each parameters, ρ̂0, µ̂0, γ̂0.

• With the set of starting values, update the parameters following steps described below:

1. Estimate ρ̂1 from (3.6) with ρ̂0, µ̂0, γ̂0 as

ρ̂1 =

I−1∑
i=0

(
µ̂0
i

I−i∑
j=1

γ̂0
j−1 + 2

I−i∑
j=2

Mi,j∑
y=0

∞∑
i∗=ri,j−y

Hi,j(y, i∗; ρ̂0, µ̂0
i , γ̂

0
j−1) · y

)
− r•,•

I−1∑
i=0

I−i∑
j=1

(
µ̂0
i γ̂

0
j−1 + ri,j−1

) ;
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2. Estimate µ̂1
0 from (3.7) with i = 0, ρ̂1, γ̂0

0 , γ̂0
1 , ..., γ̂0

I−1 and γ̂0
I by the solving the

equation,

µ̂1
0 =

I∑
j=1

M0,j∑
y=0

∞∑
i∗=r0,j−y

H0,j(y, i∗; ρ̂1, µ̂1
0, γ̂

0
j−1) · i∗

1− γ̂0
I

where γ̂0
I = 1−

I∑
j=1

γ̂0
j−1;

3. Estimate γ̂1
I−1 from (3.8) with j = I, ρ̂1 and µ̂1

0 by the solving the equation,

γ̂1
I−1 =

M0,I∑
y=0

∞∑
i∗=r0,I−y

H0,I(y, i∗; ρ̂1, µ̂1
0, γ̂

1
I−1) · i∗

µ̂1
0

;

4. Estimate µ̂1
1 from (3.7) with i = 1, ρ̂1, γ0

0 , ..., γ̂1
I−1 and γ0

I by the solving the
equation,

µ̂1
1 =

I−1∑
j=1

M1,j∑
y=0

∞∑
i∗=r1,j−y

H1,j(y, i∗; ρ̂1, µ̂1
1, γ̂

0
j−1) · i∗

1− γ̂1
I−1 − γ̂0

I

;

5. Estimate γ̂1
I−2 from (3.8) with j = I − 1, ρ̂1, µ̂1

0 and µ̂1
1 by the solving the

equation,

γ̂1
I−2 =

1∑
i=0

Mi,I−1∑
y=0

∞∑
i∗=ri,I−1−y

Hi,I−1(y, i∗; ρ1, µ̂1
i , γ̂

1
I−2) · i∗

1∑
i=0

µ̂1
i

;

6. Estimate pairs of {µ̂1
2, γ̂

1
I−3}, ..., {µ̂1

I−2, γ̂
1
1} by repeating similar steps 4 and 5.

7. Estimate µ̂1
I−1 from (3.7) with i = I − 1, ρ̂1, µ̂1

0, ..., µ̂1
I−2, γ̂0

0 , γ̂1
1 , ...,γ̂1

I−1 by the
solving the equation,

µ̂1
I−1 =

∞∑
i∗=rI−1,1

HI−1,1(0, i∗; ρ̂1, µ̂1
I−1, γ̂

0
0) · i∗

1−
∑I
j=2 γ̂

1
j−1 − γ̂0

I

8. Estimate γ̂1
0 from (3.8) with j = 1, ρ̂1, µ̂1

0, µ̂1
1, ..., µ̂1

I−1 by the solving the equation,

γ̂1
0 =

I−1∑
i=0

∞∑
i∗=ri,1

Hi,1(0, i∗; ρ̂1, µ̂1
i , γ̂

1
0) · i∗∑I−1

i=0 µ̂
1
i
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9. Estimate γ̂1
I by

γ̂1
I = 1−

I∑
j=1

γ̂1
j−1.

10. Repeat steps 1-9 by using ρ̂1, µ̂1, γ̂1 as the new set of initial values to update
parameter estimations until convergence.

For the initial values of the set of parameters, we first randomly choose ρ̂0 between 0 and
1. We denote Ŵi,j = Ni,j − ρ̂0 · Ni,j−1 and estimate µ̂0

i ’s and γ̂0
j ’s by assuming that Ŵi,j

follows the Poisson distribution for 0 ≤ i ≤ I, 0 ≤ j ≤ I − i. Thus, equations of µ̂0
i ’s and

γ̂0
j ’s are given by

µ̂0
0 =

I∑
j=0

Ŵ0,j ,

µ̂0
i =

∑I−i
j=0 Ŵi,j

1−
∑I
j=I−i+1 γ̂

0
j

, i = 1, 2, ..., I,

γ̂0
j =

∑I−j
j=0 Ŵi,j∑I−j
i=0 µ̂

0
i

, j = 0, 1, ..., I.

4.2 Prediction

The estimation of incremental aggregate claims can be obtained based on conditional ex-
pectation. From (2.19) and (3.2), the expected incremental aggregate claims conditioning
on Ri,j−h is known and can be obtained as

E
[
Si,j

∣∣Ri,j−h = ri,j−h
]

= E

Ri,j∑
l=1

X
(l)
i,j

∣∣∣Ri,j−h = ri,j−h


= E

E
Ri,j∑
l=1

X
(l)
i,j

∣∣∣Ri,j
 ∣∣∣Ri,j−h = ri,j−h


= (1− qj)τ · δi+j−1 · E

[
Ri,j

∣∣∣Ri,j−h = ri,j−h
]

= (1− qj)τ · δi+j−1 ·
[(

(1− ρ)
h∑
k=1

ρk−1γj−k

)
µi + ρh · ri,j−h

]
.

(4.1)

By replacing parameters in (4.1) with estimates obtained from Chapter 3 and h with i+j−I,
which is the most recent calender year, we can get the estimates of predicted incremental
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aggregate claims as

Ŝ pred
i,j = Ê

[
Si,j

∣∣Ri,I−i = ri,j−h
]

= (1− q̂j)τ̂ · δi+j−1 ·

(1− ρ̂)
i+j−I∑
k=1

ρ̂k−1γ̂j−k

 µ̂i + ρ̂i+j−I · ri,I−i

 , (4.2)

0 ≤ i ≤ I − 1, 1 ≤ j ≤ I, I + 1 ≤ i+ j ≤ 2(I − 1).

The total outstanding payments TP i,j at the end of the development year j for any partic-
ular accident year i is defined as the summation of all the payments of closed claims made
in the future development year j + 1, ..., I, and it is given by

TP i,j =
I∑

k=j+1
Si,k, j = 0, 1, ...I.

Thus, the total outstanding payments at the current calender year for the accident year i,
which is development year I − I can be estimated by

T̂P
pred

i,I−i =
I∑

k=I−i+1
Ŝ pred
i,k , 1 ≤ i ≤ I. (4.3)

Note that T̂P pred

0,I = 0.

4.3 Means Square Error of Prediction

We employ the mean square error of prediction (MSEP) to measure the accuracy of the pre-
diction for incremental aggregate claims Si,j . MSEP is commonly used to assess the accuracy
of predictions in the claims reserving modeling; see for example, Wüthrich (2003), Meng et
al. (2018), Bai (2016). We define the mean square error of prediction of our prediction as

MSEP
[
Ŝ pred
i,j

∣∣DI

]
= E

[(
Si,j − Ŝ pred

i,j

)2 ∣∣∣DI

]
= Var

[
Si,j

∣∣DI

]
+ E

[(
Ŝ pred
i,j − E

[
Si,j

∣∣DI

] )2 ∣∣∣DI

]
, (4.4)

0 ≤ i ≤ I − 1, 1 ≤ j ≤ I, I + 1 ≤ i+ j ≤ 2(I − 1).

The mean square error of the prediction is decomposed to two terms as shown in (4.4). The
first term is the prediction error, and second term is the estimation error. As the estimation
error is difficult to be expressed clearly in a closed form and estimated, we consider the
prediction error term only in this project to assess the level of accuracy of prediction. Thus,
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we can approximate MSEP as

MSEP
[
Ŝ pred
i,j

∣∣DI

]
≈ Var

[
Si,j

∣∣DI

]
. (4.5)

In the case that if the model parameters are known, we can estimate the MSEP using (4.5)
as follows:

Var
[
Si,j

∣∣DI

]
=
(
τδi+j−1 (1− qj)

)2
·
[
(1− ρ)

( i+j−I∑
k=1

ρk−1 · γj−k

)
µi + ρi+j−I(1− ρi+j−I) ·Ri,I−i

]

+

(1− ρ)
( i+j−I∑

k=1
ρk−1 · γj−k

)
µi + ρi+j−I ·Ri,I−i

 · (1− qj) · (τδi+j−1
)2
( 1
α

+ qj

)
,

If the model parameters are unknown, then (4.5) can be estimated by

V̂ar
[
Si,j

∣∣DI

]
=
(
τ̂ δi+j−1 (1− q̂j)

)2
·
[
(1− ρ̂)

( i+j−I∑
k=1

ρ̂k−1 · γ̂j−k

)
µ̂i + ρ̂i+j−I(1− ρ̂i+j−I) ·Ri,I−i

]

+

(1− ρ̂)
( i+j−I∑

k=1
ρ̂k−1 · γ̂j−k

)
µ̂i + ρ̂i+j−I ·Ri,I−i

 · (1− q̂j) · (τ̂ δi+j−1
)2
( 1
α̂

+ q̂j

)
.

(4.6)

For the total outstanding payments, MSEP is also used to measure the accuracy of
predictions. According to (4.3), we define the MSEP of T̂P pred

i,I−i for 1 ≤ i ≤ I as

MSEP
[
T̂P

pred

i,I−i

]
= E

[(
TP i,I−i − T̂P

pred

i,I−i

)2
]

= Var

 I∑
k=I−i+1

Si,k

+ E


 I∑
k=I−i+1

Ŝ pred
i,k −

I∑
k=I−i+1

E [Si,k]

2
 . (4.7)

The first and second terms in (4.7) are prediction and estimation errors, respectively. As
the estimation error is difficult to be estimated, we consider the prediction error term only,
and thus we can approximate the MSEP as

MSEP
[
T̂P

pred

i,I−i

]
≈ Var

 I∑
k=I−i+1

Si,k

 . (4.8)
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If the model parameters are known, then MSEP can be estimated using (4.8) as

MSEP
[
T̂P

pred

i,I−i

]
=

I∑
k=I−i+1

(1− qk) ·
(

1 + 1
α

)
·
(

k∑
n=1

(1− ρ) · ρn−1 · γk−n

)
· µi ·

(
τδi+k−1

)2
.

If the model parameters are unknown, we estimate the MSEP by replacing the parameters
with estimations of the parameters, and it is given by

M̂SEP
[
T̂P

pred

i,I−i

]
=

I∑
k=I−i+1

(1− q̂k) ·
(

1 + 1
α̂

)
·
(

k∑
n=1

(1− ρ̂) · ρ̂n−1 · γ̂k−n

)
· µ̂i ·

(
τ̂ δi+k−1

)2
.
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Chapter 5

Numerical Illustrations

In this chapter, we conduct a simulation study to examine the accuracy of the model param-
eter estimations and the error of the predictions. We simulate data, the loss development
triangles for counts and sizes based on the counts, with two different sizes (i.e., different
values of I) to understand the impact of the triangle size on the model performance. Section
5.1 presents the estimations of model parameters under the simulation study, and Section
5.2 illustrates the prediction of aggregate incremental payments and shows the prediction
errors using a simulated sample data.

5.1 Estimation of Model Parameters

The simulation study is conducted for two different sizes of triangle I = 6 and I = 10
for this project. To simulate data, we first assume that the inflation rate is constant at
3%, and choose ρ = 0.5 and µi = 200 for all i = 0, 1, ..., I. As the number of claims are
non-increasing in general, we choose the values of γj ’s in a non-increasing pattern and that
satisfy the assumption

∑I
j=0 γj = 1. The values of parameters used for the simulation study

are provided in Table 5.1. We generate 1000 sets of data in total for each of different sizes
to evaluate the accuracy of parameter estimations.

True Parameters
ρ 0.5
µi 200 for 0 ≤ i ≤ I
γj I = 6; 0.5, 0.2, 0.1, 0.1, 0.05, 0.03, 0.02

I = 10; 0.3, 0.2, 0.1, 0.1, 0.1, 0.08, 0.07, 0.03, 0.01, 0.005, 0.005
qj 0.01 for 0 ≤ j ≤ I
α 2.0
τ 1000

Table 5.1: True parameter used to generate sets of samples for Ri,j and X(l)
i,j for i+ j ≤ I

In this project, we choose the closed rate ρ for 0.5 i.e. the 50% of reported claims from the
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previous development year are closed. The average size of individual claims in cell (0, 1) is
200, and by (2.22), average size of individual claims in cell (i, j) is 200δi+j−1 for 0 ≤ i ≤ I,
0 ≤ j ≤ I and i+j ≤ I. For the closed claim counts, 99% of claims have non-zero payments.

5.1.1 Relative Bias and Mean Square Error

In order to compare estimations of different model parameters, we employ relative bias
which is defined as

Rel. Bias(θ̂) =
N∑
n=1

(
θ̂n − θ

)
N · θ

.

where θ̂n is the estimation of the true parameter θ obtained from the nth simulated data,
and N is the total number of data sets simulated. We also use the root of mean square error
(RMSE) to measure the accuracy of estimations as it uses the same units as the model
parameters. The RMSE is given by

RMSE(θ̂) =

√√√√√ N∑
n=1

(
θ̂n − θ

)2

N

The relative bias and RMSE of the estimations are shown in Tables 5.2 and 5.3 for I = 6
and I = 10. As we have stated Assumption 2.3.1 that the newly reported claims are not
closed within the same year, there are no closed claims at the beginning of the development
periods so that ri,0 = 0 for 0 ≤ i ≤ I. Thus, we do not have estimation results for µI in this
section. As γI is not being used for any prediction, we do not contain the estimations for
γI ; however, it can be estimated from Assumption 2.3.1. Note that there is no observation
available to estimate µI ; however, we can apply the regression using µ̂0, ..., µ̂I−1 to get µ̂I

From Tables 5.2 and 5.3, we first observe that there is an improvement on the estimations
of ρ, in the sense that both the relative bias and RMSE are decreasing from I = 6 to I = 10.
Moreover, estimations of γj ’s and µi’s are relatively better for I = 10 than that for I = 6 in
terms of RMSE. This improvement may come from the fact that a larger size (dimension) of
the triangle contains more information (observations) generally. For the estimations of µi’s,
we have the greatest RMSE for the most recent accident year I − 1 for both cases because
of less information being used for estimating µI−1. Similarly, we observe that the RMSE of
estimation of µi’s for I = 10 is decreasing and then increasing. Therefore, the RMSE of µ̂i’s
are not guaranteed to get greater for the recent accident years.

For the MLEs for parameters used in modeling of payment size, the estimations of α
and τ for I = 10 have better accuracy measured by the relative bias and RMSE because
that more observations are available for a larger I.
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I = 6
Closed Claim Count Size of Payment
Rel. Bias RMSE Rel. Bias RMSE

ρ̂ -0.16951 0.11495 α̂ 0.00703 0.09432
µ̂0 0.05521 23.72327

τ̂ -0.00039 24.73076

µ̂1 0.05291 24.43121
µ̂2 0.04286 23.12727
µ̂3 0.03788 24.89677
µ̂4 0.03220 27.17824
µ̂5 0.03957 34.27608
µ̂6 — —
γ̂0 -0.15857 0.10537 — — —
γ̂1 0.00581 0.03127 q̂1 -0.02514 0.00587
γ̂2 0.09574 0.02503 q̂2 -0.01104 0.00676
γ̂3 0.00542 0.02187 q̂3 0.00297 0.00876
γ̂4 -0.04093 0.00809 q̂4 0.03624 0.01111
γ̂5 0.23683 0.02219 q̂5 0.03461 0.01762
γ̂6 — — q̂6 0.12907 0.03307

Table 5.2: Relative bias and square root of mean square error of parameter estimation of
the number of closed claim and the size of payments when I = 6.

I = 10
Closed Claim Count Size of Payment
Rel. Bias RMSE Rel. Bias RMSE

ρ̂ -0.12666 0.09678 α̂ 0.00324 0.07184
µ̂0 0.07230 23.56722

τ̂ -0.00018 18.65888

µ̂1 0.06817 22.55957
µ̂2 0.06931 22.83104
µ̂3 0.05739 21.53735
µ̂4 0.05913 23.51439
µ̂5 0.05003 22.86506
µ̂6 0.04810 24.40884
µ̂7 0.05029 26.34685
µ̂8 0.03925 27.96352
µ̂9 0.04797 42.08275
µ̂10 — —
γ̂0 -0.13936 0.05993 — — —
γ̂1 -0.05774 0.01460 q̂1 -0.01197 0.00596
γ̂2 0.02604 0.01924 q̂2 0.02799 0.00561
γ̂3 -0.00147 0.01730 q̂3 -0.01347 0.00678
γ̂4 -0.03204 0.00977 q̂4 -0.00354 0.00770
γ̂5 -0.01605 0.00884 q̂5 0.00525 0.00883
γ̂6 -0.01730 0.00844 q̂6 0.03588 0.01055
γ̂7 -0.19362 0.00581 q̂7 0.02174 0.01267
γ̂8 -0.02859 0.00029 q̂8 0.06328 0.01803
γ̂9 0.21940 0.00110 q̂9 0.03200 0.02890
γ̂10 — — q̂10 -0.08051 0.05011

Table 5.3: Relative bias and square root of mean square error of parameter estimation of
the number of closed claim and the size of payments when I = 10.
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Since the estimation of qj ’s are only depending on past experience of development years,
the estimations of qj have larger RMSE for a larger j because we only have few observations
available for estimating qj ’s. Thus, we can observe that RMSE is increasing as j gets bigger
for both I = 6 and I = 10.

To conclude, the estimations of parameters are generally improved from I = 6 to I =
10 in terms of relative bias and RMSE because there are more information available for
estimating parameters.

5.1.2 Distribution of ρ̂

We present the histogram of ρ̂ in Figure 5.1 and box plot of ρ̂ in Figure 5.2 for I = 6 and
I = 10 together to see the difference more closely. From the histogram, we first observe that
the distribution of ρ̂ for I = 6 is skewed to the left while the distribution of that for I = 10
is skewed to the right and more centered around the true value. From the box plot, we
could see that despite a larger interquartile, the number of outliers is less for I = 10; thus,
the RMSE is smaller for bigger value of I. From our study, it seems that the accuracy of
the estimation is improved. However, I > 10 case is not practically reasonable as annually
recorded data may not be consistent for a longer period.

Figure 5.1: Histogram of ρ̂.

Figure 5.2: Box plot of ρ̂.
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5.1.3 Distribution of µ̂i

In this section, we present separate histograms of µ̂i in Figure 5.3 and 5.5, and box plots in
Figure 5.4 and 5.6 of µ̂i for i = 0, 1, ..., I − 1, for I = 6 and I = 10, respectively. From the
histograms, we can observe that µ̂i’s are centered around the true value of µi with a small
positive skewness. One observation in common for both cases is that the distribution of µ̂i
is more spread out for bigger i values. As we have discussed in Section 5.1.1, this is because
that less information available (observed) for recent accident years. Additionally, as µ̂I−1

is updated at very last after updating other model parameters, it happens to have a larger
variation based on estimations of other parameters. The positive skewness is also shown in
the box plots as the median is above the true value of µi, implying over-estimation.

Figure 5.3: Histogram of µ̂i when I = 6.
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Figure 5.4: Box plot of µ̂i when I = 6.
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5.1.4 Distribution of α̂, τ̂ and q̂j

The numerical results for estimations of parameters in the mixed gamma distribution are
discussed in this subsection. Two different types of plot for α̂ and τ̂ for both I = 6 and
I = 10 are shown in Figures 5.7 - 5.10. All the figures show that estimations of α and τ

are centered around their true values. By increasing the size of the triangle from I = 6
to I = 10, they have higher peaks at their true values and smaller ranges of interquartile.
Thus, we can see that α̂ and τ̂ have higher accuracy for a larger size of the triangle. The
distribution of qj are shown in Figures 5.11 - 5.14. We can observe that the frequency of
values of estimations around 0 is increasing for larger values of j. In addition, the box plots
show that the number of outliers is increasing significantly for larger values of j because
there is less information (observations) for claims. Although the estimations of parameters
of individual claims for I = 6 is reasonably good, we observe that there is improvement
in accuracy of estimations for I = 10 in terms of relative bias and RMSE. One thing to
notice from this study is that q̂j varies more significantly depending on a development year
j rather than the size of the triangle.

Figure 5.7: Histogram of α̂.

Figure 5.8: Box plot of α̂.
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Figure 5.9: Histogram of τ̂ .

Figure 5.10: Box plot of τ̂ .

42



Figure 5.11: Histogram of q̂j when I = 6.

Figure 5.12: Box plot of q̂j when I = 6.
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Figure 5.13: Histogram of q̂j when I = 10.

Figure 5.14: Box plot of q̂j when I = 10.
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5.2 Prediction of Aggregate Loss Reserve

First, We generate a sample of observations for the number of closed claims and payment
sizes by simulation under the same set of true parameters used in the previous section shown
in Table 5.1 with a constant inflation rate of 3%. We then get the prediction and MSEP of
aggregate payments for each cell (i, j) such that 0 ≤ i ≤ I − 1, 1 ≤ j ≤ I, and I + 1 ≤
i + j ≤ 2(I − 1) based on the estimated parameters provided in Tables A.1 and A.2 using
(4.2) and (4.6). Tables 5.4 and 5.6 show estimations of future aggregate incremental claims
for I = 6 and I = 10, and Tables 5.5 and 5.7 show the values of square root of mean square
error, respectively. In order to compare the accuracy of predictions in each cell (i, j), we
also provide the value of MSEP in percentage by dividing the square root of mean square
error of prediction by its estimated value. Since the total outstanding payments in current
calender year describes the current financial status, we also present the estimations and
prediction errors for total outstanding payments in Tables 5.8 and 5.9. Second, for I = 10,
we generate a sample of observations using µi = 1000 for all i while other parameters remain
same to understand the impact of the µi values on the predictions for different number of
closed claims. The results for this study are shown in Tables 5.10 - 5.12.

From Table 5.5 we can see that the prediction error (in percentage) increases as j
increases for particular accident year i. This is because we have less observed data for late
development years which results in more uncertainty in estimations. On the other hand,
for Table 5.7, the prediction error (in percentage) increases as j increases up to j = 6 and
then it drops at j = 7. Then again it increases as j increases. The reason for this could be
explained by combining the estimation process and the availability of observed information.
According to the estimation algorithm discussed in Section 4.1, for each iteration, γ̂I−k is
updated using ρ̂, µ̂0, ...µ̂k , and this may increase the uncertainty by having more number
of estimations to update γ̂I−k as k increases. However, at the same time, there is more
observed information to estimate γ̂I−k for a larger k (smaller I − k) which can possibly
result in a more accurate estimation. For these reasons, the prediction error (in percentage)
of incremental aggregate claims has an increasing trend for increasing j but have a drop at
j = 7.

From Tables 5.8 and 5.9. we can observe that there is relatively bigger uncertainty for a
small i which have the small outstanding payments. This comes from the fact there is only
little information observed to estimate γj and qj for large j. On the other hand, as we have
more information for a larger i to estimate γj and qj for small j, the uncertainty coming from
claims for a large i with large j has less influence on the total outstanding payments. Thus,
the total outstanding payments have smaller MSEP in percentage. In conclusion, we have
reasonably good results in predictions with the acceptable range of errors. However, as we do
not consider the estimations error for MSEP, there can be large MSEP of total outstanding
payments especially for claims for a large i because of more number of estimations.
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The same phenomenon is observed in Table 5.11 and 5.12 as we discussed previously for
Table 5.7 and 5.9. However, we can find one interesting result from the comparison between
different µi values. The relative errors of prediction for Si,j and TPi,I−i are significantly
reduced from µi = 200 to µi = 1000. The reason for the reduction in the relative error of
prediction is because the sample of observations using larger values of µi’s generate larger
values of ri,j ’s which are the information (observations) used in the parameter estimations.
Thus, the level of accuracy increases as ri,j ’s increase in terms of relative prediction error.

Total Incremental Payments Ŝ pred
i,j

Development year j
Accident
Year i 0 1 2 3 4 5

0 0 49322 45879 34372 28205 19944
1 0 51155 47389 35873 28741 20687
2 0 52831 48759 36925 29848 20876
3 0 54269 50322 36889 29758 20928
4 0 55729 51772 38413 31007 21778
5 0 57096 53030 39470 31899 22418

Table 5.4: The estimated aggregate incremental payments, I = 6 and µi = 200 ∀ i.

M̂SEP
1/2 [

Ŝ pred
i,j

∣∣DI

]
Development year j

Accident
Year i 0 1 2 3 4 5

0
1
2 4843
3 5623 4861
4 7102 6047 4841
5 7411 7363 5732 4455

in %
0
1
2 0.232
3 0.189 0.232
4 0.185 0.195 0.222
5 0.140 0.187 0.180 0.199

Table 5.5: The estimated mean square error of predictions, I = 6 and µi = 200 ∀ i.
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Total Incremental Payments Ŝ pred
i,j

Development year j
Accident
Year i 0 1 2 3 4 5 6 7 8 9

0 0 29705 35807 28454 25857 24667 21589 20146 13505 8739
1 0 30595 36792 29276 26907 25331 22478 19508 13776 8994
2 0 31504 38071 31494 27511 25706 22987 21283 14307 9099
3 0 32670 39102 31051 28409 26755 23954 20623 14073 9115
4 0 33343 40156 31818 29119 27616 24715 21818 14713 9487
5 0 34419 41237 32802 30299 28280 25135 22422 15139 9768
6 0 35667 42536 34096 31265 29153 25850 23089 15596 10064
7 0 36470 44141 34962 31774 29955 26600 23775 16062 10366
8 0 37533 44795 35996 32795 30925 27465 24548 16585 10704
9 0 38537 46634 37126 33834 31908 28339 25330 17113 11045

Table 5.6: The estimated aggregate incremental payments, I = 10 and µi = 200 ∀ i.

M̂SEP
1/2 [

Ŝ pred
i,j

∣∣DI

]
Development year j

Accident
Year i 0 1 2 3 4 5 6 7 8 9

0
1
2 3387
3 4406 3200
4 5187 4182 2869
5 6461 5108 3983 2706
6 6858 6711 4997 3916 2661
7 7445 7180 6828 5016 3952 2688
8 7981 7958 7364 6997 5120 4044 2752
9 7795 8062 8002 7468 7155 5237 4147 2823

in %
0
1
2 0.372
3 0.313 0.351
4 0.238 0.284 0.302
5 0.257 0.228 0.263 0.277
6 0.235 0.260 0.216 0.251 0.264
7 0.234 0.240 0.257 0.211 0.246 0.259
8 0.222 0.243 0.238 0.255 0.209 0.244 0.257
9 0.167 0.217 0.237 0.234 0.252 0.207 0.242 0.256

Table 5.7: The estimated mean square error of predictions, I=10 and µi = 200 ∀ i.

47



Total Outst. Payments
Accident
Year i TP pred

i,I−i MSEP1/2 in%

0 — — —
1 13749 4891 0.356
2 34822 7885 0.226
3 64721 10915 0.169
4 105792 13994 0.132
5 161844 17415 0.108

Table 5.8: The estimated total outstanding payments and MSEP

Total Outst. Payments
Accident
Year i TP pred

i,I−i MSEP1/2 in%

0 — — —
1 5038 3139 0.623
2 14225 5354 0.376
3 28353 7660 0.270
4 51381 10310 0.201
5 77989 12779 0.164
6 109445 15229 0.139
7 144396 17609 0.122
8 185073 20058 0.108
9 237575 22840 0.096

Table 5.9: The estimated total outstanding payments and MSEP, I=10 and µi = 200 ∀ i.

Total Incremental Payments Ŝ pred
i,j

Development year j
Accident
Year i 0 1 2 3 4 5 6 7 8 9

0 0 148562 178397 145235 129090 121744 107625 97312 68576 41536
1 0 153382 183532 149776 132467 124870 112300 99929 70205 42405
2 0 156744 188708 152775 135215 130217 116140 104003 72842 48046
3 0 162500 195110 157377 140618 132271 119310 105705 73460 48792
4 0 167268 201263 161950 144983 137442 121319 108318 75154 49918
5 0 172681 207286 166370 149477 140557 125048 111557 77401 51410
6 0 177782 212479 172335 153192 145238 128979 115055 79827 53021
7 0 182303 219293 178003 158434 149675 132939 118601 82289 54657
8 0 187621 227049 183239 163028 154171 137015 122292 84855 56361
9 0 192889 231225 186467 166009 157080 139648 124675 86511 57461

Table 5.10: The estimated aggregate incremental payments, I = 10 and µi = 1000 ∀ i.
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M̂SEP
1/2 [

Ŝ pred
i,j

∣∣DI

]
Development year j

Accident
Year i 0 1 2 3 4 5 6 7 8 9

0
1
2 7437
3 9001 8370
4 9954 8967 7896
5 12777 10200 8510 7298
6 13452 14100 9668 7635 6452
7 14937 15124 14858 9212 6959 5830
8 15947 17384 16259 15532 9025 6594 5495
9 14537 16325 17284 15752 15080 7653 5078 4215

in %
0
1
2 0.155
3 0.123 0.172
4 0.092 0.119 0.158
5 0.102 0.091 0.110 0.142
6 0.093 0.109 0.084 0.096 0.122
7 0.094 0.101 0.112 0.078 0.085 0.107
8 0.087 0.107 0.105 0.113 0.074 0.078 0.097
9 0.063 0.088 0.104 0.100 0.108 0.061 0.059 0.073

Table 5.11: The estimated mean square error of predictions, I=10 and µi = 1000 ∀ i.

Total Outst. Payments
Accident
Year i TP pred

i,I−i MSEP1/2 in%

0 — — —
1 28334 7805 0.275
2 79993 12620 0.158
3 154695 17746 0.115
4 266583 23477 0.088
5 399602 28897 0.072
6 557377 34312 0.062
7 732939 39585 0.054
8 938439 45095 0.048
9 1187284 51005 0.043

Table 5.12: The estimated total outstanding payments and MSEP, I=10 and µi = 1000 ∀ i.
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Chapter 6

Conclusion and Discussion

In non-life insurance, as the claims reserve is one of the largest portions of the company’s
liability, it is of great importance to study IBNR claims reserving problems using appropriate
modeling approaches. Although there are well-used non-parametric methods such as Double
Chain-Ladder (DCL) and Bornhuetter-Ferguson (BF) which can be easily interpreted and
have a simple estimation process, we study in this project the parametric models under
stochastic framework.

As the traditional autoregressive (AR) of order one model is not appropriate to model
the claim counts, Kremer (1995) introduces an INAR(1) model for IBNR claim counts, and
Bai (2016) extends Kremer’s idea to propose a Poisson INAR(1) model for the unclosed
claim counts. In this project, we make use of the ideas and further present a compound
Poisson INAR(1) model for closed claim payments in which a mixed gamma distribution
for individual claim sizes is assumed. The properties for the number of closed claims and
the individual payments are studied. The compound model for the incremental aggregate
claims is found to be over-dispersed which is one of the desired model properties, and it can
be viewed as a generalization of Tweedie’s model as it reduces to Tweedie’s model when the
closed rate is equal to 1. We apply the MLE technique to estimate the model parameters.
However, as estimators for the model parameters using MLE technique are not expressed
in closed forms, an algorithm is proposed to obtain parameter estimations using the system
of estimating equations with an iterative process.

We conduct the simulation study to illustrate the model parameter estimations and
prediction process. Comparing to the Tweedie’s model studied in Wüthrich (2003), the MLE
procedure for our model is much more complicated; however, we find that the algorithm
proposed in this project for MLEs works efficiently. Throughout the simulation study, we
find that the estimations for parameters can have a little improvement by having a larger
size of the development triangle because in this case there are more observations to be used
for estimations. From the practical point of view, using more than I = 10 may not be
appropriate as the pattern of observations may change over a longer time period.
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Using a sample of observations, we also provide numerical results to examine the impact
of the size of loss triangle and overall mean of number of closed claims in each cell to
the predictions. There are not significant improvements observed in terms of MSEP (in
percentage) by increasing the size of the loss triangle. However, when the size of loss triangle
is relatively large we observe that MSEP (in percentage) have a non-monotone pattern over
development periods because there might be combined impacts from the estimation process
as well as the number of observations available for different cells.

On the other hand, when the overall mean of number of closed claims is bigger we find
that the prediction errors are reduced significantly as expected, since in this case more
information is available to be used for parameter estimations. Although the mean square
error of prediction is a little underestimated as we only consider the prediction error term
of MSEP to estimate MSEP, the prediction results should give the reasonable range of
estimated MSEP.

For the future research, we can treat the inflation rate as an unknown parameter and
consider different impacts for accident years and development years to be more practical.
Moreover, the complex claims which involve a litigation process or a serious medical review
often require a longer time to get settled. For such cases, they also escalate the cost of
claims. Thus, we can study the model that incorporates dependence between claim sizes
and the frequency of claims.
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Appendix A

Tables for estimations of
parameters

I=6 I=10 I=10
µi=200 µi=200 µi=1000

ρ̂ 0.5294 0.3622 0.6445
µ̂0 203.9509 212.3315 1024.1422
µ̂1 203.9921 211.2775 1024.8246
µ̂2 204.0609 213.2885 1026.597
µ̂3 202.8100 211.0161 1024.5428
µ̂4 203.9892 211.9057 1024.3622
µ̂5 204.2655 212.0163 1024.1228
µ̂6 203.8448 212.1536 1025.2298
µ̂7 — 212.1835 1026.3905
µ̂8 — 212.7131 1028.865
µ̂9 — 213.0935 1019.1254
γ̂0 0.5212 0.2217 0.4114
γ̂1 0.1910 0.1778 0.2146
γ̂2 0.0900 0.1059 0.0664
γ̂3 0.0861 0.1040 0.0825
γ̂4 0.0406 0.0976 0.0891
γ̂5 0.0219 0.0807 0.0652
γ̂6 0.0493 0.0703 0.0572
γ̂7 — 0.0355 0.0065
γ̂8 — 0.0210 0.0001
γ̂9 — 0.0092 0.0001

Table A.1: Estimations of parameters of Ri,j
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I=6 I=10 I=10
µi=200 µi=200 µi=1000

α̂ 1.9951 2.0069 2.0231
τ̂ 1000.668 1000.612 1000.092
— — — —
q̂1 0.0097 0.0103 0.0100
q̂2 0.0100 0.0100 0.0101
q̂3 0.0097 0.0101 0.0100
q̂4 0.0099 0.0092 0.0097
q̂5 0.0109 0.0102 0.0101
q̂6 0.0105 0.0103 0.0102
q̂7 — 0.0096 0.0102
q̂8 — 0.0095 0.0101
q̂9 — 0.0109 0.0105
q̂10 — 0.0073 0.0096

Table A.2: Estimations of parameters of X(l)
i,j
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