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Abstract

Motivated by the breast cancer survivorship research program at BC Cancer Agency, this
dissertation develops statistical approaches to analyzing right-censored multivariate event
time data.

Following the background and motivation of the research, we introduce the framework of
the dissertation, and provide a literature review and a list of the research questions. A
description of the motivating study data is then given together with a preliminary analysis
before presenting the proposed approaches as follows.

We consider firstly estimation of the joint survivor function of multiple event times when the
observations are subject to informative censoring due to a terminating event. We formulate
the potential dependence of the multiple event times with the time to the terminating event
by the Archimedean copulas. This may account for the informative censoring and, at the
same time, allow to adapt the commonly used two-step procedure for estimating the joint
distribution of the multiple event times under a copula model. We propose an easy-to-
implement pseudo-likelihood based estimation procedure under the model, which reduces
computational intensity compared to its MLE counterpart.

A more flexible approach is then proposed to handling informative censoring with particular
attention to observations on bivariate event time potentially censored by a terminating
event. We formulate the correlation of the bivariate event time with the censoring time by
embedding the bivariate event time distribution in a bivariate copula model. This yields
the convenience of inference under the conventional copula model. At the same time, the
proposed model is more flexible, and thus potentially more appropriate in many practical
situations than modeling the event times and the associated censoring time jointly by a
single multivariate copula. Adapting the commonly used two-stage estimation procedure
under a copula model, we develop an easy-to-implement estimator for the joint survivor
function of the two event times. A by-product of the proposed approaches is an estimator
for the marginal distribution of a single event time with semicompeting-risks data.

Further, we extend the approach to regression settings to explore covariate effects in either
parametric or nonparametric forms. In particular, adjusting for some covariates, we compare
two populations based on an event time with observations subject to informative censoring.
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We conduct both asymptotic and simulation studies to examine the consistency, efficiency,
and robustness of the proposed approaches. The breast cancer program that motivated this
research is employed to illustrate the methodological development throughout the disserta-
tion.

Keywords: Copula model; Efficiency and robustness; Informative censoring; Marginal
distribution; Multivariate event times; Pseudolikelihood estimation; Regression analysis;
Variance estimation
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Chapter 1

Introduction

The ongoing rise in the annual number of new cancer diagnosis due to a growing and aging
population, combined with an improving survival rate for most types of cancer, has meant
that a substantial number of people are living with and beyond their cancer diagnosis.
These cancer survivors may experience late effects and problems related to the disease
and its treatment in their lifetime. For example, breast cancer has constantly been the
most common cancer diagnosis in Canadian women over the age of twenty. Although
fewer Canadian women are dying from breast cancer today than in the past, breast cancer
survivors are at risk from a broad set of late effects. Thus, survivorship research has gained
more interest in recent years amongst clinicians and oncologists who want to know the
long-term effects and risks to provide quality and targeted treatment and care to patients.
It is also of interest to policymakers as well as the survivors themselves. For example,
there is evidence that breast cancer survivors, or those who experieced relapse or second
cancer (RSC), are at a higher risk of hospitalization related to cardiovascular disease (CVD)
compared to their peers (see, for example, Bardia et al. 2012, Hamilton et al. 2015, Park
et al. 2017). This is a very important health issue for breast cancer survivors (e.g., Cuzick
et al. 1994, Clarke et al. 2005). A recent publication (Mehta et al. 2018) has provided a
statement from the American Heart Association (AHA) that breast cancer treatments may
increase the risk of heart disease. This is the first scientific statement from the AHA on
CVD and breast cancer.

1.1 Background and Motivation

It was estimated that in 2017 alone, 206,200 new cases of cancer were diagnosed in Canada,
and in 2009, about 810,045 Canadians diagnosed with cancer in the previous ten years
were alive. This represented about 2.4 percent of the Canadian population or one out of
every forty-two Canadians. Breast cancer accounts for approximately 26% on new cases of
cancer and 13% of all cancer deaths in Canadian women. 1 in 8 women are expected to
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develop breast cancer during her lifetime and 1 in 31 will die of it. In 2009, an estimated
157,360 women were living with, or surviving from, breast cancer in Canada, This means
that there is a large population of breast cancer survivors (https://www.canada.ca/en/

public-health/services/chronic-diseases/cancer/breast-cancer.html).

1.1.1 General Background: Health Care System in Canada

Canada’s publicly funded health care system provides universal coverage for medically nec-
essary health care services provided on the basis of need, rather than the ability to pay. It
is available to all eligible residents. The provinces and territories administer and deliver
most of Canada’s health care services. Each provincial and territorial health insurance plan
covers medically necessary hospital and doctors’ services that are provided on a prepaid
basis, without direct charges at the point of service. The provincial and territorial govern-
ments fund these services with assistance from federal tax transfers. That is, the provincial
administrative databases on hospitalization and physician visits record all of the medically
necessary health services provided to the population. Therefore, individualized longitudinal
electronic record of health care services are available through administrative databases in
each province, and it reflects the care received by each individual.

In British Columbia (BC), a province in Canada, public health insurance is called the
Medical Services Plan – or MSP. It covers the cost of medically-necessary insured doctor
services. The MSP Registry enrols all eligible BC residents and collects basic demographic
information for each individual. All Canadian hospitals (except those in Quebec), including
BC, submit their separations records directly to the Canadian Institute of Health infor-
mation (CIHI: https://www.cihi.ca) for inclusion in the Discharge Abstract Database
(DAD). The database contains demographic, administrative, and clinical data (e.g. reason
for hospitalization) for hospital discharges (inpatient acute, chronic, rehabilitation) and day
surgeries. A provincial data set, including various CIHI value-added elements (such as case
mix groups, and resource intensity weights) is released on a monthly basis to the respective
Ministries of Health.

1.1.2 BC Breast Cancer Survivorship (BC-BRCAS) Program

In BC, as in all provinces, cancer is a reportable disease (Section 9, Health Act, http:

//www.bclaws.ca/civix/document/id/complete/statreg/96179_01). BC Cancer Reg-
istry (BCCR), managed by BC Cancer (www.bccancer.bc.ca), a provincial cancer care,
control and research organization, collects information on all cancers diagnosed for BC
residents. The sources of registrations are haematology and pathology reports, death cer-
tificates, hospital reports, and admission records at cancer treatment centres. The BC
Cancer Registry is estimated to cover at least 95 percent of all cancer cases in BC.
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The breast cancer survivorship program in the BC Cancer Research Center is a research
program established to study long term health and health care amongst a cohort of breast
cancer survivors in BC. The research program has implemented a series of epidemiological,
clinical, and health-service studies relating to breast cancer survivorship issues, using exist-
ing population-based registries, administrative databases, and record-linkage methodology.

The study subjects included in this dissertation are women diagnosed with breast cancer
between 1 January, 1989 and 31 December, 2011 in BC, eighteen years and older and resi-
dents of BC, identified from the BCCR. Their relevant demographic, disease, and treatment
information as well as death- and RSC-related data up to 31 December, 2014 were extracted
from the registry and clinical databases; their records of hospitalizations from 1 January,
1986 to 31 December, 2013 were extracted. In addition, a gender and birth-year matched
comparison group (controls) from the MSP registry was identified. Chapter 2 provides more
description on the datasets.

The strengths of the breast cancer survivorship research program are that 1) it uses
the linked administrative databases and avoids the potential informative loss-to-follow up
issues due to non-response, as is often encountered in survey-based studies; 2) the databases
collect data over time and thus the records are longitudinal for each individual; therefore,
one could examine the time effect on outcomes; 3) the matched comparison group provides
the ability to address relevant research questions.

1.1.3 Motivation of the Thesis Research

Many research questions are of interest in monitoring the late effects of breast cancer sur-
vivors. It is believed that breast cancer survivors suffer from CVD sooner than their peers in
the general population, due to the location of the cancer. Specifically, this can be examined
from three aspects, listed as the following three hypothesis, which we will address in this
dissertation using data from the BC-BRCAS program.

Hypothesis 1 : Breast cancer survivors suffer from CVD at a younger age than their peers
in the general population.

Hypothesis 2 : There is a positive association between RSC and CVD.

Hypothesis 3 : The treatment on breast cancer is likely associated with higher risk of CVD
and RSC.

Conventionally, cross-sectional analysis could be used to address the questions above. In
Chapter 2, a preliminary cross-sectional analysis is conducted. However, cross-sectional
analysis does not account for the effect of time and only uses limited information from the
data collected within a short time window. Thus, survival analysis will provide more insight
into the process of events.
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The data are available as dates in calendar time. In this thesis, two time scales were
considered: time since diagnosis time scale, and the age time scale. As shown in figure 1.1,
if we denote T1 as the time at RSC, T2 as the time at CVD, they are defined as the time gap
between diagnosis or birth and the occurence of RSC and CVD, respectively, depending on
the time scale used.

(a) (i) calendar time scale

(b) (ii) time since diagnosis scale

(c) (iii) age scale

Figure 1.1: Calendar Time, Time Since Diagnosis, and Age Time Scale.

Further, we denote Z as the covariates, and formulate the statistical problems corre-
sponding to the three hypothesis above as the three following goals:

Goal 1 : to estimate T2’s distribution

Goal 2 : to estimate (T1, T2)’s joint distribution

Goal 3 : to estimate the conditional distribution of T2|Z, or (T1, T2)|Z
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Conventional approaches such as the Kaplan–Meier estimator and Cox proportional haz-
ards model in survival analyses have addressed the question of estimating the marginal and
conditional distribution of one single event time. To estimate the distribution for bivariate
event-time, two commonly used approaches are frailty modeling and copula modeling.

Most of the conventional approaches are based on the assumption that the event-times
are subject to noninformative censoring. In many real-life studies, the observation may
be terminated earlier than scheduled by the subject’s death, and this leads to potential
informative censoring, when the goal is to make inference on the whole population. In
this study, the observations on the times to CVD and RSC are heavily censored because
of either the study follow-up time limit or death. The time to death, denoted as D, is
likely correlated to the two event times of interest. It is noted here that inference is to
be made for the whole population, rather than for only those who had experienced T1 and
T2. On one hand, subjects who had experienced T1, T2 likely survived longer than those
who died before experiencing T1 or T2. On the other hand, although not the focus of this
dissertation, making inference only on those who had T1, and T2 falls within the ‘disease-free
survival’ framework (e.g. Andersen & Keiding 2012). This has also been addressed in this
dissertation, through a middle product of the proposed approaches in Chapters 3- 6.

In summary, conventional event time analysis methods, such as the Kaplan–Meier esti-
mator for the survivor function of an event time, are not directly applicable. Furthermore,
achieving goal 2 involves dealing with observations of bivariate event time subject to in-
formative censoring, which adds complexity to the statistical problem. This statistical
challenge partially motivated the research presented in this dissertation.

1.2 Literature Review

Given the statistical formulation in the previous section, this dissertation aims to estimate
the joint survivor function of multiple event times in presence of informative censoring. This
section reviews the relevant topics.

1.2.1 Multivariate Event Time

In literature, many approaches have been developed for modeling bivariate (or multivari-
ate) event time. Existing common frameworks for modeling multivariate failure time data
include frailty models and copula models.

Frailty models

The introduction of a common random effect (frailty) is a natural way of modeling the
dependence of event times. A frailty model is a multiplicative hazard model consisting
of three components: a frailty (random effect), a baseline hazard function (parametric or
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nonparametric), and a term modeling the influence of observed covariates (fixed effects).
Review of frailty models for multivariate failure time data can be seen in, for example,
Liang et al. (1995) and Hougaard (2012).

Definition 1. Suppose that T is an event time, and that there exists a positive random
variable W such that the conditional survivor function of T , given W = w, is

Pr(T ≥ t|W = w) = S0(t)w (1.1)

where S0(t) is the baseline survivor function. Then, W is called latent random effect or
frailty, and (1.1) is a frailty model (Hougaard 1984).

The frailty model has the same structure as that of the Cox model, except that the value
w ofW is not observed, but is a random variable with density function fθ(·) with parameter
θ. The unconditional survivor function of T is S(t) = Pr(T ≥ t) = Lθ{− logS0(t)} where
Lθ(u) = Ee−uw is the Laplace transform of W , with E(·) being the expected value. It has
been shown in Oakes (1989) that for a bivariate frailty model, which specifies the bivariate
event time T1 and T2 to be independent conditional on a frailty W , the joint survivor
function of (T1, T2) is

S(t1, t2) = Pr(T1 ≥ t2, T2 ≥ t2; θ) = Lθ[Lθ(S1(t1)) + Lθ(S2(t2))] (1.2)

where Sj(tj) = Pr(Tj ≥ tj) is the survivor function of Tj , j = 1, 2. Two of the most
commonly used frailty models in applications are the gamma frailty model and the positive
stable frailty model, where frailty W is assumed to follow gamma distribution and positive
stable distribution, respectively.

Copula models

Copula modeling has become an increasingly popular tool in multivariate analysis since
the fundamental work of Clayton (1978), which proposes a family of copula models for
the analysis of bivariate data. The model specifies the joint distribution of the multiple
event times by linking each marginal distribution via a copula function; see, e.g., Joe (1997)
and Nelsen (2006) for more discussion and examples. Recent papers on multivariate event
times via copulas with various data structures include Zhang et al. (2010), Diao & Cook
(2014), and Zhong & Cook (2016). Here we briefly introduce the bivariate copula (Joe 1997,
Jaworski et al. 2010).

The concept of copula was introduced by Sklar (1959) to describe in a convenient way
the class of distribution functions with given marginals.

Definition 2 (copula). For every d ≥ 2, a d-dimensional copula (shortly, d-copula) is a
d-variate CDF on [0, 1]d whose univariate marginals are uniformly distributed on [0, 1].
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Thus, each d-copula may be associated with a random variable U = (U1, U2, . . . , Ud) such
that Uj ∼ Unif[0, 1] for every j ∈ {1, 2, ..., d} and U ∼ C. Conversely, any random variable
whose components are uniformly distributed on [0, 1] is distributed according to some cop-
ula. The class of all d-copulas will be denoted by C[d]. Since copulas are multivariate CDFs,
they can be characterized in the following equivalent way.

Theorem 1. A function C : [0, 1]d → [0, 1] is a copula if, and only if, the following properties
hold:

(C1) for every j ∈ {1, 2, ..., d}, C(u) = uj when all the components of u are equal to
1 with the exception of the j-th one that is equal to uj;

(C2) C is isotonic, i.e. C(u) ≤ C(v) for all u,v ∈ [0, 1]d, u ≤ v;

(C3) Cis d-increasing.

Sklar’s theorem represents the building block of the modern theory of multivariate CDFs.
It can be formulated as follows.

Theorem 2 (Sklar’s theorem). Suppose X1, . . . , Xd are random variables with continuous
CDFs F1, . . . , Fd and joint CDF F . Then there exists a unique copula C[d], a CDF on [0, 1]d

with uniform marginals, such that for all x = (x1, . . . , xd)> ∈ Rd:

F (x1, . . . , xd) = C[d](F1(x1), . . . , Fd(xd)) (1.3)

Conversely, given any CDF F1, . . . , Fd and copula C[d], F defined through (1.3) is a d–variate
CDF with marginal CDFs F1, . . . , Fd.
Alternatively, (1.3) can also be rewritten as for u = (u1, . . . , ud)> ∈ [0, 1]d,

C[d](u1, . . . ud) = F (F−1
1 (u1), . . . , F−1

d (ud)) (1.4)

For survivor functions, we will restate Sklar’s theorem as follows. Let S(t1, . . . , td) be a
joint survivor function with marginals S1(t1), . . . , Sd(td). Then, there exists a bivariate cop-
ula C̄ such that for all (t1, . . . , td) ∈ Rd S(t1, . . . , td) = C[d](S1(t1), . . . , Sd(td)) The survival
copula C[d] links the d-variate survivor function to its univariate marginal survivor function
analogous to the way in (1.3). There exists a link between survivor copula C and copula
C. For example, when d = 2, it is given by C[2](u1, u2) = u1 + u2 − 1 + C[2](1− u1, 1− u2).
Without loss of generality, for the remainder of the dissertation, we use C to represent the
survivor copula.

Example: Archimedean Copula Family

As a preparation for the modeling, inference procedures and numerical studies in the remain-
der of the dissertation, we now briefly review the Archimedean copulas, following Nelsen
(2006).
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By Sklar’s theorem, every multivariate survivor function can be presented as a copula
model, with all the marginal survivor functions linked by a copula function. Archimedean
copula models are commonly used in survival analysis. A K-dimensional Archimedean
copula has the form

A[K](w1, . . . , wK ;φ) = ψ−1(ψ(w1;φ) + . . .+ ψ(wK ;φ);φ
)
, (1.5)

where the generator ψ(·) is continuous, strictly decreasing, convex, and with ψ(1;φ) = 0
for φ ∈ Φ, a parameter space. Let w∗ be ψ−1(ψ(w1;φ) + . . . + ψ(wK−1;φ);φ

)
, which is in

fact A[K−1](w1, . . . , wK−1;φ). We see from (1.5) that

A[K](w1, . . . , wK ;φ) = ψ−1(ψ(w∗;φ) + ψ(wK ;φ);φ
)

= A[2](w∗, wK ;φ). (1.6)

Moreover,

A[K](w1, . . . , wK ;φ) = A[K−1](w1, . . . , wk−1, wk+1, . . . , wK−1, w
∗
k;φ) (1.7)

with w∗k = ψ−1(ψ(wk;φ)+ψ(wK ;φ);φ
)

= A[2](wk, wK ;φ) for k = 1, . . . ,K−1. This feature
of Archimedean copulas is convenient for estimation with the models.

Corresponding to the association parameter in a bivariate Archimedean copula, the
Kendall rank correlation coefficient (also called Kendall’s τ), a widely used measure of
correlation between variables, is τ = 4

∫ 1
0
∫ 1

0 A[2](w1, w2;φ)A[2](dw1, dw2;φ) − 1. We list
below the generators of four commonly used Archimedean copulas and their Kendall’s τ ,
which are employed in the empirical studies reported in numerical studies in later chapters.

1. Clayton Copula (Clayton 1978): ψ(w;φ) = (w−φ − 1)/φ for φ ∈ (−1,∞)\{0} and
Kendall’s τ = φ

/
(φ+ 2).

2. Frank Copula: ψ(w;φ) = − log
{
[exp(−φw)− 1]/[exp(−φ)− 1]

}
for φ ∈ (−∞,∞)\{0}

and Kendall’s τ = 1 + 4[B(φ)− 1]/φ with B(φ) = φ−1 ∫ φ
0 t
/
[exp(t)− 1]dt.

3. Gumbel Copula: ψ(w;φ) = (− log(w))φ for φ ∈ [1,∞) and Kendall’s τ = 1− φ−1.

4. Joe Copula: ψ(w;φ) = − log[(1 − (1 − w)φ)] for φ ∈ [1,∞) and Kendall’s τ = 1 −
4
∑∞
k=1 1/{k(φk + 2)[φ(k − 1) + 2)]}.

Correspondence between copula and frailty modeling

Copulas and frailty models are both widely used to model clustered or multivariate data.
Equivalence between Archimedean copula models and shared frailty models, e.g. between
the Clayton-Oakes copula model and the shared gamma frailty model, has often been
claimed in literature (Oakes 1989, Goethals et al. 2008).
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To view the correspondence between the Archimedean copula and (1.2), we take the
bivariate Archimedean copula model as an example. The joint distribution of T1 and T2

can be expressed as

S(t1, t2) = Pr(T1 ≥ t1, T2 ≥ t2) = A[2](S1(t1), S2(t2);φ)

= ψ−1[ψ(S1(t1);φ), S2(t2;φ);φ] (1.8)

where the generating function ψ(·) only requires ψ(0) = 1, ψ′(u) < 0 and ψ′′(u) > 0 for
u ∈ [0, 1]. Therefore (1.2) is a special case of (1.8).

Advantages of copula modeling

To summarize, the advantages of copula modeling include the following:

1 By Sklar’s theorem, any multivariate distribution can be decomposed into its marginal
distributions and a copula function which completely describes the dependence struc-
ture.

2 Further, for continuous multivariate distributions, the univariate marginals and the
multivariate or dependence structure can be separated, and the multivariate structure
can be represented by a copula. This adds convenience in the estimation procedure
and make it feasible to apply a two-stage estimation procedure.

3 Thirdly, commonly used dependence measures such as Kendall’s τ can be obtained
directly from the parameters in copula functions, making the interpretation useful in
real data analysis. It also provides a universal measure to compare different copulas
and verify robustness.

4 Compared to commonly used frailty models, which can be viewed as a subset of copula
models, copula models cover a wider range of model specification.

5 Although beyond the scope of application in this dissertation, asymptotic tail depen-
dence can be used to measure the dependence between extreme values through copula
modeling, which is commonly used in fields such as economics and finance.

Likelihood-based Inference Procedures

Likelihood inference is a foundational estimation approach in statistics; the distribution
function of the response variable must be fully specified. Under certain conditions of the
model, the maximum likelihood estimator (MLE) possesses many properties that make it
an appealing choice of estimator. Therefore, the likelihood function has proved to be a
powerful tool for inference. On the other hand, obtaining the MLE from the full likelihood
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function, can be computationally intensive, especially when there is an unknown function
involved as a nuisance parameter.

Likelihood inference has been extended in many ways. For example, various pseudolikeli-
hood functions have been proposed for more complicated models. With some efficiency loss,
the pseudo-MLE can be computationally much easier to obtain than its MLE counterpart.
Given the structure of copula models reviewed in the previous section, a two-stage estima-
tion procedure is feasible. The Oakes (1994) paper proposes a semiparametric two-stage
estimation procedure: in the first stage the unknown marginal distributions are estimated by
rescaled empirical distribution functions; in the second stage, the copula dependence param-
eter is estimated by maximizing the estimated log-likelihood function where the marginal
distributions are fixed to the estimates from the first step. Shih & Louis (1995) propose a
two-step estimator with right-censored data under copula models, and Lawless & Yilmaz
(2011) compare the two-stage pseudolikelihood estimation and the corresponding maximum
likelihood estimation in terms of efficiency and robustness.

1.2.2 Informative Censoring

As mentioned, many practical studies of life history processes follow their subjects over
a certain time period for particular events. However, the observation may be terminated
earlier than scheduled by the subject’s death (e.g., Li & Lagakos 1997), and this leads to
potentially informative censoring. When a single event is of interest, approaches have been
proposed to estimate the distribution of the event time subject to informative censoring
in the framework of competing risks (Zheng & Klein 1995) or semicompeting risks (Fine
et al. 2001, Wang 2003, Jiang et al. 2005, Cheng & Fine 2012). Li et al. (2007) employed
Archimedean copula models for informative censoring in a mixture cure model with a single
event time of interest. Bandeen-Roche & Liang (2002) and Ning & Bandeen-Roche (2014)
considered a modified conditional hazard ratio measure of association and the associated
estimation with bivariate competing-risks data. Cheng et al. (2007) presented nonparamet-
ric estimation for the bivariate cause-specific hazard function and the bivariate cumulative
incidence function.

This dissertation, however, addresses the problem of modeling multiple event times
with observations subject to informative censoring by extending the commonly used copula
based dependence modeling approach. Essentially, we treat the informative censoring time
as a separate event time, and model the single event time or multiple event times together
with the censoring time through a multivariate modeling approach. Furthermore, this
dissertation develops likelihood based inference procedures.

10



1.3 Notation and Framework

We study the joint distribution of multivariate event time in two major ways: unconditional
distribution without covariates and conditional distribution in a regression setting. In this
section we present the notation that is used throughout the remainder of the dissertation.
Specific notation is introduced at the beginning of each chapter.

Let S(·), f(·), F (·) be the survivor function, density function and CDF for random
variable(s). Let T be event time, which could be time at RSC, or time at CVD. Let D be
the informative censoring time, and in this dissertation we focus on a terminating event such
as death. Let T ∗ = T ∧ D be the so-called ‘disease-free’ survival time. The introduction
of this random variable adds convenience in estimating the marginal survivor function of
T , which is of interest in this dissertation. Let CA be the right-censoring time which is
assumed to be noninformative.

The time scale we use in this dissertation includes: a) a time gap between diagnosis of
breast cancer and the event, or more succinctly time since diagnosis, in Chapters 3 to 5; it
can be reasonably assumed that given a stage at cancer diagnosis, CA (time since diagnosis
to the end of data collection) is independent of T and D; b) age at event, in Chapter 6.
Using the age time scale, it can be reasonably assumed that CA (age at the end of data
collection) is independent of T and D.

Let Z be a vector of covariates. Z may include both demographic and clinical factors for
the survivor cohort; and it includes only demographic variables for the comparison sample
from the general population.

1.4 Objectives and Thesis Outline

1.4.1 Objectives

Our main objective is to estimate the joint survivor function of multiple event times with
the right-censored observations subject to informative censoring. From the joint survivor
function, we will be able to verify the research hypothesis 2 directly. The marginal survivor
function for each event time can be obtained as a ‘by-product’ of our approach, which will
verify hypothesis 1 and hypothesis 3.

As stated, this dissertation was motivated by the breast cancer survivorship program
data, and we will illustrate the proposed approach using this data throughout. The statisti-
cal approach, however, can be applied broadly and is not limited to this specific motivating
data.

1.4.2 Thesis Outline

The rest of the dissertation is organized as follows. Chapter 2 provides a general description
of the data and presents a preliminary analysis using cross-sectional data. Chapter 3 in-

11



troduces a modeling approach through the multivariate Archimedean copula and proposes
the pseudo-likelihood inference approach with an easy-to-implement algorithm. Chapter 4
proposes a more flexible modeling approach which allows the assumption of dependence
structure to be different amongst event times. Chapter 5 extends the approach to regres-
sion setting, Chapter 6 applies the approach to handle informative censoring with one single
event time, and Chapter 7 provides a summary and discussion of future work. All analyses
in this thesis are conducted using R (R Core Team 2013).
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Chapter 2

Data Description and Preliminary
Analysis

2.1 Introduction

This chapter describes the breast cancer study data which motivated the thesis work and
summarizes the CVD-related hospitalization in cross-sectional counts, for both the breast
cancer survivor cohort, denoted by P0, and the comparison group, denoted by Q0. As
what people usually do when dealing with cross-sectional data in epidemiological studies,
we conduct a preliminary analysis using Poisson rate regression, to compare CVD events
between the breast cancer survivor cohort and the comparison group (to verify hypothesis
1 ), to examine if RSC has any effect on the counts of CVD (to verify hypothesis 2 ), and
to quantify the effects of sociodemographic and clinical factors on the outcome (to verify
hypothesis 3 ).

2.2 Description of BC-BRCAS Data

This section describes the study subjects, the outcomes of interest and the covariates. We
summarize the descriptive statistics in tables and illustrate the data collection mechanism
with the information available in timeline figures.
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Figure 2.1: Diagram of the Survivor Cohort and the Control Group

As displayed in figure 2.1, the survivor cohort (cases), denoted as P0, consists of all
women diagnosed with breast cancer between 1 January, 1989 and 31 December, 2011 in
BC, Canada, who are eighteen years and older and are residents of BC identified from the
BC Cancer Registry. Their relevant demographic information, and death- and RSC-related
data to 31 December, 2014 were extracted from the registry and clinical databases. The
time window of the availability on these administrative databases are shown in figure 2.2(a).
There is a one year gap in the end of data collection for RSC and CVD, but there are very
few cases. For simplicity, we choose December 31, 2013 as the end of the data extraction,
as shown in figure 2.2(b).

A birth-year matched female comparison group (controls) , denoted as Q0, without di-
agnosis of breast cancer was selected from the MSP registry. For both cases and controls,
their records of CVD-related hospitalizations from 1 January, 1986 to 31 December, 2013
were extracted from the Canadian Institute of Health Information (CIHI) hospital separa-
tions database of BC (British Columbia Ministry of Health 2011). Table 2.1 provides the
descriptive statistics for P0 and Q0 in this study.

(a) Data Availability Window

(b) Data Availability Window: Simplified

Figure 2.2: Breast Cancer Survivor Cohort Data Availability Time Windows
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The preliminary cross-sectional analysis presented in this chapter includes the breast
cancer survivors who were still alive on 1 January, 2011 (beginning of the cross-sectional
time window), and uses CVD-related hospitalizations between 1 January, 2011 and 31
December, 2013 (end of the cross-sectional time window). The time window of the cross-
sectional data is illustrated in figure 2.3. We denote the cross-sectional cohorts in this
preliminary analysis as Pprelim, and Qprelim for cases and controls, respectively. To avoid
collinearity in the regression analysis, we chose the following six covariates: SES (high
versus low), relapse or second cancer (RSC) (yes versus no relapse or second cancer at the
beginning of the time window), birth era (era I: 1900–1927, era II: 1928–1945, era III: 1946–
1989, following the definition of generation cohorts that are widely used in North America),
stage of breast cancer (I, II, III, IV and unknown), and treatment (surgery only, chemo only,
radiation only, surgery and chemo, surgery and radiation, chemo and radiation, surgery and
chemo and radiation).

Figure 2.3: Breast Cancer Survivor Cohort Data Collection Windows for Pprelim

Out of the 51, 612 breast cancer survivors, about 81 percent are newly referred patients.
For future studies in Chapters 3 and 4 we only included these new patients because events
occuring prior to 1989 are unknown for other patients. We call this set of cohorts ’referred
cohort’, denoted by Preferred. Stage IV survivors were also removed because, by definition,
the patients cannot have a relapse.

Furthermore, those with unknown treatment or stage were excluded from Preferred, and
we call this set of cleaned-up cohort ‘final cohort’, denoted by Pfinal. In Chapters 5 and 6
real data analyses were conducted using Pfinal. The real data analysis in Chapter 6 uses a
case control study which utilized the full set of cohorts P0 and Q0.

2.3 Analysis of BC-BRCAS Data (I): Preliminary Data Anal-
yses

In attempt to achieve the goals in Chapter 1, a set of preliminary analyses is conducted using
Poisson rate regression on: (i) the count of CVD-related hospitalizations between calendar
years 2011 and 2013, and (ii) the event indicator (yes/no) of CVD-related hospitalization.
Figure 2.3 illustrates the cross-sectional data that was extracted for analysis. The adjusting
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covariates include: Birth Era, SES (low versus high), Residential Location: rural versus
urban, Stage (stage I as reference), Treatment (surgery only as reference), and Having RSC.
Table 2.2 summarizes the results using Pprelim∪Qprelim. Table 2.3 presents additional results
among the breast cancer survivors using Pprelim only.

It appears on average that cases have significantly higher rates of CVD related hospital-
izations as compared to controls. The rate of CVD-related hospitalization is significantly
associated with Birth Era. With other covariates fixed, older ages (born in an earlier era)
tend to have a higher rate of hospitalization on average. SES and urban/rural residen-
tial location do not appear to have any significant effects. In addition, case only analysis
indicates having RSC increases the rate of having CVD, while the addition of chemo or
radiation treatment seems to decrease the rate of having CVD, compared to those who
received surgery only. However, it could be due to the collinearity between Birth Era and
Treatment. There may also be a sampling issue due to the data extraction window. For
example, the cohort Pprelim consists only of those who survived until the year 2011, and of
those born in era I (1900-1927), 97.6 percent receive surgery only or surgery and radiation.
It is likely that those who received any chemotherapy were already deceased by the year
2011. It highlights the importance of using lifetime data analysis to explore the effect of
treatment.

2.4 Statistical Challenges

The preliminary analysis presented in the above section utilized only cross-sectional data.
However, cross-sectional analyses measure a single outcome for each individual. In addition,
cross-sectional analyses, which describe the current situation of the population at the given
moment or time period, hardly integrates the dimension of time, thus making the effect of
time unmeasurable. Another consequence of failing to consider event-times is that it makes
it infeasible to account for informative censoring using cross-sectional analyses. For example,
in the breast cancer study described in Chapter 1, death could be a potential informative
censoring time. Moreover, event time analyses can deal with time-varying covariates.

As shown in figure 2.2, all subjects were followed throughout the time window, and
were censored by either the end of data collection or by death. Following the notation in
Chapter 1 to let T1 be time to the first RSC, T2 be time to the first CVD admission, and
D be time to death, we obtain the event times (T1, T2, D). When we use the time scale as
time since diagnosis, for example, T1 is the calendar time gap between time at first RSC
and time at diagnosis. As shown in figure 2.4, there are eight different scenarios for the
observed event-times on (T1, T2, D).

If we can estimate the joint distribution of the event times T1 and T2, then we can achieve
goal 1 and goal 2. Similarly, if we can estimate the joint distribution of (T1, T2) conditional
on covariates of interest, then we can achieve goal 3. It is not straightforward to address
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this statistical problem because both event times T1 and T2 are censored by D, which is a
potential informative censoring time. Conventional approaches such as the Kaplan–Meier
estimator do not apply because of the violation of the noninformative censoring assumption.
This leads to the following research presented in Chapters 3 to 6.

Figure 2.4: Different Scenarios of Observed Event Times. Time Scale: Time Since Diagnosis.
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Chapter 3

Multiple Event Times in the
Presence of Informative Censoring
Using Copula - Part One

This chapter is concerned with the joint survivor function of multiple event times when
the observations are subject to informative censoring caused by a terminating event. We
formulated the correlation of the multiple event times together with the time to the termi-
nating event by an Archimedean copula. This accounts for the informative censoring and
adapts the commonly used two-step procedure for estimating the joint distribution of the
multiple event times under a copula model. We propose an easy-to-implement pseudolike-
lihood based estimation procedure under the model. A by-product of the approach is a
new estimator for the marginal distribution of a single event time with semicompeting-risks
data. We derived asymptotic properties and conducted simulation studies to examine the
consistency, efficiency, and robustness of the proposed approach. Data from the breast
cancer project is employed to motivate and illustrate the method.

3.1 Introduction

In many studies with human subjects, the researchers are usually not confident in formu-
lating the distributions of interest into parametric models. The problem becomes more
involved when multiple event times are of interest and the observations on them are sub-
ject to informative censoring. In the breast cancer study, for example, the occurrence of
death is likely correlated with both the time to CVD and the time to RSC. The death time
censors the observation on either of the two event times but not vice versa: the censoring
is thus potentially correlated with the event times. Motivated by the breast cancer study,
this chapter focuses on the informative censoring with observations on multiple event times
due to a terminating event that is correlated with the event times. Leaving the marginal
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distribution of the terminating event unspecified, we model the correlation of the multiple
event times together with the terminating event time via an Archimedean copula model.
It allows us to adapt naturally the commonly-used two-step estimation procedure with a
copula model and, in the meantime, account for the informative censoring.

We motivate the proposed model and illustrate the associated estimation procedure us-
ing a study at BC Cancer with more recent data. The methodology, however, has broader
applicability. The rest of this chapter is organized as follows. Section 3.2 presents the model
after introducing the notation and framework. Section 3.3 proposes a pseudolikelihood-
based semiparametric procedure to estimate the model parameters. We then derive the
asymptotic properties of the resulting estimators, and in particular the maximum pseudo-
likelihood estimator (pseudo-MLE) for the model parameter that measures the association
between the event times. Section 3.5 reports a simulation study that evaluated the finite-
sample performance of the estimation procedure, and section 3.6 presents an analysis of the
real data from the breast cancer study from the proposed approach. Section 3.7 provides a
summary of this chapter.

3.2 Notation and Modeling

3.2.1 Notation

Let Tj with survivor function Sj(·) for j = 1, . . . , J be the J (≥ 1) event times of interest
in a study. Denote their joint survivor function by S(t) = Pr(T1 ≥ t1, . . . , TJ ≥ tJ) with
t = (t1, . . . , tJ). Suppose the study observations on the event times Tj are subject to
right-censoring where the censoring time C is either the time to a terminating event D
with survivor function SD(·) or the study’s administrative follow-up time CA, whichever
comes sooner. That is, C is the minimum of D and CA, denoted as C = D ∧ CA. The
observations on Tj may be censored by D but not vice versa; this structure is referred to as
semicompeting-risks data (e.g., Fine et al. 2001).

We aim to estimate the joint survivor function S(t) given the study’s right-censored
multivariate event times when Tj for j = 1, . . . , J are potentially correlated among each
other and with D. Adopting the conventional notation, let ∆D be the indicator I{D ≤ CA},
and Uj = Tj ∧ C with ∆j = I{Tj ≤ C} for j = 1, . . . , J . Suppose that the study data are
n independent realizations of

{
(U1,∆1), . . . , (UJ ,∆J), (C,∆D)

}
, denoted by

Observed-Data =
n⋃
i=1

{{
(uji, δji) : j = 1, . . . , J

}⋃
{(ci, δDi)}

}
. (3.1)

This is the union of the J semicompeting-risks data sets on Tj together with D:

Observed-Dataj =
{
(uji, δji, ci, δDi) : i = 1, . . . , n

}
. (3.2)
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We perform inference on the distributions of the event times Tj over the intervals [0, v?j ] with
predetermined v?j . In practice, v?j are usually chosen to be slightly smaller than anticipated
maxi{uji} for j = 1, . . . , J .

3.2.2 Model Specification

Denote a k-dimensional Archimedean copula function by C[k]
(
v1, . . . , vk; θ

)
for integer k ≥ 1

with its generator function ψ(·; θ). We assume that the administrative censoring time CA
is independent of both (T1, . . . , TJ) and D, and the joint survivor function of the multiple
event times with D follows the (J+1)-dimensional Archimedean copula model (e.g., Nelsen
2006):

Pr(T1 ≥ t1, . . . , TJ ≥ tJ , D ≥ d) = C[J+1]
(
S1(t1), . . . , SJ(tJ), SD(d); θ

)
. (3.3)

The association parameter θ characterizes the correlation of the J+1 event times T1, . . . , TJ

and the terminating event time D.
Following (1.6), the Archimedean copula model in (3.3) can be presented as

Pr(T1 ≥ t1, . . . , TJ ≥ tJ , D ≥ d) = C[2]
(
S(t; θ), SD(d); θ

)
, (3.4)

where the joint survivor function of T1, . . . , TJ is

S(t; θ) = C[J ]
(
S1(t1), . . . , SJ(tJ); θ

)
. (3.5)

Further, by (1.7), we see that, for j = 1, . . . , J , (3.3) is

C[K]
(
S1(t1), . . . , Sj−1(tj−1), Sj+1(tj+1), . . . , SJ(tJ), SjD(tj , d; θ); θ

)
with the joint survivor function of Tj and D:

SjD(tj , d; θ) = Pr(Tj ≥ tj , D ≥ d) = C[2]
(
Sj(tj), SD(d); θ

)
. (3.6)

Estimating the marginal survivor functions of the event times Tj (j = 1, . . . , J) with the
semicompeting-risks data (denoted Observed-Dataj in (3.2)), is of interest in many situa-
tions. It can now be viewed as the special case of J = 1 in the estimation presented in
section 3.3.

3.3 Pseudolikelihood-Based Inference Procedure

This section presents the likelihood function of the parameters in the model (3.3) based on
the available data. It then proposes a procedure for estimating the joint survivor function
of the multiple event times. Asymptotic properties of the estimators are also provided.
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3.3.1 Likelihood Function Based on the Available Data

Denote
∑J
j=1 δji = δ·i, and ui = (u1i, . . . , uJi). Let ḣ(r) be the derivative for a function h(r),

and h(a1,...,ak)(r1, . . . , rk) be ∂h(a1+...+ak)(r1, . . . , rk)/∂ra1
1 . . . ∂rakk for a function h(r1, . . . , rk)

with well-defined partial derivatives. The likelihood function with the available data under
the copula model (3.3) is

L(θ;S1(·), . . . , SJ(·), SD(·)|Observed-Data)

=
n∏
i=1

{
(−1)δ·i+δDiC(δ1i,...,δJi,δDi)

[J+1]
(
S1(u1i), . . . , SJ(uJi), SD(ci); θ

)[ J∏
j=1

Ṡj(uji)δji
]
ṠD(ci)δDi

}

=
n∏
i=1

{
(−1)δ·i+δDi

∂δ·iC(0,δDi)
[2]

(
S(ui; θ), SD(ci); θ

)
∂S1(u1)δ1i . . . ∂SJ(uJ)δJi

[ J∏
j=1

Ṡj(uji)δji
]
ṠD(ci)δDi

}
. (3.7)

Here I(A) is the indicator of set A. When J = 2,

∂δ·iC(0,δDi)
[2]

(
S(ui; θ), S̃D(ci); θ

)
∂S1(u1)δ1i . . . ∂SJ(uJ)δJi

=



C(0,δDi)
[2]

(
S(ui; θ), S̃D(ci); θ

)
, δ1i = δ2i = 0

C(1,δDi)
[2]

(
S(ui; θ), S̃D(ci); θ

)
C(δ1i,δ2i)

[2]
(
S1(u1i), S2(u2i); θ

)
, δ1i 6= δ2i

C(2,δDi)
[2]

(
S(ui; θ), S̃D(ci); θ

)
C(0,1)

[2]
(
S1(u1i), S2(u2i); θ

)
C(1,0)

[2]
(
S1(u1i), S2(u2i); θ

)
+C(1,δDi)

[2]
(
S(ui; θ), S̃D(ci); θ

)
C(1,1)

[2]
(
S1(u1i), S2(u2i); θ

)
, δ1i = δ2i = 1.

It is not easy to obtain the MLE of θ by maximizing (3.7) with respect to θ jointly with
the unspecified survivor functions Sj(·) and SD(·). Note that the right-censored observations
on D are due to noninformative censoring. Thus there is a readily available consistent
estimator for SD(·), e.g., the Kaplan–Meier estimator, denoted as S̃D(·). Following the idea
of the pseudolikelihood estimation procedure under a copula model (e.g., Lawless & Yilmaz
2011), we may consider (3.7) with SD(·) substituted by its estimate S̃D(·):

L(θ;S1(·), . . . , SJ(·)|S̃D(·);Observed-Data)

=
n∏
i=1

{
(−1)δ·i+δDi

∂δ·iC(0,δDi)
[2]

(
S(ui; θ), S̃D(ci); θ

)
∂S1(u1)δ1i . . . ∂SJ(uJ)δJi

[ J∏
j=1

Ṡj(uji)δji
]}
, (3.8)

and maximize it with respect to θ together with Sj(·) to obtain a pseudo-MLE of θ. The
resulting estimator for θ, with the trade-off of some efficiency loss, can be easier to implement
than its MLE counterpart.

However, since (3.8) involves the unspecified survivor functions Sj(·) of Tj , that pseudo-
MLE of θ is still rather hard to compute. It is especially so when the number of multiple
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event times J is larger than 1. This consideration motivated the following estimation
procedure.

3.3.2 Pseudo-MLE of Association Parameter

When the marginal survivor functions Sj(·) for j = 1, . . . , J and SD(·) are known, the
likelihood function (3.7) is proportional to

L(θ|S1(·), . . . , SJ(·), SD(·);Observed-Data)

=
n∏
i=1

{
(−1)δ·i+δDiC(δ1i,...,δJi,δDi)

[J+1]
(
S1(u1i), . . . , SJ(uJi), SD(ci); θ

)}
. (3.9)

The MLE of θ from (3.9) is easy to calculate. However, the marginal survivor functions are
unknown in many practical situations, and thus the MLE of θ is not evaluable.

Under model (3.6) induced from model (3.3) specified in section 3.2, the marginal sur-
vivor function Sj(·) can be expressed as a function of the marginal survivor function of
T ∗j = Tj ∧D, denoted by S∗j (·), and the marginal survivor function of D: for j = 1, . . . , J ,

Sj(t) = g(S∗j (t), SD(t); θ) = ψ−1{ψ(S∗j (t); θ)− ψ(SD(t); θ); θ
}
, (3.10)

where ψ(·; θ) is the generator of the Archimedean copula chosen in model (3.3).
Note that the observations on T ∗j = Tj∧D andD are subject to noninformative censoring

due to the administrative follow-up time CA. Well-established survival approaches such as
the Kaplan–Meier estimator and the Nelson–Aalen estimator (e.g., Andersen et al. 1993)
can be used to consistently estimate their survivor functions S∗j (·) and SD(·). According to
(3.10), S̃j(t; θ) = g(S̃∗j (t), S̃D(t); θ) is then a consistent estimator of Sj(·) with fixed θ.

The discussion above leads to the following estimation procedure. Plugging in (3.9) the
consistent estimator for the unspecified survivor functions Sj(·) and SD(·), we maximize the
resulting pseudolikelihood function of θ or, equivalently, its log-transformation with respect
to θ, to derive a pseudo-MLE of θ:

θ̂n = argmaxθL(θ|S̃1(·; θ), . . . , S̃J(·; θ), S̃D(·);Observed-Data). (3.11)

This pseudo-MLE procedure is computationally easy to implement. We present below an
iterative algorithm to calculate θ̂n.
Algorithm. Using the Kaplan–Meier estimates S̃∗j (·) and S̃D(·) together with the current
estimate θ(k−1) and S(k−1)

j (·) for j = 1, . . . , J and with k ≥ 1,

Step 1. obtain the updated estimate for θ as

θ(k) = argmaxθL(θ|S(k−1)
1 (·), . . . , S(k−1)

J (·), S̃D(·);Observed-Data);

25



Step 2. obtain the updated estimates for Sj(·) as S(k)
j (t) = S̃j(t; θ(k)) = g(S̃∗j (t), S̃D(t);

θ(k)) for j = 1, . . . , J .

Repeat steps 1 and 2 until the sequence {θ(k) : k = 0, 1, . . .} converges. The limit is
θ̂n defined in (3.11). The initial estimate θ(0) is in fact not needed. The Kaplan–Meier
estimates of Sj(·) may be used as the initial estimates S(0)

j (·) for j = 1, . . . , J .
The following proposition establishes the consistency and asymptotic normality of the

resulting estimator.

Proposition 1. Under the regularity conditions (RC1)–(RC4) presented in section 3.4, and
provided S̃∗j (t) and S̃D(t) satisfy condition (AC1) in section 3.4, as n →∞, θ̂n

a.s.−−→ θ and
√
n(θ̂n − θ)

d−→ N
(
0, AV (θ)

)
, where the asymptotic variance is

AV (θ) = VB(θ)−1VA(θ)VB(θ)−1 (3.12)

with VB(θ) and VA(θ) the limits of

− 1
n

n∑
i=1

∂2 logL(θ|S̃1(·; θ), . . . , S̃J(·; θ), S̃D(·);Observed-Data)
/
∂θ2 (3.13)

and
1
n
Var

{ n∑
i=1

∂ logL(θ|S̃1(·; θ), . . . , S̃J(·; θ), S̃D(·);Observed-Data)
/
∂θ
}
, (3.14)

respectively, and S̃j(t; θ) = g(S̃∗j (t), S̃D(t); θ).

In section 3.4 we outline a proof of this proposition after presenting the regularity
conditions (RC1)–(RC4) and additional assumptions (AC1)–(AC2). One may estimate the
variance of θ̂n by a bootstrap approach (e.g., Lawless & Yilmaz 2011). A natural and
practical variance estimator evaluates (3.12) at θ = θ̂n and uses (3.13) and (3.14) to replace
their limits. The resulting variance estimator is often referred to as Huber’s robust sandwich
estimator (Huber 1967).

Note that when Sj(·) for j = 1, . . . , J are known and used to estimate θ, θ̂n is an MLE,
and VA(θ) and VB(θ) in (3.13) and (3.14) are the same as the corresponding inverse Fisher
information matrix. See section 3.5 for our empirical comparison of the robust variance
estimator with the estimator based on the Fisher information inverse, a consistent estimator
for the variance of the MLE.

3.3.3 Resulting Estimators for Marginal and Joint Survivor Function

Plugging θ̂n, S̃∗j (t), and S̃D(t) from the above section in (3.10) gives a natural estimator for
the marginal survivor function Sj(·):

Ŝjn(t) = g(S̃∗j (t), S̃D(t); θ̂n). (3.15)
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Proposition 2. Under the regularity conditions (RC1)–(RC4) presented in section 3.4 and
provided S̃∗j (·) and S̃D(·) satisfy condition (AC1) in section 3.4, as n→∞, Ŝjn(t) a.s.−−→ Sj(t)
uniformly and

√
n(Ŝjn(t)−Sj(t))

w−→ Gj(t) with t ∈ [0, v?j ], where Gj(t) is a Gaussian process
with mean zero and variance function σ2

j (t) as defined in, for example, Andersen et al.
(1993).

An outline of a proof for the proposition is given in section 3.4. When the sample size
is large and the censoring rate is not too high, we may choose to ignore the variation of
the Kaplan–Meier estimates S̃∗j (·) and S̃D(·). It then yields an approximate confidence
band (CB) for Sj(·) based on (3.10) with θ̂n plugged in, and using the proposed variance
estimator of θ̂n in the above section.

Using the idea underlying two-stage estimation procedures with a copula model (e.g.,
Oakes 1994), we estimate the joint survivor function S(t) of (T1, . . . , TJ) based on (3.5):

Ŝn(t) = C[J ]
(
Ŝ1n(t1), . . . , ŜJn(tJ); θ̂n

)
. (3.16)

The following proposition establishes the consistency and asymptotic normality/weak con-
vergence of the resulting estimator.

Proposition 3. Under the regularity conditions (RC1)–(RC4) presented in section 3.4 and
provided S̃∗j (t) and S̃D(t) satisfy condition (AC1) in Section 3.4, as n→∞, Ŝn(t) a.s.−−→ S(t)
uniformly and

√
n(Ŝn(t) − S(t)) w−→ G(t) with t ∈ [0, v?1] × . . . × [0, v?J ], where G(t) is a

Gaussian field with mean zero and variance function σ2(t).

We outline a proof for this proposition in section 3.4.

3.4 Asymptotic Properties

This section consists of two subsections. The first one outlines the derivation of asymptotic
properties for bivariate cases when J = 2, as is the case for the motivating breast cancer
example. The second subsection gives the asymptotic derivation for a general case.

3.4.1 Asymptotic Properties for Bivariate Case

This section outlines a derivation of the consistency and the asymptotic normality of the
pseudo-MLE obtained through (3.11) when J = 2. Define the following regularity condi-
tions:

(RC1) Suppose θ is in an open interval Θ in the real line, Cab(r1, r2; θ), Cabc(r1, r2; θ)
exist and are continuous and uniformly bounded by some constant M for a, b, c ∈
(0,1,2,3), 0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1.
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(RC2) For each θ ∈ Θ, 0 < Eθ
[
Cabc(r1,r2;θ)
Cab(r1,r2;θ)

]
≤ ∞ for a, b, c ∈ (0,1), 0 ≤ r1 ≤ 1,

0 ≤ r2 ≤ 1, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1 .

(RC3) Under an Archimedean copula, gab(v1, v2; θ) and gabc(v1, v2; θ) exist and are
continuous and uniformly bounded by some constant M for a, b, c ∈ (0,1,2,3), 0 ≤
r1 ≤ 1, 0 ≤ r2 ≤ 1, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1.

(RC4) Under an Archimedean copula, for each θ ∈ Θ, 0 < Eθ
[
Cabc(r1,r2;θ)g001(v1,v2;θ)

Cab(r1,r2;θ)

]
≤

∞ for a, b, c ∈ (0,1), 0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1 .

Given data Data = {X1, · · · , Xn}, where X1, · · ·Xn are n i.i.d. observations, and
denote S1 and S2 as two unknown survival functions, we write the likelihood function
as L(α;S1, S2, Data), with α being the unknown parameter of interest. If the estimator
functions Ŝ1 and Ŝ2 of S1, S2 satisfy the following two conditions:

C1 Ŝ1 and Ŝ2 converge uniformly to S1 and S2, respectively.

C2
√
n(Ŝ1 − S1) w−→ G1, and

√
n(Ŝ2 − S2) w−→ G2, where G1 and G2 are two mean

zero Gaussian processes with limiting covariance cov(Gj(s1), Gj(s2)) = σ2
j (s1∧s2) for

j = 1, 2, with σ2
j defined as in Andersen et al. (1993). For simplification, we denote

σ2
1(·) and σ2

2(·) as the limiting variance function for
√
n(Ŝ1 − S1) and

√
n(Ŝ2 − S2),

respectively.

Then we have the following lemma:

Lemma 1. Under regularity condition (R1), the pseudo-MLE α̂∗ , arg maxα∈Θ L(α; Ŝ1, Ŝ2, Data)
satisfies

(a) α̂∗ a.s.−−→ α, as n→∞

(b)
√
n(α̂∗ − α) d−→ N(0, V ∗), as n→∞, where V ∗ is the limiting variance.

Proof. If S1 and S2 are known, then the ‘pseudo’-MLE α̂∗ will be the regular MLE, de-
noted as α̂ , and the above statements will hold following standard arguments, (Serfling
1980, see, for example). A sketch of proof is provided as follows: Define Q(α;S1, S2) =
∂ log f(α;X,S1, S2)/∂α as the score function; and let

An(α) = 1
n

n∑
i=1

Q(α;Xi, S1, S2) , 1
n

n∑
i=1

ai(α),

where ai(α)’s are i.i.d because of the i.i.d. observations. In addition, define

Bn(α) = 1
n

n∑
i=1

∂Q(α;Xi, S1, S2)
∂α

,
1
n

n∑
i=1

bi(α),
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and
Cn = 1

n

n∑
i=1

H(Xi).

Now
1
n

∂ logL(α;S1, S2, Data)
∂α

= An +Bn(α− α0) + 1
2Cn(α− α0)2ξ2.

Since E(Q(α)) = 0 and V ar(Q(α)) = −E(∂Q(α;S1,S2)
∂α ) , FI(α) exists by regularity condi-

tion (1). We have An
a.s.−−→ 0, thus ∂ logL(α;S1, S2, Data)/∂θ a.s.−−→ 0 by Strong Law of Large

Numbers (SLLN). Besides, by Central Limit Theorem, we have
√
n∂ logL(α;S1,S2,Data)

∂α
d−→

N(0, F I(α)). Since bi’s are i.i.d and V ar(∂Q(α;S1,S2)
∂α ) exists, by SLLN, we have Bn

a.s.−−→
−FI(α), as n→∞.
Following Serfling (1980) argument, we can show that α̂ a.s.−−→ α. Since

0 = 1
n

∂ logL(α;S1, S2, Data)
∂α

|α=α̂= An +Bn(α̂− α) + 1
2ξ

2Cn(α̂− α)2,

we have
√
n(α̂− α)− −

√
nAn

Bn + 1
2ξ

2Cn(α̂− α)
a.s−−→ 0.

Also, since α̂ a.s−−→ α, we have Bn + 1
2ξ

2Cn(α̂n − α) a.s−−→ −FI(α); furthermore, we have
√
nAn

d−→ N(0, F I(α)). By Slutsky’s theorem,

√
n(α̂− α) d−→ N(0, F I−1(α)),

as n→∞.
Now we derive consistency, asymptotic normality and the variance estimator of pseudo-

MLE as follows. 1. (Consistency) If S1 and S2 are unknown and are estimated by Ŝ1 and
Ŝ2, respectively. Define

A∗n(α) = 1
n

n∑
i=1

Q(α;Xi, Ŝ1, Ŝ2) , 1
n

n∑
i=1

a∗i (α),

,

B∗n(α) = 1
n

n∑
i=1

∂Q(α;Xi, Ŝ1, Ŝ2)
∂α

,
1
n

n∑
i=1

b∗i (α).

It is easy to verify through Taylor expansion that Cab(·, ·;α), and Cabc(·, ·;α) still exist and
are uniformtly bounded. So

A∗n −An = 1
n

n∑
i=1

φ1i(S1(Xi)− Ŝ1(Xi)) + 1
n

n∑
i=1

φ2i(S1(Xi)− Ŝ1(Xi))

+ 1
n

n∑
i=1

o((S1(Xi)− Ŝ1(Xi))2 + (S2(Xi)− Ŝ2(Xi))2)
(3.17)
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where φ1i = ∂Q(θ;Xi, S1, S2)/∂S1(X), φ2i = ∂Q(θ;Xi, S1, S2)/∂S2(X). From regularity
conditions, φki’s are uniformly bounded (k = 1, 2), say by M . Since Ŝ1 → S1, and Ŝ2 →
S2 uniformly, i.e., for ∀ ε/2M > 0, ∃N , s.t. for all n > N , |S1(Xi) − Ŝ1(Xi)| < ε,
|S2(Xi) − Ŝ2(Xi)| < ε. Thus |A∗n − An|

a.s.−−→ 0, so Q(α; Ŝ1, Ŝ2) a.s.−−→ 0. Similarly it can
be shown that |B∗n − Bn|

a.s.−−→ 0, and B∗n
a.s−−→ −B∗(α), as n → ∞. Following similar

argument as above, we have
α̂∗

a.s.−−→ α

2. (Asymptotic Normality) Define

ωn ,
√
n(A∗n −An)

= 1
n

n∑
i=1

φ1i
√
n(S1(Xi)− Ŝ1(Xi))

+ 1
n

n∑
i=1

φ2i
√
n(S2(Xi)− Ŝ2(Xi))

+ 1
n

n∑
i=1

√
no((S1(Xi)− Ŝ1(Xi))2 + (S2(Xi)− Ŝ2(Xi))2)

, ωnI + ωnII + ∆ωn

(3.18)

It can be shown that ∆ωn
a.s−−→ 0 because of the uniform convergence of Ŝ1, Ŝ2. Given

√
n(S1 − Ŝ1) converges weakly to a zero-mean Gaussian process, denoted as Z(I)(·), and
√
n(S2 − Ŝ2) converges weakly to a zero-mean Gaussian process, denoted as Z(II)(·), by

strong embedding theorem (Shorack & Wellner 2009), we could construct in another prob-
ablity space a sequence of stochastic processes Z(I)

n (·), Z(II)
n (·), such that

Z(I)
n (t) a.s.−−→ Z(I)(t),

and
Z(II)
n (t) a.s.−−→ Z(II)(t).

Therefore, now

ωnI = 1
n

n∑
i=1

φ1i{(Y (I)
n (Xi)− Z(I)

n (Xi)) + (Z(I)
n (Xi)− Z(I)(Xi)) + Z(I)(Xi)}

→ 1
n

n∑
i=1

φ1iZ
(I)(Xi)

∼ N(0, V ∗ωI)

(3.19)
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since limn→∞(Y (I)
n (Xi) − Z

(I)
n (Xi)) = 0, and limn→∞(Z(I)

n (Xi) − Z(I)(Xi)) = 0, where
Y

(I)
n (Xi) ,

√
n(S1(Xi) − Ŝ1(Xi)), and Y (II)

n (Xi) ,
√
n(S2(Xi) − Ŝ2(Xi)). Because V ∗ωI =

limn→∞
∑n
i=1 φ

2
1iσ

2
I (Xi, Xi)/n and φ1i’s are uniformly bounded and σ2

I (·, ·) exists, thus V ∗αI
exists.
Similarly, it can be shown that

ωnII → lim
n→∞

1
n

n∑
i=1

φ2iZ
(II)(Xi) ∼ N(0, V ∗ωII)

.
Therefore,

AV ∗ω (α) , lim
n→∞

V ar(ωn)

= V ∗ωI + V ∗ωII + 2 lim
n→∞

Cov(ωnI , ωnII)
(3.20)

By Cauchy Schwartz Inequality, it can be shown that the last terms exist too. Thus,

AVQ∗(α) = lim
n→∞

V ar(
√
nA∗n) = FI(α) +AV ∗ω (α) + 2 lim

n→∞
(
√
nAn)(

√
n(A∗n −An)).

So
√
nA∗n

d−→ N(0, AVQ∗(α)). Following a similar argument as above, we have

√
n(α̂∗ − α) d−→ N(0, V ∗),

where V ∗ = [−B∗(α)]−1AV ∗Q(α)[−B∗(α)]−1.

3. (Variance Estimation) To estimate V ∗, we use

̂AVQ∗(α) = nV̂ ar(Q(α̂∗))

+ 1
n

n∑
i=1

(φ̂2
1iσ̂

2
1(Xi)) + 1

n

n∑
i=1

(φ̂2
2iσ̂

2
2(Xi)) + 2

n

n∑
i=1

(φ̂1iσ̂1(Xi))(φ̂2iσ̂2(Xi))
(3.21)

and
B̂∗(α) = 1

n

n∑
i=1

b∗i (α̂∗)

So the estimator for V ∗ is [−B̂∗(α)]−1ÂV ∗Q(α)[−B̂∗(α)]−1.

Theorem 3. Under regularity conditions (R1) and (R2), as n→∞

(a) θ̂j
a.s.−−→ θj, for j = 1, 2

(b)
√
n(θ̂j − θj)

d−→ N(0, V ∗j (θj)), for j = 1, 2

Proof. Theorem 3 is a direct application of lemma 1, by replacing S1 with STj∧D, and S2

with SD, and using Kaplan–Meier (KM) estimators to estimate STj∧D and SD, respectively.
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Since both Tj∧D andD are subject to non-informative censoring, the KM estimator satisfies
both uniform convergence and weak convergence requirements in lemma 1.

Theorem 4. Under regularity conditions (R1)-(R2), when Cj(·, ·; θj) belongs to the Archimedean
family, then as n→∞,

(a) θ̂ a.s.−−→ θ

(b)
√
n(θ̂ − θ) d−→ N(0, V ∗(θ))

Proof. When Cj(·, ·; θj) belongs to the Archimedean family and regularity conditions (R3)-
(R4) are satisfied, it can be easily shown that Ŝj(·) = g(ŜT ∗

j
(·), ŜD(·); θ̂j) converges to

Sj(·) uniformly, and
√
n(Sj(·) − Ŝj(·)) converges weakly to a mean zero Gaussian process.

Applying lemma 1 again completes the proof.

Because the estimated joint survival function Ŝ(·) is obtained from ŜT1(·), ŜT2(·), θ̂, it
can be easily shown that ŜT (·) is also consistent and converges to S(·).

Verification of density function f(x)

This section is to verify that
E(Q(θ)) = 0.

The density function for x , (u, c, δ, δD) can be written explicitly:

fθ(x) =[C11(g(ST∧D(u), SD(u); θ), SD(c); θj)f(u)fD(c)SA(c)]δδD

[C10(g(ST∧D(u), SD(u); θ), SD(c); θj)f(u)fCA(c)(−1)]δ(1−δD)

[C01(g(ST∧D(u), SD(u); θ,SD(c); θ)fD(c)fCA(c)(−1)](1−δ)δD

[C00(g(ST∧D(u), SD(u); θ,SD(c); θ)fA(c)](1−δ)(1−δD)

(3.22)

Decompose X = (U,C,∆,∆D) as [Y,Z], with Y = (U,C), a bivariate continuous random
variable, and Z = (∆,∆D), a bivariate discrete random variable, with values taken as (0,0),
(1,1), (0,1), (1,1) only. Then [Y, Z] = [Y |Z][Z], then

E(Q(θ)) =
∑
∀z

∫
Y

∂fY |Z(y)
∂θ

P (Z = z)dy

= ∂

∂θ

∑
∀z
P (Z = z)

∫
Y
fY |Z(y)dy

= ∂

∂θ
(P (δ = 1, δD = 1) + P (δ = 1, δD = 0) + P (δ = 0, δD = 1) + P (δ = 0, δD = 0))

= 0
(3.23)
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3.4.2 Asymptotics of a General Pseudo-MLE

This subsection presents derivations of the asymptotic properties listed in propositions 1,
2 and 3. We first introduce a general setting, and derive a lemma that establishes the
consistency and asymptotic normality of a pseudo-MLE in the setting under the usual
regularity conditions for the asymptotics of an MLE (e.g., Serfling 1980) combined with
two additional conditions. We then adapt the regularity conditions, and outline proofs for
the three propositions by applying the lemma.

Consider a K-dimensional random vector (W1, . . . ,WK) ∼ F(G1(w1), . . . , GK(wK);α)
with Gk(·) the marginal survivor function of Wk for k = 1, . . . ,K and α ∈ A, where A is
an open interval of the real line. Suppose there is a collection of n i.i.d. realizations on
X (W1, . . . ,WK), a coarsened version of (W1, . . . ,WK), denoted by

General-Data =
{
Xi : Xi = X (W1i, . . . ,WKi), i = 1, . . . , n

}
. (3.24)

Denote the loglikelihood function based on the data in (3.24) as

logL(α;G1(·), . . . , GK(·)|General-Data) =
n∑
i=1

Q(Xi|G1(·), . . . , GK(·);α), (3.25)

where Q(·) can be expressed as Qi
(
G1(X(1)

i ), . . . , GK(X(K)
i );α

)
. Here (X(1)

i , . . . , X
(K)
i ) is a

subcomponent vector of Xi, and Qi(·) is determined by the distribution F(·) and Xi.
Extend the notation introduced in section 3.3:

denote ∂h(a1+...+aK+b)(r1, . . . , rK ;α)/∂ra1
1 . . . ∂raKK ∂αb by h(a1,...,aK ;b)(r1, . . . , rK ;α) for a

function h(r1, . . . , rK ;α) with well-defined partial derivatives. We adapt the conventional
regularity conditions for the asymptotics of an MLE (e.g., Chp 4.2 of Serfling 1980) as
follows.

Suppose θ ∈ Θ, an open interval of the real line, and C[J+1]
(
r1, . . . , rJ , rJ+1; θ

)
is a

(J + 1)-dimensional Archimedean copula function with its generator function ψ(·; θ). Plus,
let Sj(·) be a survivor function for j = 1, . . . , J + 1.

(RC1). C(a1,...,aJ+1)
[J+1] (r1, . . . , rJ+1; θ) and C(a1,...,aJ+1;b)

[J+1] (r1, . . . , rJ+1; θ) exist, and are
continuous and uniformly bounded from above for a1, . . . , aJ+1, b = 0, 1, 2, 3 and 0 ≤
rj ≤ 1 for j = 1, . . . , J + 1.

(RC2). 0 < Eθ
{
C(a1,...,aJ+1;b)

[J+1] (R1, . . . , RJ+1; θ)
/
C(a1,...,aJ+1)

[J+1] (R1, . . . , RJ+1; θ)
}
<∞ for

aj , b = 0, 1 and 0 ≤ Rj = Sj(Tj) ≤ 1 for j = 1, . . . , J + 1.

(RC3). With g(rj , rJ+1; θ) = ψ−1{ψ(rj ; θ) − ψ(rJ+1, θ); θ}, g(a1,a2)(rj , rJ+1; θ) and
g(a1,a2;b)(rj , rJ+1; θ) exist and are continuous and uniformly bounded for a1, a2, b =
0, 1, 2, 3, 0 ≤ rj , rJ+1 ≤ 1 for j = 1, . . . , J .
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(RC4). 0 < Eθ
{
C(a1,a2;b)

[2] (Rj , RJ+1; θ)g(0,0;1)(R∗j , RJ+1; θ)
/
C(a1,a2)

[2] (Rj , RJ+1; θ)
}
< ∞

for a1, a2, b = 0, 1, 0 ≤ Rj = Sj(Tj) ≤ 1 for j = 1, . . . , J + 1, and 0 < R∗j = S∗j (T ∗j )
with T ∗j = Tj ∧ TJ+1 and S∗j (t) = P (T ∗1 ≥ t) for j = 1, . . . , J .

It is easy to verify that the Clayton, Gumbel, and Frank copulas all satisfy the conditions
(RC1)–(RC4).

We add the following conditions.

(AC1). Assume that there exists G̃n(·), an estimator of the survivor function G(·)
based on the data in (3.24), satisfying (i) G̃n(·) converges uniformly to G(·) over [0, w∗]
and (ii)

√
n(G̃n(·)−G(·)) w−→ G(·) on [0, w∗] with G(·) a Gaussian process with mean

zero and covariance function σ2(·), where σ2(s1 ∧ s2) = cov
(
G(s1),G(s2)

)
.

(AC2). The derivative of Q(Xi|G1(·), . . . , GK(·);α) in (3.25) with respect to α de-
pends on Gk(·) through Gk(X

(k)
i ) for k = 1, . . . ,K.

The following lemma establishes the consistency and asymptotic normality of the pseudo-
MLE α̂n , argmaxα∈AL(α; G̃1, . . . , G̃K |General-Data) with the estimators G̃k(·) for Gk(·)
with k = 1, . . . ,K.

Lemma 2. Assume conditions (AC1)–(AC2) in addition to the usual regularity conditions
for the asymptotics of an MLE (e.g., Chp 4.2 Serfling 1980). The pseudo-MLE α̂n satisfies,
as n → ∞, (i) Consistency: α̂n

a.s.−−→ α, and (ii) Asymptotic Normality:
√
n(α̂n − α) d−→

N(0,Π(α)) with Π(α) the asymptotic variance.

Proof: Let An(α), Bn(α) be respectively

1
n

n∑
i=1

∂Q(Xi|G1(·), . . . , GK(·);α)
/
∂α,

1
n

n∑
i=1

∂2Q(Xi|G1(·), . . . , GK(·);α)
/
∂α2.

Step 1. When Gk(·) for k = 1, . . . ,K are known: Following the standard arguments for
MLE asymptotics such as those in Serfling (1980), we can establish the consistency and
asymptotic normality of the MLE
α̂n = argmaxα∈A logL(α;G1(·), . . . , GK(·)|General-Data) by noting that

0 = 1
n
∂ logL(α̂;G1, . . . , GK |General-Data)

/
∂α = An(α)+Bn(α)(α̂n−α)+ 1

2Cn(ξ)(α̂n−α)2,

where ξ is between α and α̂n and Cn(α) = ∂Bn(α)
/
∂α, and, as n→∞,

√
nAn(α) d−→ N(0, F I(α)); Bn(α)→ FI−1(α).

Here Π(α) = FI−1(α) is the limiting variance.
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Step 2. When Gj(·) are estimated by G̃jn(·): Let A∗n(α), B∗n(α) be respectively

1
n

n∑
i=1

∂Q(Xi|G̃1(·), . . . , G̃K(·);α)
/
∂α,

1
n

n∑
i=1

∂2Q(Xi|G̃1(·), . . . , G̃K(·);α)
/
∂α2.

By the Taylor expansion, A∗n(α)−An(α) is

1
n

n∑
i=1

K∑
k=1

φki(G̃k(X
(k)
i )−Gk(X

(k)
i )) + 1

n

n∑
i=1

K∑
k=1

o((G̃k(X
(k)
i )−Gk(X

(k)
i ))2 (3.26)

with φki = ∂2Q(Xi|G1, . . . , GK ;α)/∂(α,Gk(X
(k)
i )) for k = 1, . . . ,K. Thus, |A∗n(α) −

An(α)| a.s.−−→ 0. Similarly, it can be shown that |B∗n(α)−Bn(α)| a.s.−−→ 0 and thus B∗n(α) a.s−−→
−B∗(α) as n→∞. By step 1, we have the consistency of α̂n. This proves that α̂n

a.s.−−→ α.
In the following, we show that

√
nA∗n(α) d−→ N(0, AVA∗(α)), which yields

√
n(α̂n−α) d−→

N(0, V ∗(α)) with AV ∗(α) = [−B∗(α)]−1VA∗(α)[−B∗(α)]−1 following step 1.
Denote

√
n{A∗n(α) − An(α)} =

∑K
k=1 ωnk + ∆ωn with the two terms corresponding to

those in (3.26). By the strong embedding theorem (Shorack & Wellner 2009), we could
construct another probability space such that

√
n(G̃kn(t) − Gk(t))

a.s.−−→ Zk(t), where Zk(·)
is a Gaussian process with mean zero. We can then show ∆ωn

a.s−−→ 0. In addition, we
can show that, for k = 1, . . . ,K, ωnk is asymptotically equivalent to 1

n

∑n
i=1 φkiZk(X

(k)
i ),

which converges in distribution to N(0, V ∗ωk). Furthermore, we can show ∆ωn
a.s−−→ 0. Thus,

√
nA∗n(α) =

√
n{A∗n(α)−An(α)}+

√
nAn converges to N(0, VA∗(α)) as n→∞.

Proof of Proposition 1: For j = 1, . . . , J , take S∗j (·) for j = 1, . . . , J and SD(·) as Gk
for k = 1, . . . ,K in lemma 2. We can use the Kaplan–Meier estimator with Observed-Dataj
in (3.2) to estimate S∗j (·) and SD(·). Denote the induced estimators by S̃∗j (·) and S̃D(·).
Thus, Condition (AC1) is satisfied with w∗ = vj . Moreover, Condition (AC2) is satisfied
with X(j)

i = Tji ∧Di ∧Ci for j = 1, . . . , J and X(J+1)
i = Di ∧Ci. Thus, by Lemma 2, θ̂n is

consistent and has asymptotic normality.
Proof of Proposition 2: Given the regularity conditions (RC1)–(RC4), together with
the consistency of S̃∗j (·), S̃D(·), and θ̂n, we can see that Ŝjn(t) = g(S̃∗j (t), S̃D(t); θ̂n) as de-
fined in (3.15) converges uniformly to gj(STj∧D(t), SD(t); θj) = Sj(t) for t ∈ [0, v?j ]. Further-
more, by the weak convergence/asymptotic normality of S̃∗j (·), S̃D(·), and θ̂n,

√
n(Ŝjn(t)−

Sj(t)) converges to a mean zero Gaussian process over (0, vj ].
Proof of Proposition 3: Take Sj(·) as Gj for j = 1, . . . , J in lemma 2. The estimator
Ŝjn(·) in (3.15) satisfies the required condition (AC1) with w∗ = vj . By the regularity
conditions (RC1)–(RC4), we can see that Ŝn(t) = C[J ](Ŝ1n(t1), . . . , ŜJn(tJ); θ̂n) as defined
in (3.16) converges uniformly to C[J ](S1(t1), . . . , SJ(tJ); θ), and thus to S(t) for t ∈ [0, v?1]×
. . .× [0, v?J ].

Note that Ŝn(t) = ψ−1(ψ(Ŝ1n(t1); θ̂n) + . . . + ψ(ŜKn(tK); θ̂n); θ̂n
)
with ψ(·) monotone.

By the arguments similar to the one for the one-dimensional situation, the weak convergence
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of Ŝn(t) yields from with the weak convergence of Ŝjn(·) and the asymptotic normality of
θ̂n.

3.5 Simulation Study

Simulation studies were conducted to explore the finite-sample performance of the proposed
approach in section 3.3. We started from J = 1 as a special case, and focused on the situ-
ations with J = 2 as in the breast cancer example. The observations from the simulations
should apply to general situations with J ≥ 1.

3.5.1 Data Generation

We simulated a study with n independent units where the primary outcome is the bivariate
event times (T1, T2). The observations on (T1, T2) may be censored by either the terminating
event time D or an administrative time CA, whichever occurs first. That is, the study
censoring time C = D ∧ CA. As a preparation for the following simulation study, we
started with generating bivariate event-times to mimic semi-competing risk data and verified
consistency and robustness. The results are presented in 3.5.2. The thesis focuses more on
simulation outcomes from trivariate event-times data as a more general scenario. To imitate
potentially informative censoring due to a terminating event, the data were generated as
follows:

Step (a). We independently generated the trivariate random variables (v1i, v2i, vDi)
for i = 1, . . . , n from an Archimedean copula model by the R package copula (Hofert
et al. 2017, Yan 2007, Kojadinovic & Yan 2010, Hofert & Mächler 2011).

Step (b). We used the survivor functions of the Weibull distributions Sj(·) and SD(·),
where the scale and shape parameters mimic the corresponding event times and death
times in the real example, to form the generated event times and terminating event
times tji = S−1

j (vji) with j = 1, 2 and di = S−1
D (vDi) for i = 1, . . . , n.

Step (c). We generated the independent (administrative) censoring times cAi inde-
pendently from (v1i, v2i, vDi) from the exponential distribution with the parameter
chosen to give a censoring rate of 25 percent. We then calculated ci = di ∧ cAi with
the indicator δDi = I(di ≤ cAi) and uji = tji ∧ ci with the indicator δji = I(tji ≤ ci).

Steps (a), (b), and (c) yield a generated observed-data:
{
[(uji, δji) : j = 1, 2]

⋃
[ci, δDi] : i =

1, . . . , n
}
.

The data generation process was also applied to J = 1 case, where (vi, vDi) were gener-
ated from bivariate copula. We used the R functions claytonCopula, gumbelCopula, and
frankCopula to generate trivariate variables from the Clayton, Gumbel, and Frank copulas,
respectively, to exemplify Archimedean copulas. We considered n = 500, 1000, and 2000 to
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generate medium to large studies. The value of the parameter θ was determined in each of
the Archimedean copula examples according to the chosen Kendall’s τ = 0.3, 0.6 and 0.8
to generate weak, to moderate, to strong dependence between T1, T2 and D. We used the
Kaplan–Meier estimator to obtain S̃∗j (·) and S̃D(·) in the estimation procedure.

3.5.2 Simulation Outcomes for J = 1

Consistency, Efficiency, and Variance Estimation

When J = 1 as in the semi-competing risk setting, we verified the consistency and efficiency
of the pseudo-MLE θ, as well as the estimator for the survivor function of T , with five
hundred simulated datasets for the bivariate Clayton, Gumbel and Frank copula models.
We evaluated (i) the robust sandwich variance estimator described in section 3.3.2, (ii) the
corresponding inverse Fisher information, and (iii) its bootstrap standard error estimator
with resampling size 500 to examine the proposed variance estimation. In addition, we
provided two references for comparison: the MLE of θ derived from the likelihood function
(3.7) using the true survivor functions S(·) and SD(·) and the naïve estimates obtained by
maximizing (3.7) after substituting the marginal survivor functions by their Kaplan–Meier
estimates. In the settings that this chapter focuses on, the MLE is in fact not applicable,
and the naïve estimator can be biased because of the informative censoring.

Tables 3.1-3.3 present summaries of the simulation outcomes under the Clayton, Gum-
bel, and Frank copula model, respectively. The sample means of the pseudo-MLE and
MLE estimates are close to the true parameter values, and the sample standard errors of
the pseudo-MLE are comparable with their MLE counterparts. This verifies the consistency
and efficiency in the semi-competing risk setting. However, the sample means of the naïve
estimates are biased, which indicates the need to adjust for informative censoring. The
sample means of the robust standard error estimates for the pseudo-MLE are similar to
the bootstrap standard error estimates. However, the sample means of the conventional
standard error estimates using the inverse Fisher information are rather different from the
corresponding sample standard deviations associated with the pseudo-MLE estimates. This
indicates the need to use the robust variance estimator with the pseudo-MLE.

Figure 3.1 shows the estimates of the marginal survivor function S(·) under Clayton
copula with τ = 0.6, and different sample sizes n = 500, 1000, 2000. Each plot contains the
curve of the marginal survivor function, and two sets of estimates using proposed approach
and the Kaplan-Meier estimator, or the naïve estimates, together with their confidence
bands (CB). The true curve is fully covered under CBs of proposed estimates, but not the
naïve one. The same patterns were observed for other scenarios with τ = 0.6, and τ = 0.8,
and with Gumbel and Frank copula.
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Robustness to Model Misspecification

To examine the pseudo-MLE’s robustness to misspecification, we generated data under each
of the three Archimedean copulas, the Clayton, Gumbel, and Frank copulas, and evaluated
the pseudo-MLE and the MLE of the association parameter by the procedures with all the
three copulas. In addition, we generated model from a non-Archimedean copula, bivariate
Gaussian copula, and evaluated the performance of the proposed estimators.

Tables 3.4-3.6 present the estimates of τ with correctly specified and misspecified Archimedean
copula models. Some biases were observed under model misspecification between Clayton
and Gumbel copula, but Frank copula provides consistent estimates under model misspec-
ification. This indicates that in real data analysis, one could choose to report results from
Frank copula model.

Figure 3.2 shows the estimates of the marginal survivor function under Clayton copula
with τ = 0.6, with both correctly specified copula, and misspecified copulas, namely Gumbel
and Frank in this case. There are some biases observed with misspecified copula but not
significant. Robustness figures for other copulas and τ = 0.3, 0.8 are also provided. As is
observed in the τ estimates, it appears that Frank copula is more robust against model
misspecification, compared to Clayton and Gumbel.

In addition, simulated data are generated from a non-Archimedean copula, Gaussian
copula with τ = 0.3, 0.6, and 0.8, and estimates are shown in table 3.7 with Clayton, Gum-
bel, and Frank model specified. Figures 3.19-3.21 present the corresponding marginal sur-
vivor function estimates. Biases in the estimates of τ are observed when model is mis-
specified, but the marginal survivor function estimates are satisfactory, especially for Frank
copula, the real curve is fully covered by the CB of marginal estimates.

3.5.3 Simulation Outcomes for J = 2

Consistency, Efficiency, and Variance Estimation

We evaluated the pseudo-MLE of the association parameter θ together with the estimator
for the survivor function of Tj from section 3.3 with five hundred generated sets of data
for the trivariate Clayton, Gumbel and Frank copula models. We evaluated (i) the robust
sandwich variance estimator described in section 3.3.2, (ii) the corresponding inverse Fisher
information, and (iii) its bootstrap standard error estimator with resampling size 500 to
examine the proposed variance estimation. In addition, we provided two references for com-
parison: the MLE of θ derived from the likelihood function (3.7) using the true survivor
functions Sj(·) and SD(·) and the naïve estimates obtained by maximizing (3.7) after sub-
stituting the marginal survivor functions by their Kaplan–Meier estimates. In the settings
that this chapter focuses on, the MLE is in fact not applicable, and the naïve estimator can
be biased because of the informative censoring.
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The sample means of the pseudo-MLE and MLE estimates are close to the true param-
eter values, especially when the sample size n is large. This verifies the consistency of the
pseudo-MLE and the MLE. The sample means of the naïve estimates, on the other hand,
are rather different from the true values. As expected, the difference becomes more obvious
when the association parameter is larger. The sample standard errors of the pseudo-MLE
are larger than but comparable with their MLE counterparts, which indicates that the
pseudo-MLE has satisfactory efficiency. In addition, the sample means of the robust stan-
dard error estimates for the pseudo-MLE appear similar to the bootstrap standard error
estimates, and both are close to the corresponding sample standard deviations associated
with the pseudo-MLE estimates; however, the sample means of the conventional standard
error estimates using the inverse Fisher information are rather different. This indicates the
need to use the robust variance estimator with the pseudo-MLE. Tables 3.8-3.10 present
a summary of the simulation outcomes based on the five hundred repetitions under the
Clayton, Gumbel, and Frank copula model.

The six plots in figure 3.22 correspond to simulated studies under the trivariate Clayton
copula model with the Kendall’s τ = 0.6 and different sample sizes: n = 500, 1000 and 2000,
for S1(·) and S2(·). Each plot shows the true curve of the marginal survivor function Sj(·),
j = 1, 2, and its two sets of estimates with the generated semicompeting-risks data, using
the proposed pseudo-MLE or the naïve approach. The two sets of approximate 95% CBs
for Sj(·) are also presented in the plots. The true Sj(·) curve is fully covered by the CB
associated with the pseudo-MLE in every plot, and it is not within the CB associated with
the naïve estimator, which requires the assumption of noninformative censoring and is in
fact not valid in the simulation settings. This becomes clearer as the sample size increases.
The same patterns are observed in the figures for τ = 0.8 and τ = 0.3 with the Clayton
model. The simulation outcomes with the Gumbel and Frank copula models for all three
different τ values are in agreement with the ones with the Clayton copula.

Robustness to Model Misspecification

To examine the pseudo-MLE’s robustness to misspecification, we generated data under each
of the three Archimedean copulas, the Clayton, Gumbel, and Frank copulas, and evaluated
the pseudo-MLE and the MLE of the association parameter by the procedures with all the
three copulas. Tables 3.11-3.13 summarize the sets of the pseudo-MLE and MLE estimates
based on five hundred generated data sets and τ = 0.6. Some biases with either the MLE or
the pseudo-MLE occur across different simulated studies under both misspecified copulas.
However, the biases of the resulting estimates compared to the true Kendall’s τ values do
not appear significant. It is especially so when the Frank copula is employed to evaluate the
estimators. Similar observations were obtained for τ = 0.8. This indicates that in practice
one may choose Frank copula if no other information is available.
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Table 3.1: Consistency Study. Estimation of Association Parameter with Simulated Data
from Bivariate Clayton Copulas, Based on 500 Repetitions

θ = 6/7(0.857) θ = 3 θ = 8
sample size (τ = 0.3) (τ = 0.6) (τ = 0.8)
(n) 500 1000 2000 500 1000 2000 500 1000 2000

Pseudo-MLE
sm∗ 0.82 0.84 0.85 2.90 2.95 2.96 7.65 7.77 7.91
sse† .153 .098 .064 .264 .191 .137 .605 .385 .295
sm‡s.se .179 .112 .060 .249 .179 .129 .601 .397 .292
sm‡c.se .106 .077 .055 .190 .137 .097 .379 .274 .198
sm‡b.se .219 .124 .066 .277 .195 .137 .597 .418 .295

MLE from (3.7) Using True Marginals
sm 0.85 0.86 0.86 3.00 3.00 3.00 8.03 8.02 8.05
sse .103 .083 .054 .193 .137 .100 .412 .273 .203
smc.se .109 .077 .055 .198 .139 .098 .405 .286 .203
smb.se .153 .086 .054 .197 .137 .097 .404 .283 .200

Naive Estimates?

sm 0.79 0.80 0.81 2.73 2.77 2.78 7.03 7.13 7.26
sse .141 .095 .061 .256 .181 .130 .627 .390 .298
smc.se .110 .080 .057 .187 .134 .095 .356 .257 .186
smb.se .232 .132 .064 .262 .186 .131 .598 .428 .308

∗ sm: sample mean of estimates
† sse: sample standard error of estimates
‡ smr.se, smc.se, smb.se: sample mean of standard error estimates by robust
(sandwich) variance estimator, by the Fisher information (the conventional,
estimator), and by the bootstrap resampling, respectively
? obtained from maximizing (3.7) using KM estimates for the marginal
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Table 3.2: Consistency Study. Estimation of Association Parameter with Simulated Data
from Bivariate Gumbel Copulas, Based on 500 Repetitions

θ = 10/7(1.429) θ = 2.5 θ = 5
sample size (τ = 0.3) (τ = 0.6) (τ = 0.8)
(n) 500 1000 2000 500 1000 2000 500 1000 2000

Pseudo-MLE
sm∗ 1.42 1.42 1.43 2.50 2.49 2.50 4.92 4.97 4.96
sse† .073 .044 .033 .133 .102 .067 .283 .205 .144
sm‡s.se .069 .044 .033 .130 .099 .066 .275 .197 .140
sm‡c.se .084 .057 .040 .129 .091 .064 .229 .162 .115
sm‡b.se .069 .048 .034 .135 .094 .067 .276 .193 .138

MLE from (3.7) Using True Marginals
sm 1.43 1.43 1.43 2.51 2.50 2.51 5.00 5.00 5.00
sse .060 .042 .030 .109 .083 .056 .198 .146 .102
smc.se .083 .053 .033 .138 .097 .069 .243 .171 .121
smb.se .061 .042 .030 .107 .076 .053 .206 .144 .102

Naive Estimates?

sm 1.40 1.40 1.40 2.47 2.46 2.47 4.91 4.96 4.95
sse .070 .043 .032 .132 .102 .067 .279 .206 .144
smc.se .089 .053 .033 .143 .100 .071 .242 .171 .121
smb.se .066 .046 .033 .133 .093 .066 .276 .194 .138

∗ sm: sample mean of estimates
† sse: sample standard error of estimates
‡ smr.se, smc.se, smb.se: sample mean of standard error estimates by robust
(sandwich) variance estimator, by the Fisher information (the conventional,
estimator), and by the bootstrap resampling, respectively
? obtained from maximizing (3.7) using KM estimates for the marginal
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Table 3.3: Consistency Study. Estimation of Association Parameter with Simulated Data
from Bivariate Frank Copulas, Based on 500 Repetitions

θ = 2.917 θ = 7.930 θ = 18.192
sample size (τ = 0.3) (τ = 0.6) (τ = 0.8)
(n) 500 1000 2000 500 1000 2000 500 1000 2000

Pseudo-MLE
sm∗ 2.90 2.92 2.92 7.89 7.90 7.93 17.94 18.08 18.14
sse† .390 .268 .194 .542 .369 .286 .891 .707 .525
sm‡s.se .375 .260 .189 .511 .353 .264 .933 .670 .483
sm‡c.se .081 .058 .038 .130 .091 .064 .227 .159 .112
sm‡b.se .388 .268 .188 .544 .374 .267 .902 .656 .466

MLE from (3.7) Using True Marginals
sm 2.94 2.94 2.93 7.96 7.94 7.96 18.20 18.22 18.21
sse .373 .257 .194 .489 .332 .257 .864 .635 .478
smc.se .085 .057 .041 .139 .097 .069 .235 .165 .116
smb.se .369 .256 .181 .491 .341 .244 .852 .609 .430

Naive Estimates?

sm 2.77 2.78 2.77 7.56 7.56 7.58 17.03 17.18 17.23
sse .379 .265 .192 .512 .352 .265 .928 .679 .506
smc.se .085 .051 .036 .142 .099 .070 .234 .164 .115
smb.se .377 .262 .184 .517 .357 .255 .940 .667 .473

∗ sm: sample mean of estimates
† sse: sample standard error of estimates
‡ smr.se, smc.se, smb.se: sample mean of standard error estimates by robust
(sandwich) variance estimator, by the Fisher information (the conventional,
estimator), and by the bootstrap resampling, respectively
? obtained from maximizing (3.7) using KM estimates for the marginal
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Table 3.4: Robustness Study. Estimation of Association Parameter with Simulated Data
from Bivariate Archimedean Copulas with τ = 0.3, Based on 500 Repetitions

Sample Size MLE Pseudo-MLE MLE Pseudo-MLE MLE Pseudo-MLE
(n) by Clayton Copula by Gumbel Copula by Frank Copula

True Model: Trivariate Clayton Copula
500 sm† 0.30 0.29 0.24 0.23 0.30 0.29

sse‡ .025 .049 .038 .042 .034 .038
1000 sm 0.30 0.29 0.24 0.23 0.30 0.29

sse .020 .024 .026 .030 .025 .028
2000 sm 0.30 0.30 0.24 0.23 0.30 0.30

sse .013 .016 .018 .020 .015 .017

True Model: Trivariate Gumbel Copula
500 sm 0.21 0.19 0.30 0.30 0.30 0.29

sse .037 .040 .029 .036 .033 .035
1000 sm 0.21 0.18 0.30 0.30 0.30 0.30

sse .027 .030 .020 .022 .023 .023
2000 sm 0.22 0.18 0.30 0.30 0.30 0.30

sse .017 .022 .015 .016 .016 .016

True Model: Trivariate Frank Copula
500 sm 0.22 0.20 0.25 0.26 0.30 0.30

sse .036 .039 .032 .035 .033 .034
1000 sm 0.23 0.19 0.25 0.25 0.30 0.30

sse .023 .031 .024 .025 .023 .024
2000 sm 0.23 0.19 0.25 0.26 0.30 0.30

sse .018 .025 .018 .018 .017 .017

† sm: sample of parameter estimates
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Table 3.5: Robustness Study. Estimation of Association Parameter with Simulated Data
from Bivariate Archimedean Copulas with τ = 0.6, Based on 500 Repetitions

Sample Size MLE Pseudo-MLE MLE Pseudo-MLE MLE Pseudo-MLE
(n) by Clayton Copula by Gumbel Copula by Frank Copula

True Model: Trivariate Clayton Copula
500 sm† 0.60 0.59 0.50 0.52 0.60 0.60

sse‡ .015 .022 .029 .030 .019 .023
1000 sm 0.60 0.60 0.51 0.51 0.60 0.60

sse .011 .016 .020 .023 .015 .019
2000 sm 0.60 0.60 0.51 0.52 0.60 0.60

sse .008 .011 .014 .016 .010 .012

True Model: Trivariate Gumbel Copula
500 sm 0.45 0.43 0.60 0.60 0.60 0.59

sse .026 .029 .017 .021 .019 .023
1000 sm 0.45 0.43 0.60 0.60 0.60 0.59

sse .019 .023 .013 .016 .014 .017
2000 sm 0.45 0.43 0.60 0.60 0.60 0.59

sse .014 .015 .009 .011 .010 .012

True Model: Trivariate Frank Copula
500 sm 0.45 0.42 0.53 0.54 0.60 0.60

sse .028 .027 .024 .024 .018 .021
1000 sm 0.45 0.42 0.53 0.54 0.60 0.60

sse .020 .020 .017 .017 .012 .014
2000 sm 0.45 0.42 0.53 0.54 0.60 0.60

sse .014 .014 .012 .012 .010 .011

† sm: sample of parameter estimates
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Table 3.6: Robustness Study. Estimation of Association Parameter with Simulated Data
from Bivariate Archimedean Copulas with τ = 0.8, Based on 500 Repetitions

Sample Size MLE Pseudo-MLE MLE Pseudo-MLE MLE Pseudo-MLE
(n) by Clayton Copula by Gumbel Copula by Frank Copula

True Model: Trivariate Clayton Copula
500 sm† 0.80 0.79 0.70 0.71 0.79 0.79

sse‡ .008 .013 .021 .021 .010 .013
1000 sm 0.80 0.80 0.70 0.71 0.80 0.80

sse .005 .008 .014 .015 .007 .009
2000 sm 0.80 0.80 0.70 0.71 0.80 0.80

sse .004 .006 .011 .010 .005 .006

True Model: Trivariate Gumbel Copula
500 sm 0.68 0.66 0.80 0.80 0.80 0.79

sse .019 .024 .008 .012 .010 .013
1000 sm 0.67 0.66 0.80 0.80 0.80 0.79

sse .014 .016 .006 .008 .007 .009
2000 sm 0.68 0.66 0.80 0.80 0.80 0.79

sse .010 .011 .004 .006 .005 .006

True Model: Trivariate Frank Copula
500 sm 0.65 0.64 0.73 0.74 0.80 0.80

sse .027 .024 .017 .014 .009 .009
1000 sm 0.65 0.64 0.73 0.74 0.80 0.80

sse .018 .017 .010 .011 .006 .007
2000 sm 0.65 0.64 0.73 0.74 0.80 0.80

sse .013 .013 .008 .007 .005 .005

† sm: sample of parameter estimates
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Table 3.7: Robustness Study. Estimation of Association Parameter with Simulated Data
from Bivariate Gaussian Copulas with τ = 0.3, 0.6, and 0.8, Based on 500 Repetitions

Sample Size MLE Pseudo-MLE MLE Pseudo-MLE MLE Pseudo-MLE
(n) by Clayton Copula by Gumbel Copula by Frank Copula

True Model: τ = 0.3
500 sm† 0.22 0.20 0.25 0.25 0.28 0.28

sse‡ .032 .039 .027 .031 .028 .031
1000 sm 0.22 0.19 0.25 0.25 0.28 0.28

sse .024 .039 .024 .026 .024 .025
2000 sm 0.22 0.18 0.25 0.25 0.28 0.28

sse .017 .039 .016 .016 .016 .017

True Model: τ = 0.6
500 sm 0.40 0.38 0.47 0.47 0.50 0.49

sse .025 .030 .024 .026 .024 .027
1000 sm 0.40 0.38 0.47 0.47 0.50 0.50

sse .018 .020 .017 .019 .017 .019
2000 sm 0.40 0.38 0.47 0.47 0.50 0.50

sse .012 .015 .013 .015 .012 .013

True Model: τ = 0.8
500 sm 0.48 0.47 0.56 0.56 0.59 0.59

sse .023 .030 .021 .024 .020 .025
1000 sm 0.48 0.47 0.56 0.56 0.59 0.59

sse .016 .020 .013 .016 .013 .016
2000 sm 0.48 0.47 0.56 0.56 0.59 0.58

sse .012 .014 .010 .011 .009 .011

† sm: sample of parameter estimates
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Table 3.8: Consistency Study. Estimation of Association Parameter with Simulated Data
from Trivariate Clayton Copulas, Based on 500 Repetitions

θ = 6/7(0.857) θ = 3 θ = 8
sample size (τ = 0.3) (τ = 0.6) (τ = 0.8)
(n) 500 1000 2000 500 1000 2000 500 1000 2000

Pseudo-MLE
sm∗ 0.83 0.85 0.85 2.93 2.95 2.97 7.68 7.83 7.93
sse† .122 .070 .052 .239 .166 .120 .502 .362 .250
sm‡s.se .124 .074 .053 .232 .169 .121 .504 .368 .258
sm‡c.se .074 .052 .036 .132 .094 .067 .269 .193 .139
sm‡b.se .117 .073 .052 .234 .165 .117 .501 .365 .259

MLE from (3.7) Using True Marginals
sm 0.86 0.86 0.86 2.99 3.00 3.00 7.99 7.99 8.01
sse .078 .054 .038 .145 .100 .067 .279 .202 .139
smc.se .077 .055 .039 .137 .097 .069 .280 .198 .140
smb.se .083 .055 .039 .137 .097 .069 .280 .198 .140

Naive Estimates?

sm 0.81 0.83 0.83 2.64 2.66 2.69 6.49 6.60 6.68
sse .114 .067 .050 .213 .152 .107 .492 .362 .259
smc.se .083 .058 .041 .130 .092 .066 .237 .170 .121
smb.se .120 .071 .050 .214 .151 .108 .480 .355 .257

∗ sm: sample mean of estimates
† sse: sample standard error of estimates
‡ smr.se, smc.se, smb.se: sample mean of standard error estimates by robust
(sandwich) variance estimator, by the Fisher information (the conventional,
estimator), and by the bootstrap resampling, respectively
? obtained from maximizing (3.7) using KM estimates for the marginal
survivor functions
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Table 3.9: Consistency Study. Estimation of Association Parameter with Simulated Data
from Trivariate Gumbel Copulas, Based on 500 Repetitions

θ = 10/7(1.429) θ = 2.5 θ = 5
sample size (τ = 0.3) (τ = 0.6) (τ = 0.8)
(n) 500 1000 2000 500 1000 2000 500 1000 2000

Pseudo-MLE
sm∗ 1.40 1.42 1.43 2.39 2.42 2.48 4.91 4.93 4.95
sse† .058 .036 .022 .131 .081 .057 .233 .169 .118
sm‡s.se .057 .035 .022 .130 .081 .058 .235 .167 .118
sm‡c.se .040 .023 .014 .086 .056 .039 .154 .102 .073
sm‡b.se .057 .033 .020 .130 .082 .058 .230 .163 .116

MLE from (3.7) Using True Marginals
sm 1.43 1.43 1.43 2.49 2.51 2.50 4.99 5.00 5.00
sse .029 .021 .015 .090 .056 .039 .156 .110 .072
smc.se .030 .021 .014 .089 .056 .039 .154 .104 .073
smb.se .032 .022 .014 .090 .055 .039 .153 .104 .073

Naive Estimates?

sm 1.37 1.39 1.40 2.37 2.39 2.40 4.72 4.76 4.79
sse .042 .026 .018 .107 .073 .052 .204 .160 .115
smc.se .031 .022 .014 .079 .053 .038 .132 .099 .070
smb.se .046 .028 .018 .104 .074 .053 .198 .160 .114

∗ sm: sample mean of estimates
† sse: sample standard error of estimates
‡ smr.se, smc.se, smb.se: sample mean of standard error estimates by robust
(sandwich) variance estimator, by the Fisher information (the conventional,
estimator), and by the bootstrap resampling, respectively
? obtained from maximizing (3.7) using KM estimates for the marginal
survivor functions
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Table 3.10: Consistency Study. Estimation of Association Parameter with Simulated Data
from Trivariate Frank Copulas, Based on 500 Repetitions

θ = 2.917 θ = 7.930 θ = 18.192
sample size (τ = 0.3) (τ = 0.6) (τ = 0.8)
(n) 500 1000 2000 500 1000 2000 500 1000 2000

Pseudo-MLE
sm∗ 2.88 2.90 2.91 7.61 7.65 7.67 17.85 18.01 18.04
sse† .324 .186 .147 .431 .309 .209 .963 .531 .343
sm‡s.se .322 .184 .147 .431 .312 .210 .964 .527 .346
sm‡c.se .180 .142 .109 .312 .249 .176 .694 .424 .300
sm‡b.se .318 .181 .146 .426 .339 .215 .965 .510 .357

MLE from (3.7) Using True Marginals
sm 2.91 2.91 2.92 7.95 7.94 7.94 18.20 18.20 18.17
sse .204 .158 .112 .385 .260 .180 .613 .453 .288
smc.se .202 .157 .111 .363 .248 .176 .611 .422 .299
smb.se .206 .158 .111 .367 .247 .175 .614 .432 .305

Naive Estimates?

sm 2.81 2.83 2.84 7.30 7.35 7.36 16.18 16.25 16.28
sse .315 .182 .144 .344 .274 .190 .703 .544 .377
smc.se .209 .160 .118 .303 .239 .169 .479 .391 .277
smb.se .320 .183 .144 .345 .269 .190 .699 .531 .375

∗ sm: sample mean of estimates
† sse: sample standard error of estimates
‡ smr.se, smc.se, smb.se: sample mean of standard error estimates by robust
(sandwich) variance estimator, by the Fisher information (the conventional,
estimator), and by the bootstrap resampling, respectively
? obtained from maximizing (3.7) using KM estimates for the marginal
survivor functions
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Table 3.11: Robustness Study. Estimation of Association Parameter with Simulated Data
from Trivariate Archimedean Copulas with τ = 0.3, Based on 500 Repetitions

Sample Size MLE Pseudo-MLE MLE Pseudo-MLE MLE Pseudo-MLE
(n) by Clayton Copula by Gumbel Copula by Frank Copula

True Model: Trivariate Clayton Copula
500 sm† 0.30 0.29 0.26 0.25 0.31 0.30

sse‡ .019 .046 .027 .029 .025 .028
1000 sm 0.30 0.30 0.26 0.25 0.31 0.30

sse .013 .017 .018 .021 .017 .020
2000 sm 0.30 0.30 0.26 0.25 0.31 0.30

sse .009 .013 .013 .015 .012 .014

True Model: Trivariate Gumbel Copula
500 sm 0.24 0.22 0.30 0.30 0.29 0.28

sse .031 .033 .014 .016 .021 .026
1000 sm 0.24 0.23 0.30 0.30 0.30 0.29

sse .023 .027 .011 .014 .017 .021
2000 sm 0.24 0.23 0.30 0.30 0.30 0.30

sse .018 .022 .008 .011 .013 .017

True Model: Trivariate Frank Copula
500 sm 0.23 0.20 0.27 0.26 0.30 0.29

sse .032 .034 .021 .024 .021 .027
1000 sm 0.23 0.21 0.27 0.27 0.30 0.29

sse .027 .031 .017 .020 .017 .024
2000 sm 0.23 0.21 0.27 0.27 0.30 0.30

sse .020 .022 .012 .014 .012 .015

† sm: sample of parameter estimates
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Table 3.12: Robustness Study. Estimation of Association Parameter with Simulated Data
from Trivariate Archimedean Copulas with τ = 0.6, Based on 500 Repetitions

Sample Size MLE Pseudo-MLE MLE Pseudo-MLE MLE Pseudo-MLE
(n) by Clayton Copula by Gumbel Copula by Frank Copula

True Model: Trivariate Clayton Copula
500 sm† 0.60 0.59 0.51 0.53 0.60 0.56

sse‡ .012 .020 .021 .024 .015 .211
1000 sm 0.60 0.59 0.52 0.54 0.60 0.60

sse .008 .014 .016 .017 .010 .014
2000 sm 0.60 0.60 0.52 0.54 0.60 0.60

sse .005 .010 .011 .012 .007 .010

True Model: Trivariate Gumbel Copula
500 sm 0.45 0.42 0.60 0.58 0.60 0.57

sse .021 .025 .012 .019 .013 .077
1000 sm 0.45 0.41 0.60 0.59 0.60 0.58

sse .015 .019 .009 .014 .010 .015
2000 sm 0.45 0.41 0.60 0.59 0.60 0.58

sse .010 .012 .006 .010 .007 .010

True Model: Trivariate Frank Copula
500 sm 0.44 0.40 0.53 0.53 0.60 0.59

sse .023 .026 .016 .020 .013 .017
1000 sm 0.44 0.40 0.53 0.53 0.60 0.59

sse .016 .018 .013 .015 .010 .012
2000 sm 0.44 0.40 0.53 0.53 0.60 0.59

sse .011 .011 .009 .009 .007 .008

† sm: sample of parameter estimates
‡ sse: sample standard errors of parameter estimates
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Table 3.13: Robustness Study. Estimation of Association Parameter with Simulated Data
from Trivariate Archimedean Copulas with τ = 0.8, Based on 500 Repetitions

Sample Size MLE Pseudo-MLE MLE Pseudo-MLE MLE Pseudo-MLE
(n) by Clayton Copula by Gumbel Copula by Frank Copula

True Model: Trivariate Clayton Copula
500 sm† 0.80 0.79 0.70 0.71 0.80 0.77

sse‡ .008 .014 .016 .021 .010 .018
1000 sm 0.80 0.79 0.71 0.73 0.80 0.80

sse .004 .008 .012 .012 .006 .008
2000 sm 0.80 0.80 0.71 0.73 0.80 0.80

sse .003 .005 .008 .008 .004 .006

True Model: Trivariate Gumbel Copula
500 sm 0.67 0.67 0.80 0.80 0.80 0.78

sse .017 .019 .007 .010 .008 .011
1000 sm 0.67 0.66 0.80 0.80 0.80 0.79

sse .011 .013 .004 .007 .005 .008
2000 sm 0.67 0.66 0.80 0.80 0.80 0.79

sse .008 .009 .003 .005 .004 .006

True Model: Trivariate Frank Copula
500 sm 0.67 0.66 0.80 0.80 0.80 0.80

sse .013 .018 .005 .008 .007 .010
1000 sm 0.67 0.66 0.80 0.80 0.80 0.79

sse .008 .009 .003 .005 .004 .006
2000 sm 0.64 0.63 0.80 0.80 0.80 0.80

sse .013 .010 0.002 0.004 .003 .003

‡ sse: sample standard errors of parameter estimates
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3.6 Analysis of BC-BRCAS Data (II)

To illustrate our approach, we present an analysis using the BC-BRCAS data (McBride
et al. 2016).

3.6.1 Study Description

Each subject’s date of cancer diagnosis is taken as her time origin. The first event time T1 is
the time to RSC and the second time T2 is the time to the first CVD-related hospitalization
after the diagnosis. The information on T1 and T2 is subject to censoring by death and end of
administrative data extraction. Each subject’s censoring time is formulated as C = D∧CA,
where D is the time to death and CA is the time at the end of the administrative data
extraction window. Table 3.14 presents a summary of the available data on T1, T2, and
D. As mentioned in Chapter 1, under the time since diagnosis scale, one can reasonably
assume that CA is independent of T1 and T2 conditional on stage. Thus, we conducted the
analysis stratified by stage at diagnosis. We also ran the analyses using the whole cohort
(overall), and by age at diagnosis (< 40, ≥ 40), as well as treatment (Chemo and Surgery
and Treatment, Other, Unknown).

Since T1 cannot be defined for stage IV subjects, and there were about 20 percent of
patients with unknown stage in the original dataset who they turned out to be ‘non-referred’
patients, we thus chose to include only study new patients that are referred to BC Cancer
and removed stage IV breast cancer patients in the subsequent analysis.

3.6.2 Correlations amongst Event Times and Death

The analysis of the BC-BRCAS data aims to evaluate the correlation between a breast
cancer patient’s time to RSC and her time to a CVD event after the cancer diagnosis.
Using the proposed approach, Kendall’s τ was estimated under a copula model for the joint
survivor function of (T1, T2) with the available data.

Specifically, to account for the potential informative censoring of the observations on
(T1, T2) due to death, the distribution of (T1, T2, D) is assumed to follow an Archimedean
copula with the association parameter θ. The pseudo-MLE procedure was implemented
as described in section 3.3 to estimate θ, the associated standard error, and the marginal
survivor functions Sj(·) using the data from subgroups based on age at diagnosis, stage at
diagnosis, and treatment, as well as from the full cohort.

For the comparison of estimates from different models, we converted the estimated θ̂ into
estimates of the corresponding Kendall’s τ . Table 3.15 presents the estimates of τ under the
Clayton, Gumbel, and Frank copulas. Based on the estimated τ , the associations between
the death time D and the event times Tj (the time to RSC or CVD) all appear strongly
positive across different subgroups (age at diagnosis, stage, treatment) and the whole co-
hort, regardless of the copula model used in the estimation. This is further evidence that
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informative censoring occurred in the observations of the two event times. For compari-
son, we have also presented the estimates obtained by the naïve approach that ignore the
informative censoring and used the Kaplan–Meier estimates of Sj(·) in the pseudo-MLE
procedure of section 3.3. These estimates seem to have underestimated the association
parameter compared to the pseudo-MLE estimates.

The estimated marginal survivor functions Ŝj(·) and approximate 95 percent CIs are
shown in figure 3.40 for the early and late stage subgroups. They appear rather different
from the corresponding naïve estimates. From simulation studies in section 3.5, one could
choose Frank copula in practice because of its robustness, although estimated curves from
Clayton and Frank copula are similar using BC-BRCAS study.
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(a1) time to RSC in younger group (a2) time to CVD in younger group

(b1) time to RSC in older group (b2) time to CVD in older group

Figure 3.40: Estimated Marginal Survivor Functions S1(·) and S2(·) of Times to RSC and
CVD by Proposed Approach with Different Copulas and Kaplan-Meier Estimator Using the
BC-BRCAS Data Preferred: Early vs. Late Age at Diagnosis
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3.7 Discussion

This chapter has proposed a modeling approach by Archimedean copula and the associated
pseudolikelihood-based procedure for the analysis of multiple event times in the presence
of informative censoring due to a terminating event. The approach allows us to account
for the informative censoring and to estimate validly the joint distribution of the multiple
event times. It also has the inference convenience associated with a copula model.

We have studied the proposed estimator asymptotically and numerically, and it is easy
to implement. In addition, the procedure for estimating the survivor function of an event
time can be used to provide a valid estimator for semicompeting-risks data. The proposed
modeling requires the same association between the event times, and between them jointly
and the time to the terminating event. Its association parameter may be taken as an average
of the associations with varying magnitude between different pairs of event times.

Since the time scale used in the analysis is the time since diagnosis, the administrative
censoring time CA is likely dependent of the event times. This dependence may be captured
by the stage at diagnosis. We thus assumed that CA is independent of T1, T2 and D

conditional on the diagnosis stage when interpreting the analysis. In particular, we would
report to the research team mainly based on the subgroup analysis according to the stage
at diagnosis. On the other hand, this consideration has partly motivated our next research
topic, to analyze the event times with adjustment for potential covariates, including the
diagnosis stage.

The real data analysis (II) estimates showed strong positive associations between the
two event times, and each of them with death time amongst early and late stage subgroups.
This indicates that extension to a regression setting is useful. We consider the regression
extension in Chapter 5 and Chapter 6. On the other hand, the three individual associ-
ation parameters do not necessarily appear the same. This indicates that an alternative
modeling would be desirable to allow different event time pairs to have different association
parameters, or different association structures.
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Chapter 4

Multiple Event Times in the
Presence of Informative Censoring
Using Copula - Part Two: a
Flexible Approach

This chapter considers modeling two event times jointly when the observations of them
are subject to informative censoring caused by a terminating event. We formulate the
correlation of the bivariate event time with the censoring time by embedding the bivariate
distribution in a bivariate copula model. This allows the convenience of inference under the
conventional copula model. At the same time, the proposed model is more flexible, and thus
potentially more appropriate in many practical situations than modeling the event times
and the associated censoring time jointly by a single multivariate copula. Adapting the
commonly used two-stage estimation procedure under a copula model, we develop an easy-
to-implement estimator for the joint survivor function of the two event times. A by-product
of the approach is an estimator for the marginal distribution of a single event time with
semicompeting-risks data. We conduct asymptotic and simulation studies to examine the
consistency, efficiency, and robustness of the proposed approach. The breast cancer project
that motivated this research is employed to illustrate the method.

Compared to that in Chapter 3, the proposed model is more flexible and thus potentially
more feasible in many practical situations than modeling the event times and the associated
censoring time jointly by a single copula.
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4.1 Modeling

4.1.1 Model Specification

We assume that the administrative censoring time CA is independent of the bivariate event
time (T1, T2) and the time to the terminating event D. Moreover, to specify the correlation
of (T1, T2) with D, we embed the bivariate survivor function of (T1, T2) in a bivariate
Archimedean copula model (e.g., Joe 1997) and assume the joint survivor function with D
equal to

Pr(T1 ≥ t1, T2 ≥ t2, D ≥ d) = A[2]
(
S12(t1, t2), SD(d); θ

)
. (4.1)

The association parameter θ characterizes the correlation between (T1, T2) andD. Note that
S12(t1, 0) = P (T1 ≥ t1) and S12(0, t2) = P (T2 ≥ t2) are the marginal survivor functions of
T1 and T2, respectively. Let Sj(t) = P (Tj ≥ t) for j = 1, 2. The model in (4.1) induces the
joint model of Tj and D:

Pr(Tj ≥ t,D ≥ d) = A[2]
(
Sj(t), SD(d); θ

)
. (4.2)

Denote δ1i+ δ2i by δ·i, and let ḣ(r) be dh(r)/dr for a function h(r) and h(a1,a2)(r1, r2;φ)
be ∂h(a1+a2)(r1, r2;φ)/∂ra1

1 ∂r
a2
2 for a function h(r1, r2;φ) with well-defined (partial) deriva-

tives. The likelihood function with the available data under the copula model (4.1) is

L(S12(·), SD(·), θ|Observed-Data)

=
n∏
i=1

{
(−1)δ.i+δDi

∂δ.iA(0,δDi)
[2]

(
S12(u1i, u2i), SD(ci); θ

)
∂uδ1i

1 ∂uδ2i
2

ṠD(ci)δDi
}
. (4.3)

If the joint survivor function S12(·) is specified upon a finite-dimensional parameter θ12, i.e.,
S12(·) = S12(·; θ12), maximizing (4.3) with respect to θ, θ12, and SD(·) yields the maximum
likelihood estimator (MLE) of θ, θ12 and thus the MLE of the joint distribution of (T1, T2).

Assume that the current observations on D are subject to noninformative (adminis-
trative) right-censoring with the censoring time CA. There is a readily available consistent
estimator for SD(·), e.g., the Kaplan–Meier estimator, denoted by S̃D(·). Following the idea
of the pseudolikelihood estimation procedure under a copula model (e.g., Lawless & Yilmaz
2011), we may consider a pseudo-MLE of θ, θ12 by maximizing L(S12(·; θ12), S̃D(·), θ|Observed-Data),
which is proportional to

n∏
i=1

{
(−1)δ·i+δDi

∂δ.iA(0,δDi)
[2]

(
S12(u1i, u2i; θ12), S̃D(ci); θ

)
∂uδ1i

1 ∂uδ2i
2

}
, (4.4)
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with respect to θ12 jointly with θ only. The partial derivative in (4.4) is

∂δ.iA(0,δDi)
[2]

(
S12(u1i, u2i; θ12), S̃D(ci); θ

)
∂uδ1i

1 ∂uδ2i
2

=



A(0,δDi)
[2]

(
S(u1i, u2i; θ12), S̃D(ci); θ

)
, δ1i = δ2i = 0

A(1,δDi)
[2]

(
S(u1i, u2i; θ12), S̃D(ci); θ

)
S

(δ1i,δ2i)
12 (u1i, u2i; θ12), δ1i 6= δ2i

A(2,δDi)
[2]

(
S(u1i, u2i; θ12), S̃D(ci); θ

)
S

(1,0)
12 (u1i, u2i; θ12)S(0,1)

12 (u1i, u2i; θ12)
+A(1,δDi)

[2]
(
S(u1i, u2i; θ12), S̃D(ci); θ

)
S

(1,1)
12 (u1i, u2i; θ12), δ1i = δ2i = 1.

The resulting estimator, with the trade-off of some efficiency loss, can be much easier to
implement than its MLE counterpart.

However, often the bivariate survivor function S12(·) cannot be confidently specified via
a parametric model. We therefore consider a semiparametric model for the joint distribution
of T1, T2:

S12(t1, t2; θ12) = C[2]
(
S1(t1), S2(t2); θ12

)
, (4.5)

where the univariate marginal survivor functions Sj(·) are unspecified, and C[2](·; θ12) is
specified up to θ12, defined on [0, 1]2, and valued over [0, 1].

In principle, one may maximize (4.3) under model (4.1) coupled with model (4.5) with
respect to θ, Sj(·), θ12, and SD(·) to obtain their MLE, which leads to the semiparametric
MLE of the joint survivor function S12(·; θ12). This, however, requires rather intensive
computing. Furthermore, the counterpart of the pseudo-MLE approach for parametric
S12(·) is not directly applicable since there is no readily available consistent estimator for
Sj(·) with the current semicompeting-risks data on Tj . These considerations motivate the
two procedures in Section 4.2 for estimating the joint survivor function S12(·; θ12) under
model (4.5).

4.1.2 More on Modeling

It is of interest in many situations to estimate the marginal survivor function of the event
times Tj (j = 1, 2) with the semicompeting-risks data, Observed-Dataj in (3.2). When the
copula function A[2](·; θ) in (4.1) is an Archimedean copula with the generator ψ(·; θ), the
induced model (4.2) for the joint survivor function of Tj and D yields

Sj(t) = g(S∗j (t), SD(t); θ) = ψ−1{ψ(S∗j (t); θ)− ψ(SD(t); θ); θ
}
, (4.6)

for j = 1, 2, where S∗j (t) = P (T ∗j ≥ t) is the survivor function of T ∗j = Tj ∧D.
Useful examples for C[2](·; θ12) in (4.5) include commonly used bivariate parametric cop-

ula functions (e.g., Diao & Cook 2014). When the copula function C[2](·) in model (4.5) is
assumed to equal the bivariate Archimedean copula A[2](·) in model (4.1), the joint survivor
function of the trivariate event times T1, T2, D in (4.1) becomesA[3]

(
S1(t1), S2(t2), SD(d); θ

)
.
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In fact, in such situations, the joint survivor function of each pair of T1, T2, D is the same bi-
variate Archimedean copula A[2](·) with the two indices equal to the appropriate univariate
marginal survivor functions (e.g., Li et al. 2018).

Another example for C[2](·) is

C[2](w1, w2; θ12) =
∫
w

exp(θ1ξ)
1 w

exp(θ2ξ)
2 η(ξ; θη)dξ (4.7)

with w1, w2 ∈ [0, 1], θ12 = (θ1, θ2, θη), and η(·; θη) a probability density function with pa-
rameter θη. This second type of function results from assuming T1 and T2 to be independent
conditional on a random variable ξ ∼ η(ξ; θη) and, for j = 1, 2, Pr(Tj ≥ t|ξ) = Sj(t)exp(θjξ),
which is a Cox proportional hazards model conditional on ξ, with ξ being a frailty variable.

We remark that this chapter allows the bivariate function C[2](·) in model (4.5) to be
different from the bivariate Archimedean copula A[2](·) in model (4.1). We may choose
C[2](·) in (4.5) to be a commonly used non-Archimedean copula or a bivariate function such
as (4.7). This leads to additional modeling flexibility. More discussion of this is given with
the numerical studies reported in sections 4.3 and 4.4.

4.2 Pseudolikelihood-Based Estimation Procedures

Using the idea underlying two-stage estimation procedures with a copula model (e.g., Oakes
1994), we estimate S12(·), the joint survivor function of (T1, T2), under model (4.1) with
model (4.5) embedded. The estimation procedure yields a consistent estimator for the
marginal survivor function of each of the two event times as a by-product. We also present
the asymptotic properties of the estimators.

4.2.1 Estimating Association Parameters with the Observed-Data

Under model (4.2), as given in (4.6), the marginal survivor function Sj(t) = g(S∗j (t), SD(t);
θ), a known function of the marginal survivor function of T ∗j = Tj ∧ D and the marginal
survivor function of D up to θ for j = 1, 2. With known S∗j (t) and SD(t), Sj(t) is known
only up to the parameter θ.

In addition, note that the likelihood function in (4.3) becomes

n∏
i=1

{
(−1)δ.i+δDi

∂δ.iA(0,δDi)
[2]

(
S12(u1i, u2i), SD(ci); θ

)
∂S1(u1)δ1i∂S2(u2)δ2i

[
Ṡ1(u1i)δ1iṠ2(u2i)δ2i

]
ṠD(ci)δDi

}
,
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which is proportional to

L
(
θ, θ12;S1(·), S2(·), SD(·)

∣∣Observed-Data
)

=
n∏
i=1

{
(−1)δ.i+δDi

∂δ.iA(0,δDi)
[2]

(
S12(u1i, u2i), SD(ci); θ

)
∂S1(u1)δ1i∂S2(u2)δ2i

}
(4.8)

when Sj(·) and SD(·) are known. This leads to the following estimation procedure.
Given consistent estimators for Sj(·) and SD(·), we maximize the resulting pseudolike-

lihood function of θ = (θ, θ12) or, equivalently, its log-transformation with respect to the
parameters θ = (θ, θ12), to derive a pseudo-MLE:

θ̂n = argmaxθL(θ|S̃1(·; θ), S̃2(·; θ), S̃D(·);Observed-Data). (4.9)

This pseudo-MLE procedure is computationally easy to implement. We present below an
iterative algorithm to calculate θ̂n.
Algorithm Using the Kaplan–Meier estimates S̃∗j (·) and S̃D(·) together with the current
estimate θ(k−1) and S(k−1)

j (·) for j = 1, 2 and with k ≥ 1:

Step 1. Obtain the updated estimate for θ via

θ(k) = argmaxθL(θ|S(k−1)
1 (·), S(k−1)

2 (·), S̃D(·);Observed-Data);

Step 2. Obtain the updated estimates for Sj(·) via S(k)
j (t) = S̃j(t;θ(k)) = g(S̃∗j (t),

S̃D(t);θ(k)) for j = 1, . . . , J .

Repeat steps 1 and 2 until the sequence {θ(k) : k = 0, 1, . . .} converges. The limit is θ̂n
defined in (4.9). The initial estimate θ(0) is in fact not needed. The Kaplan–Meier estimates
of Sj(·) may be used as the initial estimates S(0)

j (·) for j = 1, 2.
The following proposition establishes the consistency and asymptotic normality of the

resulting estimator.

Proposition 4. Under the regularity conditions (RC1)–(RC4) presented in Chapter 3 and
provided S̃∗j (t) and S̃D(t) satisfy condition (AC1), as n→∞, θ̂n

a.s.−−→ θ and
√
n(θ̂n−θ) d−→

N
(
0, AV (θ)

)
, where the asymptotic variance is

AV (θ) = VB(θ)−1VA(θ)VB(θ)−1 (4.10)

with VB(θ) and VA(θ) the limits of

− 1
n

n∑
i=1

∂2 logL(θ|S̃1(·; θ), S̃2(·; θ), S̃D(·);Observed-Data)
/
∂θ2 (4.11)
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and
1
n
Var

{ n∑
i=1

∂ logL(θ|S̃1(·; θ), S̃2(·; θ), S̃D(·);Observed-Data)
/
∂θ
}
, (4.12)

respectively, and S̃j(t; θ) = g(S̃∗j (t), S̃D(t); θ).

As mentioned in Chapter 3, one may estimate the variance of θ̂n by a bootstrap approach
(e.g., Lawless & Yilmaz 2011). A natural and practical variance estimator evaluates (4.10)
at θ = θ̂n and uses (4.11) and (4.12) to replace their limits. The resulting variance estimator
is often referred to as Huber’s robust sandwich estimator (Huber 1967). Note that when
Sj(·) for j = 1, 2 are known and used to estimate θ = (θ, θ12), θ̂n is an MLE, and VA(θ) and
VB(θ) in (4.11) and (4.12) are the same as the corresponding inverse Fisher information
matrix.

4.2.2 Resulting Estimators for Marginal and Joint Survivor Function

Substituting θ̂n, S̃∗j (t), and S̃D(t) from the above section into (4.6) gives a natural estimator
for the marginal survivor function Sj(·):

Ŝjn(t) = g(S̃∗j (t), S̃D(t); θ̂n). (4.13)

for j = 1, 2.

Proposition 5. Under the regularity conditions (RC1)–(RC4) presented in the Chapter 3
and provided S̃∗j (·) and S̃D(·) satisfy condition (AC1) in the Appendix, as n→∞,
Ŝjn(t) a.s.−−→ Sj(t) uniformly and

√
n(Ŝjn(t)− Sj(t))

w−→ Gj(t) with t ∈ [0, v?j ], where Gj(t) is
a Gaussian process with mean zero and variance function σ2

j (t) as defined in, for example,
Andersen et al. (1993).

When the sample size is large and the censoring rate is not too high, we may choose
to ignore the variation of the Kaplan–Meier estimates S̃∗j (·) and S̃D(·). This then yields
an approximate confidence band (CB) for Sj(·) based on (4.6 ) with θ̂n substituted in, and
using the proposed variance estimator of θ̂n in the above section.

In addition, the joint survivor function S12(t1, t2) of (T1, T2) based on (4.5):

Ŝ12n(t1, t2) = C[2]
(
Ŝ1n(t1), Ŝ2n(t2); θ̂12n

)
. (4.14)

The following proposition establishes the consistency and asymptotic normality/weak con-
vergence of the resulting estimator.

Proposition 6. Under the regularity conditions (RC1)–(RC4) presented in Chapter 3 and
provided S̃∗j (t) and S̃D(t) satisfy condition (AC1) in the Appendix,
as n→∞, Ŝn(t1, t2) a.s.−−→ S(t1, t2) uniformly and

√
n(Ŝn(t1, t2)−S(t1, t2)) w−→ G(t1, t2) with
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t1, t2 ∈ [0, v?1] × ×[0, v?2], where G(t1, t2) is a Gaussian field with mean zero and variance
function σ2(t1, t2).

4.3 Simulation Study

We conducted simulation studies to explore the finite-sample performance of the approach
in section 4.2.

4.3.1 Simulation Setting and Data Generation

We simulated a study with n independent units where the primary outcome is the bivariate
event time (T1, T2). The observations on (T1, T2) may be censored by either the terminating
event time D or an administrative time CA, whichever occurs first. That is, the study
censoring time C = D∧CA. We allow the association between T1 and T2 and that between
(T1, T2) jointly with D to be different.

We simulated two main general settings to verify the performance of the proposed es-
timators and one additional setting to verify the performance in (4.7) as an example of
non-copula formulation for the correlation between T1 and T2.

Setting 1: We generated data from a nested Archimedean copula (see, e.g., Joe 1997)
that allows the association parameter in the bivariate Archimedean copula (“outer”
copula) that links (T1, T2) and D to be different from the association parameter in
the bivariate copula (“inner” copula) that links T1 and T2.

Setting 2: Since real-world data may not always fit an Archimedean copula family, we
generated data from a non-Archimedean trivariate copula as part of the robustness
check.

Setting 3: Since the formulation of C[2](·) does not necessarily have to be through
copula functions, we generated data from a gamma frailty model to show the flexibility
on model specification for (T1, T2) using our proposed approach.

To imitate potentially informative censoring due to a terminating event, we generated
the data as follows:

For setting 1 and setting 2,

Step (a). We independently generated the trivariate random variables ((v1i, v2i), v3i)
for i = 1, . . . , n from a nested Archimedean copula model using the R package copula

(Hofert & Mächler 2011) for setting 1 and from a trivariate Gaussian copula model
for setting 2.
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Step (b). We used the survivor functions of the Weibull distributions Sj(·) and SD(·),
where the scale and shape parameters mimic the corresponding event times and death
times in the real example, to form the generated event times and terminating event
times tji = S−1

j (vji) with j = 1, 2 and di = S−1
D (v3i) for i = 1, . . . , n.

Step (c). We generated the independent (administrative) censoring times cAi indepen-
dently from (v1i, v2i, v3i) from the exponential distribution with the parameter chosen
to give a censoring rate of 25 percent. We then calculated ci = di ∧ cAi with the
indicator δDi = I(di ≤ cAi) and uji = tji ∧ ci with the indicator δji = I(tji ≤ ci).

Steps (a), (b), and (c) yield generated observed-data:
{
[(uji, δji) : j = 1, 2]

⋃
[ci, δDi] : i =

1, . . . , n
}

For Setting 3,

Step (a). We independently generated trivariate random variables ((v1i, v2i), v3i) for
i = 1, . . . , n from a nested Archimedean copula model with θ = 1 and θ12 = 0.8.

Step (b). We fixed (θ1, θ2, θη) to specify the formulation in (4.7), such that the frailty
ξ follows gamma distribution with shape and scale parameter equal to 1. Letting
vji = Sj(tji) =

∫
S0j(tji)exp(θ1ξ)η(ξ)dξ, we can solve for S0j(tji), denoted as wji, for

j = 1, 2, where S0j(t) are the baseline survival function for T1 and T2. In addition,
we let v3i = SD(di). We used the survivor functions of the Weibull distributions
for S0j(·) and SD(·), to form the generated event times and terminating event times
tji = S−1

0j (wji), and di = S−1
D (v3i).

Step (c) generated data following the same step (c) as above for setting 1 and setting
2.

We considered the sample sizes n = 500, 1000, and 2000 to generate medium to large
studies. In setting 1 : The values of the outer and inner copula parameters (θ, θ12) were set
so that the corresponding Kendall’s (τ, τ12) are (0.4, 0.5) and (0.3, 0.8), representing weak
and moderate-to-strong dependence structures. In setting 2 : The values of the trivariate
Gaussian parameters (θ, θ12) were set so that Kendall’s (τ, τ12) are (0.6, 0.8), (0.8, 0.8),
and (0.8, 0.6) respectively, representing the moderate-to-strong dependence observed in the
real-data example. We used the Kaplan–Meier estimator to obtain S̃∗j (·) and S̃D(·) in the
estimation procedure. In setting 3 : The frailty ξ follows gamma distribution with shape
and scale parameter as 1. θ1 and θ2 are fixed at 1 but can be changed to any value as
needed. θ is fixed as 0.8.

4.3.2 Consistency and Efficiency

We evaluated the pseudo-MLE of the association parameters (θ, θ12) and the estimator
for the marginal survivor function of Tj from section 4.2 with five hundred generated sets
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of data from the nested Archimedean copula models. For comparison, we also found the
MLE of (θ, θ12) derived from likelihood function (4.3) using the true survivor functions
Sj(·) and SD(·), and the naïve estimates obtained by maximizing (4.3) after substituting
the marginal survivor functions by their Kaplan–Meier estimates. In the settings that this
chapter focuses on, the MLE is not applicable, and the naïve estimator can be biased because
of the informative censoring.

Table 4.1 presents a summary of the simulation outcomes based on the five hundred
repetitions under the nested Clayton and the nested Frank models, with two different com-
binations of values for θ and θ12. The sample means of the pseudo-MLE and MLE estimates
are close to the true parameter values, especially when n is large. This verifies the con-
sistency of the pseudo-MLE and the MLE. The sample means of the naïve estimates, on
the other hand, are quite different from the true values. The sample standard errors of the
pseudo-MLE are larger than but comparable with their MLE counterparts, which indicates
that the pseudo-MLE has satisfactory efficiency in the simulation settings.

The six plots in figure 4.1 correspond to simulated studies under the nested Clayton
copula model with Kendall’s τ = 0.4 for the outer copula and τ12 = 0.5 for the inner
copula; the sample sizes are n = 500, 1000, and 2000. The three plots in the upper and
lower rows correspond to the curves for S1(·) and S2(·), respectively. Each plot shows the
true curve of the marginal survivor function Sj(·) and the two sets of estimates with the
generated semicompeting-risks data, using the proposed pseudo-MLE or the naïve approach.
The two sets of approximate 95% CBs for Sj(·) are also presented. The true Sj(·) curve is
fully covered by the CB associated with the pseudo-MLE in every plot. It is not within the
CB associated with the naïve estimator, which requires the assumption of noninformative
censoring which is in fact not valid in the simulation settings. This pattern becomes clearer
as the sample size increases. The same patterns are observed when τ = 0.3, τ12 = 0.8 in
the nested Clayton model. The simulation outcomes with the nested Frank models for all
the combinations of (τ, τ12) agree with those for the nested Clayton copula.

4.3.3 Robustness to Model Misspecification

To examine the pseudo-MLE’s robustness to model misspecification, we generated data un-
der nested Clayton copulas and nested Frank copulas and evaluated the pseudo-MLE. To
compare the estimates, we present Kendall’s τ and τ12 since it is a universal metric of de-
pendence for different models. Table 4.2-4.3 summarizes the sets of pseudo-MLE estimates
based on five hundred generated data sets. Some biases occur across different simulated
studies under both misspecified copula models. However, the biases of the resulting esti-
mates compared to the true Kendall’s τ and τ12 values appear to be insignificant, especially
when the nested Frank copula is used to evaluate the estimators.

The six plots in figure 4.5 correspond to sets of estimates of the marginal survivor
functions S1(·), using correct and misspecified inner and outer copulas. The naïve estimates
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of the marginal survivor functions are biased, but the estimates from the other misspecified
models are close to the true marginals, especially when the outer copula model is correctly
specified. Plots from other types of copula for both S1(·) and S2(·) are shown from figure 4.6
to figure 4.12.

In addition, we used the data sets generated from setting 2, i.e., from trivariate Gaussian
copula models, to evaluate the robustness of the proposed approach when the true model is
not Archimedean. Table 4.4- Table 4.6 summarize the sets of pseudo-MLE estimates based
on five hundred generated data sets. Some biases were observed under misspecified copula
models. However, the biases appear to be insignificant for most of the nested Archimedean
models, especially for the nested Frank copula model, and when the inner copula is Gaussian
and the outer copula is Frank. Similar to the conclusion in Chapter 3, Frank copula seems
to be a flexible Archimedean copula to use in practice.

4.3.4 Flexibility on Modeling Correlation Between Event Times

Table 4.7 presents the sample mean and sample standard error of the estimates for the
parameter set (θ1, θ2, θη, θ) in model (4.7), for different sample sizes, based on five hundred
generated datasets. Figure 4.13 shows six plots corresponding to the marginals for S1(·)
and S2(·). Each plot shows the true curves and the estimated marginals with confidence
bands (CB). The sample means of the parameter estimates are close to the corresponding
true values for the parameters. The true curves for marginals are covered the CBs in every
plot.
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Table 4.4: Robustness Study. Estimation of Kendall’s τ and τ12 with Simulated Data from
Trivariate Gaussian Copulas with τ = 0.8 andτ12 = 0.8. Based on 500 Repetitions.

True Model: A[2]:Gaussian, C[2]:Gaussian
n 500 1000 2000

τ τ12 τ τ12 τ τ12

A[2]: Clayton C[2]: Clayton sm 0.70 0.68 0.69 0.68 0.69 0.68
sse .027 .026 .020 .020 .016 .017

C[2]: Gaussian sm 0.71 0.76 0.7 0.76 0.7 0.76
sse .029 .016 .021 .012 .016 .009

C[2]: Frank sm 0.67 0.78 0.67 0.78 0.67 0.78
sse .022 .016 .016 .011 .012 .008

A[2]: Frank C[2]: Clayton sm 0.79 0.68 0.79 0.68 0.79 0.68
sse .014 .021 .011 .015 .009 .011

C[2]: Gaussian sm 0.80 0.77 0.80 0.78 0.80 0.78
sse .013 .016 .010 .011 .009 .009

C[2]: Frank sm 0.78 0.78 0.78 0.78 0.78 0.79
sse .016 .020 .014 .016 .010 .012

Table 4.5: Robustness Study. Estimation of Kendall’s τ and τ12 with Simulated Data from
Trivariate Gaussian Copulas with τ = 0.6 andτ12 = 0.8. Based on 500 Repetitions.

True Model: A[2]:Gaussian, C[2]:Gaussian
n 500 1000 2000

τ τ12 τ τ12 τ τ12

A[2]: Clayton C[2]: Clayton sm 0.45 0.69 0.45 0.70 0.45 0.70
sse .026 .020 .018 .014 .014 .010

C[2]: Gaussian sm 0.44 0.78 0.44 0.79 0.44 0.79
sse .030 .011 .019 .008 .014 .006

C[2]: Frank sm 0.42 0.78 0.42 0.78 0.42 0.79
sse .072 .026 .025 .010 .019 .008

A[2]: Frank C[2]: Clayton sm 0.54 0.74 0.54 0.74 0.54 0.74
sse .035 .020 .017 .011 .011 .008

C[2]: Gaussian sm 0.58 0.79 0.58 0.80 0.58 0.80
sse .048 .020 .021 .010 .013 .006

C[2]: Frank sm 0.65 0.73 0.64 0.74 0.63 0.75
sse .075 .059 .071 .058 .065 .058
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Table 4.6: Robustness Study. Estimation of Kendall’s τ and τ12 with Simulated Data from
Trivariate Gaussian Copulas with τ = 0.8 andτ12 = 0.6. Based on 500 Repetitions.

True Model: A[2]:Gaussian, C[2]:Gaussian
n 500 1000 2000

τ τ12 τ τ12 τ τ12

A[2]: Clayton C[2]: Clayton sm 0.75 0.48 0.76 0.49 0.76 0.49
sse .014 .025 .011 .019 .008 .014

C[2]: Gaussian sm 0.75 0.59 0.75 0.59 0.75 0.6
sse .013 .019 .010 .014 .007 .010

C[2]: Frank sm 0.72 0.6 0.72 0.61 0.72 0.61
sse .015 .021 .011 .014 .008 .011

A[2]: Frank C[2]: Clayton sm 0.80 0.52 0.80 0.52 0.80 0.52
sse .009 .023 .006 .016 .005 .012

C[2]: Gaussian sm 0.82 0.59 0.82 0.59 0.82 0.59
sse .009 .020 .007 .014 .006 .011

C[2]: Frank sm 0.83 0.59 0.83 0.60 0.83 0.60
sse .010 .021 .006 .014 .005 .010

Table 4.7: Estimation of (θ1, θ2, θη, θ) with Simulated Data From (4.7).

θ1 θ2 θη θ0

Real 1.00 1.00 1.00 0.80
n = 500 sm† 0.98 0.95 0.997 0.79

sse‡ 0.147 0.151 0.159 0.14
n = 1000 sm 0.97 0.96 1.002 0.79

sse 0.124 0.118 0.149 0.172
n = 2000 sm 0.99 0.98 0.988 0.77

sse 0.115 0.103 0.121 0.145
sm†: sample mean
sse‡: sample standard error
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4.4 Analysis of BC-BRCAS Data (III)

To illustrate the approach proposed in this chapter, we present an analysis of data from the
BC-BRCAS study (McBride et al. 2016).

4.4.1 Study Description

The study subjects are the same as those in Chapter 3. Table 3.14 presents a summary of
the available data on T1, T2, and D.

4.4.2 Estimates of Correlations between Event Times

Recall that our analysis of the BC-BRCAS study aims to evaluate the correlation between a
breast cancer patient’s time to RSC (T1) and her time to a CVD event (T2) after the cancer
diagnosis. In this section, we estimated Kendall’s τ12, the measure of association between
T1 and T2, under a copula model embedded within an Archimedean copula model.

Specifically, we specified the joint survivor function of (T1, T2) with the available study
data through a copula model (“inner” copula) with parameter θ12, and we specified the
joint survivor function of (T1, T2) with D through another copula model (“outer” copula)
belonging to the Archimedean copula family with parameter θ. The inner copula does
not need to be an Archimedean copula, and the association parameter can be different
from that for the outer copula. We implemented the pseudo-MLE procedure described in
section 4.2 to estimate θ12 and θ, the associated standard error, and the marginal survivor
functions Sj(·) using the data from subgroups based on age at diagnosis, stage at diagnosis,
and treatment, as well as from the full cohort. We note here that under the current time
scale, we assume that CA is noninformative given stage at diagnosis, and results for other
subgroups (age at diagnosis, treatment) are for exploratory purpose.

To compare the estimates from different models, we converted θ̂12 and θ̂ into estimates
of the corresponding Kendall’s τ12 and τ . Table 4.8 presents the estimates of τ12 and τ

under different combinations of copula models. A[2] corresponds to the outer Archimedean
copula, and C[2] corresponds to the inner copula, which can be Archimedean (e.g., Clayton
or Frank) or not (e.g., Gaussian).

Based on the estimated τ , the associations between the death time D and the event
times (T1, T2) (the time to RSC or CVD) all appear strongly positive for both early and
late stage at diagnosis, regardless of the copula model used in the estimation. This is further
evidence that informative censoring occurred in the observations for the two event times.

The estimates of τ12 appear to be low to moderate, depending on the subgroup. Those
diagnosed at late stage (stage III) have a higher association between T1 and T2. For com-
parison, we also obtained the estimates by the naïve approach (table 4.9) which ignores
the informative censoring and uses the Kaplan–Meier estimates of Sj(·) in the pseudo-MLE
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procedure of section 4.2. These values underestimate the association parameter between
the bivariate event times compared to the pseudo-MLE estimates.

The estimated marginal survivor functions Ŝj(·) and approximate 95% CIs are shown
in figure 4.14 and figure 4.15 respectively, for the early and late stages at diagnosis. The
estimates from different models appear quite similar, and all the estimates are significantly
different from the corresponding naïve estimates. The marginal survivor functions are
different among the two subgroups.
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Figure 4.14: Estimates of Marginal Survivor Functions S1(·) on Time to RSC Using Pro-
posed Approach with Different Copulas and Using Kaplan–Meier Estimator with BC-
BRCAS Data Preferred. Early Stage at Diagnosis (Upper Row) vs. Late Stage at Diagnosis
(Lower Row).
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Figure 4.15: Estimates of Marginal Survivor Functions of S2(·) on Time to CVD Using
Proposed Approach with Different Copulas and Using Kaplan–Meier Estimator with BC-
BRCAS Data Preferred. Early Stage at Diagnosis (Upper Row) vs. Late Stage at Diagnosis
(Lower Row).

131



4.5 Discussion

We have proposed a flexible modeling approach and the associated pseudolikelihood-based
inference procedure to deal with informative censoring in the analysis of bivariate event
times. The approach models bivariate event times jointly with the informative censoring
time through a bivariate Archimedean copula (“outer” copula) function. The joint survivor
function of the bivariate event times can be modeled through a copula that is different
from the outer copula. This allows the association between the bivariate event times and
their dependence on the informative censoring time to be different. This provides flexibility
and is more appropriate for practical studies. In addition, the joint survivor function can
also be modeled through other bivariate functions such as (4.7), which leads to additional
flexibility. Our approach can be extended to multiple (≥ 3) event times.

Our procedure is pseudolikelihood-based and is computationally more feasible than the
likelihood-based counterpart. The trade-off is its potential loss of inference efficiency, which
is shown by comparisons such as that in Lawless & Yilmaz (2011). We may consider max-
imizing the likelihood based on the full data set (3.1) with respect to all the association
parameters θ12 and θ jointly with the survivor functions Sj(·) for j = 1, 2 and SD(·). Al-
ternatively, to ease the computational intensity of the maximum semiparametric likelihood
procedure, we may adopt a data-smoothing technique to handle the unknown survivor func-
tions. In this chapter we provided an iterative algorithm to find the pseudo-MLE without
having to estimate the density of the marginal survivor functions.

The real-data analysis in section 4.4 has shown that the association between the bivari-
ate event times is weaker than their dependence on the informative censoring time. This
confirms the usefulness of our flexible modeling approach. Our analysis of the real data
shows that the survival patterns and the association patterns are different among the sub-
groups. This suggests an important and useful extension of our approach: if we include the
potential covariates in the model, we can assess the covariate effects on the survivor func-
tions and the association between the event times. The extended approach could be applied
to compare the breast cancer patients with the general population in terms of CVD-related
health issues, which is the primary goal of the analysis of the breast cancer study.

In summary, compared to Chapter 3, this approach allows the dependence between the
event times, and between them jointly and the time to the terminating event to be different.
We examine the performance through numerical studies and theoretical justification. The
pseudo MLE inference procedure is easy to implement. We applied the approach to real
data example and verified that the association parameter in Chapter 3 may be taken as an
average of the associations with varying magnitude between different pairs of event times.
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Chapter 5

Regression Analysis of Bivariate
Event Time with Observations on
Response Subject to Informative
Censoring

Studies on association between two event times and how covariates affect the association
are often of interest to researchers. Conventional marginal or conditional approaches on
multivariate event times assume noninformative censoring which could lead to biased in-
ference if the assumption is violated. In this chapter, we extend the proposed approach
in Chapter 4 in a regression setting, where we formulated the joint distribution of the bi-
variate event times together with the informative censoring time through embedded copula
functions, which allows for flexible dependence amongst event times. In the meantime, we
incorporated covariate effects by specifying the association parameters as functions of the
covariates. A by-product of our approach is the estimator of conditional survivor functions
for each of the event time in presence of informative censoring. We developed an easy-to-
implement pseudolikelihood-based inference procedure. Simulation studies are conducted
to examine the performance of the proposed modeling and inference procedure. Asymptotic
properties of the proposed estimator are established. We applied the proposed approach to
analyze the motivating real-data example which attempts to evaluate how clinical factors
(e.g. treatment) affect the time to the first cardiovascular disease amongst breast cancer
patients who have experienced relapse or second cancer.

5.1 Introduction

Association or dependence structures between event times are often of interest in practical
studies. Conventional statistical approaches focus mainly on regression analysis with mul-
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tivariate event times data using marginal or conditional models, and specify the association
between event times by a frailty or a copula parameter (see, for example, Clayton 1978,
Oakes 1994, Genest et al. 1995, Shih & Louis 1995, Lawless & Yilmaz 2011, Diao & Cook
2014, Zhong & Cook 2016). There is also some literature on the bivariate association. For
example, Ning et al. (2015) propose the use of rate ratio to assess the local dependence
between two types of recurrent event processes by modeling the rate ratio as a parametric
function of time. Fine & Jiang (2000) consider estimation of the cross ratio in Clayton’s
(1978) copula in which covariates are incorporated into the marginal distributions via semi-
parametric accelerated life regression models. Other works on bivariate association include
Bandeen-Roche & Ning (2008), Fan et al. (2000), Cheng et al. (2007), amongst others.
These approaches assume noninformative censoring on the bivariate event times, and the
covariates effects are incorporated through the marginal functions.

The breast cancer study, a recent cancer survivorship project (Davis et al. 2014) at the
BC Cancer Agency (www.bccancer.ca) investigated the association between the time to
RSC and the time to CVD, and how the clinical (e.g. age, treatment, stage) and sociode-
mographic (e.g. socioeconomic status), and health system factors (e.g. health authority
at diagnosis) might affect this association. This is an important health issue for cancer
survivors. The study’s observations on the times to CVD and RSC are heavily censored
because of either the study follow-up time limit or death. The time to death is likely cor-
related to the two event times of interest. Thus, conventional event time analysis methods,
such as Cox PH model for regression analysis are not directly applicable. Statistical infer-
ence with such data requires us to formulate the potential dependence amongst the multiple
event times and, at the same time, their dependence on the informative censoring. However,
often we cannot confidently specify either the correlation structures, or the distributions
of the event times and censoring times. Conjectures about the dependence structures, in
particular, can be many and varied. In addition, it is desirable to have explicit visualization
or interpretations of the covariates effect on the association between CVD and RSC.

This chapter focuses on a semiparametric analysis of bivariate event times with obser-
vations on two event times informatively censored due to a terminating event. Leaving the
marginal distribution of the terminating event unspecified, we model the correlation of the
two events with the terminating event via a bivariate copula model, and we model the two
event times of interest via another bivariate copula model. Covariate effects are incorpo-
rated through specifying the copula association parameters as functions of the covariates.
The two-step estimation procedure with a copula model can then naturally be adapted to
the proposed model. On the other hand, the model may adopt the deemed structure of
the multivariate event time distribution in any form, not necessarily that of the bivariate
copula model.

We motivate the model and illustrate the associated estimation procedure using the
breast cancer study. The methodology, however, has broader applicability. The rest of this
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chapter is organized as follows. Section 5.2 presents the models after introducing the no-
tation and framework. We propose in section 5.3 a pseudolikelihood-based semiparametric
procedure to estimate the model parameters. We then derive the asymptotic properties
of the resulting estimators, and in particular the maximum pseudolikelihood estimator
(pseudo-MLE) for the model parameter that measures the association between the event
times. Section 5.4 reports a simulation study that evaluated the finite-sample performance
of the estimation procedure in terms of consistency, efficiency, and robustness. Section 5.5
presents an analysis of the real data from the breast cancer study, and section 5.6 provides
concluding remarks.

5.2 Notation and Modeling

5.2.1 Notation

We aim to estimate the joint survivor function S12|Z(·) with the study’s right-censored
bivariate event times when T1 and T2 are potentially correlated with D, given covariates Z.
Adopting the conventional notation, let ∆D be the indicator I{D ≤ CA}, and Uj = Tj ∧C
with ∆j = I{Tj ≤ C} for j = 1, 2. Suppose that the study data are n independent
realizations of

{
(U1,∆1), (U2,∆2), (C,∆D);Z

}
, denoted by

Observed-Data =
n⋃
i=1

{[{
(uji, δji) : j = 1, 2

}⋃
{(ci, δDi)}

]
; zi : i = 1, . . . , n

}
. (5.1)

This is the union of the two semicompeting-risks data sets on T1 and T2 associated with
C = D ∧ CA, together with the observed covariates Zi: for j = 1, 2,

Observed-Dataj =
{
(uji, δji, ci, δDi;Zi) : i = 1, . . . , n

}
. (5.2)

We perform inference on the distributions of the event times Tj over the intervals [0, vj ]
with vj chosen to be slightly smaller than maxi{uji} for j = 1, 2.

5.2.2 Model Specification

We extended the modeling proposed in Chapter 4, by assuming that the administrative
censoring time CA is independent of the event times T1, T2 and the time to the termi-
nating event D, conditional on Z. Furthermore, to specify the conditional correlation of
(T1, T2) with D, we embedded the bivariate survivor function of (T1, T2)|Z in a bivariate
Archimedean copula model (e.g., Joe 1997). That is, we assumed the joint survivor function
of (T1, T2) with D conditional on Z to be

Pr(T1 ≥ t1, T2 ≥ t2, D ≥ d|Z) = A[2]
(
S12(t1, t2|Z), SD(d|Z); θ(Z)

)
. (5.3)
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where association parameter θ(Z) is an unknown function of Z which characterizes the
correlation between S12(t1, t2|Z) and SD(d|Z). Note that S12(t1, 0|Z) = P (T1 ≥ t1|Z) and
S12(0, t2|Z) = P (T2 ≥ t2|Z) are the conditional marginal survivor functions of T1 and T2,
respectively. Let Sj(tj |Z) = P (Tj ≥ tj |Z) for j = 1, 2. The model in (5.3) induces the joint
model of Tj and D conditional on Z:

Pr(Tj ≥ tj , D ≥ d|Z) = A[2]
(
Sj(tj |Z), SD(d|Z); θ(Z)

)
. (5.4)

Often the bivariate survivor function S12(·|Z) in (5.3) cannot be confidently specified using a
parametric model. We consider a semiparametric model for the conditional joint distribution
of T1, T2:

S12(t1, t2|Z) = C[2]
(
S1(t1|Z), S2(t2|Z); θ12(Z)

)
, (5.5)

where the univariate marginal survivor functions Sj(·|Z) are unspecified, and C[2](·; θ12(·)) is
a known bivariate copula function upon θ12(·). We remark that here it allows the bivariate
function C[2](·) in model (5.5) to be different from the bivariate Archimedean copula A[2](·)
in model (5.3). We may choose C[2](·) in (5.5) to be a commonly-used non-Archimedean
copula or a bivariate function. This leads to additional modeling flexibility. Since the
motivating question is to address the association between event times, and copula models
provide a feasible measure of association, we thus focus on copula modeling in this chapter.
More discussion on it is provided with numerical studies reported in sections 5.4 and 5.5.

Denote δ1i+ δ2i by δ·i. Let ḣ(r) be dh(r)/dr for a function h(r) and h(a1,a2)(r1, r2;φ) be
∂h(a1+a2)(r1, r2;φ)/∂ra1

1 ∂r
a2
2 for a function h(r1, r2;φ) with well-defined partial derivatives.

The likelihood function with the available data under the copula model (5.3) with model
(5.5) embedded in is

L(S1(·|Z), S2(·|Z), SD(·|Z), θ(·), θ12(·)|Observed-Data)

=
n∏
i=1

{
(−1)δ.i+δDi

∂δ.iA(0,δDi)
[2]

(
S12(u1i, u2i|Z), SD(ci|Z); θ(Z)

)
∂uδ1i

1 ∂uδ2i
2

ṠD(ci|Z)δDi
}
. (5.6)

=
n∏
i=1

{
(−1)δ.i+δDi

∂δ.iA(0,δDi)
[2]

(
C[2](S1(u1i|Z), S2(u2i|Z); θ12(Z)), SD(ci|Z); θ(Z)

)
∂uδ1i

1 ∂uδ2i
2

ṠD(ci|Z)δDi
}

It is not easy to directly maximize (5.6) with respect to θ(Z), θ12(Z), SD(·|Z), and
Sj(·|Z), j = 1, 2. When all covariates in Z are discrete, denoted Z∗ with finite categories, it
is straightforward to estimate θ(Z∗) and θ12(Z∗) as a set of finite dimensional parameters.
When continuous covariate is present, denoted X, we model θ(X), θ12(X) as linear combi-
nations of cubic B-spline basis functions (see for example Rosenberg 1995) in the real data
analysis. Specifically, we used θ(X) = α′B, and θ12(X) = α12

′B where B are B-spline basis
functions of degree = 3, number of knots = 1, location of knots at the median of X .
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In other words, the estimation of the two unknown functions θ(·), θ12(·) can be specified
into estimation of finite dimensional parameters, denoted by α, and α12, respectively. Now
maximizing (5.6) is simplified into maximizing

L(S1(·|Z), S2(·|Z), SD(·|Z),α,α12|Observed-Data) (5.7)

=
n∏
i=1

{
(−1)δ.i+δDi

∂δ.iA(0,δDi)
[2]

(
C[2](S1(u1i|Z), S2(u2i|Z);α12), SD(ci|Z);α

)
∂uδ1i

1 ∂uδ2i
2

ṠD(ci|Z)δDi
}

with three unknown functions SD(·|Z) and Sj(·|Z), j = 1, 2 and two sets of parameters α12,
α.

5.2.3 More on Modeling

The current observations on D are right-censored with the noninformative censoring time
CA. There is a readily available consistent estimator for SD(·), e.g., the Kaplan–Meier
estimator, denoted as S̃D(·). In regression setting, there are also readily available models
and estimating procedures to obtain conditional SD(·|Z), denoted as S̃D(·|Z), including
parametric models (e.g. Weibull, Exponential, Lognormal) or the Cox PH model. In the
real data analysis in section (5.5), we applied the Cox model:

SD(t|Z) = exp{H0D(t)eβDZ} (5.8)

where βD can be estimated using standard partial likelihood inference procedure, and
H0D(t) can be estimated by the Breslow estimator. We denote the estimated conditional
survivor function as S̃D(t|Z).

In addition, estimating the conditional survivor function of the event times Tj (j =
1, 2) with the semicompeting-risks data, Observed-Dataj in (5.2), is of interest in many
situations. When the copula function A[2](·; θ(Z)) in (5.3) is an Archimedean copula with
its generator ψ(·; θ(Z)), the induced model (5.4) for the joint survivor function of Tj and
D yields

Sj(t|Z) = g(S∗j (t|Z), SD(t|Z); θ(Z)) = ψ−1{ψ(S∗j (t|Z); θ(Z))− ψ(SD(t|Z); θ(Z)); θ(Z)
}
,

(5.9)
where S∗j (t|Z) = P (T ∗j ≥ t|Z) is the survivor function of T ∗j = Tj ∧ D conditional on Z.
Similar to D, T ∗j is only censored by CA, the noninformative censoring time. In this chapter,
we apply the semiparametric Cox model:

S∗j (t|Z) = exp{H∗0j(t)e
β∗
jZ} (5.10)

where β∗j and H∗0j can be estimated through standard approach for the Cox model. We
denote the estimated conditional survivor function as S̃∗j (t|Z). Plugging in the estimates
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S̃∗D(t|Z) and S̃∗j (t|Z) into (5.9), and with θ(·) specified with parameter α, we have

S̃j(t|Z;α) = g(S̃∗j (t|Z), S̃D(t|Z);α) (5.11)

Following the idea of the pseudolikelihood estimation procedure under a copula model
(e.g., Lawless & Yilmaz 2011), we may consider a pseudo-MLE of α,α12 by plugging (5.11)
into (5.7), and now the likelihood function is proportional to:

L(α,α12|Observed-Data) (5.12)

=
n∏
i=1

{
(−1)δ.i+δDi

∂δ.iA(0,δDi)
[2]

(
C[2](S̃1(u1i|Z;α), S̃2(u2i|Z;α);α12), S̃D(ci|Z);α

)
∂uδ1i

1 ∂uδ2i
2

}

with respect to α12 and α only. Here the partial derivative in (5.12) is

∂δ.iA(0,δDi)
[2]

(
C[2](S̃1|Z(u1i;α), S̃2|Z(u2i;α);α12), S̃D|Z(ci);α

)
∂uδ1i

1 ∂uδ2i
2

=



A(0,δDi)
[2]

(
C[2](S̃1|Z(u1i;α), S̃2|Z(u2i;α);α12), S̃D|Z(ci);α

)
, δ1i = δ2i = 0

A(1,δDi)
[2]

(
C[2](S̃1|Z(u1i;α), S̃2|Z(u2i;α);α12), S̃D|Z(ci);α

)
×

C(δ1i,δ2i)
[2] (S̃1|Z(u1i;α), S̃2|Z(u2i;α);α12), δ1i 6= δ2i

A(2,δDi)
[2]

(
C[2](S̃1|Z(u1i;α), S̃2|Z(u2i;α);α12), S̃D|Z(ci);α

)
×

C(1,0)
[2] (S̃1|Z(u1i;α), S̃2|Z(u2i;α);α12)×
C(0,1)

[2] (S̃1|Z(u1i;α), S̃2|Z(u2i;α);α12)
+A(1,δDi)

[2]
(
C[2](S̃1|Z(u1i;α), S̃2|Z(u2i;α);α12), S̃D|Z(ci);α

)
×

C(1,1)
[2] (S̃1|Z(u1i;α), S̃2|Z(u2i;α);α12) δ1i = δ2i = 1.

The resulting estimator with the trade-off of some efficiency loss, can be much easier to
implement than its MLE counterpart.

In principle, one may maximize (5.6) under model (5.3) coupled with model (5.5) with
respect to α, Sj(·),α12, and SD(·) to obtain their MLE, which leads to the semiparametric
MLE of the joint survivor function S12|Z(·; θ12). This, however, requires quite intensive
computing. Furthermore, the counterpart of the pseudo-MLE approach for parametric
S12|Z(·) is not directly applicable since there is no readily available consistent estimator for
Sj|Z(·) with the current semicompeting-risks data on Tj . These considerations motivate the
two procedures in section 5.3 for estimating the joint survivor function S12(·|Z;α12) under
model (5.5).
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5.3 Pseudolikelihood-Based Estimation Procedures

Using the idea underlying two-stage estimation procedures with a copula model (e.g., Oakes
1994, Genest et al. 1995), we estimate S12(·|Z), the joint survivor function of (T1, T2), under
the model (5.3) with model (5.5) embedded in. The estimation procedure yields a consistent
estimator for the marginal survivor function of each of the two event times as a by-product.
We also present the asymptotic properties of the estimators.

5.3.1 Estimating the Parameters with the Observed-Data

Under model (5.4), as it is given in (5.9), the marginal survivor function Sj(t|Z) = g(S∗j (t|Z),
SD(t|Z); θ(Z)), a known function of the marginal survivor function of T ∗j = Tj ∧D and the
marginal survivor function of D upon θ(Z) for j = 1, 2. With known S∗j (t|Z) and SD(t|Z),
Sj(t|Z) is known only upon the parameter θ(Z). In this chapter, the functions θ(·) and
θ12(·) can be estimated by parameters α and α12, respectively.

Furthermore, provided with consistent estimators for S∗j (·|Z) and SD(·|Z), we max-
imize the pseudolikelihood in (5.12) with respect to η = (α′,α′12)′ or, equivalently, its
log-transformation with respect to the parameters η = (α′,α′12)′, to derive a pseudo-MLE:

η̂n = argmaxηL(η|S̃1|Z(·), S̃2|Z(·), S̃D|Z(·);Observed-Data). (5.13)

This pseudo-MLE procedure is computationally easy to implement. We present below an
iterative algorithm to calculate η̂n.
Algorithm. Using the estimated S̃∗j (·|Z) and S̃D(·|Z) together with the current estimate
η(k−1) and S(k−1)

j (·|Z) for j = 1, 2 and with k ≥ 1,

Step 1. obtain the updated estimate for η as

η(k) = argmaxηL(η|S(k−1)
1 (·|Z), S(k−1)

2 (·|Z), S̃D(·|Z);Observed-Data);

Step 2. obtain the updated estimates for Sj(·|Z) as S(k)
j (t|Z) = S̃j(t|Z;α(k)) =

g(S̃∗j (t|Z), S̃D(t|Z);α(k)) for j = 1, 2.

Repeat steps 1 and 2 until the sequence {η(k) : k = 0, 1, . . .} converges. The limit is η̂n
defined in (5.13).

5.3.2 Resulting Estimators for Marginal and Joint Survivor Function

Plugging α̂n(·), S̃∗j (t|Z), and S̃D(t|Z) from the above section in (5.9) gives a natural esti-
mator for the marginal survivor function Sj(·|Z):

Ŝjn(t|Z) = g(S̃∗j (t|Z), S̃D(t|Z); α̂n). (5.14)
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Moreover, the joint survivor function S12(t1, t2|Z) of (T1, T2) based on (5.5):

Ŝ12n(t1, t2|Z) = C[2]
(
Ŝ1n(t1|Z), Ŝ2n(t2|Z); α̂12n

)
. (5.15)

5.3.3 Asymptotic Properties

The following proposition establishes the consistency and asymptotic normality of the re-
sulting estimator. Define the following regularity conditions:

(RC5.1) Suppose θ(X) is a smooth function defined on R, and Cab(r1, r2; θ), Cabc(r1, r2; θ)
exist and are continuous and uniformly bounded by some constant M for a, b, c ∈
(0,1,2,3), 0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1.

(RC5.2) For each x, 0 < Eθ
Cabc(r1,r2;θ(x))
Cab(r1,r2;θ(x)) ≤ ∞ for a, b, c ∈ (0,1), 0 ≤ r1 ≤ 1, 0 ≤ r2 ≤

1, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1 .

(RC5.3) Under Archimedean copula, gab(v1, v2; θ) and gabc(v1, v2; θ) exist and are
continuous and uniformly bounded by some constant M for a, b, c ∈ (0,1,2,3), 0 ≤
r1 ≤ 1, 0 ≤ r2 ≤ 1, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1.

(RC5.4) Under Archimedean copula, for each x, 0 < Eθ
Cabc(r1,r2;θ(x))g001(v1,v2;θ)

Cab(r1,r2;θ(x)) ≤ ∞
for a, b, c ∈ (0,1), 0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1 .

In addition, if the estimator functions Ŝ1 and Ŝ2 of S1, S2 satisfy the following two
conditions:

AC5.1 Ŝ1 and Ŝ2 converge uniformly to S1 and S2, respectively.

AC5.2
√
n(Ŝ1 − S1) w−→ G1, and

√
n(Ŝ2 − S2) w−→ G2, where G1 and G2 are two mean

zero Gaussian processes with limiting covariance cov(Gj(s1), Gj(s2)) = σ2
j (s1∧s2) for

j = 1, 2, with σ2
j defined as in Andersen et al. (1993). For simplification, we denote

σ2
1(·) and σ2

2(·) as the limiting variance function for
√
n(Ŝ1 − S1) and

√
n(Ŝ2 − S2),

respectively.

Proposition 7. Under the regularity conditions (RC5.1)–(RC5.4) presented above and pro-
vided S̃∗1(t|Z), S̃∗2(t|Z), and S̃D|Z(t) satisfy condition (AC5.1), then as n → ∞, η̂n

a.s.−−→ η

and
√
n(η̂n − η) d−→ N

(
0, AV (η)

)
, where the asymptotic variance is

AV (η) = VB(η)−1VA(η)VB(η)−1 (5.16)

with VB(η) and VA(η) the limits of

− 1
n

n∑
i=1

∂2 logL(η|S̃1|Z(·;α), S̃2(·|Z;α), S̃D(·|Z);Observed-Data)
/
∂η2 (5.17)
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and

1
n
Var

{ n∑
i=1

∂ logL(η|S̃1(·|Z; θ), S̃2(·|Z; θ), S̃D(·|Z);Observed-Data)
/
∂η
}
, (5.18)

respectively, and S̃j(t|Z;α) = g(S̃∗j (t|Z), S̃D(t|Z);α).

Similar to previous two chapters, one may estimate the variance of η̂n by a bootstrap ap-
proach (e.g., Lawless & Yilmaz 2011). A natural and practical variance estimator evaluates
(5.16) at η = η̂n and uses (5.17) and (5.18) to replace their limits, that is, the Huber’s
robust sandwich estimator (Huber 1967). Note that when Sj|Z(·) for j = 1, 2 are known
and used to estimate η = (α′,α′12)′, η̂n is an MLE, and VA(η) and VB(η) in (5.17) and
(5.18) are the same as the corresponding inverse Fisher information matrix.

Proposition 8. Under the regularity conditions (RC5.1)–(RC5.4) and provided S̃∗j (·|Z)
and S̃D(·|Z) satisfy condition (AC5.1) , as n → ∞, Ŝjn(t|Z) a.s.−−→ Sj(t|Z) uniformly and
√
n(Ŝjn(t|Z)−Sj(t|Z)) w−→ Gj(t|Z) with t ∈ [0, v?j ], where Gj(t|Z) is a Gaussian process with

mean zero and variance function σ2
j (t) as defined in, for example, Andersen et al. (1993).

When the sample size is large and the censoring rate is not too high, we may choose
to ignore the variation of S̃∗j (·|Z) and S̃D(·|Z). It then yields an approximate confidence
band (CB) for Sj(·|Z) based on (5.9) with α̂n plugged in, and using the proposed variance
estimator of α̂n in the above section.

The following proposition establishes the consistency and asymptotic normality/weak
convergence of the resulting estimator.

Proposition 9. Under the regularity conditions (RC1)–(RC4) and provided S̃∗j|Z(t) and
S̃D(t|Z) satisfy condition (AC1), as n → ∞, Ŝ12n(t1, t2|Z) a.s.−−→ S(t1, t2|Z) uniformly and
√
n(Ŝ12n(t1, t2|Z)− S(t1, t2|Z)) w−→ G(t1, t2|Z) with t1, t2 ∈ [0, v?1]××[0, v?2], where G(t1, t2)

is a Gaussian field with mean zero and variance function σ2(t1, t2).

The proofs follow the steps give in Section 3.4. The additional step is that the estimated
θ(·) = α′B using spline is consistent, which has been shown in (de Boor 1978).

5.4 Simulation

Simulation studies were conducted to explore the finite-sample performance of the proposed
approach in section 5.3.

5.4.1 Setting and Data Generation

We simulated a study with n independent units where the primary outcome is the bivariate
event times (T1, T2) conditional on Z. The observations on (T1, T2) may be censored by
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either the terminating event time D or an administrative time CA, whichever occurs first.
That is, the study censoring time C = D∧CA. We allow the dependence parameter θ12(Z)
between (T1, T2) and the dependence parameter θ(Z) between (T1, T2) jointly with D to be
different functions of Z.

We generated data from nested Archimedean copula (Joe 1997) which allows the outer
and inner copula association parameters to be different, representing different strengths of
dependence. To imitate potentially informative censoring due to a terminating event, the
data were generated as follows:

Step (a). We independently generated zi for i = 1, . . . , n from Uniform [0, 1], and
calculated the dependence parameters for inner and outer copula respectively as
θ12(zi) = exp (sin(2πzi)) + 1, θ(zi) = exp (sin(3

2πzi)) + 4.

Step (b). We generated the trivariate random variables (v1i, v2i, v3i) conditional on zi
for i = 1, . . . , n from an nested Archimedean copula model with parameter θ12(zi) for
the inner copula between (v1i, v2i), and θ(zi) for the outer copula, by the R package
copula (Hofert & Mächler 2011).

Step (c). Letting Sj(tji|zi) = vji = g(S∗0j(tji)e
β∗
j
zi
, S0D(tji)e

βDzi , θ(zj)), for j = 1, 2,
we used the survivor functions of the Weibull distributions S∗0j(·) and S0D(·), and
we solved for the tji. The scale and shape parameters, together with the regression
coefficients are pre-determined. Letting SD(di|zi) = v3i = S0D(di)e

βDzi , we obtained
the terminating event time di for i = 1, . . . , n. Thus we have formed the generated
event times and terminating event times.

Step (d). We generated the independent (administrative) censoring times cAi indepen-
dently from (v1i, v2i, v3i) from the exponential distribution with the parameter chosen
to give a censoring rate of 25 percent. We then calculated ci = di ∧ cAi with the
indicator δDi = I(di ≤ cAi) and uji = tji ∧ ci with the indicator δji = I(tji ≤ ci).

Steps (a)-(d) yield a generated observed-data:
{
[(uji, δji) : j = 1, 2]

⋃
[ci, δDi]

⋃
[zi] : i =

1, . . . , n
}

We considered n = 500, 1000 and 2000 to generate medium to large studies. The func-
tions of outer and inner copula parameters (θ(·) and θ12(·)) were determined such that the
corresponding Kendall’s (τ(·), τ12(·)) ranges between (0.2, 0.5), and (0.6, 0.8) respectively.
to represent weak and moderate-to-strong dependence structures. We used the Cox PH
model to obtain S̃∗j (·|Z) and S̃D(·|Z) in the estimation procedure.

5.4.2 Simulation Outcomes

We conducted estimation under four scenarios. Scenario (I): We assumed both θ12(·) and
θ(·) to be scalars and obtained the pseudo-MLE. This set of estimates can be viewed as the
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average estimate of dependence . Scenario (II): We assumed θ(·) to be a scalar and modeled
the function θ12(·) through B-spline basis functions. Scenario (III): We assumed θ12(·)
to be a scalar and modeled the function θ(·) through B-spline basis functions. Scenario
(IV): We kept both θ12(·) and θ(·) as unknown functions and estimated both through
B-spline basis functions. The first three scenarios can be viewed as reference estimates
for scenario (IV). We evaluated the pseudo-MLE of the association parameters (θ, θ12),
the coefficient estimates of the B-spline functions, and the estimated conditional marginal
survivor functions, with one thousand generated sets of data.

Table 5.1 presents a summary of the estimates for the Cox regression coefficients, for
S∗j (·|Z), j = 1, 2 and SD(·|Z), based on one thousand repetitions under the nested Clayton
model. The sample means of the estimates are close to the true parameter values.

Table 5.2 and figures 5.1 to 5.3 show the estimates of coefficients for the spline approx-
imation function and the plots for the sets of estimated θ12(·), and/or θ(·) for the four
scenarios described earlier. Table 5.3 provides the τ and τ12 estimates for scenarios I, II
and III. The estimated τ12(·) and τ(·) are close to the true functions, which verifies the
consistency of the proposed estimators. The true function curves are fully covered by the
CB associated with the pseudo-MLE in every plot.

Figures 5.4-5.15 display the estimated marginal survivor functions S1(·|Z) and S2(·|Z)
for Z = 0.3, 0.5, 0.7 for scenarios (I) to (IV) respectively. Each plot provides three curves
representing the real marginal survivor function, the estimated survivor function, and the
estimates from naïve Cox model ignoring informative censoring. It is clear that the naïve
estimates are biased and the proposed approach provided consistent estimates, when sample
size increases the estimate gets closer to the true marginal and CB gets narrower. This con-
firms that the proposed approach provides consistent estimators for the marginal survivor
functions. It is shown that proposed approach provides better estimate than the naïve esti-
mator for all scenarios. Estimates for scenario (I) and scenario (II) are just slightly biased
for certain values of Z, but this is expected as θ is treated as a scalar for all values of Z.
The average estimates of the marginals across all Z values are unbiased. Scenario (III)
provides the closest estimates to scenario (IV) because it assumes θ(·) to be a function of
Z. This provides a guideline that in practice if the association parameter does not vary
systematically across the covariates, and the main goal is to estimate the marginal survivor
functions, then assuming θ(·) and/or θ12(·) to be a scalar will ease the computation, while
still providing good estimates for marginal survivor function on average.
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Table 5.1: Estimates of Coefficients in Cox PH Model for S∗j (·|Z), j = 1, 2, and SD(·|Z)
with Simulated Data

n β∗1 β∗2 βD

True 2 2 2
500 sm∗ 1.935 1.937 1.932

ŝe 0.402 0.404 0.402
1000 sm 1.936 1.936 1.941

ŝe 0.380 0.380 0.381
2000 sm 1.933 1.934 1.934

se 0.368 0.369 0.369
sm∗ sample mean of estimates

Table 5.3: Estimates of (τ, τ12) with Simulated Data for Scenarios I, II and III

n Scenario I II III IV
500 τ sm 0.693 - 0.698 -

se 0.129 - 0.130 -
τ0 sm 0.480 0.483 - -

se 0.092 0.093 - -

1000 τ sm 0.699 - 0.703 -
se 0.130 - 0.130 -

τ0 sm 0.483 0.483 - -
se 0.091 0.091 - -

2000 τ sm 0.702 - 0.706 -
se 0.130 - 0.131 -

τ0 sm 0.486 0.486 - -
se 0.091 0.091 - -
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5.5 Analysis of BC-BRCAS Data (IV)

In this section we present an analysis using data from the BC-BRCAS program (McBride
et al. 2016).

5.5.1 Study Description

The study subjects are those from the cohort as defined in Chapter 2, the cohort Pfinal.
We took each subject’s date of cancer diagnosis as her time origin. We considered the first
event time T1 as the time to RSC and the second time T2 as the time to the first CVD-
related hospitalization after the diagnosis. The availability of information on T1 and T2 is
subject to censoring by death or the end of administrative data extraction, whichever occurs
sooner. Thus, we formulated each subject’s censoring time as C = D ∧CA, where D is the
time to death and CA is the time to the end of the administrative data extraction window.
In the analysis, we only included the new patients who were referred to the BC Cancer
Agency for treatment and with known stage and treatment information. The covariates
Z include one continuous variable age, denoted X, and three discrete variables, namely
stage,treatment, and birth era, denoted Z∗. Preliminary exploratory analysis shows that
other sociodemographic factors did not have any significant effect, so we did not include
them in the final analysis. Table 5.4 shows descriptive information on the study subjects.
We discretize age in this table for descriptive and exploratory data analyses.

5.5.2 Estimates of Correlations between Event Times

We modeled S∗j and SD through marginal (Kaplan Meier estimator) and conditional ap-
proaches (Cox PH model). Table 5.5 shows a summary of the estimates of regression
coefficients for the Cox PH model of S∗j (·|Z), j = 1, 2, and SD(·|Z). Table 5.6 shows the
estimates of τ12 and τ for scenarios (I)-(III), as described in section 5.4. Figure 5.20 and
figure 5.21 show the plots of the estimated functions for τ12(·) and τ(·) with confidence
bands, for scenario (IV).

Late stage at diagnosis seems to be a risk factor for the increased association between
T1 and T2. It appears that chemo treatment is associated with higher dependence between
T1 and T2. Treatment of radiation, on the other hand, did not appear to increase the
association. Further investigation would be desirable to examine the effect of specific types
of chemo or dose and location of radiation. Although it seems that those born in later
era have an increased risk of association between T1 and T2, one needs to be careful when
interpreting these results because potential informative left truncation exists. Those who
were born in an earlier era and experienced T2 may not have been included in the study. In
addition, because of left censoring due to the administrative starting time, the T2 observed
for those born in earlier era may not be the first time to cardiovascular disease.

161



As shown in figure 5.20 , the Kendall’s τ12 between T1 and T2 is stronger among those
diagnosed at a late stage, while the association τ between Tj and D are roughly the same
for both early and late stages. The plot on τ(·) in figure 5.20 also confirms that informative
censoring exists due to the terminating event. One needs to take informative censoring into
consideration when dealing with dependence among multivariate event times.

Figure 5.16 and figure 5.19 present marginal survivor function estimates for S1(t|Z) and
S2(t|Z), respectively, among those diagnosed at age 49 and born in era II, for 4 different
treatment groups and 2 different stages at diagnosis. As expected, compared to early stage
at diagnosis, advanced stage at diagnosis is a risk factor for earlier time to RSC and time
to CVD. Treatment of only radiation seems to be beneficial compared to other treatment
options. For comparison, figure 5.17 and figure 5.18 show the corresponding survival curve
estimates using naïve approach by applying Cox PH model directly on the Observed-Dataj
in (3.2), comparing to the estimates using proposed approach under scenario (IV). The
naïve curves appear different from the proposed estimates, especially in Figure 5.18 on the
estimated survivor function of time to CVD, where the naïve estimates showed no treatment
effect on time to CVD.
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(a)
S1(t|X = 49, early stage, each treatment),

proposed approach

(b)
S1(t|X = 49, early stage, each treatment),

naïve approach

(c) S1(t|X = 49, late stage, each treatment),
proposed approach

(d) S1(t|X = 49, late stage, each treatment),
naïve approach

Figure 5.17: Marginal survivor function estimates for T1 (time to RSC) for early and late
stage at diagnosis, using proposed approach and naïve approach. Each plot shows curves
for four treatment groups with diagnosis age at 49 and born in era II.
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(a)
S2(t|X = 49, early stage, each treatment),

proposed approach

(b)
S2(t|X = 49, early stage, each treatment),

naïve approach

(c) S2(t|X = 49, late stage, each treatment),
proposed approach

(d) S2(t|X = 49, late stage, each treatment),
naïve approach

Figure 5.18: Marginal survivor function estimates for T2 (time to CVD) for early and late
stage at diagnosis, using proposed approach and naïve approach. Each plot shows curves
for four treatment groups with diagnosis age at 49 and born in era II.
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Figure 5.20: Estimates of τ12(Z) under Scenario (IV) with BC-BRCAS Data Pfinal
by Stage at Diagnosis.
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Figure 5.21: Estimates of τ(Z) for Scenario (IV) with BC-BRCAS Data Pfinal
by Stage at Dignosis.

5.6 Discussion

As an extension of Chapter 3 and Chapter 4, this chapter applied the proposed approaches
to regression setting to examine covariate effects. We explored real data analyses (IV) which
addressed the research questions that motivated this thesis work. One might attempt to
estimate the location of the knots for the splines. However, it will substantially increase the
complexity of the analysis, and it is not developed here for cubic splines. As an alternative,
an automatic knot selection procedure can be developed in attempts to compromise between
flexibility of the model and complexity of the analysis (Rosenberg 1995).
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Chapter 6

Comparison in CVD age Between
BC Breast Cancer Cohort and
Age–Matched Controls

In this chapter, we apply the modeling and inference procedures proposed in previous
chapters to deal with informative censoring caused by one single terminating event, in
the setting of regression analyses. Conventional approaches such as the Cox proportional
hazards model in survival analyses require the assumption of noninformative censoring.
Thus, this chapter proposes an approach to deal with informative censoring caused by a
terminating event. We model the event time jointly with the terminating event by an
Archimedean copula function. This allows one to account for informative censoring, and it
yields a consistent estimator of the marginal survivor function in the semicompeting risks
data setting. We propose an easy-to-implement inference procedure using a pseudolikelihood
approach. Simulation studies were conducted to verify the consistency and efficiency of the
proposed approach, as well as robustness against model misspecification. We applied the
proposed approach to a case control study in an attempt to evaluate the difference in age
at first cardiovascular disease between breast cancer survivors and the general population
in presence of a terminating event. This is more practical and useful in real-life examples
when informative censoring is present.

6.1 Notation and Modeling

6.1.1 Notation

We aim to estimate the marginal survivor function S(·|Z) with the study’s right-censored
event time when T is potentially correlated with D. Adopting the conventional notation,
let ∆D be the indicator I{D ≤ CA}, and U = T ∧ C with ∆ = I{T ≤ C}. Suppose that
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the study data are n independent realizations of
{
(U,∆), (C,∆D);Z

}
, denoted by

Observed-Data =
n⋃
i=1

{[{
(ui, δi)

}⋃
{(ci, δDi)}

]
; zi : i = 1, . . . , n

}
. (6.1)

This is one set of semicompeting-risks data on T associated with C = D ∧ CA, together
with the observed covariate zi,

Observed-Data =
{
(ui, δi, ci, δDi; zi) : i = 1, . . . , n

}
. (6.2)

We perform inference on the distributions of the event times T over the intervals [0, v] with
v chosen to be slightly smaller than maxi{ui}.

6.1.2 Model Specification

We assume that the administrative censoring time CA is independent of the event time T
and the time to the terminating event D, and assume the joint survivor function of T with
D conditional on Z is equal to

Pr(T ≥ t,D ≥ d|Z) = A[2]
(
ST (t|Z), SD(d|Z); θ(Z)

)
. (6.3)

The association parameter function θ(Z) is an unknown function of Z which characterizes
the correlation between ST (t|Z) and SD(d|Z). When Z is categorical one can estimate θ
nonparametrically for each level of category. When Z is continuous, we model θ(Z) through
a linear combination of B-splines basis function (see for example Rosenberg 1995), indexed
by a set of dimensional parameters α: θ(Z) =

∑K
i=1α

′B where B is the vector of known
B-spline basis function of degree 3. Now the likelihood function may be represented as:

Pr(T ≥ t,D ≥ d|Z) = A[2]
(
ST (t|Z), SD(d|Z);α

)
. (6.4)

Let ḣ(r) be dh(r)/dr for a function h(r) and h(a1,a2)(r1, r2;φ) be ∂h(a1+a2)(r1, r2;φ)/∂ra1
1 ∂r

a2
2

for a function h(r1, r2;φ) with well-defined partial derivatives. The likelihood function with
the available data under the copula model (6.4) is

L(ST (·|Z), SD(·|Z),α|Observed-Data)

=
n∏
i=1

{
(−1)δi+δDi

∂δiA(0,δDi)
[2]

(
ST (ui|Z), SD(ci|Z);α

)
∂uδi

ṠD(ci|Z)δDi
}
. (6.5)

The current observations on D are right-censored with the noninformative censoring
time CA. There is a readily available consistent estimator for SD(·), e.g., the Kaplan–Meier
estimator, denoted as S̃D(·). In regression setting, there is also readily available models and
estimating procedures to obtain consistent estimator of SD(·|Z), denoted as S̃D(·|Z). For
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example, in the analysis of real data in section (6.3), the Cox model was applied:

SD|Z(t) = exp{H0D(t)eβDZ} (6.6)

Following the idea of the pseudolikelihood estimation procedure under a copula model (e.g.,
Lawless & Yilmaz 2011), we may consider a pseudo-MLE of α by maximizing L(ST (·|Z),
S̃D(·|Z),α|Observed-Data), which is proportional to

n∏
i=1

{
(−1)δi+δDi

∂δiA(0,δDi)
[2]

(
ST (ui|Z), S̃D(ci|Z);α

)
∂uδi

}
, (6.7)

with respect to α only. The resulting estimator, with the trade-off of some efficiency loss,
can be much easier to implement than its MLE counterpart.

In principle, one may maximize (6.5) under model (6.3) with respect to α, ST (·|Z),
and SD(·|Z) to obtain their MLE. However, similar to the remarks in previous chapters,
this requires quite intensive-computing. Furthermore, there is no readily available consistent
estimator for ST (·|Z) with the current semicompeting-risks data on T . These considerations
motivate the two procedures in Section 6.2 for estimating the survivor function ST (·|Z)
under model (6.3).

6.1.3 More on Modeling

Estimating the marginal survivor function of the event times T with the semicompeting-
risks data is of interest in many situations, and it is the goal of this chapter. When the
copula function A[2](·; θ(Z)) in (6.3) is an Archimedean copula with its generator ψ(·; θ(Z)),
it yields

ST (t|Z) = g(S∗T (t|Z), SD(t|Z); θ(Z)) = ψ−1{ψ(S∗T (t|Z); θ(Z))− ψ(SD(t|Z); θ(Z)); θ(Z)
}
,

(6.8)
where S∗T (t) = P (T ∗j ≥ t|Z) is the survivor function of T ∗j = Tj ∧D conditional on Z. T ∗ is
subject to noninformative censoring time CA only, and therefore can be estimated through
the Kaplan–Meier estimator for unconditional distribution, or it can be estimated through
the Cox model:

S∗j|Z(t) = exp{H∗0j(t)e
β∗
jZ} (6.9)

6.2 Pseudolikelihood Based Estimation Procedure

Using the idea underlying two-stage estimation procedures with a copula model (e.g., Oakes
1994, Genest et al. 1995), we estimate ST (·|Z) under the model (6.3). The estimation
procedure yields a consistent estimator for the marginal survivor function. We also present
the asymptotic properties of the estimators.
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6.2.1 Estimating the Association Parameter with the Observed-Data

Under model (6.3), as it is given in (6.8), the marginal survivor function ST (t|Z) =
g(S∗T (t|Z), SD(t|Z); θ(Z)), a known function of the marginal survivor function of T ∗j = Tj∧D
and the marginal survivor function of D upon θ(Z) for j = 1, 2. With known S∗T (t|Z)
and SD(t|Z), ST (t|Z) is known only upon the parameter θ(Z). When Z is categorical,
θ(·) can be estimated nonparametrically, and when Z is continuous we specify it through
θ(Z) =

∑K
i=1α

′B. In other words, the estimation of an unknown function θ(·) can be
reduced to estimating finite dimensional parameters, denoted α.

In addition, note that the likelihood function in (6.5) becomes

n∏
i=1

{
(−1)δi+δDi

∂δiA(0,δDi)
[2]

(
ST (ui|Z), SD(ci|Z);α

)
∂ST (u|Z)δi ṠT (ui|Z)δiṠD(ci|Z)δDi

}
,

which is proportional to

L
(
α;ST (·|Z), SD(·|Z)

∣∣Observed-Data
)

=
n∏
i=1

{
(−1)δi+δDi

∂δiA(0,δDi)
[2]

(
ST (ui|Z), SD(ci|Z);α

)
∂ST (u|Z)δi

}
(6.10)

when ST (·|Z) and SD(·|Z) are known. This leads to the following estimation procedure.
Provided with consistent estimators for ST (·|Z) and SD(·|Z), we maximize the resulting

pseudolikelihood function of α or, equivalently, its log-transformation with respect to the
parameters α, to derive a pseudo-MLE:

α̂n = argmaxαL(α|S̃T (·|Z;α), S̃D(·|Z);Observed-Data). (6.11)

This pseudo-MLE procedure is computationally easy to implement. We present below an
iterative algorithm to calculate α̂n.
Algorithm. Using the estimated S̃∗T (·|Z) and S̃D(·|Z) together with the current estimate
α(k−1) and S(k−1)

T (·|Z) and with k ≥ 1,

Step 1. obtain the updated estimate for α as

α(k) = argmaxαL(α|S(k−1)
T (·|Z), S̃D(·|Z);Observed-Data);

Step 2. obtain the updated estimates for ST (·|Z) as S(k)
T (t|Z) = S̃T (t|Z;α(k)) =

g(S̃∗T (t|Z), S̃D(t|Z);α(k)).

Repeat steps 1 and 2 until the sequence {α(k) : k = 0, 1, . . .} converges. The limit is α̂n
defined in (6.11).
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6.3 Analysis of BC-BRCAS Data (V)

This subsection applies the proposed approach to the cohort and controls P0 ∪ Q0, as
described in Chapter 2, to compare the age at first CVD between cases and controls, to
achieve goal 3 in Chapter 1.

6.3.1 Study Description

The study group includes a breast cancer survivor cohort which includes with all women
diagnosed with breast cancer in BC from 1989 to 2010, and a gender and age-matched
control group, as defined in in Chapter 2. The time scale we consider in this chapter is age
because the subjects in the control group do not have diagnosis dates. The covariates vector
Z = (Z1, Z2), where Z1 is the indicator for case or controls, and Z2 is the calendar year
of diagnosis. Z2 is first categorized into three eras as a discrete variable in the first set of
analysis, i.e. era I: 1900-1927, era II: 1928-1945, and era III: 1946-1989, and then is treated
as a continuous covariate in the second set of analysis. Subgroup analysis is conducted
stratified by stage at diagnosis. Table 6.1 is a summary of the breast cancer cohort and the
controls with their observed event-times.

6.3.2 Estimates of Conditional Survivor Functions

Z2 is discrete

Figure 6.1 includes six plots, for the six subgroups with different stages at diagnosis and birth
eras. Each plot shows two sets of estimated marginals for case and control respectively. Solid
curves are the naïve estimates using the Cox model, and dashed curves are the estimates
using the proposed approach. Figure 6.2 shows the difference S1(t|Z)−S0(t|Z) in estimated
marginal survivor function for CVD between breast cancer survivors (S1(t|Z)) and controls
(S0(t|Z)), as well as the log difference logS1(t|Z)/S0(t|Z) = log (S1(t|Z))− log (S2(t|Z)).

The conclusions are different using the proposed approach and the naïve approach where
we directly apply the Cox model without considering informative censoring. After adjust-
ment of informative censoring, the distribution of T seems different between the breast
cancer survivors and the controls and the survivors are at a lower survival rate to CVD,
especially those diagnosed at a late stage.

Z2 is continuous

Then we treated the birth year as a continuous variable, defined as time since the year
1900 to birth year , and approximated θ(Z) through B-spline functions. Figure 6.3 shows
the conditional survivor curve given Z2 = 14, Z2 = 37 and Z2 = 68, respectively. (i.e.
those born in 1914, 1937 and 1968 from three different birth eras), and figure 6.4 presents
the difference in estimated survival between breast cancer survivors and the controls. The
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differences are significant, and the conclusions with and without adjusting for informative
censoring are opposite.

Table 6.1: Summary Statistics of BC-BRCAS Data P0 and Q0

N N(T obs)† T obs‡ N(Dobs) Dobs

BC-BRCA Data P0 51,612 7,952 74.9 19,212 74.0
Controls Q0 103,224 19,578 72.2 25,597 78.4
†: number of subjects who has observed T
‡: mean observed T2
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(a) Difference Between Marginal Estimates (b) Log Ratio Between Marginal Estimates

Figure 6.2: Difference in the estimates of marginal survivor functions S(·) of age at first CVD
between breast cancer survivors and the controls, with Z2 treated as continuous variables,
for 6 subgroups using proposed approach and Cox PH model. Orange curves: late stage.
Green curves: early stage. Dotted: era I. Dashed: era II. Solid: era III.

179



(a
)
ea
rly

st
ag
e,

di
ag
no

sis
ye
ar

19
14

(b
)
ea
rly

st
ag
e,

di
ag
no

sis
ye
ar

19
37

(c
)
ea
rly

st
ag
e,

di
ag
no

sis
ye
ar

19
68

(d
)
la
te

st
ag
e,

di
ag
no

sis
ye
ar

19
14

(e
)
la
te

st
ag
e,

di
ag
no

sis
ye
ar

19
37

(f
)
la
te

st
ag
e,

di
ag
no

sis
ye
ar

19
68

Fi
gu

re
6.
3:

Es
tim

at
es

of
m
ar
gi
na

ls
ur
vi
vo
r
fu
nc

tio
ns
S

(·)
of

ag
e
at

fir
st

C
V
D
,w

ith
Z

2
tr
ea
te
d
as

co
nt
in
uo

us
va
ria

bl
e,

fo
r
6
su
bg

ro
up

s
us
in
g
pr
op

os
ed

ap
pr
oa

ch
an

d
C
ox

PH
m
od

el
.

180



(a) Difference Between Marginal Estimates (b) Log Ratio Between Marginal Estimates

Figure 6.4: Difference in the estimates of marginal survivor functions S(·) of age at first CVD
between breast cancer survivors and the controls, with Z2 treated as continuous variables,
for 6 subgroups using proposed approach with clayton copula and Cox PH model. Orange
curves: late stage. Green curves: early stage. Dotted: era I. Dashed: era II. Solid: era III.
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6.4 Discussion

We applied the approach proposed in the dissertation to the semi-competing risk data
setting and ran regression analysis to compare case control difference in time to CVD,
to achieve goal 1. This is a direct application of the proposed methods to a single event
time with observations subject to informative censoring. The analysis showed that ignoring
informative censoring one could conclude that the general population will get CVD sooner
than their age-matched breast cancer survivors, but the sets of estimates using the proposed
approach showed a different conclusion.

It should be noted that the definition of CVD in this paper is based on hospitalization
record, and may not reveal the real disease onset time. In addition, the data collection
window is from 1986 to 2011, so left censoring exists and the event time T is time to the
first CVD after 1986, and not necessarily the first CVD in the subjects’ lifetime. However,
the general comparison group, or the controls, are age-matched thus the comparison is still
practically meaningful. Using age as time scale, one can reasonably assume that both left
and right censoring are noninformative.
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Chapter 7

Final Discussion

This dissertation was motivated and illustrated by the breast cancer survivorship program,
but the methodology can be applied broadly for dealing with multiple event times with
observations subject to informative censoring. We formulated the joint models of multiple
event times, and developed inference procedures and associated applications. We justified
our approach both theoretically through derivation of asymptotic properties, and numer-
ically through simulation studies to study their finite sample performance. Moreover, we
analyzed the motivating BC-BRCAS throughout the dissertation for each of the proposed
methodologies.

7.1 Summary of Contributions

We started with a cross-sectional preliminary analyses which is a conventional approach
in epidemiological research and presented the preliminary findings. Then we proposed
in Chapter 3 a modeling approach by the Archimedean copula family and the developed
associated pseudolikelihood-based procedure for the analysis of multiple event times in the
presence of informative censoring due to a terminating event. The approach allows us to
account for the informative censoring and to estimate validly the joint distribution of the
multiple event times. It has the inference convenience associated with a copula model. One
somewhat strong assumption is that the proposed modeling requires the same association
between the event times, and between them jointly and the time to the terminating event.
But it is still informative in that the association parameter may be viewed as an average of
the associations with varying magnitudes between different pairs of event times. As shown
in the real data analysis (II), there were strongly positive associations between the two
event times, and each of them with death time across different subgroups. This supports
the hypothesis that breast cancer patients are more likely to suffer CVD. On the other
hand, the three individual association parameters do not necessarily appear the same. This
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indicates that an alternative modeling would be desirable to allow different event time pairs
to have different association parameters, or different dependence structures.

To mitigate the assumption of the same dependence structure, we formulated in Chap-
ter 4 the correlation of the bivariate event time with the censoring time by embedding the
bivariate distribution in a bivariate copula model. This allows us the convenience of infer-
ence under the conventional copula model. At the same time, the proposed model is more
flexible, and thus potentially more appropriate in many practical situations, than modeling
the event times and the associated censoring time jointly by a single multivariate copula.
In addition, the joint survivor function can also be modeled through other bivariate func-
tions such as (4.7), which leads to additional flexibility. Our approach can be extended to
multiple (≥ 3) event times. We verified the consistency, efficiency and robustness through
intensive simulation studies. The real-data analysis showed that the association between the
bivariate event times is quite different from their dependence on the informative censoring
time. This confirms the usefulness of our flexible modeling approach. Besides, the subgroup
analyses revealed different dependence strengths amongst subgroups, as was also observed
in Chapter 3. This leaded us to extend the methodology to regression setting which is of
more interest in a practical setting.

Chapters 5 and 6 extended the proposed approach in Chapter 4 in regression setting.
Chapter 5 focussed on the survivor cohort, to assess the effect of clinical factors such as age
at diagnosis, stage at diagnosis, and treatment. Chapter 6 adapted the proposed methods
with one single event time of interest, and real-data analysis was focussed on the case control
comparison in an attempt to verify the research hypothesis 1 : whether or not breast cancer
patients suffer CVD earlier than the general population.

7.2 Future Investigations

In this dissertation, we proposed models to deal with multiple event times with informa-
tively censored observations and developed a pseudo-MLE procedure, and comprehensively
analyzed the breast cancer data using conventional and proposed approaches. However,
there are other interesting possibilities for further investigation.

For example, to avoid a strong model assumption, one may consider the empirical copula
instead of model (3.3) in Chapter 3. However, it is not straightforward to use the available
approaches under that model with the current data. Besides one could also consider the
density estimation of the marginal survivor function through smoothing techniques, and
thus the pseudo-MLE could be obtained directly from (4.4).

The construction given in section 5.3.2, for example, for an approximate CB for the
marginal survivor function Sj(·) can yield a coverage lower than the target level since it
ignores the variation of the Kaplan–Meier estimates involved. An alternative approach to
improve the construction is another interesting future project. One may consider adopting
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the re-sampling procedure for constructing the CB of a survivor function; see, for example,
Hu & Lagakos (1999) and Zhao et al. (2009).

We note here that the definition of CVD in this dissertation is based on hospitalization
record, and may not reveal the real disease onset time. In addition, due to the data ex-
traction window, the observations on T2 are left censored; thus, the observed T2 might not
be the real time at ‘first’ CVD disease. In addition, only those diagnosed in or after the
year 1989 were included; therefore, patients who entered the study were those who were
still alive by 1989. Left truncation is potentially informative and is worthwhile to take into
account in future research.

This thesis mainly considers nested copula modeling. However, another interesting
area of research is to model the dependence through vine copula (Joe 1997), by linking
the conditional distribution of T1|D and T2|D, although the concept of T |D may not be
meaningful in a practical sense. Furthermore, for simulation purposes, it would be useful to
generate samples from the nested Archimedean copula (Joe 1997) with a larger parameter
in the outer copula than in the inner copula. This could be challenging because, given the
mathematical properties of the copula-generating function, it is less convenient to sample
from in this situation (see, e.g., Jaworski et al. 2010, Hofert 2012).

As one future investigation, one could consider the multistate model, (Xu et al. 2010,
Farewell & Tom 2014, see, e.g.), given the following considerations addressed. First, the
goal is to study the association between T1 and T2, which do not necessarily occur in a
specific order. In addition, two ‘states’ (e.g. RSC and CVD ) might happen at the same
time, which cannot be directly addressed by the multi-state model. Furthermore, we note
here that although the ‘disease-free survival’ (Andersen & Keiding 2012), formulated in
our setting as T ∗ = T ∧ D, is not our main goal, our procedure uses the estimator of the
distribution of T ∗ by applying readily available consistent estimator.

Lastly, the association between event times is different from causation. The occurrence
of RSC does not necessarily cause a CVD. Also, as the results show in the case control
comparison, the survivors have sooner CVD after a certain age. Thus, it would be interesting
to explore causal inference to understand the reason behind this.
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