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Abstract

The main thesis develops the novel and powerful statistical methodology in functional prin-
cipal component analysis and joint models with the application to solve the problems in
kidney transplant. This thesis can be divided broadly into five parts.

Firstly, we use functional principal component analysis (FPCA) through conditional expec-
tation to explore major sources of variations of GFR curves. The estimated FPC scores
can be used to cluster GFR curves. Ordering FPC scores can detect abnormal GFR curves.
FPCA can effectively estimate missing GFR values and predict GFR values. Secondly, we
propose new joint models with mixed-effect and Accelerated Failure Time (AFT) submod-
els, where the piecewise linear function is used to calculate the non-proportional dynamic
hazard ratio curve of a time-dependent side event. The finite sample performance of the
proposed method is investigated in simulation studies. Our method is demonstrated by fit-
ting the joint model for some clinical kidney data. Thirdly, we develop a joint model with
FPCA and multi-state model to fit the longitudinal and multiple time-to event outcomes
together. FPCA is efficient in reducing the dimensions of the longitudinal trajectories. Mul-
tistate submodel can be used to describe the dynamic process of multiple time-to-event
outcomes. The relationships between the longitudinal and time-to-event outcomes can be
assessed based on the shared latent feathers. The latent variables FPC scores are signifi-
cantly related to time-to-event outcomes in the application example, and Cox model may
cause bias for multiple time-to event outcomes compared with multi-state model. Fourthly,
we develop a flexible class joint model of generalized linear latent variables for multivariate
responses, which has an underlying Gaussian latent processes. The model accommodates
any mixture of outcomes from the exponential family. Monte Carlo EM is proposed for pa-
rameter estimation and the variance components of the latent processes. We demonstrate
this methodology by kidney transplant studies. Finally, in many social and health stud-
ies, measurement of some covariates are only available from units of subjects, rather than
from individual. Such kind of measures are referred as to aggregate average exposures. The
current method fails to evaluate high-order or nonlinear effect of aggregated exposures.
Therefore, we develop a nonparametric method based on local linear fitting to overcome
the difficulty. We demonstrate this methodology by kidney transplant studies.

Finally, future work

iii



Keywords: Functional Data Analysis and FPCA; Accelerated Failure Time; Missing data
and Outlier; Latent Feathers; Joint modelling; Kidney Transplant; GFR Trajectory

iv



Dedication

I am grateful for the support in various forms from my family: my wife, Wencong Wang,
for her understanding and support while I was working to complete this dissertation, my
parents-Mr. Yuexing Dong and Mrs. Yuehong Pan, and my old brother-Mr.Jiangwen Dong,
my young sister-Mrs. Jianghua Dong.

v



Acknowledgements

I am deeply grateful for my supervisors Dr. Jiguo Cao and Dr. Liangliang Wang for their
inspirational instruction, tremendous supports and invaluable guidance. They give me many
wonderful real academic and life supports. We always discover so many interesting statistical
problems during weekly meeting. This dissertation has benefited from their insights and
intellectual acumen.

I am deeply grateful to Dr. Jagbir Gill at University of British Columbia for being my
mentor in both academia and real life, his invaluable advice, and his wonderful instruction in
medical knowledge. My sincere thanks are also extended to other members of my examining
committee. I would like to sincerely thank Professor Dr. Jun Yan of Department of Statistics
at University of Connecticut for taking time from his busy schedule to serve as my external
examiner, and Dr. Lloyd T. Elliott for his kindness to chair my defence.

I am deeply grateful for all wonderful supports from my previous supervisors Dr.Scott
Klarenbach at University of Alberta, Dr. Peng Zhang at Zhejiang University, and Dr. Xi
Chen at University of Alberta. I would like to sincerely thank Dr. Xi Chen for his encour-
aging me to take on this PhD study.

I believe that the research and teaching experience I have gained during my graduate
study with them has had a profound influence and impact upon my academic career.

Last but not least, I would like to thank all of those who have supported and helped me
throughout my Ph.D studies at Simon Fraser University.

vi



Table of Contents

Approval ii

Abstract iii

Dedication v

Acknowledgements vi

Table of Contents vii

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Methods for longitudinal data . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Functional principal component analysis . . . . . . . . . . . . . . . . 4
1.2.2 Parameter models for longitudinal data . . . . . . . . . . . . . . . . 6

1.3 Survival analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Types of censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 The Accelerated Failure Time model (AFT model) . . . . . . . . . . 9
1.3.3 Multi-state survival models . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Methods for joint modelling the longitudinal and multiple time-to event out-
comes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Algorithm Material on Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.3 Laplace Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Outline of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Functional Principal Component Analysis of GFR Curves after Kidney
Transplant 16

vii



16section.2.1
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Functional Principal Component Analysis . . . . . . . . . . . . . . . 19
2.2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Detection of GFR trajectory outliers . . . . . . . . . . . . . . . . . . 22
2.2.4 Prediction for Future GFR . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Results on Kidney Transplant Data . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Functional Principal Component Analysis . . . . . . . . . . . . . . . 22
2.3.2 Patient clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Detection of GFR trajectory outliers . . . . . . . . . . . . . . . . . . 25
2.3.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 A Joint Model of a Longitudinal and Accelerated Failure Time Data
and its Application to Transplant Patients with an ESRD and a Diabetes 33

33section.3.1
3.2 The Joint Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 The Survival Submodel . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Application to Clinical Transplant Data . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Main Results from the Joint Model . . . . . . . . . . . . . . . . . . . 42
3.4.2 Effect of Pancreas Transplant on Allograft . . . . . . . . . . . . . . . 45

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.3 Simulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Jointly Modelling Multiple Outcomes by Functional Principal Compo-
nent Analysis via a Multistate Model 52
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 A Joint Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Functional Principal Component Analysis . . . . . . . . . . . . . . . 56
4.2.2 Multi-state models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 The Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 The joint likelihood functions . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 The application of the proposed joint model . . . . . . . . . . . . . . . . . . 61

viii



4.4.1 Results from Functional Principal Component Analysis . . . . . . . 63
4.4.2 Results from multi-state submodel . . . . . . . . . . . . . . . . . . . 63

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Jointly Modelling Multiple Continuous and Discrete Outcomes by a
Flexible Class of Generalized Linear Latent Variable Models 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 The covariance structure of the latent variables . . . . . . . . . . . . . . . . 73

5.3.1 The autoregressive structure in time series frame . . . . . . . . . . . 74
5.4 The joint likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Monte Carlo EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.2 Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 The application to Clinical Transplant Data . . . . . . . . . . . . . . . . . . 80
5.5.1 Model specification in the application example . . . . . . . . . . . . 80
5.5.2 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 A Predict Model with a Polynomial Effects Covariate in Presence of
Measurement Errors 83
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Local linear fitting approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6 Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.7.1 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.7.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.8 The application to kidney transplant data . . . . . . . . . . . . . . . . . . . 92
6.8.1 Data Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.8.2 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.8.3 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Future works 99
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Current work and future research . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.1 Functional data analysis (FDA) . . . . . . . . . . . . . . . . . . . . . 99

ix



7.2.2 Joint modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.3 Measurement error models . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2.4 Cost-effectiveness analysis . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 103

Appendix A Supplementary material for Functional Principal Component
Analysis of GFR Curves after Kidney Transplant 111

Appendix B Supplementary material for A Joint model of a longitudinal
and Accelerated Failure Time data and its application to transplant
patients with an ESRD and a diabetes 114
B.1 Monte Carlo EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.1.1 M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2 The result from simulation 1 when N=500 . . . . . . . . . . . . . . . . . . . 115

x



List of Tables

Table 3.1 Estimates for parameters in Model (5.1). The standard errors of the
estimates are given in brackets. . . . . . . . . . . . . . . . . . . . . . . 44

Table 3.2 Means, biases, root mean square errors (RMSEs) of the parameter es-
timates for the joint model (5.1) using our proposed MCEM algorithm
in Simulation 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 3.3 Means and standard deviations (STD) of the parameter estimates for
our proposed joint model (3.1) and the model (3.8) in Simulation 2. . 49

Table 3.4 The mean, bias, standard deviation (STD), and root mean squared
error (RMSE) of the parameter estimates for the joint model (3.1)
when the model assumption is correct or misspecified in Simulation 3. 51

Table 4.1 Kidney transplanted recipient characteristics in some kidney transplant
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 4.2 Estimated hazard ratios of kidney failure post kidney transplant in the
joint model with different survival sub-models. 95% confidence interval
are given in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 4.3 Estimated hazard ratios of death post kidney transplant from different
survival sub-models and 95% confidence interval are given in brackets. 66

Table 4.4 Means and standard deviations (STD) in three different scenarios. Each
scenario has 100 simulation replicates and 100 subjects in each simu-
lation replicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 5.1 Estimates for parameters in Model (5.14). The standard errors of the
estimates are given in brackets. . . . . . . . . . . . . . . . . . . . . . . 82

Table B.1 Mean, bias, RMSE of the parameter estimates using our proposed
MCEM algorithm for Model using 100 simulation replicates in the first
simulation study (N = 500). . . . . . . . . . . . . . . . . . . . . . . . 116

xi



List of Figures

Figure 1.1 Kidney transplantation . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 1.2 Kidney function progression . . . . . . . . . . . . . . . . . . . . . . 3
Figure 1.3 The three states of kidney transplant recipients. All patients start

from the date of the kidney transplant (state 1), then they may move
to state 2 (kidney failure). If not, they directly move to state 3 when
die . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.1 Observed GFR trajectory curves with various circumstances and
trends. Patients in the upper left panel (a) have missing data records.
Patients in the upper right panel (b) have flat GFR trends. Patients
in the lower left panel (c) have strong fluctuating trends. Patients in
the lower right panel (d) have increasing or decreasing trends. Each
color represents one individual patient in each panel. . . . . . . . . 17

Figure 2.2 The mean curve of GFR in the left panel and the correlation function
of GFR in the right panel. They are estimated from the total patients. 23

Figure 2.3 The first four leading functional principal components (FPCs) esti-
mated from the GFR curves. . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.4 GFR curves when their FPC scores are extreme. The thick blue
curve in each panel is the average of individual GFR curves in that
panel, which represents the common trend in that panel. The left four
panels, from top to bottom, are GFR curves when their first, second,
third, and fourth FPC scores are smaller than the 5% quantiles,
respectively. The right four panels, from top to bottom, are GFR
curves when their first, second, third, and fourth FPC scores are
larger than the 95% quantiles, respectively. . . . . . . . . . . . . . . 29

Figure 2.5 Part of the GFR curves in six clusters. . . . . . . . . . . . . . . . . 30
Figure 2.6 Some abnormal GFR curves. . . . . . . . . . . . . . . . . . . . . . . 31
Figure 2.7 The predicted GFR curves for four patients. The dots are observed

GFR data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xii



Figure 3.1 Observed individual GFR trajectory curves. The left two panels,
from top to bottom, are GFR curves for patients with All-cause graft
loss (ACGL) events or without ACGL events, respectively, when
they don’t have a pancreas transplantation. The right two panels,
from top to bottom, are GFR curves for patients with ACGL event
or without ACGL events, respectively, when they have a pancreas
transplantation. Each color represents the individual patient in each
panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.2 The three statuses of kidney transplant patients. All patients start
from the date of the kidney transplant (Status 1), then they may
move to Status 2 (pancreas transplantation) when a matched pan-
creas organ is available during the followed-up time period. If not,
they directly move to Status 3 when the time-to-event outcome of
all-cause graft loss happens, or they still are on the waiting-list for
the pancreas transplant. . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.3 The cumulative Nelson-Aalen estimate of all-cause graft loss by pa-
tient status of pancreas transplantation. The red line is the cumu-
lative Nelson-Aalen estimate of all-cause graft loss for patient with
a pancreas transplant and the blue line is the cumulative Nelson-
Aalen estimate of all-cause graft loss for patient without a pancreas
transplant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.4 The curve of hazard ratios of all-cause graft loss for patients with
a pancreas transplant with the 95% confidence intervals at 14, 45,
90, 152, 180, 365, 730 days from the date of pancreas transplant.
The reference group are patients without a pancreas transplant. The
hazard Ratio curve reaches 1.00 at 152 days from the date of pancreas
transplant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.1 GFR curves when their FPC scores are extreme. The thick blue curve
in each panel is the average of individual GFR curves in that panel,
which represents the common trend in that panel. The four panels
are GFR trajectory curves are donated by their first, second, third,
and fourth FPC scores respectively. . . . . . . . . . . . . . . . . . . 53

Figure 4.2 The three states of kidney transplant recipients. All patients start
from the date of the kidney transplant (state 1), then they may move
to state 2 (kidney failure). If not, they directly move to state 3 when
die . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiii



Figure 4.3 The first two leading functional principal components (FPCs) ac-
count for 95.24% of the total variability of GFR curves, and the four
leading FPCs account for 99.82% . . . . . . . . . . . . . . . . . . . 67

Figure 4.4 The first four leading functional principal components (FPCs) esti-
mated from the GFR curves. . . . . . . . . . . . . . . . . . . . . . . 68

Figure 6.1 Comparison of Models for Different Pooling Scenarios . . . . . . . . 93
Figure 6.2 Evolution Effect of Different Pooling Scenarios on Models . . . . . 94
Figure 6.3 Evolution Effect of Different Pooling Scenarios on Models . . . . . 95
Figure 6.4 Probability of kidney transplant versus logarithm of income. Solid

line represents the curve with local logistic regression, dashed line
is the curve of regular logistic regression and the dotted line is the
fitted logistic regression with quadratic term. . . . . . . . . . . . . . 97

Figure A.1 Part of GFR trajectory curves for the first 20 cluster groups . . . . 112
Figure A.2 Part of GFR trajectory curves for the last 20 cluster groups . . . . 113

xiv



Chapter 1

Introduction

1.1 Background and Motivation

The incidence and prevalence of end-stage renal disease (ESRD) is increasing worldwide.
In Canada, N=37,457 patients live with ESRD, compared with N=594,000 in the United
States in 2015. ESRD is an important public health problem due to the high cost of renal
dialysis, a high mortality rate and a decreased quality of life. Kidney transplantation is the
preferred treatment for ESRD. Kidney and pancreas transplant is the preferred treatment
for patients with the type one diabetes and ESRD. The population of transplant survivors
has been increasing rapidly as a result of advances in treatment, but the demand supply of
organs is not sufficient to meet the increasing demand. There are three following strategies
to address this problem.

1. Decrease the incidence of ESRD

2. Increase the number of decreased and living organ donors

3. Maximize the utility of the available organ supply

The first strategies have far been inadequate to narrow the gap between supply and
demand so far; therefore the second and third strategies should be highlighted. Kidney
donation has sustained kidney transplantation activity, but there is significant regional
variability noted. Deceased/Living donor kidneys are routinely shared within seven geo-
graphically defined regions, but are infrequently shared between regions. For example, the
donor rate per million population (RPMP) in 2004 varied from 6.0 in Manitoba to 18.0 in
Quebec. The reasons for this variability remain unclear. The RPMP does not account for
population differences between regions that may impact organ donation, making it difficult
to determine if regional variation is due to differences in the number potential organ donors,
differences in organ procurement practices, or differences in family consent rates for organ
donation, community social work, household income, donor race, etc. A major barrier to
understand regional differences in deceased organ donation is lack of an informative metric
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of donor activity. Understanding why some regions have higher deceased/living donor rates
than others will inform health policy to improve kidney donation in all regions. However,
due the current unavailability of kidney donor dataset, we only focus on develop the new
statistics model in the area of the third strategies about how to maximize the utility of the
available organ supply, but I will continue the second strategy research in the future work.

Figure 1.1: Kidney transplantation

It is known that the kidney transplantation as shown in 1.1 can prolong the survival
of patients with end-stage renal disease in the papers by Levey et al.75 and Wolfe et al.76.
However, how to extend the long-term survival of the kidney graft still remains the main
challenge for transplant. Transplanted kidneys have a limited lifespan despite advancements
in pharmaceuticals for the acute rejection, the long-term survival life time of the grafted
kidney has not been increased. Kidney allograft failure after transplantation significantly
adds to the demand for kidney transplantation. Therefore, it is important to identify clinical
markers to predict the kidney allograft loss. If the kidney graft failure can be prevented,
then we can maximize the utility of all available kidney organs recipients. Therefore, several

2



Figure 1.2: Kidney function progression

possible surrogate markers have been proposed. For example, the papers by Marcén77 and
Moranne78 proposed to use the slope of GFR to predict the graft failure by a Cox model.

In fact, it is a clinical problem in the longitudinal continuous outcomes and multiple
time-to event outcomes data, where the trajectories of kidney function progression recorded
as repeated GFR measurements and other multiple outcomes like the transplant failure,
death after the transplant failure, and death without the kidney failure. Since the repeated
measures on each individual may be correlated and there are large variations in GFR across
individuals and within individuals, a longitudinal model may be appropriate to model the
GFR trajectories. Marcén et al.77 and Moranne et al.78 used a mixed model for the GFR
trajectories, and they proposed to use the slope of GFR trajectories to predict the graft
failure in a Cox model. However, Cox model may cause some bias for multiple time-to
event outcomes in the present of competing-risk events. Studies such as Prentice83 and
Putter84 show that the Kaplan-Meier or Cox method for multiple outcomes may yield
unreliable results in the presence of competing risks. The kidney transplant failure is a
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competing risk for death because the kidney transplant failure increases the probability of
death. Furthermore, if a large proportion of trajectories of GFR are nonlinear, this simplified
linear assumption may cause the result to be biased. This longitudinal continuous repeated
outcome and multiple time-to event outcomes motivate us to develop the new statistics
model in this thesis. The proposed statistical models are created on the different scenarios
in this clinical question. I hope that the results from the proposed new models can supply
some references for the future kidney research, especially for how to predict the long-term
transplant outcomes.

1.2 Methods for longitudinal data

The defining feature of the clinical longitudinal data is that the biomarker measurements of
the same patients are taken repeatedly during the followed-up time period, thereby allowing
the researcher to observe the interesting outcome over time.

The primary goal of a longitudinal study is to characterize the outcome change over
time and to identify the factors that influence change. If the longitudinal data is clustered,
then the observations within a cluster will typically exhibit the correlation, which have to be
accounted for in the analysis. Alternatively, clustered data can arise from random sampling
of naturally occurring groups in the population. Family, hospital medical practices, and
schools are all instances of naturally occurring clusters in the population.

According to these feathers of longitudinal data, many statistical models have been
developed. For example, Laird and Ware proposed the use of the EM algorithm to fit a class
of linear mixed effects models in the early 1980s. Recently more methods in the analysis
of longitudinal and multilevel data continue to develop. New and more flexible models
such as the generalized estimating equations by Liang and Zeger. The new algorithm such
as Markov Chain Monte Carlo (MCMC) have been developed. Also, the non-parameter
method such as functional principal component analysis (FPCA) provides another way
to look at the the variance-covariance correlation structure and dominant modes of the
longitudinal trajectory. Therefore, FPCA has become a hot topic in statistical research
such as climatology, medicine, and economics.

1.2.1 Functional principal component analysis

Functional principal component analysis (FPCA) is becoming a popular statistical method
when we want to investigate the dominant modes of variation of functional data. In this
method, a random function is represented in the eigenbasis, which is an orthonormal basis
of the Hilbert space L2 that consists of the eigenfunctions of the autocovariance operator.
FPCA represents functional data in the most parsimonious way, in the sense that when
using a fixed number of basis functions, the eigenfunction basis explains more variation
than any other basis expansion. FPCA can be applied for representing random functions
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or in functional regression and classification. Asymptotic convergence properties of these
estimates have been investigated.

FPCA can be applied for displaying the modes of functional variation in scatterplots of
FPCs against each other when modeling sparse longitudinal data or for functional regression
and classification. Scree plots can be used to determine the number of included components.
This methodology is being adapted from traditional multi-variate techniques to carry out
analysis on financial data sets such as stock market indices, generation of implied volatility
graphs and so on. Since being introduced by Rao10 for comparing growth curves, FPCA
has attracted considerable attention. For instance, Castro et al.11 related FPCA to the
Karhunen-Loève theorem and the best m-dimensional functional linear model. Dauxois et
al.12 studied the asymptotic properties of empirical eigenfunctions and eigenvalues when
sample curves are fully observable. A very nice example of the advantages of the functional
approach is the Smoothed FPCA (SPCA), proposed by Silverman [1996] and studied by
Pezzulli and Silverman [1993] that enables direct combination of the FPCA analysis together
with a general smoothing approach that makes the use of the information stored in a linear
differential operators possible.

An important application of the FPCA already known from multivariate PCA, is moti-
vated by the Karhunen-Loève decomposition of a random function to the set of functional
parameters factor functions and corresponding factor loadings (scalar random variables).
This application is much more important than in the standard multivariate PCA since the
distribution of the random function is in general too complex to be directly analyzed and
the Karhunen-Loève decomposition reduces the analysis to the interpretation of the factor
functions and the distribution of scalar random variables. Due to dimensionality reduction
as well as its accuracy to represent data, there is a wide scope for further developments of
functional principal component techniques in the financial and medical field . Zhang and
Chen13 and Benko et al.14 extended this work to a more practical setting where sample
curves are observed at finitely many design points. Hall and Hosseini-Nasab15,16 studied
the estimation errors of empirical eigenfunctions and eigenvalues. To overcome excessive
variation of empirical eigenfunctions, Rice and Silverman17 proposed smoothing estimators
of eigenfunctions via a roughness penalty. Consistency of these estimators was established
by Pezzulli and Silverman18. Subsequently, Silverman19 proposed an alternative way to
obtain smoothing estimators of eigenfunctions through modifying the norm structure, and
established the consistency of the estimators. A kernel-based method for smoothing eigen-
functions was proposed by Boente and Fraiman20.

The extension of FPCA to sparse data such as longitudinal data was studied by James
et al.81 and Yao et al.85. James et al.23, Tian and James24, and Lin et al.25 proposed
to increase the interpretability of FPCA by adding some sparse constraints on functional
principal components. FPCA has been used to explore variations of curves in a sundry
groups of applications in subjects such as biology and medicine. For instance, Feng et al.26

5



applied FPCA to explore spatial and temporal variations of cadmium concentrations in
Pacific oysters from British Columbia. Luo et al.27 used FPCA to detect the major modes
of variations among ward admission intensity functions in hospital emergency departments.
An excellent introduction on FPCA can be found in Chapters 8 and 9 of Ramsay and
Silverman28

1.2.2 Parameter models for longitudinal data

As mentioned in the background, there are two sources of variation in longitudinal data: one
is the variation from within-individual, and the other between-individual variation. Mod-
elling the variation within-individual allows one to see the change of the interest longitudinal
outcome over time during the followed-up time period, while modelling between-individual
variation allows one to understand the differences between individuals.

Regression models such as the Generalized Linear Effects Models and the Generalized
Mixed Linear Effects Models are often used to approximate the relationship between the
longitudinal data, using the responses and covariates terminology, for prediction or scientific
exploration purpose. There are two types of covariates: time-invariant covariates such as a
patients sex and race and time-varying covariates such as age or the status of the organ
transplant. The book applied longitudinal analysis by Fitzmaurice et al. (2002) provided
a comprehensive overview of various longitudinal models: a linear model or a generalized
linear model. Both types of model have the mixed effects model (LME) as a special case
when consider the random effect or missing value. The mixed effects model is a popular
approach to model such type of data arising in clinical trials and epidemiological studies
of cancer and other diseases. This thesis is focus on the application of our proposed joint
models in the renal diseases.

The Generalized Linear Effects Models

Let y1, y2, ..., yn be a sample of i.i.d. observations from a distribution in the exponential
family. The general probability density function of yi can be written as if we choose the
joint distribution f(yi) in the exponential family.

f(yi|ui,αφ) = exp
{
yiθi − b(θ)
a(φ) + c(yi, φ)

}
,

where θ is the natural or canonical parameter, and φ is the dispersion parameter, and a, b,
and c are specific functions. It can be shown (Molenberghs and Verbeke, 2005) that Y has
mean and variance

E(yi) = µ = ∂b(θ)/∂θ,

V ar(yi) = a(φ)∂
2b(φ)
∂θ2
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The Generalized Mixed Linear Effects Models

The Generalized Linear Mixed Effects Models (GLMMs) are the most frequently used ran-
dom effects models in the context of discrete repeated measurements. It is a useful tool to
analyze longitudinal data with different individual variation.

GLMMs assume that the response is linked to a function of covariates with fixed re-
gression coefficients and random coefficients. Let yij be the response variable of the ith

subject at time j, and xij be the vector of covariates associated with the response yij ,
where i = 1, . . . , N , and j = 1, . . . , ni.

Yij |uij ∼ f(yij |µij , φ),where g(µij) = αTXi + uij , i = 1, · · · , n,

They are an extension of the class of generalized linear models in which random effects
are added to the linear predictor. This modification extends the broad class of generalized
linear models to accommodate correlation via random effects, while retaining the ability to
model non-normal distributions and allowing non- linear models of specific form. The class
of GLMMs includes the special cases of linear mixed models, random coefficient models,
random effects logistic regression, and random effects Poisson regression, and etc. The in-
corporation of random effects is a natural way to model or accommodate correlation in the
context of a linear/nonlinear model for normal/nonnormal data. It generates a rich class
of correlated data models that would be difficult to specify directly. We will review it in
the Chapter 5. Readily available, flexible, multivariate distributions analogous to the mul-
tivariate normal distribution do not exist for most normal/nonnormally distributed data.
For example, a longitudinal model for repeated measurement outcome Yi(tij) as follows is
used to fit the longitudinal outcomes GFR in our application example:

Yi(t) = αTZi + βTi ξ(t) + εi(t), i = 1, · · · , n, (1.1)

where α = (α1, · · · , αP )T is a vector of coefficients for the fixed effects of
Zi = [Zi1, · · · , ZiP ]T , and βi = (βi1, · · · , βiL)T is a vector of coefficients for the random
effects of ξ(t) = (ξ1(t), · · · , ξL(t))T . Here, ξ`(t), ` = 1, . . . , L, is a parametric function of t.
For example, ξ1(t) = 1 and ξ2(t) = t. We assume that βi ∼ Normal(b,B). The vector of
measurement errors εi = (εi1, · · · , εimi) are assumed to be multivariate normal distributed
with the mean zero and the variance-covariance matrix σ2In.

Inferences

Inferences for these models including a linear model or a generalized linear mixed effects
model can be of the usual variety, that is, modeling the effect of predictors on the mean, in
which case the random effects and correlation are nuisance features of the model. In other
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situations, however, both estimation and testing of the variances of the random effects, as
well as prediction of the realized values of the random effects, may be of interest.

Let Yij be the jth outcome for the cluster i or repeated measurements of i patient,
i = 1, · · · , N ; j = 1, , ni and Yi is the vector of all measurements for the cluster i. We formu-
late the generalized linear mixed effects models using a two-step specification. First-step:
Assume that the conditional distribution of each Yij , given the random effects bi, belongs
to the exponential family with conditional mean. The parameter approach for accounting
for the within-subject association via the latent feathers. The likelihood-based inference is
the standard approach for these models including a linear model or a generalized linear
model. Suppressing the covariates, we could write the marginal distribution f for yi in the
following unified way

f(yi|θ, D) =
∫
f(yi|bi;θ)f(bi|D)dbi.

So the likelihood is in the following

L(θ, D|y) =
n∑
i=1

(yi|bi;θ)f(bi|D)dbi.

where y = (y1, ..., yn)T , and θ is the collection of all parameters except D. But for a NLME
model or a GLMM model, the likelihood involves an intractable multi-dimensional integral
with respect to the random effects. We will discuss it in more detail in the chapters 3 and
5.The maximum likelihood method or the restricted maximum likelihood method can be
used for LME. For GLMM, likelihood methods include the exact methods based on Gauss-
Hermite quadratic integration techniques, EM algorithms, and approximate methods based
on Taylor approximations or Laplace approximations. Dean and Nielsen (2007) provided a
recent review of these methods for GLMM.

1.3 Survival analysis

1.3.1 Types of censoring

This section is to introduce and explain the concepts of survival analysis. The main out-
come under assessment in the survival analysis is the time to an event of interest. If the
event occurred in all individuals, the time survived from complete remission to relapse or
progression as equally as to the time from diagnosis to the date of event. However, it is usual
that at the end of follow-up some of the individuals have not had the event of interest, and
thus their true time to event is unknown. The data on these individuals are said to be right
censored. The right-censoring is said to be independent if the failure rates that apply to
individuals on trial at each time t > 0 are the same as those without censoring. Individuals
can also be subject to left censoring if the individual is observed to fail prior to some time
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t, but the actual time of failure is unknown. For example, the observe T ∈ (0, t) in the right
censoring, while T ∈ (t,∞) .

1.3.2 The Accelerated Failure Time model (AFT model)

In the statistical area of survival analysis, an accelerated failure time model (AFT model) is
a parametric model that provides an alternative to the commonly used proportional hazards
models. Whereas a proportional hazards model assumes that the effect of a covariate is to
multiply the hazard by some constant, an AFT model assumes that the effect of a covariate
is to accelerate or decelerate the life course of a disease by some constant. This is especially
appealing in a technical context where the disease is a result of some mechanical process
with a known sequence of intermediary stages. The interpretation of means that everything
in the relevant life history of an individual happens twice as fast.

Cox and Oakes61 extended a AFT model with time-dependent covariates.

λ(t|Z(t)) = λ0
{ ∫ t

0
exp(βZ(s))ds

}
exp(βZ(t)),

James62 provided a method to estimate the time-dependent AFT model in the presence
of confounding factors. Reid63 and Kay64 mentioned that the AFT models were more ap-
pealing than the the proportional hazard models because they could give direction physical
interpretations. For example, as mentioned in the paper by Kay64, the AFT model can
supply a more straightforward interpretation of the treatment effect on the time to event
data because the coefficient of the treatment indicator can be estimated across various in-
tervals defined by the cut time points from the date of treatment." We also explain how to
interpret the model parameters in the second paragraph of Page 8. In the statistical area
of survival analysis, an accelerated failure time model (AFT model) is a parametric model
that provides an alternative to the commonly used proportional hazards models. Whereas a
proportional hazards model assumes that the effect of a covariate is to multiply the hazard
by some constant, an AFT model assumes that the effect of a covariate is to accelerate or
decelerate the life course of a disease by some constant. This is especially appealing in a
technical context where the disease is a result of some mechanical process with a known
sequence of intermediary stages.

The hazard function of the accelerated failure time model can be specified as λ(t|φ) =
φλ0(tφ), where φ denotes the joint effect of covariates. Then the survival function can
be expressed as S(t|φ) = S0(tφ). From this, we can see that the moderated life time T is
distributed such that Tφ−1 and the unmoderated life time T0 have the same distribution. So
log(T ) = log(φ) + log(Tφ−1) = log(φ) + τ, where the last term τ has the same distribution
as log(T0). The interested parameters need to be estimated, for example, γ in the φ =

exp(
P∑
p=1

γ1pZip + γ21βi1 + γ22βi2 + w(t|γ3)) in the application example in the Chapter 3.
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For the distributions of τ used in AFT models, the log-logistic distribution provides the
most commonly used AFT model. Unlike the Weibull distribution, it can exhibit a non-
monotonic hazard function which increases at early times and decreases at later times. It is
somewhat similar in shape to the log-normal distribution but it has heavier tails. The log-
logistic cumulative distribution function has a simple closed form, which becomes important
computationally when fitting data with censoring. For the censored observations one needs
the survival function, which is the complement of the cumulative distribution function,
i.e. one needs to be able to evaluate . The Weibull distribution (including the exponential
distribution as a special case) can be parameterized as either a proportional hazards model
or an AFT model, and is the only family of distributions to have this property. The results
of fitting a Weibull model can therefore be interpreted in either framework. However, the
biological applicability of this model may be limited by the fact that the hazard function is
monotonic, i.e. either decreasing or increasing. Other distributions suitable for AFT models
include the log-normal, gamma and inverse Gaussian distributions, although they are less
popular than the log-logistic, partly as their cumulative distribution functions do not have
a closed form. Finally, the generalized gamma distribution is a three-parameter distribution
that includes the Weibull, log-normal and gamma distributions as special cases.

1.3.3 Multi-state survival models

Several multi-state survival models have been developed. We are focus on the competing
risks models and the progressive illness-death models in this paper. In the competing risks
framework, two popular competing risks models are used. One is the cause-specific hazard
model proposed by Prentice83 and Putter84, and the other is the sub-distribution hazards
regression introduced by Fine and Gray88. The cause-specific hazard model calculates the
occurrence rate of specific event types in subjects who are currently event free. For example,
there are 2 types of events in this application example: death with the kidney function from
other reasons and death from the kidney transplant failure. The cause-specific hazard of
the kidney failure death denotes the instantaneous rate of the kidney failure death in alive
subjects who have not yet experienced either event. The sub-distribution hazard model
calculates the instantaneous risks of the specific event type in subjects who have not yet
experienced this event type. Each method has its own specific purpose. For example, If the
progressive illness-death model is used as shown in Figure 1.3 for three state survival model,

the progressive illness-death model can determine the incidence of kidney transplant
failure, the mortality rate for alive patients after kidney transplant, and mortality rate for
patients with kidney transplant failure. If the transition intensities of multi-state models
can be specified as

λjm(t) = lim
∆t→0

Pjm(t, t+ ∆t)
∆t
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State 1: Alive kidney recipients

State 2: Kidney transplant failure

State 3:Die/Alive

λ 12
(t)

λ23 (t)

λ13(t)

Figure 1.3: The three states of kidney transplant recipients. All patients start from the date
of the kidney transplant (state 1), then they may move to state 2 (kidney failure). If not,
they directly move to state 3 when die

, j 6= m, and
λmm = −

∑
j 6=m

λjm(t),

then the transition intensities can be specified in a matrix. For the convenient notation by
setting M = 3, the matrix of transition intensities area can be specified as follows:

Q(t) =


−(λ12(t) + λ13(t)) λ12(t) λ13(t)

0 −λ23(t) λ23(t)
0 0 0


where

λ12 = lim
∆t→0

P12(t, t+ ∆t)
∆t = lim

∆t→0

P (state 2 at time t + ∆t|state 1 at time t)
∆t ,

λ13 = lim
∆t→0

P13(t, t+ ∆t)
∆t = lim

∆t→0

P (state 3 at time t + ∆t|state 1 at time t)
∆t ,

λ23 = lim
∆t→0

P23(t, t+ ∆t)
∆t = lim

∆t→0

P (state 3 at time t + ∆t|state 2 at time t)
∆t .

If the probability distribution on the state space of a Markov chain is discrete and
the Markov chain is homogeneous, then the ChapmanâĂŞKolmogorov equations can be
expressed in terms of matrix multiplication:

P (s, t) = P (s, u)P (u, t), s < u < t

The transition probability P (s, t) is the unique solution of the Kolmogorov forward differ-
ential equation:

∂

∂t
P (s, t) = P (s, t)Q(t);P (s, s) = I
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P (s, t) can be recovered from the transition intensities through product integration

P11(s; t) = exp(−
∫ t

s
(λ12(u) + λ13(u)))du

P22(s; t) = exp(−
∫ t

s
λ23(u))du

P23(s, t) = 1− P22(s, t)

P12(s, t) =
∫ t

s
P11(s, u)λ12(u)P22(u, t)du

P13(s, t) = 1− P11(s, t) + P12(s, t)

Pjm(s, t) = 0, when j > m

1.4 Methods for joint modelling the longitudinal and multi-
ple time-to event outcomes

As mentioned before, no studies have used a joint model to predict the long-term kidney
function, which includes the longitudinal continuous outcome of glomerular filtration rate
(GFR) and the time-to-event outcome of all-cause graft loss (ACGL). From our preliminary
result as in Figure 3.1, the levels of the observed GFR trajectories for patients with ACGL
are higher than those of patients without ACGL, and we find that the slopes of GFR
trajectories for patients with ACGL are steeper in comparison with patients without ACGL.
In addition, all patients may have a pancreas transplant at any time post kidney transplant
to treat the diabetic disease, and they are in different statuses at different time points
during the followed-up period. For example, they are in status 1 (alive without pancreas
transplant) at the time of the admission to the waiting list for a pancreas. They move to
status 2 (alive with pancreas transplant) if a matched pancreas organ becomes available
for them before ACGL, or they directly move to status 3 with ACGL. In fact, the failure
rates of the time-to-event outcome are different as patients change their status. As shown
in Figure 3.1, it seems that patients who have a pancreas transplant are less likely to
have ACGL. In short, the above scenarios motivate us to develop a new dynamical joint
model to predict the long-term outcome, since there are at least two advantages in using a
joint model. Firstly, joint modelling multiple outcomes together can increase the power and
decrease the Type I error46,47. Secondly, this joint model can estimate the parameters in the
longitudinal component by incorporating the time-to-event information through censoring,
and similarly, for the converse situation, the estimation of the time-to-event is incorporated
by the longitudinal data information.

Several joint models for multiple outcomes have been developed such as the papers
48,49,52,54,55,59,89,92. One major challenge in jointly modelling multiple outcomes is the lack of
a suitable multivariate joint distribution. Two approaches are proposed for jointly modelling
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multiple outcomes. The first approach directly specifies the joint distribution by factoriz-
ing it into the conditional distribution of one outcome and a marginal distribution of the
other outcome. For instance,54,89 parameterized the model such that the joint distribution
is factorized as the product of the marginal distribution of a continuous response and the
conditional distribution of a discrete response given the continuous response or latent vari-
ables. Another case is that the binary response is related to an unobserved continuous latent
variable, and the latent variable and the continuous response have a joint Gaussian distri-
bution. The second approach directly formulates a joint model for both types of outcomes.
For instance,55 used a copula to construct the joint distribution. Another challenge in joint
models is the intensive computation because of the complex correlation structure of latent
variables or measurement errors in covariates such as in the papers49,54,89. Most of above
studies apply the EM or the Monte Carlo EM algorithm to estimate parameters, and some
use Bayesian method such as in the paper59.

1.5 Algorithm Material on Monte Carlo

In this section, we review the basics of Monte Carlo methods for the remainder of the
chapter. In statistics, we are often tasked with computing the expected value of a function
f(x) with respect to a probability density function p(x), where x ∈ Rn, especially when n
is not small. If a cumulative distribution is non-decreasing and easily invertible then we can
draw samples from its distribution by using inverse sampling. However, many distributions
are difficult or impossible to invert, and in some cases a closed-form representation might not
exist or be computationally intractable to obtain. This is a problem since finding expected
values of functions is often a step in a lot of statistical problems. We outline several methods,
Gibbs Sampling, importance sampling, and rejection sampling, that are useful when direct
simulation from p is difficult or impossible but direct simulation from another distribution
q(x) is possible. We refer to the distribution similar to p(x) as the instrumental distribution,
and label it q(x).

1.5.1 Gibbs Sampler

The Gibbs sampler (Gelfand and Smith, 1990) is a popular Markov Chain Monte Carlo al-
gorithm to generate samples from a complicated multi-dimensional distribution by sampling
from lower dimension full conditionals, in turn, until convergence. Here the Gibbs sampler
can be used to simulate the missing random effects such as β1i and β2i. Firstly we set the
initial values (β0

1i, β
0
2i). If the current generated values are (βk1i, βk2i), k = 0, 1, 2, · · · , we can

obtain (βk+1
1i , βk+1

2i ) as follows:

1. Draw a sample for the missing or random effect βk+1
1i from the full conditional distri-

bution
f(βk1i|xi, yi, βk2i; θ(t)),
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2. Draw a sample for the missing or random effect βk+1
2i from the full conditional distri-

bution
f(β2i|xi, yi, βk+1

1i ; θ(t)).

3. Repeat the above steps k times.

We assess the convergence of the Gibbs sampler by examining sample autocorrela-
tion function plots and time series plots. After a sufficiently large burn-in of r iterations,
the sample values will achieve a steady state as reflected by the time series plots. Then,
(β1i(r), β2i(r)) can be treated as a sample from the multidimensional density function
f(β1i, β2i, xi, yi; θ(t)).

1.5.2 Importance Sampling

Importance sampling can be used when the density say f(x) is difficult to sample. Basically
it draws from a similar distribution other than p(x), say q(x), and then the bias is corrected
if sample from the wrong distribution.

We estimate the expectation of f(x) with respect to p(x) by

I =
∫
f(x)p(x) =

∫
f(x)p(x)

q(x)q(x) =
∫
f(x)p(x)
q(x) q(x).

We can see the bias correction, or the importance weight p(x)/q(x) can be determined
exactly for a given sampling point x. In practice, the actual p(x) or q(x) will often be
unnormalized.

Hence, given an iid sample x1, · · · , xN from q(x), our estimator of Î becomes

Î = N−1
N∑
i=1

p(xi)f(xi)
q(xi) .

As the number of samples is increased, the variance of the estimate I will decrease. The
selection of q(x) will have a huge impact on the accuracy of our estimation. For example
we can select q(x) that has a similar shape to f(x), but with thicker tails In fact, one of
the biggest problems with using the importance sampling method is that a poor selection
of the sampling distribution will lead to a high-variance estimate I, that yields the wrong
answer without any indication.

1.5.3 Laplace Approximation

The Laplace approximation is very useful for Monte Carlo as it may be used to construct ac-
curate instrumental density, q(x). The Laplace approximation is an analytic approximation
to the expectation with respect to a distribution p(x). We assume l(x) = logp(x) admits a
second-order Taylor expansion about the mode of p(x). Let x0 denote the maximize of l(x)
satisfying the equation l′′(x0) < 0. We can expand l(x) around x0 by Taylor’s theorem,
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I(x) = I(x0) + I
′(x0)(x− x0) + 1

2I
′′(x0)(x− x0)2 +R

where R = O((x− x0)3)
The Laplace method can be applied to approximate integrals of the form.

1.6 Outline of this dissertation

This dissertation is motivated by some end-stage renal disease and kidney transplant data,
and we illustrate the proposed models and the associated inference procedures using some
clinical dataset. The proposed statistical methodologies are not only limited to this specific
program and can be applied to other clinical or medical studies. The rest of this thesis is
organized as follows:

1. Chapter 2 introduces Functional Principal Component Analysis through the condi-
tional expectation for the longitudinal Curves and its application GFR curves after
Kidney Transplant, which have been published in Statistical Methods in Medical Re-
search (2017).

2. Chapter 3 develops a Joint model of a longitudinal and Accelerated Failure Time data
and its application to transplant patients with an ESRD and a diabetes, which have
been published in Statistical Methods in Medical Research (2018)

3. Chapter 4 is about a Joint model for Multiple Outcomes by Functional Principal Com-
ponent Analysis via a Multistate Model, which uses functional principal component
analysis (FPCA) to fit the longitudinal outcome and proposes the multi-state model
to describe multiple time-to event outcomes together. The FPCA method is efficient
in reducing the dimension of the longitudinal trajectories. Multistate submodel can be
used to describe the dynamic process of multiple time-to-event outcomes. The longi-
tudinal trajectories and the multiple time-to-event outcomes is linked with the shared
latent features.

4. Chapter 5 jointly modelling multiple mixed continuous and discrete outcomes through
a flexible class of generalized linear latent variables.

5. Chapter 6 introduces statistical inference in a predict model with a polynomial effect
covariate in presence of measurement errors. We apply this method to predict the
kidney donor incidence rate.

6. Chapter 7 is about future work.
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Chapter 2

Functional Principal Component
Analysis of GFR Curves after
Kidney Transplant

2.1 Introduction1

Kidney transplantation supplies a preferred therapy to extend survival time for patients with
end-stage renal disease. Rates of acute rejection and graft failure that occur in the first 3-6
months after kidney transplant have been improved over the past couples of decades, but
kidney transplant recipients still confront the high probability of the loss of graft function
after kidney transplant. How to assess and extend the long-term kidney function remains
a crucial research goal. GFR can provide a more precise measure of kidney function than
serum creatinine alone5. Retrospective studies6,7 have shown that one-year GFR is a good
predictor for the long-term graft function after renal transplant. Klahr et al.8 and Marcén
et al.9 recommended that the change in GFR should be used to assess the progression of
the kidney function and to identify the risk for kidney graft failure. Consequently, a natural
candidate for a surrogate marker for the progression of the kidney function is the GFR
progression curve as shown in Figure 3.1.

In the studies above, linear least squares regression or linear mixed effect models were
used to calculate the change of GFR. However, these statistical models can not completely
characterize complexity of GFR trajectories especially when the non-linear trends exist.
Furthermore, it is difficult to estimate the change of GFR when the GFR trajectory is
sparsely and irregularly observed. For instance, some patients have missing data records as
shown in the upper left panel (a) of Figure 3.1. In addition, all the curves in the upper
right panel (b) of Figure 3.1 are very flat. Conversely, the lower left panel (c) of Figure 3.1
shows that the curves of these patients have strong fluctuating curves. In other words, these

1This chapter has been published in Statistical Methods in Medical Research (2017). Dong J, and Wang
S, and Wang L, and Gill J, and Cao J
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Figure 2.1: Observed GFR trajectory curves with various circumstances and trends. Pa-
tients in the upper left panel (a) have missing data records. Patients in the upper right
panel (b) have flat GFR trends. Patients in the lower left panel (c) have strong fluctuating
trends. Patients in the lower right panel (d) have increasing or decreasing trends. Each color
represents one individual patient in each panel.
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patients are in an unstable stage with a large amount of variations. Patients in the lower
right panel (d) of Figure 3.1 have a negative or positive slope.

Our goal in this article is exploring the major source of variations of GFR curves,
clustering GFR curves, detecting outlying GFR curves, estimating missing GFR values,
and predicting future GFR values. To explore these variations of GFR trajectories, we
propose to use functional principal component analysis (FPCA) to fit and predict GFR
trajectories in this paper.

FPCA is a cutting-edge method for detecting the major source of variations in curves
and projecting infinite-dimensional curves into low-dimensional vectors. Since being intro-
duced by Rao10 for comparing growth curves, FPCA has attracted considerable attention.
For instance, Castro et al.11 related FPCA to the Karhunen-Loève theorem and the best
m-dimensional functional linear model. Dauxois et al.12 studied the asymptotic properties
of empirical eigenfunctions and eigenvalues when sample curves are fully observable. Zhang
and Chen13 and Benko et al.14 extended this work to a more practical setting where sample
curves are observed at finitely many design points. Hall and Hosseini-Nasab15,16 studied
the estimation errors of empirical eigenfunctions and eigenvalues. To overcome excessive
variation of empirical eigenfunctions, Rice and Silverman17 proposed smoothing estimators
of eigenfunctions via a roughness penalty. Consistency of these estimators was established
by Pezzulli and Silverman18. Subsequently, Silverman19 proposed an alternative way to
obtain smoothing estimators of eigenfunctions through modifying the norm structure, and
established the consistency of the estimators. A kernel-based method for smoothing eigen-
functions was proposed by Boente and Fraiman20. The extension of FPCA to sparse data
such as longitudinal data was studied by James et al.81 and Yao et al.85. James et al.23,
Tian and James24, and Lin et al.25 proposed to increase the interpretability of FPCA by
adding some sparse constraints on functional principal components. FPCA has been used
to explore variations of curves in a sundry groups of applications in subjects such as biology
and medicine. For instance, Feng et al.26 applied FPCA to explore spatial and temporal
variations of cadmium concentrations in Pacific oysters from British Columbia. Luo et al.27

used FPCA to detect the major modes of variations among ward admission intensity func-
tions in hospital emergency departments. An excellent introduction on FPCA can be found
in Chapters 8 and 9 of Ramsay and Silverman28.

In this paper, the FPCA method is applied to explore the major variations of GFR
trajectories. To the best of our knowledge, it is the first time that FPCA is applied to
kidney transplant research. We find that FPCA can project the complex GFR trajectories
into simple functional principal component (FPC) scores. These FPC scores enable us to
cluster the GFR trajectories in such a way that each cluster contains homogeneous GFR
trajectories, and allows us to detect GFR trajectory outliers. At the same time, FPCA
method can effectively impute missing GFR information and predict future GFR based on
all available data information from all kidney recipients.
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The rest of this paper is organized as follows: Section 2 briefly introduces methods to
analyze our kidney transplant recipient data. Section 3 provides the data analysis results
from our data. Some concluding remarks are presented in Section 4.

2.2 Methods

2.2.1 Functional Principal Component Analysis

Functional principal component analysis is used to investigate the dominant modes of GFR
curve variations during the followed-up time frame. Let Xi(t) be the GFR trajectory of the
i-th patient, where i = 1, 2, . . . , n, t ∈ T , and T is the bounded time-frame range. From the
Karhunen-Lovève theorem, Xi(t) can be expressed as

Xi(t) = µ(t) +
∞∑
k=1

ξikφk(t), (2.1)

where µ(t) = E(Xi(t)) is the mean trajectory, φk(t) is the k-th functional principal com-
ponent (FPC), and ξik =

∫
T (Xi(t) − µ(t))φk(t)dt is the associated functional principal

component score. Then the variance-covariance function G(s, t) can be expressed as:

G(s, t) = Cov(Xi(s)− µ(s), Xi(t)− µ(t)) =
∞∑
k=1

λkφk(s)φk(t), (2.2)

where λ1 ≥ λ2 ≥ · · · ≥ 0.
In practice, Xi(t) is usually well approximated by the first few leading FPCs and FPC

scores:

Xi(t) = µ(t) +
K∑
k=1

ξikφk(t). (2.3)

The first FPC φ1(t) displays the dominant mode of variations of Xi(t). In other words,

φ1(t) = arg max
‖φ‖=1

{
Var(

∫
T

(Xi(t)− µ(t))φ(t)dt)
}
, (2.4)

where ‖φ‖ =
(∫
T φ(t)2dt

) 1
2 . The k-th FPC φk(t) (k = 2, · · · ,K) is the dominant mode of

curve variation orthogonal to φ1(t), · · · , φk−1(t). It can be expressed as

φk(t) = arg max
‖φ‖=1,〈φ,φj〉=0 for j=1,...,k−1

{
Var

(∫
T

(Xi(t)− µ(t))φ(t)dt
)}

, (2.5)

where 〈φ, φj〉 =
∫
T φ(t)φj(t)dt, for j = 1, . . . , k − 1. After obtaining the k-th FPC φk(t),

the corresponding FPC score of the i-th curve Xi(t) is calculated as

ξik =
∫
T
φk(t)(Xi(t)− µ(t))dt.
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However, the above method can not be applied to our kidney transplant recipient data
directly, since there exists a measurement error or missing GFR at some time points for
some recipients. In this case, the principal components analysis through the conditional
expectation (PACE) method85 can be used.

The PACE method estimates the top FPCs and FPC scores as follows. Let Yij =
Xi(tij) + εij be the measured GFR at time tij , where εij are identically and independently
distributed normal random variables with mean 0 and variance σ2, and j = 1, 2, . . . ,mi.
To estimate the mean function µ(t), we can consider observations in two different cases.
If GFR observations are available on a regular grid, we take the average at each location
tij : µ̂(tij) = 1

n

∑n
i=1 Yij . If GFR observations are sparse, the mean function is obtained by

smoothing the data from all observations based on the local linear smoother method82.
Let Gi(tij , til) = (Yij − µ̂(tij))(Yil − µ̂(til)), j 6= l, i = 1, . . . , n, be the sample covariance. It
can be shown that E(Gi(tij , til)) = Cov(X(tij), X(til)) + σ2δjl. Therefore, we only use the
off-diagonal sample covariances Gi(tij , til) as input data to obtain the smooth covariance
surface estimate Ĝ(s, t). Let V̂ (t) be a smoothed version of the diagonal elements Gi(tij , tij)
of the sample covariances. Then V̂ (t) is an estimate of G(t, t) + σ2. Therefore, an estimate
of σ2 is obtained by

σ̂2 = 2
|T |

∫
T1
{V̂ (t)− Ĝ(t, t)}dt, (2.6)

where |T | is the length of T , and T1 = [inf{x : x ∈ T }+ |T |/4, sup{x : x ∈ T }− |T |/4]. To
ensure that the variance is nonnegative, σ̂2 is set to 0 if σ̂2 < 0.

The FPCs, φk(t), k = 1, · · · ,K, are eigenfunctions of the eigenequation∫
T
Ĝ(s, t)φk(s)ds = λkφk(t), (2.7)

with the constraints
∫
T φ

2
k(t)dt = 1 and

∫
T φk(t)φm(t)dt = 0 for m < k. The eigen-

funtions are estimated by discretizing the smoothed covariance Ĝ(s, t). We denote φ̂k(t)
(k = 1, · · · ,K,) as the estimated FPCs.

The FPC score of the i-th curve Xi(t) on the k-th FPC can be obtained by the condi-
tional expectation

ξ̂ik = (̂ξik|Y i) = λkφ̂
T

k Σ̂−1
Y i(Y i − µ̂),

where φ̂k and µ̂ are vectors by evaluating φ̂k(t) and µ̂(t) at the grid points tij , j =
1, 2, · · · ,mi, Y i = (Yi1, · · · , Yimi)T , Σ̂Y i = G̃ + σ̂2Imi , and the matrix G̃ is obtained
by evaluating Ĝ(s, t) at the grid points tij , j = 1, 2, · · · ,mi.

The estimated trajectory of the i-th patient GFR is

X̂i(t) = µ̂(t) +
K∑
k=1

ξ̂ikφ̂k(t). (2.8)
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The optimal number of FPCs, K, can be determined by various statistics methods.
For instance, Shibata31 determined K by AIC based on a pseudo-Gaussian log-likelihood,
and Rice and Silverman17 proposed the cross-validation (CV) score based on the leave-one-
curve-out prediction error:

CV (K) =
n∑
i=1

mi∑
j=1
{Yij − X̂(−i)(tij)}2, (2.9)

where X̂(−i)(t) is the predicted GFR curve for the i-th subject after removing the i-th
subject from the data. In this paper, we use the method proposed by Rice and Silverman17

as shown in the above formula, and then use the scree test plot32 to display the relationship
between CV (K) and K. We choose the optimal number of FPCs, K, according to the
CV (K) curve at the point where the curve starts levelling off.

2.2.2 Clustering

In clinical practice, it is more efficient to manage the clinical patients when they can be
clustered into a small number of groups with homogeneous GFR curves. For example, a
group of patients with flat GFR trends indicate that their current clinical treatments are
effective and the kidney transplant is successful. On the other hand, a group of patients with
decreasing GFR trends may require to be diagnosed, and consequently require an alternative
clinical treatment. In this section, we illustrate how to cluster all kidney recipients into
groups with similar GFR curve patterns.

As introduced in the section above, we can obtain a set of FPC scores (ξ1, ξ2, · · · , ξn),
where ξi = (ξi1, · · · , ξiK)T , i = 1, . . . , n, is a K-dimensional vector of FPC scores for the i-th
subject. Based on the distance between these FPC Scores, we use the k-means method33,34

to partition the individual GFR curves into Q sets G = (G1, G2, · · · , GQ). We minimize
the within-cluster sum of the distance of each FPC score vector in its cluster to its cluster
center, which is defined by

Q∑
q=1

∑
ξi∈Gq

∥∥∥ξi − µq∥∥∥2
, (2.10)

where µq is the mean vector in the set Gq. The optimal number of clusters is determined
by the Silhouette method35.

The algorithm of the k-means method is implemented in the following steps:

1. Split all kidney transplant recipients into Q initial clusters.

2. Assign each kidney recipient into the cluster whose centroid is the closest, and recal-
culate the centroid for the cluster once it receives ones or loses.

3. Repeat step 2 until no more reassignments take place in any clusters.
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2.2.3 Detection of GFR trajectory outliers

In this section, we illustrate how to use an ordering method based on FPC scores to detect
abnormal GFR curves. The rationality is that we can detect abnormal GFR curves by
checking their FPC scores in the FPC space, because the abnormal FPC scores in the
one-dimensional FPC space are easier to detect than the abnormal GFR curves in the
infinite-dimensional functional space.

As mentioned in the subsection 2.1, FPC scores are defined as ξik =
∫
T (Xi(t)−µ(t))φk(t)dt.

From this definition, FPC scores are the projection of GFR curves onto the space ex-
panded by the FPCs. Therefore, it is reasonable to detect abnormal GFR curves by ordering
K∑
k=1

(ξ2
ik/λk), where λk is the eigenvalue defined in the eigenequation (2.7). In fact, λk is also

the variance of the FPC score ξik. As shown in a later section, the result from our clinical
data shows that abnormal curves are more visible in the FPC space than in the original
functional space, because the FPC space has one dimension while the functional space has
infinite dimensions. This is consistent with the result in Filzmoser et al.36.

2.2.4 Prediction for Future GFR

After estimating the mean GFR curve µ̂, the FPC φ̂k, and the FPC score ξ̂ik from all
available GFR data, we can estimate any missing GFR or predict future GFR using the
following formula

X̂i(t) = µ̂(t) +
K∑
k=1

ξ̂ikφ̂k(t), (2.11)

where t can be any past or future time points.

2.3 Results on Kidney Transplant Data

The data resource for this paper is kidney transplant recipient data from the Organ Procure-
ment Transplant Network/United Network for Organ Sharing (Optn/UNOS), which collect
the kidney transplant recipient register form including patient description at the time of
transplant, and other follow-up forms including patient description and GFR during the
followed-up period.

2.3.1 Functional Principal Component Analysis

In this section, functional principal component analysis (FPCA) is applied to analyze the
kidney transplant recipient data. Figure 2.2 displays the estimated mean and the correlation
function of the GFR curves. The mean GFR curve reveals that the overall trend of kidney
function is flat. The correlation function shows that GFR is temporally correlated with its
adjoining GFR observation, and the correlation decreases to 0.6 as the time gap between
two observations increases to 10 years.
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Figure 2.2: The mean curve of GFR in the left panel and the correlation function of GFR
in the right panel. They are estimated from the total patients.
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Figure 4.4 shows the four leading functional principal components (FPCs) estimated
from the GFR curves. These four FPCs account for 99.8% of the total variation of GFR
curves. Specifically, the first FPC explains around 84.6% of the total variation. The first
FPC is positive throughout 10 years, with a slight increase at the beginning and then become
flat. In other words, it represents that 84.6% of the total variation of GFR curves comes
from the weighted average of GFR curves with more weight on GFR after 4.4 years from
the date of kidney transplant, where the weighted average uses the first FPC as the weight
function. The second FPC accounts for around 10.7% of the total variation. The second
FPC is positive during the period from the beginning to 5.5 years, and then it becomes
negative after 5.5 years. It can be interpreted as 10.7% of total variation comes from the
change of GFR after 5.5 years in comparison with the early stage. The third FPC accounts
for around 3.4% of the total variation. The third FPC is positive in [3.2, 7.8) and negative
for all other times. It represents that 3.4% of the total variation is from the difference of
GFR in the middle stage [3.2, 7.8) in contrast with the early and later stage. The fourth
FPC is an S shape curve, which is positive in [2.5, 5.6) ∪ [8.5. 10.0] and negative in [1.0,
2.5) ∪ [5.6, 8.5). It stands for 1.1% of the total variation, and it comes from the change of
GFR in [2.5, 5.6) ∪ [8.5. 10.0] in contrast with [1.0, 2.5) ∪ [5.6, 8.5). It is worth mentioning
that many FPCA papers only consider the first two FPCs. In our case, the first two FPCs
only account for 95.3% of the total variation; as a result it may neglect some important
patient information. As shown in this Figure 4.1, a small number of patients have strong
fluctuating curves, which can only be represented by the third and fourth FPCs. In clinical
practice, these patients with abnormal trajectories should be monitored more closely, and
they need to be diagnosed to find out the underlying reason.

Figure 4.1 displays the GFR curves for patients with extreme FPC scores. For instance,
the top left panel in Figure 4.1 shows the GFR curves whose first FPC scores are smaller
than the 5% quantile. All these GFR curves have low GFR during the 10 year period after
kidney transplant. By contrast, the GFR curves in the top right panel in Figure 4.1 have
their first FPC scores larger than the 95% quantile, and all of them have high GFR during
the 10-year period since the kidney transplant. The GFR curves with their second FPC
scores smaller than the 5% quantile have GFR increasing trends over time, while the GFR
curves with their second FPC scores larger than the 95% quantile have decreasing trends
over time. The GFR curves with their third FPC scores smaller than the 5% quantile start
with high GFR values, decrease for the first 5 years, and rebound afterwards. By comparison,
the GFR curves with their third FPC scores larger than the 95% quantile start with low
GFR values, increase for the first 5 years, but decrease afterwards. The GFR curves with
their fourth FPC scores smaller than the 5% quantile also have the opposite fluctuation to
the GFR curves when their fourth FPC scores larger than the 95% quantile.
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2.3.2 Patient clustering

In this section, we use the k-means method to cluster 5654 GFR curves. The Silhouette
analysis method in Rousseeum and Silhouettes35 is used to determine the optimal number
of clusters to be 40. The k-means method clusters all curves into 40 groups, with the
group size varying from 21 to 264. We also compare the k-means method with the model-
based cluster method91. We use the adjusted-rand index38 to evaluate the similarity of the
clustering results from the two methods. The adjusted-rand index is 0.792, which indicates
that the cluster results from these two methods are similar.

Generally, the renal function of patients is normal when GFR are over 90.0mL/min/1.73m2.
Patients have the mildly decreased kidney function when GFR are in the range of 60.0-89.9
mL/min/1.73m2. Patients have the moderately decreased kidney function when GFR are
in the range of 30.0-59.9 mL/min/1.73m2, and patients have the severely decreased kidney
function when GFR are in the range of 15.0-29.9 mL/min/1.73m2. Figure 2.5 displays part
of GFR curves for six of these groups. The four groups in the top four panels show that
all kidney recipients have the stable kidney function with flat GFR trends, but their GFR
levels are very different. They are in various chronic kidney disease (CKD) stages, including
CKD stage 1 with over 90.0 mL/min/1.73m2, CKD stage 2 with the GFR range of 60.0-
89.9 mL/min/1.73m2, CKD stage 3a with the GFR range of 45.0-59.9 mL/min/1.73m2,
and CKD stage 3b with the GFR range of 30.0-44.9 mL/min/1.73m2. By comparison, the
two groups shown in the bottom two panels of Figure 2.5 have an almost monotonically
increasing or decreasing trend, respectively.

As mentioned in the section 2.2, it is more efficient to manage the patients when they
are clustered into a small number of groups with homogeneous GFR curves. For example,
patients in the panel (a) of Figure 2.5 have flat normal GFR trends, indicating that their
kidney transplantations are successful. On the other hand, patients in the panel (e) have
decreasing GFR trends, and they may need alternative treatments. Partial patients in all
40 groups are shown in the supplementary document.

2.3.3 Detection of GFR trajectory outliers

Detecting abnormal GFR curves can be helpful in practice. As introduced in the subsection

2.3, the order statistic
K∑
k=1

(ξ2
ik/λk) can used to detect abnormal GFR curves. Figure 2.6

displays some abnormal GFR curves. It shows one patient having the same GFR value
of 131 during the 10-year followed-up period, which may be caused by erroneously data
recording. Another GFR curve in Figure 2.6 has GFR at 130 in the beginning, then down
to 10 after two years. It seems unreasonable for a patient with an extremely health kidney
function to lose the kidney function so quickly. Another patient has GFR at 10 for 3 years
and then increases to 100 in a short time period. On the other hand, in practice, not all
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abnormal GFR curves are caused by incorrectly data recording, since some of them may be
some interesting clinical cases.

2.3.4 Prediction

FPCA can be used to predict GFR values for the future time or to impute missing GFR
values in the past time by using Equation (4.5). In clinical practice, the prediction of future
GFR and the recovery of missing GFR can be useful. For instance, the predictions can help
to raise a red flag for specific patients if their predicted GFR values continue to decrease or
go below certain thresholds.

Figure 2.7 displays the predicted GFR curves for four patients. The top two panels
show two patients with GFR measurements in the first few years. Equation (4.5) can be
used to predict their GFR in the future. For instance, the patient at the top left panel
has the measured GFR values at the first four years, but no GFR values are available
afterwards. Our method predicts the future GFR value of this patient at the fifth year to
be 67. The bottom two panels show that two patients have GFR missing in some years.
Equation (4.5) can also be used to estimate the missing GFR for these two patients. For
example, the patient corresponding to the bottom left panel has missing GFR values at
the 2nd year. Our method estimates the missing GFR value of this patient in the second
year to be 41. The predicted GFR of another patient, shown at the bottom right panel of
Figure 2.7, continually decreases and reaches 30 at the seventh year, which means that the
kidney function of this patient goes for CKD stage 4 (GFR<30) at the seventh year. This
prediction will raise a red flag for this patient.

2.4 Conclusions and Discussion

GFR curves are ideal biomarker measurements of the kidney function progression after
kidney transplant. In this paper, we use the functional principal component analysis (FPCA)
method to determine the major source of variations of GFR curves. Four functional principal
components (FPCs) are estimated, and they account for 99.8% of the total variations of
GFR curves. All these four FPCs have some interesting interpretation. For instance, the
second FPC represents the change of GFR after 5.5 years in comparison with the early
stage. In addition, the corresponding FPC scores can be used to cluster GFR curves. All
5654 GFR curves are clustered into 40 groups, and each of these 40 groups contains similar
GFR curves. We also find that FPC scores can be used to detect abnormal GFR curves,
which supplies a useful tool to detect data entry errors or interesting clinical cases in a
large dataset. FPCA can also recover missing GFR values, and predict future long-term
GFR trajectories.

As one reviewer pointed out, it is of great interest to predict the future GFR for pa-
tients with different therapies, complications, gender, or ages. This question can be solved
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with two methods. One method is that we can do separate FPCA for different ther-
apy/complication/gender/age groups. The other method is that we can first do the re-
gression of GFR on all variables such as therapies, complications, gender, or ages. Then we
do FPCA on the fitted GFR residuals after adjusting these variables. We can then predict
the future GFR based on the estimated FPC scores on the GFR residuals and linear coef-
ficients to these variables. This is a very interesting problem, and we will investigate it in
our future research.
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Figure 2.3: The first four leading functional principal components (FPCs) estimated from
the GFR curves.
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Figure 2.4: GFR curves when their FPC scores are extreme. The thick blue curve in each
panel is the average of individual GFR curves in that panel, which represents the common
trend in that panel. The left four panels, from top to bottom, are GFR curves when their
first, second, third, and fourth FPC scores are smaller than the 5% quantiles, respectively.
The right four panels, from top to bottom, are GFR curves when their first, second, third,
and fourth FPC scores are larger than the 95% quantiles, respectively.
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Figure 2.5: Part of the GFR curves in six clusters.
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Figure 2.6: Some abnormal GFR curves.
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Figure 2.7: The predicted GFR curves for four patients. The dots are observed GFR data.
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Chapter 3

A Joint Model of a Longitudinal
and Accelerated Failure Time Data
and its Application to Transplant
Patients with an ESRD and a
Diabetes

3.1 Introduction1

This article is motivated by a longitudinal and time-to-event clinical dataset, where all
patients have the end-stage renal disease (ESRD) and diabetes. All patients have already
had a kidney transplantation from a living or decreased kidney donor, and all of them are
on the waiting list for the pancreas transplant to treat the diabetes disease. Partial patients
have a pancreas transplantation if a matched pancreas organ is available for them. It is
known that the organ transplantation can prolong the survival of type 1 diabetic patients
with ESRD40–45,76. However, how to extend the long-term kidney function still remains the
main challenge for transplantation.

No studies have used a joint model to predict the long-term kidney function, which
includes the longitudinal continuous outcome of glomerular filtration rate (GFR) and the
time-to-event outcome of all-cause graft loss (ACGL). From our preliminary result as in
Figure 3.1, the levels of the observed GFR trajectories for patients with ACGL are higher
than those of patients without ACGL, and we find that the slopes of GFR trajectories for
patients with ACGL are steeper in comparison with patients without ACGL. In addition,
all patients may have a pancreas transplant at any time post kidney transplant to treat
the diabetic disease, and they are in different statuses at different time points during the

1This chapter has been published in Statistical Methods in Medical Research (2018), Dong J, and Wang
S, and Wang S, and Wang L, and Gill J, and Cao J
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followed-up period. For example, they are in status 1 (alive without pancreas transplant)
at the time of the admission to the waiting list for a pancreas. They move to status 2
(alive with pancreas transplant) if a matched pancreas organ becomes available for them
before ACGL, or they directly move to status 3 with ACGL. In fact, the failure rates of
the time-to-event outcome are different as patients change their status. As shown in Figure
3.1, it seems that patients who have a pancreas transplant are less likely to have ACGL.
In short, the above scenarios motivate us to develop a new dynamical joint model to pre-
dict the long-term outcome, since there are at least two advantages in using a joint model.
Firstly, joint modelling multiple outcomes together can increase the power and decrease
the Type I error46,47. Secondly, this joint model can estimate the parameters in the longi-
tudinal component by incorporating the time-to-event information through censoring, and
similarly, for the converse situation, the estimation of the time-to-event is incorporated by
the longitudinal data information.

Several methods for estimating joint models of multiple outcomes have been developed.
The main challenge in jointly modelling multiple outcomes is the lack of a suitable mul-
tivariate joint distribution. The first approach is a two-stage approach48, where a random
components model is developed to describe repeated longitudinal measures in the first stage,
and a Cox proportional hazards model is estimated in the second stage. However, this ap-
proach may cause bias when the observation of the longitudinal process is interrupted by
the event. To address this problem, the second approach49 directly specifies the joint dis-
tribution by factorizing it into the conditional distribution of one outcome and a marginal
distribution of the other outcome. This approach was reviewed with some insightful com-
ments52. The accelerated failure time model is considered in their joint model rather than
the Cox proportional hazards model54,89. The third approach directly formulates a joint
model for longitudinal repeated measurements and the time-to-event outcome. For instance,
a copula is used to construct the joint distribution55. Another challenge in jointly modelling
multiple outcomes is the intensive computation due to the complex correlation structure of
latent variables and measurement errors in covariates49,89. So the EM or the Monte Carlo
EM algorithm is developed to estimate parameters in the joint models54,89. The Bayesian
method is also developed to estimate the joint models59.

Most of above joint models are based on the Cox proportional hazard regression, and
only a few joint models such as the paper54 use the accelerated failure time regression.
As shown in Figure 3.3, the assumption of Cox proportional hazard model fails because
the cumulative survival lines cross with each other for patients with/without a pancreas
transplant. Therefore, the accelerated failure time submodel is used in our proposed joint
model. On the other hand, the proposed joint model is different from the joint models
in the paper54, which treats the longitudinal component as a covariate in the survival
analysis. In our proposed joint model, instead of using the whole longitudinal component
as a covariate, we propose to use some latent features of the longitudinal component in
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Figure 3.1: Observed individual GFR trajectory curves. The left two panels, from top to
bottom, are GFR curves for patients with All-cause graft loss (ACGL) events or without
ACGL events, respectively, when they don’t have a pancreas transplantation. The right two
panels, from top to bottom, are GFR curves for patients with ACGL event or without ACGL
events, respectively, when they have a pancreas transplantation. Each color represents the
individual patient in each panel.
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the survival submodel. Finally, none of the above joint models has considered a method
to obtain the dynamical non-proportional hazard ratio curve of a side event when hazard
ratios are non-proportional during the followed-up time period.

The main contribution of this paper is that we review the clinical question in the trans-
plantation data, and accordingly develop a new joint model to determine the relationships
of multiple outcomes to account for correlations within/between subjects. To the best of our
knowledge, it is the first time for the joint model to be applied to the organ transplantation
research. Our proposed joint model has three advantages. Firstly, the survival submodel
shares a vector of latent variables with the longitudinal submodel. The advantages of this
model are that unnecessary noise can be filtered, and the effects of other covariates can be
adjusted in the longitudinal submodel. In addition, it is easy to interpret the coefficients
from the model results. For example, the latent features are the baseline and the slope of
GFR trajectories in the application example. The coefficients in the survival component
represent their corresponding relationship with the time-to-event outcome. Secondly, the
survival submodel shares the data information together with the longitudinal submodel.
For example, our proposed joint model in the application example has considered that the
occurrence of death or transplant failure may lead to the censoring of GFR, which overcomes
the drawback of separate analyses for each outcome. Finally, our proposed joint model in-
cludes a piecewise linear function to display the dynamical non-proportional hazard ratios
of the side event on the time-to-event outcome.

The rest of this article is organized as follows. Our proposed joint models are introduced
in Section 4.2. We present our estimation method for the joint model in Section 3.3. Section
?? demonstrates the application of our joint model in the transplantation clinical data.
Section 4.4 presents three simulation studies to investigate the finite sample performance
of our joint model. Conclusions and discussion are given in Section 4.6.

3.2 The Joint Model

Let Yi(tij) be a repeated continuous measured outcome at times tij for the i-th subject,
where i = 1, · · · , n, j = 1, · · · ,mi, and mi is the number of repeated measurements for the
i-th subject. For example, the longitudinal outcome Yi(tij) is the repeated measurements of
GFR at different time points in the application example of transplant clinical data. Let Ti
be the i-th subject’s survival time to the event of interest, Ci be a possible censoring time,
δi = 1{Ti≤Ci} be the censoring indicator, Si = min(Ti, Ci) be the observed survival time,
and Zi = [Zi1, · · · , ZiP ]T be the observed covariates for the i-th subject. We propose the
following joint model:{

Yi(tij) = αTZi + βTi ξ(tij) + εi, i = 1, · · · , n,
λ(t|Zi,βi,wi(t)) = λ0

{ ∫ t
0 φ(s,Zi,wi(s),βi,γ)ds

}
φ(t,Zi,wi(t),βi,γ),

(3.1)
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The first equation in the joint model (3.1) is the longitudinal submodel for repeated
measurement outcome Yi(tij), where α = (α1, · · · , αP )T is a vector of coefficients for the
fixed effects of Zi = [Zi1, · · · , ZiP ]T , and βi = (βi1, · · · , βiL)T is a vector of coefficients for
the random effects of ξ(t) = (ξ1(t), · · · , ξL(t))T . Here, ξ`(t), ` = 1, . . . , L, is a parametric
function of t. For example, ξ1(t) = 1 and ξ2(t) = t in our application example. We assume
that βi ∼ Normal(b,B). The vector of measurement errors εi = (εi1, · · · , εimi) are assumed
to be multivariate normal distributed with the mean and the variance-covariance matrix
σ2In.

The second equation in the joint model (3.1) is the survival sub-model with the acceler-
ated failure time hazard function, where φ(t,Zi,wi(t),βi,γ) = exp[γT1Zi+γT2 βi+wi(t|γ3)],
which represent the joint effects of covariates, γ = (γT1 ,γT2 ,γT3 ) are the coefficients in the
survival model, and βi = (βi1, · · · , βiL)T are the vector of latent variables, which are shared
in the longitudinal sub-model and the survival sub-model. The time-dependent indicator
function wi(t|γ3) captures the dynamic relative risk of the side event at different time
points post the side event. Here, λ0

{ ∫ t
0 φ(s,Zi,wi(s),βi,γ)ds

}
is the baseline hazard func-

tion. This survival sub-model is justified with more details in Subsection 3.2.1.
This proposed joint model has two major advantages. Firstly, the mixed-effect submodel

of the longitudinal outcome can adjust for other co-variables to filter some noise because
we do not treat the longitudinal outcome as a covariate in the survival submodel. Secondly,
the survival submodel shares the latent features βi with the mixed-effect submodel. The
estimates of the latent features in the joint model can offer an answer for specific clinical
questions. For example, in our kidney transplant application, the latent variable βi1 is the
baseline of GFR, the latent variable βi2 is the slope of GFR. Their corresponding coefficients
(γ21 and γ22) in the survival model show the effect of the baseline and the slope of GFR to
the time-to-event outcome.

3.2.1 The Survival Submodel

This subsection provides the justification for the survival submodel in the proposed joint
model with more details. In the transplant clinical data, all subjects have a kidney trans-
plant, and only part of them have a pancreas transplant at a certain time after kidney
transplant before death.

From our preliminary analysis, the clinical transplant data has several aspects. Firstly,
as shown in Figure 3.1, patients with a pancreas transplant are less likely to have the time-
to-event outcome in comparison with patients without a pancreas transplant. Secondly,
patients have a dynamical status as shown in Figure 4.2. For instance, each individual is
on the waiting-list program for the pancreas transplantation after kidney transplant (status
1). Then patients either move to status 2 (alive and pancreas transplant) when a matched
pancreas organ is available, or they directly move to status 3 (ACGL or on the waiting).
The hazard rates are different when moving from status 1 to status 3 in comparison with
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Figure 3.2: The three statuses of kidney transplant patients. All patients start from the date
of the kidney transplant (Status 1), then they may move to Status 2 (pancreas transplan-
tation) when a matched pancreas organ is available during the followed-up time period. If
not, they directly move to Status 3 when the time-to-event outcome of all-cause graft loss
happens, or they still are on the waiting-list for the pancreas transplant.

the other scenario when moving from status 2 to status 3. Thirdly, the assumption of Cox
proportional hazard model fails as shown in Figure 3.3, because the cumulative survival line
of patients with a pancreas transplant cross with the cumulative survival line of patients
who have no pancreas transplant. Therefore, we recommend the alternative hazard model
rather than Cox proportional hazards model in this paper.

We propose to use the accelerated failure time (AFT) model, which was firstly introduced
by Cox60 to determine whether the effect of a covariate is to accelerate or decelerate the life
course of a disease by some constant. Cox and Oakes61 extended a AFT model with time-
dependent covariates. James62 provided a method to estimate the time-dependent AFT
model in the presence of confounding factors. Reid63 and Kay64 mentioned that the AFT
models were more appealing than the the proportional hazard models because they could
give direction physical interpretations. For example, as mentioned in the paper by Kay64,
the AFT model can supply a more straightforward interpretation of the treatment effect on
the time to event data because the coefficient of the treatment indicator can be estimated
across various intervals defined by the cut time points from the date of treatment.

In this paper, the hazard function of the accelerated failure time submodel is specified
as:

λ(t|Zi,βi,wi(t)) = λ0
{ ∫ t

0
φ(s,Zi,wi(s),βi,γ)ds

}
φ(t,Zi,wi(t),βi,γ), (3.2)

where φ(t,Zi,wi(t),βi,γ) = exp[γT1Zi + γT2 βi + wi(t)], Zi = [Zi1, · · · , ZiP ]T is a vector
of time-independent covariates, βi = (βi1, · · · , βiL)T is a vector of latent variables, which
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Figure 3.3: The cumulative Nelson-Aalen estimate of all-cause graft loss by patient status
of pancreas transplantation. The red line is the cumulative Nelson-Aalen estimate of all-
cause graft loss for patient with a pancreas transplant and the blue line is the cumulative
Nelson-Aalen estimate of all-cause graft loss for patient without a pancreas transplant.
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are random factors shared with the longitudinal sub-model, and wi(t) is a time-dependent
indicator function. We assume wi(t) to be a piecewise linear function, which is used to
capture the dynamic relative risk at different time points post the side event. We express
wi(t) as

wi(t|γ3) =



0 if t 6Wi,

γ30 if Wi < t 6Wi + D0
365 ,

γ3k(t−Wi − Dk−1
365 ) if Wi + Dk−1

365 < t 6Wi + Dk
365 , k = 1, . . . ,K,

γ3(K+1) if t > Wi + DK
365 ,

(3.3)

where Wi is the time of the side event for the i-th subject, D0, D1, . . . , DK are denoted
as the specified number of days post the side event, and γ3 = (γ30, · · · , γ3(K+1))T are the
coefficients in the piecewise function. In our application example of the clinical transplant
data,Wi is the time from the kidney transplant to the pancreas transplant for those patients
who have pancreas transplant. For patients without pancreas transplant, Wi is set to be
larger than the end date of the study cohort minus the date of kidney transplant.

It is worth mentioning that the hazard function defined in (3.2) can be a strata hazard
model because it can provide different hazard functions when patients are in different sta-
tuses. For example, the hazard function λ(t|Zi,βi,wi(t|γ3) = 0) is the hazard rate when pa-
tients move from status 1 to status 3 if t 6Wi. The hazard function λ(t|Zi,βi,wi(t|γ3) 6= 0)
is the hazard rate when patients move from status 2 to status 3 if t > Wi.

More importantly, the piecewise linear function (3.3) in the proposed joint model can be
used to determine the time-dependent hazard ratios of the side event when the effect of the
side event on the time-to-event outcome is non-proportional. For example in our application
example, this piecewise linear function can be used to calculate the dynamic relative risk of
the pancreas transplant on all-cause graft loss at different time points (Dk) after a pancreas
transplant. For instance, we set Dk as D0 = 14 days, D1 = 45 days, D2 = 90 days, D3 = 180
days, D4 = 365 days, and D5 = 730 days from the date of pancreas transplant, and then
we can obtain the relative hazard ratios at each time point from the joint model. These
relative hazard ratios can supply some references to control the potential risk of the pancreas
transplant in the clinical practice. We give the change curve of the relative hazard ratios
over time Dk and discuss it in more details in Section 3.4.

3.3 Estimation Method

We discuss the likelihood function in a general framework for this proposed joint model
with latent variables. Let Θ = (γT ,αT ,λT , T ,BT , σ2, λ0)T be the parameters to estimate.
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The overall likelihood function based on the observed information is given by:

L(Θ) =
n∏
i=1

[
f(ti,wi(ti), Si, δi|Yi,Zi,γ, λ0){

mi∏
j=1

f(Yij |Zi,βi, ti,α, σ
2)}f(βi|b,B)

]
, (3.4)

where

f(ti,wi(ti), δi|Yi,Zi,γλ0) =
{
λ0{Φ(t,Zi,wi(t|γ3), βi, γ),γ)}Φ′(t,Zi,wi(t|γ3),βi,γ)

}δi
exp

[
−
∫ Φ(ti,Zi,wi(t|γ3),βi,γ

0
λ0(s)ds

]
is the density function of the survival submodel of the proposed joint model, and

Φ(t,Zi,wi(t|γ3),βi,γ) =
∫ t

0
φ(s,Zi,wi(t|γ3),βi,γ)ds

=
∫ t

0
exp(γT1Zi + γT2 βi +wi(t|γ3))ds.

The function f(Yij |Zi,βi, ti,α, σ
2) is the density function of Normal(αTZi + βTi ξ(ti), σ2),

and f(βi|b,B) is the density function of Normal(b,B).
We propose to estimate the parameters in the joint model (3.1) by using the Monte

Carlo EM algorithm67. The EM-algorithm72 is an iterative procedure with two steps: the
expectation (E) step and the maximization (M) step. In the E-step, we compute the ex-
pectation of joint log-likelihood function over the latent variable βi using the observations
and parameter estimates obtained so far. In the M-step, we maximize the expected joint
log-likelihood over the parameters.

3.3.1 E-step

At the t-th iteration of the E-step, the expectation of the log-likelihood function w.r.t the
latent variable βi can be expressed in the following form

Q(Θ|Θ(t)) = Eβ[logL(Θ|t,w(t), S, δ,Z, Y (t))|Θ(t)]

=
n∑
i=1

∫ [
log f(ti,w(ti), Si, δi|βi,γ, λ0) +

mi∑
j=1

log f(Yij |βi,α, σ2)

+ log f(βi|B,B)
]
f(βi|t,wi(t), Si, δi,Zi, Yi(t),Θ(t))dβi, (3.5)

where f(βi|ti,wi(t), Si, δi,Zi, Yi(t),Θ(t)) = f(βi|Zi,Yi(t),Θ(t))f(ti,wi(t),Si,δi|βi,Θ(t))
f(ti,wi(t),Si,δi|Zi,Yi(t),Θ(t)) ,

f(βi|Zi, Yi(t),Θ(t)) ∼MVN(Ai

[
ξTi (t)(Yi(t)−ZT

i α)
σ2

]
,Ai),
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Ai =
[
ξTi (t)ξi(t)

σ2 +B−1
]−1

. The integral in the above equation is intractable because of the

intractability of normalizing constant f(ti,wi(t), Si, δi|Zi, Yi(t),Θ(t)). An alternative is to
use the importance sampling to approximate the integral in E-step.

• Draw N samples β(1)
i , · · · ,β(N)

i from f(βi|Zi, Yi(t),Θ(t)) based on the current param-
eter estimates Θ(t), and compute the normalized weights w(s)

i ∝ f(ti,wi(t), Si, δi|β(s)
i ,Θ(t)).

• Calculate Q̂(Θ|Θ(t)) =
n∑
i=1

N∑
s=1

w
(s)
i · l

(s)
i (Θ|ti,wi(t), Si, δi,Zi, Yi(t),Θ(t)), where

l
(s)
i = log f(ti,w(ti), Si, δi|β(s)

i ,Θ(t)) +
∑mi
j=1 log f(Yij |β(s)

i ,Θ(t)) + log f(β(s)
i |Θ(t)).

3.3.2 M-step

After computing the expectation of the log-likelihood function in Equation (3.5), in M-
step we estimate each parameter of Θ by maximizing Q̂(Θ|Θ(t)). The MLEs of b̂, B̂, α̂,
σ̂2, the baseline hazard function λ̂0(t) are derived in the supplementary document. The
MLE of γ has no closed-form, hence we could use the numeric optimization algorithm68 to
optimize this parameter. We repeat the E-step and M-step until convergence achieved. The
convergence criterion for MCEM in our numerical study is

max{|Θ
(t) −Θ(t−1)|
|Θ(t)|+ ε2

} < ε1,

where we set ε1 = 0.002 and ε2 = 0.001. The standard error of Θ̂ is computed using the
bootstrap method66.

3.4 Application to Clinical Transplant Data

The clinical transplant data resource is from the United Network for Organ Sharing. As
mentioned in the introduction, all patients (N = 13, 635) have both an end-stage renal
disease (ESRD) and a diabetic disease. In this data, all patients already have a kidney
transplantation from a living or deceased donor, and all of them are on the waiting list for
the pancreas transplant. A part of patients (N = 2, 776) may have a pancreas transplant at
any time during the followed-up period. We apply the proposed joint model to this clinical
transplant data in this section. The main result from the proposed joint model is shown in
Section 3.4.1, and the effect of the side event of pancreas transplant on the all-cause graft
loss is shown in Section 3.4.2.

3.4.1 Main Results from the Joint Model

In order to demonstrate the feasibility of the proposed joint model (3.1), we apply it to some
clinical transplant data in this section. As shown in Figure 3.1, the baseline of GFR and the
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slope of GFR are related to the time-to-event outcome as mentioned before. So we choose
two latent factors βi1 and βi2, and the joint model can be specified as in the following:{

Yi(t) = αTZi + βTi ξ(t)+i, i = 1, · · · , n,
λ(t|Zi,wi(t),βi,γ) = λ0{

∫ t
0 φ(s,Zi,wi(s),βi,γ)ds}φ(t,Zi,wi(t),βi,γ),

(3.6)

where φ(t,Zi,wi(t),βi,γ) = exp[γT1Zi + γT2 βi +wi(t|γ3)], and Yi(t) is the GFR value at
various time points post kidney transplant. The GFR value is calculated according to the
formula in the paper75: GFR = 141 × min(Scr/d, 1)e × max(Scr/d, 1)−1.209 × 0.993Age ×
(1.018 if female) × (1.159 if black), where Scr is the measured serum creatinine in mg/dL,
and the serum creatinine is a chemical waste product from the muscle metabolism and
blood. The parameter d = 0.7 if female or 0.9 if male, and the parameter e = −0.329 if
female or −0.411 if male. Let Wi be the time from the kidney transplant to the pancreas
transplant or the time on the waiting-list for patients without a pancreas transplant. We
specify the piecewise linear function wi(t) in φ(ti,Zi,wi(t),βi,γ) in (3.6) as follows:

wi(t|γ3) =



0 if t 6Wi

γ30 if Wi < t 6W + 14
365

γ31(t−Wi − 14
365) if Wi + 14

365 < t 6Wi + 45
365

γ32(t−Wi − 45
365) if Wi + 45

365 < t 6Wi + 90
365

γ33(t−Wi − 90
365) if Wi + 90

365 < t 6Wi + 180
365

γ34(t−Wi − 180
365) if Wi + 180

365 < t 6Wi + 365
365

γ35(t−Wi − 365
365) if Wi + 365

365 < t 6Wi + 730
365

γ36 if t > Wi + 730
365 .

(3.7)

Table 5.5.2 displays the coefficients and standard errors of all parameters in the longi-
tudinal sub-model and the AFT survival sub-model. The baseline term (β1) in the mixed-
effects submodel is 48.94, which indicates that most patients have a good kidney function at
the baseline. The slope term (β2 = −1.36) of GFR is negative and statistically significant,
which means that the kidney function progression decreases during the followed-up period
time. The estimates for other coefficients in the mixed-effect submodel are also reasonable.
For example, the value of GFR decreases by 0.17 as the age of patients increases by 1. In
other words, the kidney function of older patients is worse than young patients. The average
GFR value of patients with a decreased donor is 1.15 less than patients with a living donor.

In the survival sub-model, the coefficients (γ21 and γ22) of the random intercept and
slope (β1 and β2) of GFR are negative, and they are also statistically significant. These
results indicate that the latent baseline level and the latent slope of GFR are related to
the time-to-event outcome ACGL. In other words, the failure rate of ACGL increases as
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Table 3.1: Estimates for parameters in Model (5.1). The standard errors of the estimates
are given in brackets.

The longitudinal submodel The survival submodel
Parameters Coef.(SE) P value Coef.(SE) P value

Age (per year) −0.17(0.05) < 0.001 0.02(0.01) 0.044
Female 5.39(0.73) < 0.001 −0.23(0.03) 0.029
Black −3.69(1.34) < 0.001 0.17(0.08) 0.020
Other −6.45(1.08) < 0.001 0.23(0.07) < 0.001

TX era 1993− 1997 7.56(1.15) < 0.001 −0.29(0.04) 0.080
TX era 1998− 2002 10.75(1.16) < 0.001 −0.76(0.03) < 0.001
TX era 2003− 2007 16.52(1.30) < 0.001 −0.95(0.03) < 0.001

PKPRA 1− 29 −0.93(0.17) 0.024 0.06(0.01) 0.030
PKPRA 30− 100 −2.35(0.11) 0.159 0.27(0.13) 0.049

HLA mismatch 1− 6 −1.54(0.61) 0.045 0.24(0.05) 0.004
Dialysis time 0.1− 1 years −0.27(0.17) 0.689 0.07(0.01) 0.005
Dialysis time 1.1− 2 years −0.52(0.42) 0.166 0.08(0.01) 0.007
Dialysis time 2.1− 3 years −0.73(1.01) 0.142 0.33(0.03) 0.028
Dialysis time > 3 years −0.96(0.11) 0.029 0.38(0.05) < 0.001

Decreased Donor −1.15(0.18) 0.015 0.14(0.05) 0.024
β1 48.94(2.34) < 0.001
β2 −1.36(0.12) < 0.001
γ21 −0.07(0.01) < 0.001
γ22 −0.21(0.04) < 0.001
γ30 1.22(0.01) < 0.001
γ31 −9.42(0.04) 0.035
γ32 −2.51(0.05) 0.041
γ33 −0.65(0.45) 0.542
γ34 −0.35(0.21) 0.251
γ35 −0.06(0.01) 0.045
γ36 −0.28(0.04) < 0.001

Random-effect parameters Value(Std.Error) Correlation
SD(β1) 14.91(2.30) −0.40
SD(β2) 2.89(0.12)
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the value of GFR decreases during the followed-up time period, and patients in the higher
baseline of GFR are less likely to have the time-to-event outcome ACGL. The coefficients of
female patients are larger than male patients. It is reasonable that patient age is significantly
related to all-cause graft loss, which indicates that patients are more likely to have an ACGL
with the hazard ratio (1.02) as patient age increases per year. Compared with the white
patients, the black patients are more likely to have the time-to-event outcome ACGL. The
transplantation era and the dialysis duration before transplant are also related to the time-
to-event outcome ACGL. For example, patients have a longer dialysis duration before kidney
transplant, and the more likely patients have all-cause graft failure. Compared with patients
who have a deceased donor, patients who have a living donor transplant are less likely to
have the time-to-event outcome ACGL. The dynamic effect of the pancreas transplant on
all-cause graft loss is presented in the next subsection.

3.4.2 Effect of Pancreas Transplant on Allograft

In order to evaluate the average and time-varying relative risk of the pancreas transplant
on all-cause graft loss, we can set the piecewise linear function wi(t|γ3) in Equation (3.3) in
two separate forms. In order to evaluate the average relative risk of the pancreas transplant
on all-cause graft loss, we set wi(t|γ3) as:

wi(t|γ3) =

0 if t 6Wi,

γ31 if t > Wi.

Then the coefficient vector γ3 in the piecewise function has only one element γ31. In fact,
the coefficient γ31 represents the average relative risk of the side event on the time-to-event
outcome in this case when we set K = 0 and D0 = 0 in Equation (3.3). We find that
the pancreas transplant has a significantly statistical benefit effect on ACGL because the
hazard ratio is exp(γ31) = exp(−0.13) = 0.88 with the p-value 0.045. In other words, the
pancreas transplant can reduce the risk of the time-to-event outcome ACGL.

However, the relative risk of this side event on the time-to-event outcome is non-
proportional. Therefore, we need to display the relative risk curve at various time points
post pancreas transplant. It is also useful to control the potential risk for the clinical prac-
tice if we can determine the relative risk at specified time points. In order to evaluate
the time-varying relative risk of the pancreas transplant on all-cause graft loss, we set the
piecewise linear function wi(t|γ3) as the formula (3.7) after specifying the values of Dk as
D0 = 14 days, D1 = 45 days, D2 = 90 days, D3 = 180 days, D4 = 365 days, and D5 = 730
days. Then we obtain the coefficient vector γ3 at these specified time points from the date
of pancreas transplant in comparison with patients without pancreas transplant, which is
shown in Table 5.5.2.
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For easy comparison, we transform the estimated coefficients into the hazard ratios.
Figure 3.4 displays the hazard ratio curve of pancreas transplant at different time points. It
shows that the hazard ratio is very high in the beginning because of the clinical surgery or
organ acute rejection, then the hazard ratio decreases to 1.00 at 152 days from the date of
pancreas transplant, and then becomes less than 1 thereafter. From the time point when the
hazard ratio is equal to 1.00, the pancreas transplantation starts to have a survival benefit.
It is a good clinical example to demonstrate the hazard ratio curve when the hazard ratios
are not proportional.
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Figure 3.4: The curve of hazard ratios of all-cause graft loss for patients with a pancreas
transplant with the 95% confidence intervals at 14, 45, 90, 152, 180, 365, 730 days from the
date of pancreas transplant. The reference group are patients without a pancreas transplant.
The hazard Ratio curve reaches 1.00 at 152 days from the date of pancreas transplant.
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3.5 Simulations

3.5.1 Simulation 1

The first simulation study is implemented to access the finite-sample performance of our
proposed MCEM algorithm in Section 3.3. A multivariate mixed-effects model is chosen to
simulate the longitudinal trajectories:

Yi(t) =
15∑
p=1

αpZip + βi1 + βi2t+i,

where βi1 = β1 + bi1, bi1 ∼ Normal(0, σ2
1), βi2 = β2 + bi2, and bi2 ∼ Normal(0, σ2

2), i =
1, . . . , n. In our application example, the longitudinal outcome is GFR. Here α1, α2, · · · , α15

are the coefficients for age, gender, and other fixed covariates shown in Table 5.5.2. We set
β1 = 48.94, σ1 = 14.91, β2 = −1.36, and σ2 = 2.89, which are the estimate from the real
data in Table 5.5.2. The measurement error εij ∼ Normal(0, σ2

3), where we set σ3 = 0.85
and j = 1, · · · , 12. The scheduled measurement times of the repeated longitudinal outcome
are set at the sequence year (1, 2, · · · , 12) for each subject, but there are no measurements
available after death or censoring time. The time-to-event Ti is specified as follows:

Log(Ti) =
15∑
p=1

γ1pZip + γ21βi1 + γ22βi2 + w(t|γ3) + τi,

where γ1, γ2, · · · , γ15 are the coefficients for age, gender, and other fixed covariates, γ21 and
γ22 are the coefficient for the random effects β1i and β2i, and the random error τi ∼ Gumbel
(0, 1). We set their true values as the estimates from the real data shown in Table 5.5.2.
The piecewise linear function wi(t|γ3) is specified as follows:

wi(t|γ3) =

0 if t 6Wi

γ31 if t > Wi,

where γ31 = −0.13. The number of subjects are set as n = 100.
We estimate the joint model (5.1) with the Monte Carlo EM algorithm from the sim-

ulated data. The simulation procedure is repeated for 100 replicates. Table B.1 shows the
parameter estimates, together with biases and root mean square errors (RMSEs). It shows
that the means of the parameter estimates by the MCEM algorithm are close to their true
values. The average number of iterations till convergence is 12. We notice that the estimate
for β1 and β1 has large RMSE, which is caused by the setting of our simulated data. In the
simulation data, we set β1 = 48.94, σ1 = 14.91, β2 = −1.36, and σ2 = 2.89, which are the
estimated from the real transplant data. We find that the MCEM algorithm can estimate
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Table 3.2: Means, biases, root mean square errors (RMSEs) of the parameter estimates for
the joint model (5.1) using our proposed MCEM algorithm in Simulation 1.

The longitudinal submodel The survival submodel
Parameters True Mean Bias RMSE True Mean Bias RMSE

Age (per year) -0.17 -0.17 0.00 0.012 0.02 0.02 -0.00 0.001
Female 5.39 5.41 -0.02 0.236 -0.23 -0.23 -0.00 0.010
Black -3.69 -3.68 -0.01 0.235 0.17 0.17 0.00 0.009
Other -6.45 -6.45 0.00 0.220 0.23 0.23 0.00 0.010

TX era 1993− 1997 7.56 7.57 -0.01 0.300 -0.29 -0.29 0.00 0.010
TX era 1998− 2002 10.75 10.80 -0.05 0.245 -0.76 -0.76 -0.00 0.010
TX era 2003− 2007 16.52 16.55 -0.03 0.227 -0.95 -0.95 0.00 0.011

PKPRA 1− 29 -0.93 -0.93 -0.00 0.114 0.06 0.06 0.00 0.003
PKPRA 30− 100 -2.35 -2.43 -0.08 0.119 0.27 0.27 0.00 0.011

HLA Mismatch 1− 6 -1.54 -1.54 0.00 0.132 0.24 0.24 -0.00 0.010
Dialysis time 0.1− 1 years -0.27 -0.27 0.00 0.121 0.07 0.07 0.00 0.005
Dialysis time 1.1− 2 years -0.52 -0.49 -0.03 0.118 0.08 0.08 -0.00 0.005
Dialysis time 2.1− 3 years -0.67 -0.66 -0.01 0.147 0.33 0.33 -0.00 0.004
Dialysis time > 3 years -0.96 -0.94 -0.02 0.163 0.38 0.38 -0.00 0.005

Decreased Donor -1.15 -1.14 -0.01 0.109 0.14 0.14 0.00 0.004
β1 48.94 49.35 -0.41 1.439
β2 -1.36 -1.47 0.11 0.505
γ21 -0.07 -0.07 -0.00 0.002
γ22 -0.21 -0.21 -0.00 0.005
γ3 -0.13 -0.13 0.00 0.005

parameters accurately in the proposed joint model, which is consistent with the literature
such as54,89.

3.5.2 Simulation 2

In order to study the effect of the various correlation construction between the longitudinal
submodel and the survival model, we develop two simulation studies in this subsection.

The relationship between the longitudinal submodel and the survival model in our pro-
posed joint model (3.1) is based on latent feathers. Some other studies treat the longitudinal
outcome as a covariable in the survival model as shown in the models (3.8) such as48,52,54.

{
Yi(t) = Xi(t)+i, i = 1, · · · , n,
λ(t|X(t)) = λ0{

∫ t
0 γ1X(s)ds} exp(γ1X(t)).

(3.8)

The simulation data are generated in two scenarios. In the first scenario, we set γ1 =
γ2 = 1.00. In the second scenario, we set γ1 = 1.00 and γ2 = −1.00. We choose these
two different scenarios because we want to see the differences between the proposed model
(5.1) and the model (3.8) when the effects of the intercept and slope of GFR curves are in
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the same or opposite direction. A mixed-effects model is chosen to mimic the longitudinal
trajectories:

Yi(t) = βi1 + βi2t+ εi,

where βi1 = β1 + bi1, bi1 ∼ Normal(0, σ2
1), βi2 = β2 + bi2, bi2 ∼ Normal(0, σ2

2), i = 1, . . . , n.
Here we set the true values for these parameters as β1 = 2.50, σ1 = 1, β2 = −0.20, and
σ2 = 0.02. The random measurement error εi ∼ Normal(0, 1), and the number of subjects are
set as n = 100. The preliminary scheduled measurement time of the longitudinal outcome
are set at the sequence year (1, 2, · · · , 12) for each subject, but there are no measurements
available after death or censoring time. The time-to-event Ti is specified as follows:

Log(Ti) = γ1βi1 + γ2βi2 + τi,

where the random error τi ∼ Gumbel (0, 1). Note that our proposed joint model (3.1) and
the alternative model (3.8) treat Yi(t) in two different ways. Our proposed joint model (3.1)
chooses a mixed-effects submodel for Yi(t), and shares two random parameters βi1 and βi2
with the AFT survival submodel. The alternative model (3.8) treats Xi(t) as a covariate in
the AFT survival component.

Table 3.3: Means and standard deviations (STD) of the parameter estimates for our pro-
posed joint model (3.1) and the model (3.8) in Simulation 2.

Scenario 1 Scenario 2
Mean (STD) Mean (STD) Mean (STD) Mean (STD)

Parameters γ1 γ2 γ1 γ2
True value 1.00 1.00 1.00 -1.00

Fitted value in Model(5.1) 0.98(0.05) 1.00(0.05) 1.02(0.05) −0.98(0.01)
Fitted value in Model(3.8) 0.64(0.03) - −0.24(0.06) -

We estimate the joint model (3.1) with the Monte Carlo EM algorithm from the sim-
ulated data. The simulation procedure is repeated for 100 replicates. The average number
of steps till convergence is 32. Table 3.3 displays the parameter estimates, together with
their estimated standard errors. In Scenario 1, when the coefficients (γ1 = γ2 = 1.00) of
the intercept (βi1) and the slope (βi2) are same, the estimated coefficient γ̂1 for the model
in54 has the same sign as the true value γ1, although there is a relatively large gap between
them. In Scenario 2 when the coefficients (γ1 = 1.00 and γ2 = −1.00) are different, the
estimated coefficient γ̂1 from the model (3.8) is completely different from the true value.
In summary, the results from Table 3.3 demonstrate that model (3.8) cannot describe both
the relationship between the intercept (βi1) and the slope (βi2) of the longitudinal outcome
with the time-to-event outcome by a single parameter γ1. Especially in Scenario 2 when
the intercept and the slope are in an opposite relationship with the time-to-event outcome
(γ1 = 1.00 and γ2 = −1.00), it is impossible to describe the two relationships by a single
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parameter γ1. This simulation example shows the advantages in our proposed joint model
by using the features from the longitudinal submodel in the survival submodel.

The second advantage of our proposed joint model is that the estimated results offer a
straightforward interpretation. For example, in Scenario 2, if patients have a higher base-
line, i.e. a larger βi1, then patients are more likely to have the time-to-event outcome. So
physicians can tell patients which level they are in and the corresponding risk to have the
time-to-event given a baseline value. Similarly, if patients have a larger value of the slope
i.e. a larger βi2, then patients are less likely to have a time-to-event outcome. So physicians
can tell patients the trend of the longitudinal outcome and the corresponding risk to have
a time-to-event given the value of the slope.

3.5.3 Simulation 3

In this subsection, we investigate the effect of misspecification of the distribution of random
effects on parameter estimates. A mixed-effects model is chosen to mimic the longitudinal
trajectories:

Yi(t) = βi1 + βi2t+ εi,

where the random effects βi1 and βi2 are sampled in two scenarios. In the first scenario,
βi1 and βi2 are sampled from the normal distribution βi1 = β1 + bi1, bi1 ∼ Normal(0, σ2

1),
βi2 = β2 + bi2, bi2 ∼ Normal(0, σ2

2), i = 1, . . . , n. Here we set the true values for these
parameters as β1 = 2.50, σ1 = 1, β2 = −0.20, and σ2 = 0.02. In the second scenario, βi1
and βi2 are sampled from a bimodal mixture of normal distributions, where we set βi1 ∼
0.55 ·N(3, 0.72)+0.45 ·N(1, 0.52) and βi2 ∼ 0.55 ·N(−0.3, 0.032)+0.45 ·N(−0.1, 0.012). The
random measurement error εi ∼ Normal(0, 1), i = 1, . . . , n. The number of subjects are set
to be n = 100. The preliminary scheduled measurement times of the longitudinal outcome
are set at the sequence year (1, 2, · · · , 12) for each subject, but there are no measurements
available after the date of time-to-event outcome or censoring time. The time-to-event Ti is
specified as follows:

Log(Ti) = γ1βi1 + γ2βi2 + τi,

where γ1 = 1.00, γ2 = 1.00, and the random error τi ∼ Gumbel (0, 1).
We estimate the joint model (3.1) with the Monte Carlo EM algorithm from the simu-

lated data. Therefore, the first scenario has the correct model assumption and the second
scenario has the misspecified model assumption. The simulation procedure is repeated for
100 replicates. The average number of steps till convergence is 30. Table 3.4 displays the
summary of the simulation results in the two scenarios. In comparison with the simulation
results when the distribution for the random effects are correctly specified, the simulation
results are similar when the distribution for the random effects are incorrectly specified as
the bimodal mixture of normal distributions.
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Table 3.4: The mean, bias, standard deviation (STD), and root mean squared error (RMSE)
of the parameter estimates for the joint model (3.1) when the model assumption is correct
or misspecified in Simulation 3.

Model Assumption Correct Misspecified
Parameters γ1 γ2 γ1 γ2
True value 1.000 1.000 1.000 1.000

Mean 0.984 1.002 0.986 0.996
Bias −0.016 0.002 −0.014 −0.004
STD 0.053 0.049 0.051 0.053
RMSE 0.055 0.048 0.053 0.053
95%CI 96% 95% 96% 96%

3.6 Conclusions and Discussion

This paper is motivated by a longitudinal and time-to-event transplant data set. Our pro-
posed joint model has a longitudinal submodel and an AFT sub-model, and both submodels
share a vector of latent variables with each other. Our proposed joint model has three ma-
jor advantages. Firstly, as shown in Table 3.3, the model54 can not correctly describe the
relationships between the time-to-event outcome and the longitudinal process when the in-
tercept and the slope of the longitudinal process are in an opposite relationship with the
time-to-event outcome. Secondly, it is one of few joint models with an AFT regression rather
than Cox regression. To calculate the dynamic hazard ratio curve when the proportional
hazards assumption is not satisfied, this joint model includes a piecewise linear function
in the AFT regression. Finally, this model can estimate the parameters of the longitudinal
component by incorporating the time-to-event information through censoring, and similarly,
the estimation of the time-to-event accommodates the longitudinal data information.

The proposed joint model is demonstrated with a real clinical transplantation appli-
cation. The estimation results from our proposed joint model provide at least two useful
guidelines for the clinical practice. Firstly, it confirms that the latent baseline and slope of
GFR trajectories are significantly related to ACGL. The slope of GFR is negatively cor-
related with ACGL, which means that patients are more likely to have ACGL when GFR
decreases. In addition, patients with a lower baseline GFR are more likely to have ACGL.
Secondly, the hazard ratio curve of the effect of pancreas transplant on ACGL helps to un-
derstand the risk process of the pancreas transplant for clinical physicians. For example, the
hazard ratio is very high in the beginning because of the clinical surgery or acute rejection,
decreases to 1 at 152 days post pancreas transplant, and then becomes less than 1. From
the time point when the hazard ratio is equal to 1, the pancreas transplant starts to have
some survival benefit in comparison with no pancreas transplant. Our proposed joint model
can also be applied to other areas, although it is motivated by a clinical data of multiple
organ transplantations.
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Chapter 4

Jointly Modelling Multiple
Outcomes by Functional Principal
Component Analysis via a
Multistate Model

4.1 Introduction

Multiple studies75,76 show that the kidney transplantation can prolong the survival of pa-
tients with end-stage renal disease. However, how to extend the long-term survival of the
kidney graft still remains the main challenge for transplant despite advancements in phar-
maceuticals for the acute rejection, because the kidney graft failure significantly adds to
the demand for the limited kidney organ resource. If the kidney graft failure rate can be
reduced, kidney recipients can have a long-term survival time. Several surrogate markers
have been proposed to predict the kidney graft failure. For example, Marcén et al77 and
Moranne et al.78 proposed to use the slope of GFR trajectories to predict the graft failure in
a Cox model. However, it is not enough to answer how to predict the long-term transplant
outcomes.

To well understand to predict the long-term transplant outcomes, we consider three
questions. The first question is how to fit the longitudinal trajectory of kidney function
progression recorded as repeated GFR measurements. Kidney recipients post transplant
are in multi-states: alive, the transplant failure, death after the transplant failure, and
death without the kidney failure. The kidney transplant failure is a competing-risk event
for death. So the second question is how to estimate the hazard rates of multiple events
simultaneously. The third question is to identify the possible markers for the multiple time-
to-event outcomes.

To address the first question about how to fit the GFR trajectories, several methods have
been developed. The first method is using a parametric model. For example, Marcén et al.77,
Moranne et al.78, and Dong et al.96 used a mixed model for the GFR trajectories. The second
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method is using a non-parameter model. For example, the functional principal component
analysis (FPCA) method is used by Dong et al.97 to explore the major sources of variation
among GFR trajectories. The dimension of the GFR trajectories is reduced from infinity to
four. As shown by Dong et al.97, the first four functional principal components (FPCs) can
account for 99.8% of variation among GFR trajectories. The GFR trajectories can then be
represented with the four FPCs as shown in Figure 4.1, where patient longitudinal GFR
trajectory are approaching to a lower level kidney function in the four different patterns
which are donated by their first, second, third, and fourth FPC scores respectively.

Figure 4.1: GFR curves when their FPC scores are extreme. The thick blue curve in each
panel is the average of individual GFR curves in that panel, which represents the common
trend in that panel. The four panels are GFR trajectory curves are donated by their first,
second, third, and fourth FPC scores respectively.

To address the second question, studies such as Prentice83 and Putter84 show that the
Kaplan-Meier or Cox method for multiple outcomes may yield unreliable results in the
presence of competing risks. The kidney transplant failure is a competing risk for death
because the kidney transplant failure increases the probability of death. We model multiple
competing risks with a multi-state model in this paper. To address the third question, the
longitudinal outcome and the time-to-event outcomes are linked with the shared latent
features such as the FPCs after adjusting for other covariates. These latent features can be
markers for the multiple time-to-event outcomes. In this paper, we develop a new joint model
to address this clinical question about how to predict the long-term transplant outcomes.

Several joint models have been developed for the longitudinal outcome and multiple
time-to-event outcomes. However, few joint models are based on a nonparametric approach
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for the longitudinal outcome except Yao86 and Ding and Wang87. Yao86 developed a joint
model by using FPCA to jointly model the longitudinal outcome and a single time-to-event
outcome, where FPCA is used to fit the longitudinal trajectories and then the longitudinal
outcome is treated as a covariate in the Cox regression model. Ding and Wang87 developed
a joint model by treating the longitudinal outcome as a nonparametric multiplicative ran-
dom effects and jointly modelling a single time-to-event outcomes with a Cox regression
model. They mentioned that the first FPC can explain over 71.2% of the total variation in
three AIDS studies, the mean functions can mimic the corresponding first FPC, and the
longitudinal trajectories of all subjects had different amplitudes but a similar shape. So this
paper proposed to treat the longitudinal outcome as a random process proportional to the
first FPC.

However, the above two joint models can not be applied to this clinical transplant data
directly because these two models can only accommodate a single time-event outcome. An-
other reason is that we would like to determine the relationships of the dominant variation
modes of the GFR trajectories with the multiple time-to-event outcomes. For example, the
risk of patients to have the kidney transplant failure or death would be different when
their GFR trajectories are flat versus when their GFR trajectories are highly fluctuated.
Therefore, we propose a new joint model based on the shared latent features between the
longitudinal and survival components, which include the nonparametric approach of func-
tional principal component analysis for the longitudinal outcome and a multi-state submodel
for the multiple time-to-event outcomes.

The main contribution of this paper is that we review the clinical question in the kidney
transplantation, and tailor a new joint model to address it. To the best of our knowledge,
it is the first time to explore the variations of GFR trajectories with multiple time-to-event
outcomes based on the latent feature. Our proposed joint models have at least three ad-
vantages. Firstly, a multi-status survival model rather than a Cox model can capture the
correlation structure of multiple time-to-event outcomes. Secondly, FPCA is an excellent
tool for determining the dominant modes of the variations among the longitudinal trajecto-
ries, and the estimated dominant modes can be treated as the latent features in the survival
model. Lastly, but most importantly, the proposed joint model conditional on the latent
features can filter the noises in the longitudinal component in comparison with the method
proposed by Yao86, in which the longitudinal component is treated as a covariate in the
survival model.

The rest of this article is organized as follows. Our proposed joint models are introduced
in Section 4.2. We present the estimation method for the proposed joint model in Section 4.3.
Section 4.4 demonstrates the application of our joint model in the transplantation clinical
data. Section 4.5 presents simulation studies to investigate the finite sample performance
of our joint model. Conclusions and discussion are given in Section 4.6.
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4.2 A Joint Model

Let Yi(t) be the longitudinal outcome at the time t for the i-th subject, for example, Yi(t) is
the GFR trajectory in our application. Let Tmi be them-th time-to-event state (i = 1, · · · , n,
and m = 1, · · · ,M) for the i-th subject, where M is the number of time-to-event states.

We propose the proposed joint model for the longitudinal outcome Yi(t) and the multiple
time-to-event outcome T1i, . . . , TMi: Yi(t) = µ(t) +

K∑
k=1

ξikφk(t) +αTZi(t) + εi,

λjmi(t|ξi,Zi) = λ0
jmi exp[Tjmξi +T

jm Zi(t)],
(4.1)

where the first equation is the model for the the longitudinal outcome Yi(t), µ(t) is the overall
mean of the longitudinal outcome, and Zi(t) is a vector of time-dependent/independent
covariates. The top K functional principal components (FPCs) φk(t), k = 1, . . . ,K, explain
most variations among the longitudinal outcomes, which will be estimated from the data of
the longitudinal outcomes. The FPC scores ξik serve as the latent features in the survival
model, and they link the longitudinal outcome and the multiple time-to-event outcomes in
the joint model. We introduce functional principal component analysis for the longitudinal
outcome Yi(t) with more details in Section 4.2.1.

The second equation is a multi-state survival model. The hazard function λjmi(t|ξi,Zi)
is the hazard rate from the j-th time-to-event state to the m-th time-to-event state. If we
have two time-to-event state, and we ignore the transfer from one time-to-event state to
the other, it is reduced to the competing-risks survival model. We introduce the multi-state
survival model with more details in Section 4.2.2.

As mentioned before, there are several advantages for the proposed new joint model.
Firstly the proposed joint models share the latent features from the longitudinal compo-
nent with the survival sub-model instead of treating the whole longitudinal component as a
covariate. The latent features are the FPC scores, which denote the curve pattern. In this
way, we can filter the unnecessary noice. Secondly, it is helpful for the clinical practice to
determine the relationship between the trajectory patterns of GFR and the time-to-event
outcomes by different groups, in which patients have homogeneous GFR trajectory scenar-
ios. As shown in the paper97, GFR trajectories can be classified into several homogeneous
clusters. Patients in one group who have a very flat GFR trajectory versus patients with
a big variation of GFR trajectory, the relationships between the pattern of GFR and the
time-to-event outcomes may be different. It is not enough to describe the relationship be-
tween GFR and the time-to-event outcomes by using only one parameter γ as shown in
the paper by Yao86. Thirdly, this clinical dataset has multiple time-to-event outcomes as
shown in Figure 4.2, and accordingly multi-state model rather other Cox model is devel-
oped . Kidney recipients may have a kidney failure post transplant, some patients might
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die before kidney failure, and some patients may die after the kidney failure during the
follow-up period. It is useful to determine the proportion of each state. For example, how
many patients still have kidney function when death. If the number in this state is large,
we waste a lot of kidney organs. We will discuss it in more detail in Section 4.4.

4.2.1 Functional Principal Component Analysis

This section introduce functional principal component analysis. As mentioned in the paper
by Dong97, functional principal component analysis through the conditional expectation
(PACE) is good at determining the dominant modes of the longitudinal data, and the first
four leading principal components can account for 99.8% of the longitudinal trajectory vari-
ations. So the principal components analysis through the conditional expectation method
is used to fit the longitudinal measurement outcome Yi(t) when it has measurement errors
or missing values at some time points for some recipients during the followed-up time.

Yi(t) = Xi(t) + εi = µ(t) +
K∑
k=1

ξikφk(t) +αTZi(t) + εi, (4.2)

where i = 1, · · · , n, εi are identically and independently distributed normal random variables
with mean 0 and variance σ2. The function φk(t) is the k-th functional principal component,
and ξik =

∫
T (Xi(t) − µ(t))φk(t)dt is the associated functional principal component score,

where T is the bounded time-frame range. Then the variance-covariance function G(s, t)
can be expressed as:

G(s, t) = Cov(Xi(s)− µ(s), Xi(t)− µ(t)) =
∞∑
k=1

λkφk(s)φk(t),

where λ1 ≥ λ2 ≥ · · · ≥ 0. If the observations of GFR are sparse, the mean function is
obtained by smoothing the data from all observations based on the local linear smoother
method by Fan82. If the mean function and the eigenfunctions are assumed to be smooth,
then the expansions of a set of smooth basis functions such as B-splines or regression splines
can be used to model the overall mean function and the eigenfunctions as shown in the
papers James81 and Yao86.

4.2.2 Multi-state models

We want to develop multi-state models for multiple time-to event outcomes. Patients move
among a number of discrete states as shown in Figure 4.2. For example, kidney recipients
may move to the transplant failure first, and then move to death from the transplant failure;
or some patients directly move to death without the transplant failure.

Several multi-state survival models have been developed. We are focus on the competing
risks models and the progressive illness-death models. In the competing risks framework, two
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State 1: Alive kidney recipients

State 2: Kidney transplant failure

State 3:Die/Alive

λ 12
(t)

λ23 (t)

λ13(t)

Figure 4.2: The three states of kidney transplant recipients. All patients start from the date
of the kidney transplant (state 1), then they may move to state 2 (kidney failure). If not,
they directly move to state 3 when die

popular competing risks models are used. One is the cause-specific hazard model proposed by
Prentice83 and Putter84, and the other is the sub-distribution hazards regression introduced
by Fine and Gray88. The cause-specific hazard model calculates the occurrence rate of
specific event types in subjects who are currently event free. For example, there are 2 types
of events in this application example: death with the kidney function from other reasons
and death from the kidney transplant failure. The cause-specific hazard of the kidney failure
death denotes the instantaneous rate of the kidney failure death in alive subjects who
have not yet experienced either event. The sub-distribution hazard model calculates the
instantaneous risks of the specific event type in subjects who have not yet experienced
this event type. If in the progressive illness-death model framework, then the progressive
illness-death model can determine the incidence of kidney transplant failure, the mortality
rate for alive patients after kidney transplant, and mortality rate for patients with kidney
transplant failure.

If the transition intensities of multi-state models can be specified as
λjm(t) = lim

∆t→0
Pjm(t,t+∆t)

∆t , j 6= m, and λmm = −
∑
j 6=m

λjm(t), then the transition intensities

can be specified in a matrix. For the convenient notation by setting M = 3, the matrix of
transition intensities area can be specified as follows:

Q(t) =


−(λ12(t) + λ13(t)) λ12(t) λ13(t)

0 −λ23(t) λ23(t)
0 0 0


where

λ12 = lim
∆t→0

P12(t, t+ ∆t)
∆t = lim

∆t→0

P (state 2 at time t + ∆t|state 1 at time t)
∆t ,
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λ13 = lim
∆t→0

P13(t, t+ ∆t)
∆t = lim

∆t→0

P (state 3 at time t + ∆t|state 1 at time t)
∆t ,

λ23 = lim
∆t→0

P23(t, t+ ∆t)
∆t = lim

∆t→0

P (state 3 at time t + ∆t|state 2 at time t)
∆t .

If the probability distribution on the state space of a Markov chain is discrete and
the Markov chain is homogeneous, then the ChapmanâĂŞKolmogorov equations can be
expressed in terms of matrix multiplication:

P (s, t) = P (s, u)P (u, t), s < u < t

The transition probability P (s, t) is the unique solution of the Kolmogorov forward differ-
ential equation:

∂

∂t
P (s, t) = P (s, t)Q(t);P (s, s) = I

P (s, t) can be recovered from the transition intensities through product integration

P11(s; t) = exp(−
∫ t

s
(λ12(u) + λ13(u)))du

P22(s; t) = exp(−
∫ t

s
λ23(u))du

P23(s, t) = 1− P22(s, t)

P12(s, t) =
∫ t

s
P11(s, u)λ12(u)P22(u, t)du

P13(s, t) = 1− P11(s, t) + P12(s, t)

Pjm(s, t) = 0, when j > m

The interpretations of the above transition intensities and probability in the matrix are
identical to those in the competing-risks model or the progressive illness-death models. For
example, in the competing risks framework, state 1 is being alive after treatment such as
kidney transplant, state 2 and state 3 are distinct patient status such as kidney failure and
die. In the progressive illness-death models, state 1 is alive, state 2 is that patients have an
illness, and state 3 are when patients die without/with an illness.

4.3 The Estimation Method

4.3.1 The joint likelihood functions

In this section, we want to give the inference of the proposed joint model. Let
(ti,mi, δmi ,Zi(t), Yi(t)) donate the observations of each subject in the data, where ti is the
observed survival time, mi is the observed event type, δmi is the failure indicator of any
event type, Zi(t) is observed co-variables, and Yi(t) are longitudinal outcomes. Let Ci be
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a potential censoring time, and Ti be the largest time of all event types. We assume that
Si = min(Ti, Ci) , and δmi = 1Tmi≤Ci . The parameters Θ = (γ, β, λ0,Λ, σ2) need to be
estimated from data.

In order to estimate the parameters, we need to construct the joint likelihood func-
tions. The longitudinal trajectories of Yi(t) can be determined by the FPC score ξi =
(ξi1, · · · , ξiK)T as shown in Section 4.2.1, so the joint probability density function of Yi(t)
and the time-to-event Ti can be written as the factorization of the density distribution of
the FPC score ξi and the conditional survival density distribution of Ti on the latent FPC
score ξi. In other words, the full likelihood of the full set of parameters under independent
censoring can be given by:

L(Θ) =
n∏
i=1

M∏
m=1
{
∫
f(Ti, δmi |ξi,Zi(t),γ,β)f(Yi(t)|Xi(t),α, σ)f(ξi|Λ)dξi}, (4.3)

where the density survival function f(Ti, δmi |ξi,Zi(t),γ,β) is given by
f(Ti, δmi |ξi,Zi(t),γ,β) = λm(ti|ξi,Zi(ti),γ,β)δmiS(ti|ξi,Zi(ti),γ,β)1−δmi ,

f(Yi(t)|Xi(t),α, σ) = (2πσ2)−
ni
2 exp{− 1

2σ2 (Yi −Xi)T (Yi −Xi)}, and
f(ξi|Λ) = (2π|Λ|)−

1
2 exp(−1

2ξ
T
i Λ−1ξi).

Given the sub-hazard density function for the sub-survival model as in the following

f(Tmi , δmi |Xi(t),Zi(t),γ,β) = exp(γmT ξi + βmTZi(t))
n∑
i=1

Ri(t)exp(γmi
T ξi + βmi

TZi(t))
,

where Ri(t) = 1[
mi:(Ci∧Tmi>Ti)∪{(Tmi≤Ti)∩(δmi=0)∩(Ci≤Ti)}

], then the likelihood function in
the equation (4.3) becomes as following:

L(Θ) =
n∏
i=1

∫ M∏
m=1

[
exp(γmT ξi + βmTZi(t))

n∑
i=1

Ri(t)exp(γmi
T ξi + βmi

TZi(t))

]
f(Yi(t)|Xi(t), σ)f(ξi|Λ)dξi.

According to equation (4.3), the score function is found to be proportional to

S(Θ) ≈
∂(
∑n
i=1 log

{∏M
m=1{

∫
f(Ti, δmi |ξi,Zi(t),γ,β)f(Yi(t)|Xi(t),α, σ)f(ξi|Λ)dξi}

}
)

∂Θ

=
n∑
i=1

∫
∂h(Θ, ξi)

∂Θ f(ξi|Ti, δi, Yi(t),Θ)dξi (4.4)

where

h(Θ, ξi) = log
{ M∏
m=1

f(Ti, δmi |ξi,Zi(t),γ,β)f(Yi(t)|Xi(t),α, σ)f(ξi|Λ)
}
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The observed data score vector in the formula 4.4 is expressed as the expected value of
the complete-data score vector with respect to the posterior distribution of the random
effects of ξ. If the score equations in the formula 4.4 can be solved with respect to Θ, with
p(ξi|Ti, δi, Yi(t),Θ) fixed at the Θ value of the previous iteration, then it is an EM algorithm.
However, there are some challenges to estimate parameters in the by the EM algorithm.
Therefore, we propose to use a modified two-stage algorithm to estimate the parameters of
the proposed joint models.

4.3.2 Parameter estimation

The fully joint log-likelihood function has been given in Section 4.3.1. This section is focus on
estimating the parameters. There are the two main challenges to estimate parameters in the
joint likelihood functions. One is the requirement for numerical integration of latent variables
ξi when the dimension of random effects increases. The other is to estimate the density
function f(ξi|Λ) because we don’t have a closed-form for FPC function φk(t). Therefore, we
propose to use the new two-stage approach, but it is different from the previous two-stage
method for joint model in the papers such as Tsiatis48. The proposed two-stage algorithm
is specified as follows:

• Stage I

• Step 1: We estimate all the parameters from the longitudinal process by Functional
Principal Component Analysis,

• Step 2: After estimating the mean curve µ̂, the FPC φ̂k, and the FPC score ξ̂ik, and
σ̂2 from all available GFR data, we can recover any missing or predict future value
using the following formula. The vector of random effects ξ̂ik is shared between both
longitudinal and survival sub-models. Therefore, we try to reduce the biases from the
informative dropout problem for estimating random effects parameters, the missing
measurements of the observed longitudinal data are generated for all subjects as in
the following:

X̂i(t)|(Ti, µ̂, φ̂k, ξ̂ik, σ̂2) = µ̂(t) +
K∑
k=1

ξ̂ikφ̂k(t) + α̂TZi(t) + εi, (4.5)

where t can be any past or future time points before patient death. In other words,
we have simulated complete longitudinal measurements Yi(t) in the step 2.

• Step 3: Estimate parameters ξ̂, µ̂(t), α̂T , and σ̂2 using complete longitudinal mea-
surements simulated in Step 2. As min(ni) −→ ∞, the esitmated parameters in the
submodel will convergence to the estimated parameters abtained from the joint model
in probability as shown in the papers by Rizopoulos56 and Thu58.
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• Stage II
The proposed joint models become the following by using the fitted values from stage
I  Ŷi(t) = ˆµ(t) +

K∑
k=1

ξ̂ikφ̂k(t) + α̂TZi(t) + εi,

λjmi(t|ξ̂i,Zi) = λ0
jmi exp[Tjmξ̂i +T

jm Zi(t)],
(4.6)

• Step 1: Now we can approximate the expected function of the complete data likelihood.
Instead of using the partial likelihood because of latent variables to estimate the
regression coefficients in the joint model.

L(Θ) =
n∏
i=1

∫ M∏
m=1

(
{λm[ti|ξi,Zi(ti)]}δmiexp{−

∫ ∞
0

n∑
i=1

Ri(u)

λm(u|ξi,Zi(u))du}
)
f(Yi(t)|ξi, α̂, σ̂)f(ξ̂i|Λ̂)dξi (4.7)

As shown in the paper by Rizopoulos56 and the paper by Thu58, the expected function
of the complete data log-likelihood function can be approximated by the following as
min(ni) −→∞:

E(l(Θ)) ≈
n∑
i=1

log{
M∏
m=1

(
{λm[ti|ξ̂i,Zi(ti)]}δmiexp{−

∫ ∞
0

n∑
i=1

Ri(u)

λm(u|ξ̂i,Zi(u))du}
)
f(Yi(t)|Xi(t), α̂, σ̂)f(ξ̂i|Λ̂)} (4.8)

• Step 2: we can estimate all the parameters for survival submodel by maximizing the
approximation of the expected function of the complete data log-likelihood as in the
formula (4.8).

4.4 The application of the proposed joint model

Total 5654 kidney transplant recipients are included in this study from United Network for
Organ Sharing (UNOS), and patient demographics are shown in Table 4.1. According to
the clinical research question, we propose the proposed joint model in the following: Yi(t) = µ(t) +

K∑
k=1

ξikφk(t) +αTZi(t) + εi, i = 1, · · · , n,

λmi(t|ξi,Zi) = λ0
m exp[γmT ξi + βmTZi(t)],

(4.9)

where ξi = (ξi1, · · · , ξiK)T and Zi(t) be other independent covariates as in Table 4.1.
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Table 4.1: Kidney transplanted recipient characteristics in some kidney transplant data

Characteristics Percentage (%)
Age
18-39 48
40-59 49
≥ 60 13
Sex

Female 41
Male 59
Race
White 69
Black 31
Other 8

Cause of End-Stage Renal Disease(ESRD)
Diabetes 32

Hypertension 21
Glomerular Disease 29
Polycystic disease 9

Others 19
Kidney donor type

Living 22
Deceased 78
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4.4.1 Results from Functional Principal Component Analysis

From functional principal components analysis, the four leading functional principal com-
ponents (K = 4) account for 99.8% of the total variability of GFR curves. The first FPC
component, second, third, and fourth represents 84.6%, 10.6%, 3.4%, and 1.1% of the total
variability of GFR curves comes from the overall weighted mean of GFR curves respectively.
Although the first two FPCs account for 95.24% of the total variability, the third and fourth
also contain some important patient information as mentioned in the our previous paper97.
In practice, these eigenfunctions have some straightforward explanation. For example, the
first eigenfunction is very flat during the followed-time, which indicates that the largest
GFR variation between subjects is from the specific mean curve of GFR curves. In other
words, the mean GFR curve captures the largest variation of the data, and most of patients
have a stable kidney function trajectory. The third and fourth FPCs represent a small num-
ber of patients who have strong fluctuating curves. The third and fourth FPCs can easily
identify those abnormal patients with high fluctuate GFR curves, which should be caught
more attention by physicians. We will discuss the relatioship of the first four FPC scores
with time-to event outcomes again in the following Section 4.4.2.

4.4.2 Results from multi-state submodel

This section present the result from the survival sub-model in the proposed model 4.9.
Among total 5654 patients, 1, 590(28%) patients have a kidney transplant failure and
1, 735(31%) patients die. 707(44%) patients die after kidney failure, and 1, 028(28%) pa-
tients die with kidney function. We use the Akaike Information Criterion (AIC) to select
our finial model such as the number of principal components, since AIC can consider the
joint likelihood of longitudinal and survival models.

The hazard ratios of kidney transplant failure from the joint models are shown in Table
4.2, and the hazard ratios of death from the proposed joint model are shown in Table 4.3.
All of the first four FPC scores are statistically significant. The hazard ratios of the first four
FPC scores are different. For example, it is a negative relationship between the first FPC
score and the time-to event outcome while it is a positive relationship for the second FPC
score with the primary time-to event outcome. In fact, we can give a clinical explanation.
For example, for the first FPC score, the failure rate of primary increases as patients have
a lower level GFR during the followed-up time period, and patients in the higher level of
GFR are less likely to have the time-to-event outcome. Similarly the third and fourth FPC
scores are also significantly related to time-to event outcome. In other words, these patients
with abnormal trajectories should be monitored more closely, and they need to be diagnosed
to find out the underlying reason in clinical practice. It is wealth mentioning that it isn’t
enough from our model results if the change slopes of GFR are assumed to be linear. If a
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large proportion of trajectories are nonlinear, this simplified linear assumption may cause
the long-term time-to event model result to be biased.

More importantly, it is very interesting to see that young patients are more likely to
have a kidney transplant failure as in Table 4.2. In other words, the graft life is shorter
than patient life. However, old patients are more likely to have a death. In other words,
the patients life is shorter than the kidney graft life for these old patients, which indicates
that we waste kidney organs when we transplant young better donor to old patients. We
should give young donor to young patients so that we can make most use of the scarce
organ resources. It is clinically reasonable for the relationship of time-to-event outcomes
with other co-variables. Female patients are less likely to have an event compared with
male patients. Compared with the white patients, the black patients are more likely to have
the time-to-event outcome. Compared with patients who have a deceased donor, patients
who have a living donor transplant are less likely to have the time-to-event outcome.

On the other hand, Table 4.2 also displays the estimation results for the Cox model. The
Cox model concludes that senior patients are more likely to have a kidney transplant failure,
which is contrast to the results from the competing-risks models. In fact, Cox regression
have identified factors that affect survival of renal recipients, but these standard models
only focus on identifying factors affecting the time of occurrence of the targeted outcome
while ignore events that occur for patients during the study which may affect the interest
event. In a short, we find that the use of multi-state models are recommended in this paper
because the Kaplan-Meier or Cox method for multi-state outcomes may yield unreliable
results in the presence of multiple events outcome.

4.5 Simulations

In order to study the difference from the different correlation construction between the
longitudinal sub-model and the survival model, this section generate several simulation
datasets. our proposed joint models (4.1) construct the correlation of the longitudinal out-
come and the time-to-event outcomes through the latent features, which is different from
the joint model86 that treats the longitudinal outcome as a covariable in the survival model
as shown in the model (4.10) ,we choose several different scenarios to see the differences
between the proposed model (4.1) and the model (4.10). Yi(t) = µ(t) +

K∑
k=1

ξikφk(t) + εi, i = 1, · · · , n,

λ(t|X(t)) = λ0exp(γ1X(t)).
(4.10)

Similarly, a non-parameter FPCA model is chosen to simulate the longitudinal trajec-
tories:

Yi(t) = Xi(t) + εi = µ(t) +
K∑
k=1

ξikφk(t) + εi,
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Table 4.2: Estimated hazard ratios of kidney failure post kidney transplant in the joint
model with different survival sub-models. 95% confidence interval are given in brackets.

Joint models
Multistate submodel Cox submodel

hazard ratios p value hazard ratios p value
Age
18-39 1.00 1.00
40-59 0.68(0.61,0.76) < 0.001 1.61(1.35, 1.92) 0.001
≥ 60 0.47(0.38,0.57) < 0.001 1.49(1.15, 1.93) 0.001
Sex
Male 1.00 1.00

Female 0.89(0.80,0.99) 0.048 0.78(0.66, 0.91) 0.038
Race
White 1.00 1.00
Black 1.39(1.23, 1.55) < 0.001 1.37(1.16, 1.62) < 0.001
Others 0.82(0.66, 1.02) 0.079 0.63(0.44, 0.89) < 0.001

Cause of ESRD
Diabetes 1.00 1.00

Hypertension 0.89(0.74, 0.97) 0.026 0.74(0.61, 0.91) < 0.001
Glomerular disease 0.99(0.85, 1.14) 0.834 0.55(0.44, 0.68) < 0.001
Polycystic disease 0.76(0.60, 0.97) 0.026 0.44(0.31, 0.62) < 0.001

Others 0.90(0.76, 1.07) 0.221 0.56(0.44, 0.71) < 0.001
Donor type
Decreased donor 1.00 1.00
Living donor 0.90(0.79,0.99) 0.048 0.84(0.68,1.02) 0.084
FPC Scores
First FPC score 0.981(0.979, 0.982) < 0.001 0.968(0.965, 0.970) < 0.001
Second FPC score 1.009(1.005, 1.013) < 0.001 1.000(0.993, 1.005) < 0.001
Third FPC score 0.976(0.969, 0.983) < 0.001 0.964(0.953, 0.975) < 0.001
Fourth FPC score 0.993(0.974, 1.000) 0.050 0.972(0.946, 0.999) 0.048
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Table 4.3: Estimated hazard ratios of death post kidney transplant from different survival
sub-models and 95% confidence interval are given in brackets.

Joint models
Multistate submodel Cox submodel

hazard ratios p value hazard ratios p value
Age
18-39 1.00 1.00
40-59 1.91(1.69,2.17) < 0.001 2.51(2.20,2.84) < 0.001
≥ 60 3.37(2.91,3.90) < 0.001 4.79(4.13,5.58) < 0.001
Sex
Male 1.00 1.00
Female 0.82(0.74,0.90) 0.001 0.84(0.76,0.93) 0.007
Race
White 1.00 1.00
Black 0.97(0.87,1.08) 0.608 0.93(0.83,1.03) 0.170
Other 0.59(0.48,0.73) < 0.001 0.63(0.51,0.78) < 0.001

Cause of ESRD
Diabetes 1.00 1.00

Hypertension 0.68(0.60,0.77) < 0.001 0.58(0.51,0.66) < 0.001
Glomerular disease 0.56(0.49,0.63) < 0.001 0.46(0.41,0.53) < 0.001
Polycystic disease 0.43(0.35,0.51) < 0.001 0.37(0.30,0.45) < 0.001

Others 0.63(0.54,0.73) < 0.001 0.55(0.47,0.63) < 0.001
Donor type
Decreased donor 1.00 1.00
Living donor 0.79(0.70,0.89) 0.001 0.74(0.65,0.84) < 0.001
FPC Scores
First FPC score 0.992(0.991,0.993) < 0.001 0.992(0.991,0.993) < 0.001
Second FPC score 0.991(0.988,0.994) < 0.001 0.997(0.994,1.000) 0.049
Third FPC score 0.961(0.956,0.966) < 0.001 0.980(0.974,0.986) < 0.001
Fourth FPC score 1.008(1.000,1.023) 0.045 0.993(0.977,1.009) 0.376
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Figure 4.3: The first two leading functional principal components (FPCs) account for 95.24%
of the total variability of GFR curves, and the four leading FPCs account for 99.82%

where µ(t) is the true mean value in the application example, which are the estimate from
the real data.The measurement error εi ∼ Normal(0, 0.85). The scheduled measurement
times of the repeated longitudinal outcome are set at the sequence year (1, 2, · · · , Ti) for
each subject, but there are no measurements available after death or censoring time. The
time-to-event Ti is specified as in the following:

λm(t|ξi) = λ0
m exp(γm1ξi1 + γm2ξi2 + γm3ξi3 + γm4ξi4).

Three data cohorts in different scenarios are generated. Each cohort has a maximum follow-
up time of 3650 days, the time to the competing-risk event is assumed to follow a Weibull
distribution, and the time to the primary event outcome is assumed to follow a log-normal
distribution. We assume that the FPC scores ξik ∼ Normal(0, σ2

k), where k = 1, · · · , 4, and
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Figure 4.4: The first four leading functional principal components (FPCs) estimated from
the GFR curves.

σ1 = 16, σ2 = 8, σ3 = 4, σ4 = 1. Our survival model choose the first four FPC scores as
covariates. The corresponding γ are designed in the following three different scenarios. In
the first scenario, we choose γ11 = γ12 = γ13 = γ14 = 1.00 for the primary event while ξik
have no effect on the competing-risk event when we set γ21 = γ22 = γ23 = γ24 = 0.00 for the
competing-risk event. The simulation result is shown in Table 4.4. In the second scenario, we
choose different coefficients γ11 = −1.00, γ12 = 1.00, γ13 = −1.00, and γ14 = 1.00 for ξik on
the primary event, but we set ξik to have same effect on the competing-risk event by choosing
γ21 = γ22 = γ23 = γ24 = 0.00. The simulation result is shown in Table 4.4. In the third
scenario, we choose different coefficients γ11 = −1.00, γ12 = 0.85, γ13 = −0.75, γ14 = 0.50
for the primary event, and set γ21 = 0.50, γ22 = −0.50, γ23 = 0.50, γ24 = −0.50 for the
competing-risk event. The simulation result is shown in Table 4.4

Table 4.4 displays the estimates, together with their estimated standard errors for the
first Scenario, where the coefficients (γ11 = γ12 = γ13 = γ14 = 1.00) are same and there is
no-competing-risk effect, the estimated coefficient γ̂1 for the model in (4.10) has the same
as the true value γ1. In fact, our proposed joint model become the model (4.10) in this
scenario. In other words, the model by (4.10) is a special case of our proposed joint model.
In Scenario 2 when the different coefficients γ are different, the coefficient γ1 from the model
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Table 4.4: Means and standard deviations (STD) in three different scenarios. Each scenario
has 100 simulation replicates and 100 subjects in each simulation replicate

Scenario 1
Parameters γ1 γ2 γ3 γ4
True value 1.00 1.00 1.00 1.00

Fitted value in Model(4.1) 1.01(0.02) 0.96(0.01) 1.02(0.03) 0.97(0.01)
Fitted value in Model(4.10) 0.99(0.03) - - -

Scenario 2
Parameters γ1 γ2 γ3 γ4
True value -1.00 1.00 -1.00 1.00

Fitted value in Model(4.1) −1.02(0.03) 0.96(0.01) −1.02(0.03) 0.97(0.01)
Fitted value in Model(4.10) −0.96(0.03) - - -

Scenario 3
Parameters γ1 γ2 γ3 γ4
True value -1.00 0.85 -0.75 0.50

Fitted value in Model(4.1) −0.98(0.03) 0.84(0.01) −0.72(0.02) 0.47(0.01)
Fitted value in Model(4.10) −0.36(0.03) - - -

(4.10) is completely different from the true value. In summary, the results from Table 4.4
demonstrate that the model (4.10) cannot describe the first four principal components of the
longitudinal outcome with the time-to-event outcome by a single parameter γ1. Especially
in Scenario 3 when there also exists a competing-risk event, it is impossible to describe the
two relationships by a single parameter γ1. This simulation example shows the advantages
in our proposed joint model by using the features from the longitudinal submodel in the
survival submodel.

4.6 Conclusions and discussion

This paper is motivated by a longitudinal and time-to-event transplant clinical data. The
proposed joint models include a longitudinal FPCA submodel and a multi-state submodel,
and both of submodels share some latent variables together. The multi-state survival sub-
model can calculate the hazard ratios of multiple time-to event outcomes. We have demon-
strated the applicability of the proposed joint model to some real transplantation clinical
data. The main result from the application data of transplant can answer the clinical trans-
plant question. We find that Cox model may cause bias when exist multiple outcome in
the clinical data. For example, different hazard ratios of age categories between multistage
model and Cox model in Tables 4.2 and 4.3. The finite sample performance of the proposed
method is verified in the simulation study, and some advantages of the proposed model
when compared with the joint model (4.10) are shown in the simulation study.

The application results from our proposed joint model can supply some useful references
for the clinical practice as in Section 4.4. There are at least two important points. Firstly,
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it confirms that the four FPC are significantly related to the event outcome. Also these
eigenfunctions have some straightforward explanation. For example, the first eigenfunction
is very flat during the followed-time, which indicates that the largest GFR variation between
subjects is in the subject specific mean curve of GFR value. In other words, the mean curve
captures the largest variation of the data, and the baseline GFR is significantly related to
time-to-event outcome.

More importantly, we find that young patients are more likely to have a kidney transplant
failure as in Table 4.2 from multistage model, which indicates that the graft life is shorter
than patient life. However, old patients are more likely to have a death in Table 4.3, which
indicates the patients life is shorter than the kidney graft life for these old patients, which
indicates that we may waste kidney organs when we transplant young better donor to old
patients. We should give young donor to young patients so that we can make most use of
the scarce organ resources. However, these results can’t be realized by Cox model.
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Chapter 5

Jointly Modelling Multiple
Continuous and Discrete Outcomes
by a Flexible Class of Generalized
Linear Latent Variable Models

5.1 Introduction

We have introduced several joint models for a continuous longitudinal outcome and sin-
gle/multiple time-to-event outcomes in different scenario in Chapter 3 and 4. However, in
many clinical studies, many clustered data have mixed outcomes during the longitudinal
followed-up period. For example, how to fit multiple outcomes of transplant recipients in the
application example. The continuous longitudinal outcome is the kidney function after kid-
ney transplant recorded as the estimated glomerular filtration rate (eGFR), and the discrete
outcome is the repeated kidney transplant status. Most of studies only consider the time
frame from transplant to kidney failure by ignoring all available information after kidney
failure. It may not complete because it ignores all useful available information after kidney
failure such as all eGFR after kidney failure and the kidney retransplant status. Therefore,
it is motivated by this clustered multivariate mixed outcomes, and so this chapter want to
develop a new joint model with mixed outcomes by considering all available information.

Joint models do have several advantageous compared with separate analysis as men-
tioned before. For example, jointly modeling these mixed outcomes together can allow these
questions to be answered directly since analyses of different outcomes separately do not ad-
dress directly the questions of interest. More importantly, joint modelling can avoid multiple
testing and then lead to global tests so that it result in increased power and better control
of Type I error rates46 and47. According to the multivariate clustered data, the proposed
joint models need to account for three level correlations: the correlation among different
outcomes, the correlation among repeated continuous measures of the same outcome over
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time, and the correlation among repeated discrete outcome, and the third association is
between the continuous outcome and the discrete outcome.

A number of joint modeling strategies for mixed outcomes have been studied in the
literature such as the papers92,93, and94. The general approach first specifies a model for
the joint distribution of mixed outcomes, then fits the model to the current data. After fit the
model, an inference for the proposed joint model is made. However, the difficulties in joint
modeling for continuous and discrete outcomes are the lack of a natural joint multivariate
distribution. This chapter discuss a flexible class method, which is based on the generalized
linear latent variables toward a joint model for a continuous and a discrete outcomes. We
apply the proposed joint model to some kidney transplant data in the application example.

The rest of this chapter is organized as follows. The proposed joint model for mixed
outcomes is formulated in section 5.2. The covariance structure of the latent variables is
in section 5.3. The MCEM algorithm steps is in section 5.4. In section 5.5, we analyze the
real data set from the kidney study to illustrate the proposed method. We conclude with a
discussion in section 5.6.

5.2 Model Specification

Let ykij be the kth response variable of the ith subject at time j, and xkij be the vector of
covariates associated with the response ykij , where k = 1, 2, . . . ,K, i = 1, . . . , N , and j =
1, . . . , ni. For example, two mixed outcomes (y1 = (y11, . . . ,y1N ) and y2 = (y21, . . . ,y2N ))
denote the sequence of mixed outcomes of continuous and discrete responses fromN subjects
when K = 2. The response outcome y1i = (y1i1, y1i2, . . . , y1ini) are repeated measurement
GFR, and y2i = (y2i1, y2i2, . . . , y2ini) are repeated transplantation status In the application
example.

In order to incorporate those associations of mixed outcomes, we can specify the joint
density function f(y1,y2, . . . ,yK) for a proposed joint model. However, one major challenge
for it is the lack of a suitable multivariate joint distribution. Two approaches are proposed
for the multivariate joint distribution. The first approach directly specifies the joint distri-
bution by factorizing it into the conditional distribution of one outcome and a marginal
distribution of the other outcome. For instance,? parameterized the model such that the
joint distribution is factorized as the product of the marginal distribution of a continuous re-
sponse and the conditional distribution of a discrete response given the continuous response
or latent variables. Another case is that the binary response is related to an unobserved
continuous latent variable, and the latent variable and the continuous response have a joint
Gaussian distribution. For instance,? factorized the joint distribution as the product of a
marginal Bernoulli distribution for a discrete response, and a conditional Gaussian distri-
bution for a continuous response given the discrete response. Our proposed joint model use
the second approach to construct the joint distribution.
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Conditional on the latent processes (uki = (uki1, . . . , ukini)), the responses yki are as-
sumed to have a joint distribution. We can set up our proposed joint model as follows:

Y1ij |u1ij ∼ f(y1ij |µ1ij , φ1), and g1(µ1ij) = αT1Xi + u1ij ,
...

...
...

YKij |u2ij ∼ f(yKij |µkij , φK), and gK(µKij) = αTKXi + uKij ,

(5.1)

The joint distribution f(ykij) is assumed to be in a big distribution family such as the
exponential family. If we choose the exponential family, then we can specify it as in the
following:

f(ykij |ukij ,αk, φk) = exp
{
ykijθkij − bk(θkij)

ak(φk)
+ ck(ykij , φk)

}
,

where θkij is the natural or canonical parameter, and φk is the dispersion parameter,
and ak, bk, and ck are specific functions. The linear predictors ηkij = αTkXi + ukij , and
αk is the vector of regression coefficients, and µkij = E(ykij |ukij) satisfying a link function
gk(µkij) = ηkij = αTkXi + ukij . The transformed mean linear equation depends on both
fixed effects αk and the latent variable ukij .

At the second level of the hierarchy, it is assumed that uki = (uki1, . . . , ukini) is a k×ni
random variable from a parametric distribution qi(uki, σ2

ki). Usually it is assumed that uki
come from a Gaussian distribution with mean 0 and covariance matrix Σki. We assume that
uki are independent each other. The conditional mean and canonical parameters are related
through the equation µkij = b′k(θkij) and Var(Ykij |ukij) = b′′(θkij)akij(φk).

In a short, the latent variables are used construct both over dispersion and correlation
in the responses, and we discuss the covariance structure of the latent variables more detail
in the following section.

5.3 The covariance structure of the latent variables

The above proposed joint models allow us to select a covariance structure for the latent
processes that can better accommodate the dependence associations among patients in the
data. This section formulate the association between the latent processes. It can be assumed
that the latent process uki = (uki1, . . . , ukini) is a stationary process, whose unconditional
joint distribution does not chnage when shifted in time. So the parameters such as mean
and variance does not change over time. There are several ways to construct a covariance
for the latent variables uki, for example,

73



1. The unstructured covariance matrix:
σ2

1 σ12 · · · σ1ni
σ21 σ2

2 · · · σ2ni
· · · · · · · · · · · ·
σni1 σni2 · · · σ2

ni


2. The compound symmetry structure (or exchangeable), with constant variance across

occasions and constant correlation coefficients :

(
σ2
)
⊗


1 ρ · · · ρ

ρ 1 · · · ρ

· · · · · · · · · · · ·
ρ ρ · · · 1


3. The autoregressive structure in time series frame:

(
σ2
)
⊗


1 ρ · · · ρni−1

ρ 1 · · · ρni−2

· · · · · · · · · · · ·
ρni−1 ρni−2 · · · 1


4. The exponential correlation structure. For example, an ni×ni matrix B can be defined

as
exp(B) =

∞∑
j=0

Bj

j!

In the clinical studies, the coefficients of the correlation matrix indicate that: (i) the re-
peated measures are positively/negatively correlated with each other, (ii) the correlations of-
ten decrease with increasing time separation. In other words, measures that are taken closer
together in time are expected to be more highly correlated than measures that further apart
in time. By selecting a covariance structure for the latent variables uki = (uki1, . . . , ukini),
the proposed statistical models can better accommodate the dependence correlation among
data.

5.3.1 The autoregressive structure in time series frame

In time series analysis frame, the cross correlation between two time series describes the
normalized cross covariance function. For the convenient notation, we discuss two mixed
outcomes by setting K = 2. If let (u1t , u2t) be a pair of stochastic processes that are jointly
stationary, then the cross covariance of them is given by:
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γu1u2
(τ) = E[(u1t − µu1)(u2t+τ − µu2)],

where µu1 and µu2 are the means of u1t and u2t respectively. The cross correlation
function ρu1u2

is the normalized cross-covariance function, ρu1u2
(τ) = γu1u2 (τ)

σu1 σu2
, where σu1

and σu2
are the standard deviations of processes u1t and u2t , respectively.

Now we suppose the two latent series u1t and u2t are satisfying the following relationship

u2t = Au1t + ωt. (5.2)

For convenience, we can assume that u1t and u2t have zero means, and the noise ωt is
uncorrelated with the u1t series, the cross-covariance function can be computed as

γu2u1
(τ) = E(u2t+τu1t)

= A E(u1t+τu1t) + E(ωt+τu1t)

= A γu1
(τ)

γu1u2
(τ) = A γu1

(τ)

In the context of a joint model with random means, we use the cross correlation between
u1 and u2 to reflect the correlation among different characteristics,

ρu1tu2t+τ
=

γu1u2
(τ)√

γu1
(0)γu2

(0)
(5.3)

Based on the above result, the cross correlation function ρu1tu2t+τ
is determined if the

correlation function for u1t is selected. We can choose the autoregressive covariance structure
of ukt for illustration. If it is assumed that u1i and u2i have the same correlation coefficient
ρ, then the resulting covariance matrix for (u1i, u2i) is

Σi =
(
σ2

1 Aσ2
1

Aσ2
1 σ2

2

)
⊗


1 ρ · · · ρni−1

ρ 1 · · · ρni−2

· · · · · · · · · · · ·
ρni−1 ρni−2 · · · 1


= R⊗ Ti,

where σ2
1 and σ2

2 represent the variances of the two series u1i and u2i separately. Ti is
selected as autoregressive structure, and other types could also be chosen, depending on the
property of the data set.
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Since we know that Σ−1
i = R−1 ⊗ T−1

i and |Σi| = |R|ni |Ti|2, so we can write the joint
density function f of ui = (u1i, u2i)′ as

f(ui) = 1
(2π)ni(|R|ni |Ti|2)

1
2

exp
{
−1

2u
uu′i(R−1 ⊗ T−1

i )uuui
}

Then the log-likelihood function of uuui = (u′1i, u′2i)′ as

−nilog(2π) − ni
2 log|R| − log|Ti|

−1
2
′

i
(R−1 ⊗ T−1

i )i. (5.4)

From (5.2) and (5.3), we can compute

ρu2,u1 =
Aσ2

u1√
A2σ2

u1 + σ2
ω

√
σ2
u1

= A√
A2 + σ2

ω
σ2
u1

,

since

σ2
u2

= A2σ2
u1

+ σ2
ω.

As |A| approaches infinity, |ρu2,u1 | goes to 1. The other property is that there is natural
constraint on A. Due to σ2

u2 = A2σ2
u1 + σ2

ω, we have A2 <
σ2
u2
σ2
u1
. Therefore we will know that

R in (5.4) is definite positive.

5.4 The joint likelihood function

The joint probability for yyyi and uuui, where i = 1, . . . , N , can be expressed as:

f(yyyi,uuui) = f(yyyi|uuui;bbb,φφφ)qi(uuui;σσσ2
i ), (5.5)

f(yyyi|uuui,α, bbb,φφφ) =
2∏

k=1

ni∏
j=1

f(ykij |ukij ;αk, bk, φk) (5.6)

under the conditional independence assumption. Since the latent variables uuui are unob-
served, inference about the parameters bk, φk and σσσ2

i is based on the marginal likelihood
function of the observed data:
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L(bbb,φφφ,α,σσσ2; y) =
N∏
i=1

∫
f(yyyi|uuui;α, bbb,φφφ) qi(uuui;σσσ2) duuui (5.7)

The maximum likelihood estimates of α, bbb = (b1, b2), φφφ = (φ1, φ2) and σσσ2 are simply
those values of bbb, φφφ and σσσ2 that maximize this likelihood function. However, the integration
(5.7) always involves intractable integrals. Consequently, much work has been focused on
approximate techniques that seek to avoid the integration. The Monte Carlo EM (MCEM)
algorithm, introduced by Wei and Tanner is an extension of the EM algorithm that esti-
mates the expectation in the E-step with a Monte Carlo approximation. Booth and Hobert
1999 Booth proposed to use rejection sampling and multivariate t importance sampling to
generate independent samples to construct Monte Carlo approximations. Because of the
hierarchical structure of the model, we can apply Monte Carlo EM algorithm.

5.4.1 Monte Carlo EM

We discuss the likelihood function in a general framework for this proposed joint model with
latent variables. In the EM algorithm, the E step imputes the log-likelihood of the complete
data, consisting of the observed data and the latent variables, by the conditional expectation
of the complete data log-likelihood given the observed data. In the MCEM algorithm, the
conditional expectation of the log-likelihood of the complete data is estimated by averaging
the conditional log-likelihoods of simulated sets of complete data.

Let θθθT = (bbb,φφφ,α,σσσ2)T denote the complete vector of unknown parameters. Monte Carlo
averages of simulated variables is used to estimate

E[log f(yyy,uuu;θθθ)|y;θθθ],

the expectation is with respect to h, the distribution of uuu given yyy with parameter value
θθθ(r),

h(u|y;θθθ) ∝ f(y|uuu;α, bbb,φφφ)q(uuu;σσσ2).

To set up the EM algorithm in the context of the proposed joint model, we consider the
latent variables, uuu, to be the missing data. Let f(yyy,uuu;θθθ) represent the joint density of the
complete data, then we have,

Q(θθθ,θθθr) =
∫

log f(yyy,uuu;θθθ) h(uuu|yyy,θθθ(r))duuu, (5.8)

where h(uuu|yyy,θθθ(r)) is the conditional density function of uuu given yyy and θθθ(r). Specifically,
draw a random sample, uuu1, . . . ,uuuL from h(uuu|yyy,θθθ(r)).
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A Monte Carlo approximation of Q(θθθ,θθθ(r)) is given by

Q̂r+1(θθθ,θθθ(r)) = 1
L

L∑
l=1

log f(yyy,uuul;θθθ) (5.9)

The implementation of Monte Carlo EM

In the implementation, due to independence among subjects, one may sample from h(uuui|yyyi, θθθ(r))
for the ith individual, for i = 1, . . . , N . Because of the introduction of Monte Carlo at the
E-step, the incomplete data log-likelihood (5.9) is not guaranteed to increase at every iter-
ation. However, the Monte Carlo EM algorithm still converges to the maximum likelihood
estimate under suitable regularity conditions by Chan at 1995.

M-step

The M-step maximizes the approximateQ function obtained in the Monte Carlo E-step, with
respect to θθθ to obtain θθθ(r+1). The MCEM algorithm iterates between the approximate E-step
and the M-step, each time drawing a sample of the unobserved data from the conditional
distribution given the observed data at the updated parameter value, and maximizing the
approximate Q function obtained from the new sample and the updated parameter to get
a new estimate of the parameter. As McCulloch 1997 has pointed out, the Monte Carlo M-
step is usually relatively simple in the generalized linear mixed model context. The reason
is that Q̂r+1(θθθ,θθθ(r)) is the sums of log-likelihoods from two generalized linear models. The
first term involves bbb and φφφ, and the second one involves only σσσ2. The first term can be
maximized via iteratively reweighed least squares and, depending on the distribution of the
conditional distribution, the maximizer of the second term can sometimes be written in
closed form.

E-step

The implementation of the Monte Carlo E-step involves sampling the unobserved uuu from the
conditional distribution of h(uuu|yyy,θθθ(r)). This requires us to choose an an appropriate Monte
Carlo sampler that simulates u from a distribution that is as close as possible to the target
distribution h(uuu|yyy,θθθ(r)). The choice could be rejection sampling, importance sampling, or
dependent samples from an invariant target distribution based on Markov chain Monte
Carlo methods. Rejection sampling is more efficient when sample sizes are small, whereas
importance sampling is better with larger sample sizes. Both of them are useful when direct
simulation from h is difficult or impossible but direct simulation from another distribution
similar to h is possible. When the acceptance rate for the rejection sampler is very low, it
may be more efficient to use the importance sampling. The approximation of the complete
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data likelihood based on the importance sampling is

ωl = exp{log f(yyy,uuul;θθθ)}/q(uuul)∑L
k=1 exp{log f(yyy,uuuk;θθθ)}/q(uuuk)

(5.10)

and (ululul) are random samples from the importance density q.
The choice of missing data has two advantages. Firstly the yyy are independent when the

uuu known. Secondly, the M-step of the EM algorithm maximizes the complete data likelihood
with respect to bbb, φφφ and σσσ2. The M-step with respect to bbb and φφφ only needsf(yyy|uuu), so it
becomes a standard generalized linear model problem given the values of uuu known.

Steps of Monte Carlo EM algorithm

The MCEM algorithm for this proposed joint models is as follows,

1. Choose starting values θθθ(0), and initial sample size L.

2. Generate L values, uuu1
r , . . . ,uuu

L
r from h(uuu|yyy,θθθ(r)) using rejection or importance sampling

methods.

3. Using the approximation (5.9) or (5.10) to obtain θθθ(r+1) by maximizing Q̂r+1(θθθ,θθθ(r)).

4. If convergence is achieved, then declare θθθ(r+1) to be the maximum likelihood estimate
of θθθ; otherwise, return to Step 2.

Booth at 1998 proposed a multivariate Student t importance density whose mean and
variance match the mode and curvature of h. More specifically, we write h(uuui|yyyi, θθθ) =
ai exp{l(uuui)}, where ai is the unknown normalizing constant.

li(uuui) = log{f(yyyi|uuui;α, bbb,φφφ)}+ log{q(uuui;σσσ2)}

=
2∑

k=1

ni∑
j=1

log{f(yyykij |uuui;αk, bbbk,φφφk)} −
1
2 log |2πΣi| −

1
2u
uu′iΣ−1

i uuui,

Let l(1)
i (uuui) and l(2)

i (uuui) denote the vector of the first derivatives and the hessian matrix
of the second derivatives of li(uuui) separately,

l
(1)
i (uuui) = vec

{
vec
{

ykij − µkij
akij(φφφ)b′′k(θθθkij)g′(µkij)

}
j

}
k

−ΣΣΣ−1
i uuui (5.11)

l
(2)
i (uuui) = −Wi −ΣΣΣ−1

i , (5.12)

where Wi is the diagonal matrix of iterative weights, 1
akij(φk)b′′

k
(θkij)g′(µkij)2 , for j =

1, . . . , ni, and k = 1, 2.
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Suppose that ũuui is the maximizer of li(uuu) satisfying the equation l(1)
i (uuu) = 0. The Laplace

approximation of the mean and variance are ũuui and −l(2)
i (ũuui)−1 respectively. The approxi-

mations to the conditional mean and variance of uuui are

E(uuui|yyyi) ≈ ũuui

Var(uuui|yyyi) ≈ −l(2)
i (ũuui)−1

5.4.2 Information Matrix

Denote the MLE from the MCEM algorithm by θ̂θθ. Louis (1982) showed that the observed
information matrix is given by

− E
{
∂2l(θθθ|yyy,uuu)
∂θθθ∂θθθ′

}
t=θ̂θθ
−V ar

{
∂l(θθθ|yyy,uuu)

∂θθθ

}
θθθ=θ̂θθ

, (5.13)

where the expectation and variance are with respect to h(uuu|yyy, θ̂θθ).

5.5 The application to Clinical Transplant Data

Patients who received a renal transplant were extracted from United Network for Organ
Sharing (UNOS), which direct the transplant community to reduce disparity in access to
transplant, to allocate organs over as wide of a geographic area as possible, and to ensure
organs to be allocated on the basis of medical necessity. The most common measure of kidney
function is called the estimated glomerular filtration rate (GFR), which was measured once
a year in the study, by the formula "4-variable MDRD" (serum creatinine, age, race, and
gender). Kidney function is considered to be normal, when GFR is in the level of 90 or
higher. On the other hand, if GFR is less than 15, the kidney function is considered to be
a failure. Patients need to have repeated kidney transplants when kidney graft fails.

5.5.1 Model specification in the application example

We model the kidney function status after the first kidney transplant among the following-
up periods. Specifically, we treat GFR as the continuous variable and retransplant status as
the binary variable. We then combine them together as mixed outcomes to jointly describe
how kidney function changes and the disease progress over time after the first transplant.
We use the proposed joint model to determine the association between mixed outcomes
over time following the first kidney transplant with other covariates such as age and gender
included.

Let y1ij and y2ik denote GFR and the retransplant status, where j = 1, . . . , ni; k =
1, . . . , ni; i = 1, . . . , N . The binary response y2ik takes 1, if the re-transplant occurred, oth-
erwise 0. We assume y1ij and y2ik are conditionally independent given u1i and u2i according
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to y1ij |u1ij ∼ N(µ1ij , σ
2), our proposed joint model is presented in the following:

{
Y1ij |u1ij ∼ N(µ1ij , σ

2), and µ1ij = αT1Xi + u1ij

Y2ij |u2ij ∼ Poisson(µ2ik), and logit(µ2ik) = αT2Xi + u2ij ,
(5.14)

where µ1ij = α10 + α11time + α12age + α13gender + α14Race + α15ESRD cause + u1ij ,

and y2ik|u2ik ∼ Poisson (µ2ik), where logit(µ2ik) = α20 + α21time + α22age + α23gender +
α24Race + α25ESRD cause + u2ik.

5.5.2 Model results

As mentioned in the model specification, it is assumed that (u1i, u2i) is multivariate normal
with mean 0 and covariance matrix ΣΣΣ as formulated in (5.4). We applied the Monte Carlo
EM algorithm based on importance sampling. A multivariate Student t distribution with
45 degrees of freedom was chosen as the initial distribution. We started with L = 50, and
increased by L = L+ L/10, until L = 5000.

An important issue in implementing the Monte Carlo EM algorithm is to assess the
convergence of the algorithm. We used the criteria that when the relative change in the
parameter values from successive iterations is small.

max|θθθ(r+1) − θθθ(r)| < δ,

where δ is predetermined constants. We set δ = 0.0001. The method involves the initial value
θθθ(0), and the resulting approximation is local in nature. Thus we iterated our procedure a
few times by updating θθθ(0) to the current estimate of θθθ. We also evaluated the marginal
likelihood at several parameter values.

The main results from the proposed joint model are shown in Table 5.1 The estimate
of the time slope of the continuous variable GFR is −8.42, which is statistically significant,
and the negative sign indicates that GFR decreases over time after the first transplant. In
addition, the estimate of the time slope of the binary variable retransplant is 3.98, which
is also statistically significant. The positive sign shows that the probability of getting a
second transplant is increasing over time. The estimate of autocorrelation coefficient ρ is
0.79, which shows that there is a positive correlation in the latent processes u1i and u2i.

5.6 Conclusion

We developed a joint model for observations of mixed response variable for the cluster and
longitudinal data, and applied the MCEM algorithm to find the MLEs of the generalized
linear latent variable models for multivariate responses. With the nice properties of kro-
necker product, the form of the log-likelihood function of the mixed outcomes is explicitly
expressed, especially the inverse and the determination of the covariance of the latent pro-
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Table 5.1: Estimates for parameters in Model (5.14). The standard errors of the estimates
are given in brackets.

The longitudinal submodel The submodel
Parameters Coef.(SE) P value Coef.(SE) P value
Intercept 55.93(1.45) <0.001 -15.94(2.12) <0.001
Time −8.42(1.56) <0.001 3.98(1.24) <0.001

Age (per year) −0.17(0.05) < 0.001 0.02(0.01) 0.044
Female 5.39(0.73) < 0.001 −0.23(0.03) 0.029
Black −3.69(1.34) < 0.001 0.17(0.08) 0.020
Other −6.45(1.08) < 0.001 0.23(0.07) < 0.001

Diabetes 0 1.0
Hypertension 0.86(0.27) 0.001 −0.41(0.06) 0.042

Glomerular disease 0.76(0.32) 0.002 −0.54(0.08) 0.012
Polycystic disease 1.09(0.29) < 0.001 −0.78(0.11) 0.021

Others 0.93(0.27) < 0.001 −0.87(0.10) 0.047
Other parameters

σ2
1 857.05(148.25)
σ2

2 89.87(15.23)
σ2
ω 2.10(0.23)
ρ 0.79( 0.03)
A −0.32(0.01)

cesses. We also connect the modeling of the latent processes with exponential covariance
structure to the time series. At each E-step, we approximate the Q function by using the re-
jection sampling or the importance sampling approach. For the importance sampling, we use
the Laplace approximation to find the instrumental distribution with the mean and covari-
ance coming from the posterior distribution of the latent processes given the responses. We
demonstrated the methodology with a kidney study, measuring eGFR and the retransplant
status for patients.
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Chapter 6

A Predict Model with a
Polynomial Effects Covariate in
Presence of Measurement Errors

6.1 Motivation

As mentioned in the introduction chapter, there are three strategies to narrow the gap
between the supply and demand of kidney organ. The former chapters are focus on the
second strategy. My future work is focus on the development of predict statistical models,
which are motivated from the third strategy.

It is known that deceased/living kidney donors are routinely shared within seven geo-
graphically defined regions, but they are infrequently shared between regions. For example,
the donor rate per million population (RPMP) in 2004 varied from 6.0 in Manitoba to 18.0
in Quebec. The reasons for this variability remain unclear. The RPMP does not account
for population differences between regions that may impact organ donation, which makes
it difficult to determine if regional variation is due to differences in the number potential
organ donors, differences in organ procurement practices, or differences in family consent
rates for organ donation, community social work, household income, donor race, etc.

A major barrier to understand regional differences in deceased organ donation is lack
of an informative metric of donor activity. Understanding why some regions have higher
deceased/living donor rates than others will inform health policy to improve kidney donation
in all regions. Therefore, it is useful to develop some statistical models to explore the
information metric of donor activity in the population.

6.2 Introduction

Let D denote the kidney donor in the population under investigation. The incidence rate
for D is attributed to the continuous exposure E as well as to p other covariates Z =
(Z1, . . . , Zp). Suppose a average sample unit consists of g subjects whose individual expo-
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sure levels are E1, . . . , Eg, and they are expensive to be measured individually. Or it is
already available from other resources such as Census data. For example, we don’t individ-
ual donor patient social economical information such as the household income, but we can
know the average patient zip code level income where they live. According to the design,
only a aggregated measurement of exposure in the form of sum,

g∑
j=1

Ej , or the form of aver-

age
g∑
j=1

Ej/g, is actually available. In the meanwhile, the other p covariates Z1, . . . , Zp are

available in the individual level. For the ease of exposition, we simply consider the case of
aggregated exposure S =

g∑
j=1

Ej/g in the rest of this thesis.

A remarkable finding by Weinberg and Umbach (1999) is that under the multiplicative
model for the probability of D, the set-based logistic regression model can bypass the
aggregation. The resulting model takes the form of

log
[
P (case unit|S,Z)
P (control unit|S,Z)

]
= αg + βS + ln(rg) + γTZ (6.1)

where α and β are the unknown regression coefficients, and rg is the ratio of the number of
case units of size g over the number of control units of size g. Clearly, β is the parameter of
central interest, which represents the linear effect of pooled exposure. Note that in model
(6.1), the other covariates are muted just for simplicity, but they would appear in the same
aggregation form as that of the S should their linear terms be included in the study.

Unfortunately, this trick works only for linear exposure effects. For example, consider a
simple quadratic exposure, E2

j . A similar derivation will lead to a logit model with the linear
predictor of the form: αg+β1S+β2SS+ln(rg), with SS =

∑g
j=1E

2
j /g whose measurement

is apparently unavailable. What is available is S2 =
(∑g

j=1Ej
/
g)2, which is larger than

SS =
∑g
j=1E

2
j /g. According to our simulation in Section 2, if one naively replaces SS by

S2, the resulting model, αg + β1S + β∗2S
2 + ln(rg), will exaggerate the true curvature and

hence overestimate the quadratic exposure effect.

6.3 Model Specification

To overcome this difficulty arising from the utility of parametric logistic models to assess
polynomial effects of pooled exposures, we propose a nonparametric kernel approach to
correct measurement error. The feasibility of the nonparametric solution is ensured by the
fact that the nonparametric kernel regression can be conducted in a form of local linear fit.
Precisely, Weinberg and Umbach’s success in bypassing the aggregation for linear exposure
effects in model (6.1) would work locally. This local property will propagate ultimately into
groble nonlinear exposure effect.
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Suppose a generalize logistic model for the risk for disease D as follows:

logit{P (D|E,Z)} = α+ γTZ + θ(E). (6.2)

where exposure E is a continuous random variable with density f in the general population.
To make α interpretable, we set θ(µE) = 0 with µE being the population mean exposure.
Similar constraints may be imposed on the other nonparametric functions in the model. So,
the intercept term α may be regarded as the base log-odds at zero exposure as well as zero
covariates. According to Prentice and Pyke (1979), these nonparametric functions can be
estimated in the framework of logistic regression with the utility of back-fitting algorithm
(Hastie and Tibshirani (1990)).

6.4 Method

To derive our proposed logit model, we consider randomly pooling the specimens from
cases with an equal size of g. The corresponding exposure values from g randomly selected
cases are denoted by E1, . . . , Eg, and only the sum S =

∑g
j=1Ej is measured. Let E =

(E1, . . . , Eg). For the ease of exposition, only the exposure covariate is included in the
following derivation. It is easy to see that the density of E conditional on status D is

h(E|g cases) = P (g cases|E)P (E)
{P (D)}g

=
∏g
j=1 P (D|Ej)

∏g
j=1 f(Ej)

{P (D)}g

where Eg = S −
∑g−1
j=1 Ej . Integrating out the g − 1 unobserved exposures E1, . . . , Eg−1,

we obtain the conditional density of S given the Ej ’s from g randomly sampled cases as
follows:

h(S|g cases) = 1
{P (D)}g

∫
· · ·
∫ g−1∏

j=1
P (D|Ej)f(Ej)P (D|Eg = S −

g−1∑
j=1

Ej)× (6.3)

f(S −
g−1∑
j=1

Ej)dE1 · · · dEg−1.

Plugging the nonparametric logit model (6.2) in the density of convoluation (6.3), we yeild

h(S|g cases) =
exp{gα+

∑g
j=1 θ(Ej)}

{P (D)}g × (6.4)

∫
· · ·
∫
a(E)−1

g−1∏
j=1

f(Ej)f(S −
g−1∑
j=1

Ej)dE1 · · · dEg−1,
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where

a(E) =
g−1∏
j=1

[1 + exp{α+ θ(Ej)}][1 + exp{α+ θ(S −
g−1∑
j=1

Ej)}].

A similar derivation leads to the analogous conditional density of S for controls:

h̃(S|g controls) = 1
{P (Dc)}g ×

∫
· · ·
∫
a(E)−1

g−1∏
j=1

f(Ej)f(S −
g−1∑
j=1

Ej)dE1 · · · dEg−1(6.5)

where Dc denotes the status of no disease.
It follows immediately that the odds for the occurrence of a case set is given by

P (case set|S)
P (control set|S) = h(S|case set)P (case set)

h̃(S|control set)P (control set)

= exp{α∗g +
g∑
j=1

θ(Ej) + ln(rg)},

where α∗ = α+lnP (Dc)−lnP (D) and rg denotes the ratio of the number of case sets of size g
over the number of control sets of size g in the setting of 1 : 1 case-control design. Obviously,
ln(rg) is an offset of this logistic regression model. Moreover, the set-based nonparametric
logistic regression model takes the form

logit{P (case set|S)} = α∗g + ln(rg) + γTZ +
g∑
j=1

θ(Ej), (6.6)

where ln(rg) is the offset. The objective is to estimate function θ() based on observed
S =

∑g
j=1Ej , the sum of exposures from a set of g randomly selected cases or controls.

6.5 Local linear fitting approach

We now develop the local linear fitting approach (Fan and Gijbels, 1996) to estimate of θ().
Suppose we observe pooled data (Yi, Si), i = 1, . . . , n, where Yi = 1 for a case set and Yi = 0
for a control set. Under the 1 : 1 design, there are n/2 case sets and n/2 control sets.

To proceed, we first fix a target value of E, say E0, at which the functional value θ(E0)
will be estimated. Then, taking a linear Taylor expansion of θ() around the E0, we can
obtain a local linear approximation:

g∑
j=1

θ(Ej) ≈ β0g + β1

g∑
j=1

(Ej − E0)

= β0g + β1(S − gE0).
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Furthermore, we invoke the kernel smoothing technique based on the local quasi-likelihood
given as follows:

lq =
n∑
i=1

h(Si − E0)[Yi{ln(rg) + (α∗ + β0)g + β1(Si − gE0)} −

log{1 + exp (ln(rg) + (α∗ + β0)g + +β1(Si − gE0))}] (6.7)

where h(u) = (u/h)/h is a kernel weight function with bandwidth h. We adopt the Gaussina
kenel and estimate the bandwidth h by either the cross-validation or the direct plug-in
method in this paper. Maximizing lq with respective to the parameters will output their
estimates. If parameter β0 were estimable, then we would immediately obtain θ̂(E0) = β̂0.
However, we are only able to estimate α∗ + β0 from this local fitting, and as a matter of
fact, parameters α∗ and β0 are not identifiable. Nevertheless, this method allows us to get
β̂1, which estimates the first direvative of θ() at E0, namely, ̂̇θ(E0) = β̂1.

At the final step, simply convert the estimated first direvative ̂̇θ(·) into the estimate of
the original function θ(·) by integration:

θ̂(·) =
∫ ̂̇
θ(E)dE,

subject to the condition θ(µE) = 0. Numerically, we implement this conversion as follows:

Step 1. Estimate the mean exposure µ̂E = 1
ng

∑n
i=1 Si. According to the Slutsky’s theorem,

θ(µ̂E) p→ θ(µE) = 0, as n→∞.

Step 2. Select a sequence of equally spaced dense target values Ek, k = 1, . . . ,K allocated on
the two sides of µ̂E , with the distance of two adjacent values equal to δ. Let k∗ = µ̂E .
Run the local logistic regression at each of the target values and record β̂1 = β̂1(Ek)
from each fit.

Step 3. Set θ̂(Ek∗) = 0, and for each target value Ek, assign θ̂(Ek) = β̂1(Ek). Based on the
system of the difference equations,

δ
̂̇
θ(Ek) = θ̂(Ek)− θ̂(Ek−1), k = 2, . . . ,K,

we can solve for θ̂(·) at the target values as follows:

θ̂(Ek) =

 −δ
∑k∗
l=k+1

̂̇
θ(El), if k < k∗

δ
∑k
l=k∗

̂̇
θ(El), if k > k∗.
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To find the estimate of β1 at a given target value E0, we apply the New-Raphson
algorithm. First Let

ηi = ln(rg) + β∗0 + β1(Si − gE0).

Then, differentiating the local quasi-likelihood (6.7) with respect to β∗0 and β1 lead to the
following estimating equations:

∂lq
∂β∗0

=
n∑
i=1

h(Si − gE0)(Yi − µi)

∂lq
∂β1

=
n∑
i=1

h(Si − gE0)(Yi − µi)(Si − gE0).

So, the quasi-score vector can be expressed as follows:

Ψ =
( ∑n

i=1 h(Si − gE0)(Yi − µi)∑n
i=1 h(Si − gE0)(Yi − µi)(Si − gE0)

)
= X ′(Y − µ)

where Y = (Y1, . . . , Yn)′, µ = (µ1, . . . , µn)′, = {h(S1 − gE0), . . . ,h (Sn − gE0)}, and

X ′ =
(

1 1 · · · 1
S1 − gE0 S2 − gE0 · · · Sn − gE0

)
.

To solve equation Ψ = 0, we invoke the Newton-Raphson algorithm

β̂(m+1) = β̂(m) + (X ′W̃X)−1X(Y − µ),

where W̃ = W and W = [µ1(1− µ1), . . . , µn(1− µn)].

6.6 Statistical inference

For the convenient notation, let x is an exposure and Y be the case or control (donor or
not), we need to figure out the densities f(x|Y = 1) and f(x|Y = 0).

From Bayes formula,
f(x|Y = 1) = Pr(Y = 1|X)f(x)

Pr(Y = 1)

where from the assumed model, logit[Pr(Y = 1|x)] = α+ β(x− µ)2, hence

Pr(Y = 1|x) = exp{α+ β(x− µ)2}
1 + exp{α+ β(x− µ)2}

Pr(Y = 0|x) = 1
1 + exp{α+ β(x− µ)2}
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For simplicity, we choose x ∼ N(µ∗, σ2) with f(x) = 1√
2πσ exp{− (x−µ∗)2

2σ2 }. Pr(Y = 1) and
Pr(Y = 0) are constants with respect to x. We denote them as C1 and C2 respectively.
Therefore,

f(x|Y = 1) = C1
exp{α+ β(x− µ)2}

1 + exp{α+ β(x− µ)2}
1√
2πσ

exp{−(x− µ∗)2

2σ2 }

= C∗1
exp{α+ β(x− µ)2 − 1

2σ2 (x− µ∗)2}
1 + exp{α+ β(x− µ)2}

(6.8)

f(x|Y = 0) = C2
1

1 + exp{α+ β(x− µ)2}
1√
2πσ

exp{−(x− µ∗)2

2σ2 }

= C∗2
exp{− (x−µ∗)2

2σ2 }
1 + exp{α+ β(x− µ)2}

(6.9)

where C∗1 = C1√
2πσ and C∗2 = C2√

2πσ .
To generate x|Y = 1 using acceptance-rejection method, we denote the left hand side of

Equation 1 as f1(x), then depending on values of parameters, we have following cases:
Case I, α and β are negative, eα+β(x−µ)2

< 1, we put

g1(x) = C∗1 exp{α+ β(x− µ)2 − 1
2σ2 (x− µ∗)2} < f1(x)

= C∗1 exp{α+ µ2 − µ∗2

2σ2 −
(µβ − µ∗

2σ2 )2

β − 1
2σ2

−
(x− µβ− µ∗

2σ2
β− 1

2σ2
)2

2σ2/(1− 2σ2β)}

= C∗1

√
2πσ2

1− 2σ2β
exp{α+ µ2 − µ∗2

2σ2 −
(µβ − µ∗

2σ2 )2

β − 1
2σ2

} 1√
2πσ2

1−2σ2β

exp{−
(x− µβ− µ∗

2σ2
β− 1

2σ2
)2

2σ2/(1− 2σ2β)}

= C∗1k1h1(x)

where k1 =
√

2πσ2

1−2σ2β exp{α+µ2−µ∗2

2σ2−
(µβ− µ∗

2σ2 )2

β− 1
2σ2

} and h1(x) is the density ofN(µβ−
µ∗

2σ2
β− 1

2σ2
, σ2

1−2σ2β ).
Now the procedure of generating random number from density f1(x) will be:

• Generate x from h1(x);

• Generate r.v. U from U(0, 1), calculatez = C1 ∗ k1Uh1(x);

• If z < f1(x) or equivalently, k1Uh1(x) < exp{α+β(x−µ)2− 1
2σ2 (x−µ∗)2}

1+exp{α+β(x−µ)2} , accept x. Other-
wise, discard it.

Similarly for x|Y = 0, just simply let k2 =
√

2πσ and h2(x) be the density of N(µ∗, σ2) and
generate r.v. with the same procedure.

Case II, both α and β are positive, eα+β(x−µ)2
> 1. Let k1 =

√
2πσ and g1(x) be the

density of N(µ∗, σ2). Let k2 =
√

2πσ2

2σ2β+1 exp{2σ2β+µ∗
2σ2β+1 − α − βσ

2 − µ∗2

2σ2 } and g2(x) be the
density of N(2σ2β+µ∗

2σ2+1 , σ2

2σ2β+1). The generating process are similar as in Case I.
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Case III, one in α and β is positive, the other negative, choose one from procedures of
case I or case II that gives more efficiency.

6.7 Simulation

This section gives several simulations, which reveal that the cluster/pooled exposure as-
sessment has good operating characteristics. We use the local linear logistic regression with
normal kernel smoothing method, although this non-parameter method may cause remark-
able loss of accuracy in estimating the coefficients for a global logistic model.

6.7.1 Simulation setting

We simulated a sample with 4000 cases and 4000 controls, and then we applied various
patterns of grouping to each simulated study.

We examined scenarios in which all pooling sets were the same size, with g = 1, 2, 4
or 8, the number of assays required under these strategies are 8000, 4000, 2000 and 1000,
respectively.

The assumption made in the construction of the simulation are as follow: let X denote
the exposure level, it is a continuous random variables follows normal distributions for both
case and control group, but with different means, and a common value of 4 for standard
deviation for both groups. Then we derive the conditional distribution of X given case or
control, which are

p(X|Y ) = p(Y |X)p(X)
p(Y )

p(X|Ȳ ) = p(Ȳ |X)p(X)
p(Ȳ )

where p(Y |X) = exp (α+β(X−µ)2)
1+exp (α+β(X−µ)2) , p(Ȳ |X) = 1

1+exp (α+β(X−µ)2) , we choose X to follow
normal distribution, p(Y ) and p(Ȳ ) are constants with respect to exposure. We will discuss
the detailed derivation in Appendix.

In order to generate random samples from those distribution, we applied Rejection/Acception
method. The idea is to find a density, which is easy to generate data from. After multiplying
a certain constant, it covers the desired density. We accept this data only if it falls below
the desired density curve. This function should not be too higher than the desired density
to ensure the efficiency of the random number generating process.

6.7.2 Simulation results

Results are reports as follows. In our implementation of the simulated study, we choose
α = 1, β = −0.8,µ = 10, the mean of exposure level µ∗ = 7, the standard deviation of the
exposure level σ = 4 and bandwidth of normal kernel h = 1.5.
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Simulation result 1

We first run the logistic model with only linear term for pooling scenarios g = 1, 2, 4 and 8.
We found that none of these models achieved a significant fitting. The parameters β0 and
β1 are listed in the following table. We observe that these values are quite different from
each other, which is not surprising.

g β̂0 β̂1

1 -3.487613 0.4085145
2 -7.562447 0.8693702
4 -16.007922 1.8087377

Simulation result 2

We run the logistic model with quadratic term, under various pooling sizes. From the results
listed in the table, we found that, when g = 1, the estimates are fairly close to the underlying
true model. But, for g = 2, 4 and 8, the estimates are far from the true values. The bigger
the pooling size, the further away. Apparently, the estimates for β2 get smaller and smaller
when the pooling size gets larger. Notice that small value of β2 implies strong curvature.
So, by doing pooling, we are actually exaggerating the curvature of the data.

g β̂0 β̂1 β̂2

1 -69.43038 14.36120 -0.7192559
2 -102.14547 20.84215 -1.0417566
4 -213.44388 43.29466 -2.1683035
8 -555.51642 112.47162 -5.6473384

Simulation result 3

At last, we run the local logistic regression with linear term with normal kernel. Since this
is the nonparametric method, we can not get the global estimates as above. Instead, we
get the predictions of log odds ratio as well as the probability of having the disease at the
sequence of target exposure level. We plot the curves for each pooling strategy to compare
with above results. We illustrated in the plots in the following three cases,

1. g = 1, the local fitting curve is close to the underlying true model.

2. g = 2, the local fitting curve which is drawn in black is satisfactorily close to the
underlying true model. But, since we do not have the information of the individual
data, the underlying true model which is global logistic model based on. The curvature
of the local fitting curve is much closer to the true value than that of the global logistic
model with quadratic term, which is shown red.
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3. g = 4, we have the similar result as g = 2. But, the logistic model with quadratic
term is steeper. There is some difference between the local logistic curves for g = 2
and g = 4. Still, the local logistic model performs better than its global counterpart.

4. g = 8, we observe the local logistic curve is almost identical to the global logistic
model with only linear term.

The logistic model with quadratic term is further away from the true model. In the top left
plot, we depict the density curves and the corresponding dominant functions that we use
to generate case and control exposure levels by Acception/Rejection method. The top right
plot shows the differences of those global logistic models with linear term for g = 1, 2, 4 and
8. None of them is close to the true model which is also shown in the plot. The bottom
left plot shows the shrinking effect of the global logistic models with quadratic term as the
pooling size goes bigger, i.e., the discrepancies of those models from the underlying true
model is also getting more obvious. The bottom right plot shows that the fitted curves by
local logistic model with linear term are all reasonable except for g = 8. Our proposed
nonparametric method successfully captured the curvature of the sample after pooling. The
failure to capture the curvature when g = 8 is mainly caused by the concentration of the
exposure levels for both control and case groups to their own centers. Figure 3 shows the
comparison of log odds ratio instead of probability. The change is synchronous as in the
previous figure.

6.8 The application to kidney transplant data

6.8.1 Data Resource

Simulation study is done to show the feasibility of the nonparametric approach. It will
be more convincing to apply the proposed approach to a real data analysis. We applied
our method to the association between the probability of kidney transplant with affecting
factors by using US kidney patient data set. We linked to Unite State Census to get patient
seriocomic status data with a reported residential zip code.

there was an inconsistent association between adjusted Hazard ratio and socioeconomic
status estimated from US census (Axelrod David, 2010). ESRD patients with high socioe-
conomic status were less likely to transplant (10%) than those in low- and middle- socioeco-
nomic, where socioeconomic status was estimated from US census data. It isn’t appropriate
to treat the variable household income from US Census as an individual variable, since it
is the total income of all persons who lived in that zip code area.

6.8.2 Model specification

In our study, it is more appropriate to treat the variable household income as a pooled
variable instead of an individual variable to avoid the inconsistent misleading result after
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Figure 6.1: Comparison of Models for Different Pooling Scenarios
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Figure 6.2: Evolution Effect of Different Pooling Scenarios on Models
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Figure 6.3: Evolution Effect of Different Pooling Scenarios on Models
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adjusting other covariates, such as age, gender, waiting time, blood type, PRA, a categorical
indicator for the level of resistance and the annual income are considered as potential
factors. In order to properly investigate the effect of the pooled income, cases and controls
are chosen in a way that the two types of patients are well separated. Case groups are
the areas, indicated by zipcode, of which most of patients in the waiting list obtained the
transplant. Control groups are chosen that most of its patients in the waiting list did not
get transplanted. Deceased Donor Transplant are counted as cases.

We treat household income in zip code level as a pooled measurement from US CENSUS.
We propose to fit the donor rate with regular logistic models, which is given by:

g(p) = α+ γTZ + θ(E),

where γT = (γ1, γ2, γ3, γ4, γ5, γ6, γ7)T , Z=(Time, Gender, PRA (0, 1-29, and 30-100), Blood
type (A, AB, B, O)), and θ(E) = β1 log Income.

Another logistic model 2 with quadratic effect of logarithm of income (β9 log2 Income)
is also fitted and the quadratic term is found to be significant, which is given by:

g(p) = α+ γTZ + θ(E),

where γT = (γ1, γ2, γ3, γ4, γ5, γ6, γ7)T , Z=(Time, Gender, PRA (0, 1-29, and 30-100), Blood
type (A, AB, B, O)), and θ(E) = β1 log Income + β2 log2 Income.

6.8.3 Model results

The results from model 1 and model 2 are summarized in Table 6.8.3.

Model 1 Model 2
Para. Est. Std. Error t value Est. Std. Error t value
α −21.043 1.042 −20.187 −129.843 18.223 −7.125
γ1 1.747 0.052 33.508 1.755 0.052 33.529
γ2 0.142 0.063 2.258 0.147 0.063 2.328
γ3 −0.118 0.083 −1.422 −0.117 0.083 −1.412
γ4 −1.330 0.083 −16.110 −1.338 0.083 −16.172
γ5 0.366 0.173 2.113 0.407 0.174 2.342
γ6 −0.895 0.092 −9.772 −0.893 0.092 −9.719
γ7 −0.535 0.068 −7.825 −0.513 0.069 −7.471
β1 0.871 0.084 10.427 21.151 3.386 6.246
β2 −1.945 0.158 −5.997

Apparently the quadratic term in the model is statistically significant and is negative,
which indicates that the probability of transplant will increase first and then decrease as the
income increases, which was very similar to the Figure 2 by Axelrod David. This result is
hard to explain for the income effect on the transplant. It may comes because of the impact

96



0
.2

0
.4

0
.6

0
.8

1
.0

Log zipcode income

P
ro

b
. 

o
f 

k
id

n
e
y
 t

ra
n

s
p

la
n

t

Figure 6.4: Probability of kidney transplant versus logarithm of income. Solid line represents
the curve with local logistic regression, dashed line is the curve of regular logistic regression
and the dotted line is the fitted logistic regression with quadratic term.

of pooling of covariate. In fitting the local regression model, we treat the effect combining all
but intercept, logarithm of income and the squared log-income as an “offset” in the model,
by observing the estimates of β1 to β7 have not much changes between the two models.
This method not only makes the estimation of local fitting plausible but also makes the
interpretation clearer. When our pooling approach as discussed in this paper was used to
fit this data, the quadratic term in model 2 is totally removed, as shown in Figure 6.8.3.

From the result of the local logistic regression, the probability of kidney transplant
decreased from low income to middle income and continued to decrease as the income
increases. The parabolic curvature at the upper part from the graph of the logistic regression
with the quadratic term of log-income disappears in the local fitting. The bottom part of the
local fitting is similar to that of the logistic regression model with quadratic term. In other
world, the probability of kidney transplant may increase quadratically when the average
income increases from low to middle level. When the average income increases from middle
level to high level, instead of decreasing, the probability of transplant increases linearly. We
approximated the quadratic function based on individual probabilities obtained from the
local logistic regression. The coefficients were given by −16.468, 3.105 and −0.138 for the
intercept, log-income and the quadratic term of log-income. Comparing with those of the
regular logistic regression model with the quadratic term, the square term was apparently
much smaller in magnitude, showing an insignificant quadratic effect.
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6.9 Conclusion

The nonparametric method can provide a solution to unit measurement for complicated data
sets. The main advantage of this proposed method is that it can overcome the difficulty in
which Weinberg & Umbach’s method encountered when dealing with data with higher order
polynomial (non-linear, etc.) structures.situation. Consequently, the exposures for case and
control in their simulated data are extremely apart from each other with huge blank area
between the two small ranges having observations as shown in the simulation sytudy. It
brings hardness for model fitting. We instead do not stick on the scenario. We generate
data from an assumed model with a quadratic term.

We observe that the size of the pooled set will affect the resulting fitted nonparametric
curve. The more data pooled into the set, the less data points left in the fitting data. Besides,
we observe the pooled exposures for case and control are further away. As we increase the
size of the pooled set, convergence of the algorithm may become a problem.

The nonparametric method is driven by the practical data. So it can be misleading if we
can not decide which prediction values to choose for given exposure level. You might obtain
quite different results from fitting with different sample. Although we do not consider any
interactions in our current study, it will be our future work. Consider adding more covariates.
If they are simply linear we can apply Weinberg & Umbach’s method. But if there are more
higher order terms or interactions we need to figure out the counterparting nonparametric
solution, generalized additive model can be a choice.
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Chapter 7

Future works

7.1 Motivation

This dissertation is mainly focus on the development of the novel and powerful statistical
methodology to solve the problem in the complex real clinical data. All proposed statistical
models are motivated and illustrated by the clinical transplant data. As mentioned in the
introduction, there are three strategies to address the problem about the demand supply of
organs is not sufficient to meet the increasing demand:

1. Decrease the incidence of ESRD

2. Increase the number of decreased and living organ donors

3. Maximize the utility of the available organ supply

How to realize these specific aims in each strategy motivate us develop the new models in
this thesis. Then the computational and applied skills for these new models motivate me
to continue the theoretically challenging research. The research undertaken in my thesis,
together with future research plans, are described below.

7.2 Current work and future research

7.2.1 Functional data analysis (FDA)

Functional data analysis (FDA) has recently become a very hot topic in statistical research,
as recent technological progress in measuring devices now allows one to observe spatiotem-
poral phenomena on arbitrarily.

As my senior supervisor told me that FDA remains distinct due to its contribution to
climatology, medicine, meteorology, economics, etc. Characterizing nonlinear variation in
FDA is a challenging problem. It provides the opportunity for statisticians to develop new
methodologies to address it. In particular, when random curves are observed on regular
dense grids, the existing literature on FDA focused on estimation and inference. This,
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however, is not enough to provide understanding of the variability of the estimator of the
whole regression curve and its derivative, nor can it be used to correctly answer questions
about the curve shape.

In chapter 2, the proposed functional principal component analysis through conditional
expectation by Dong97 have explored the major source of variations of GFR curves. We find
that the estimated functional principal component (FPC) scores can be used to cluster GFR
curves. Ordering FPC scores can detect abnormal GFR curves. Finally, FPCA can effectively
estimate missing GFR values and predict future GFR values. Chapter 4 by Dong95 have
developed a joint model, which uses functional principal component analysis (FPCA) to fit
the longitudinal outcome and proposes the multi-state model to describe multiple time-to
event outcomes together. The FPCA method is efficient in reducing the dimension of the
longitudinal trajectories. Multistate submodel can be used to describe the dynamic process
of multiple time-to-event outcomes. The longitudinal trajectories and the multiple time-to-
event outcomes is linked with the shared latent features. In our application example, the
estimated functional principal components are found efficient with fitting the GFR curves,
and the latent FPC scores are significantly related to the multiple time-to-event outcomes.

In the future, I will continue to develop new FPCA approach in terms of recovering
trajectories from noisy functional data and dimension reduction in regression models of
functional data. Then we can compare the current results from FPCA through condtional
expectation with some new method.

7.2.2 Joint modeling

In this thesis, we have developed three joint models:

1. Joint model 1 in Chapter 3: The accelerated failure time submodel used in our
proposed joint model. On the other hand, the proposed joint model is different from
some traditional joint models, which treats the longitudinal component as a covariate
in the survival analysis. In our proposed joint model, instead of using the whole
longitudinal component as a covariate, we propose to use some latent features of the
longitudinal component in the survival submodel. Finally, our proposed joint models
has considered a method to obtain the dynamical non-proportional hazard ratio curve
of a side event when hazard ratios are non-proportional during the followed-up time
period. we propose a new joint model with a longitudinal submodel and an accelerated
failure time (AFT) submodel, which are linked by some latent variables. The AFT
submodel is used to determine the relationship of the time-to-event outcome with all
predictors. In addition, the piecewise linear function in the survival submodel is used
to calculate the dynamic hazard ratio curve of a time-dependent side event, because
the effect of the side event on the time-to-event outcome is non-proportional. The
model parameters are estimated with a Monte Carlo EM algorithm.
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2. Joint model 2 in Chapter 4: This paper develops a joint model, which uses func-
tional principal component analysis (FPCA) to fit the longitudinal outcome and pro-
poses the multi-state model to describe multiple time-to event outcomes together. The
FPCA method is efficient in reducing the dimension of the longitudinal trajectories.
Multistate submodel can be used to describe the dynamic process of multiple time-to-
event outcomes. The longitudinal trajectories and the multiple time-to-event outcomes
is linked with the shared latent features. In our application example, the estimated
functional principal components are found efficient with fitting the GFR curves, and
the latent FPC scores are significantly related to the multiple time-to-event outcomes

3. Joint model 3 in Chapter 5: Our third proposed joint model use a flexible class of
generalized linear latent variable models for multivariate responses, which has an un-
derlying Gaussian latent processes. The model accommodates any mixture of outcomes
from the exponential family. Monte Carlo EM algorithm is proposed for parameter
estimation and estimates of the variance components of the latent processes

In the future, I will continue to develop new joint approaches.

7.2.3 Measurement error models

In this thesis, we have considered missing values/measurement errors in several models:

1. The proposed FPCA in Chapter 2: The proposed FPCA through conditional
expectation for GFR in Chapter 1.

2. The proposed nonparametric kernel approach in Chapter 6: I have used this
nonparametric kernel method to investigate the predict models with a high-order effect
co-variable in present of measurement errors in the Chapter 5.

3. It is worthwhile to mention that we have develop a Bayesian approach to a calibration
problem with one interested covariate subject to multiplicative measurement errors106

before, where a stem cell study with the objective of establishing the recommended
minimum doses for stem cell engraftment after a blood transplant. When determining
a safe stem cell dose based on the prefreeze samples, the postcryopreservation recovery
rate enters in the model as a multiplicative measurement error term, as shown in the
model. We examine the impact of ignoring measurement errors in terms of asymptotic
bias in the regression coefficient. According to the general structure of data available
in practice, we propose a two-stage Bayesian method to perform model estimation via
R2WinBUGS. We illustrate this method by the aforementioned motivating example.
The results of this study allow routine peripheral blood stem cell processing laborato-
ries to establish recommended minimum stem cell doses for transplant and develop a
systematic approach for further deciding whether the postthaw analysis is warranted.
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In the future, I will continue to develop new approaches in Measurement error models and
Joint models with covariates in present of measurement errors.

7.2.4 Cost-effectiveness analysis

In our previous work102,107, we constructed a Markov model in accordance with existing
guidelines for economic evaluation. Base case analyses were performed with Markov co-
hort simulation with transitions modelled on an annual basis, though we used first order
Monte Carlo simulation to determine the incidence of end stage renal disease over time. We
considered several health states in both the screening and no screening strategies, includ-
ing people without chronic kidney disease, those with non-dialysis chronic kidney disease,
patients receiving dialysis, and patients with a functioning transplant.

In the future, I will continue to do the cost-effective analysis for modeling the follow-
ing outcomes of: 1) combined multi-organ transplantation 2) non-renal organ transplan-
tation +/- later kidney transplantation; or 3) kidney-alone transplantation. Three cost-
effectiveness ratio per quality-adjusted life-year will be calculated when compared to non-
transplantation treatment quality-adjusted life-year.
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Figure A.1: Part of GFR trajectory curves for the first 20 cluster groups
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Figure A.2: Part of GFR trajectory curves for the last 20 cluster groups
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Appendix B

Supplementary material for A
Joint model of a longitudinal and
Accelerated Failure Time data and
its application to transplant
patients with an ESRD and a
diabetes

B.1 Monte Carlo EM algorithm

B.1.1 M-step

To make the notation short, let E(t)(g(βi)) = E[g(βi)|t,w(t), S, δ,Z, Y (t),Θ(t)] be the
conditional log likelihood based on the current estimate Θ(t) for any function g(βi). The
MLE of b, B, α, and σ2 can be written as

b̂ =
n∑
i=1

E(t)(βi)

B̂ =
n∑
i=1

E(t)(βi − b̂)(βi − b̂)

α̂ =
n∑
i=1

E(t)((ZTZ)−ZT (Y i − βTi ξ(ti)))

σ̂2 =
n∑
i=1

mi∑
j=1

E(t)(Yij − α̂TZ − βTi ξ(tij))2

n∑
i=1

mi

,

where Y i = (Yi1, · · · , Yimi)T , and ti = (ti1, · · · , timi)T .
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We estimate the baseline hazard function λ0 by a step-function. Let T1, · · · , TH be all
observed event times, then the baseline failure time is

Φ(Th, Zi,wi(th),βi,γ) =
∫ Th

0
exp[T1Zi + γT2 βi +wi(s|γ3)]ds,

where h = 1, · · · , H. Let µh = Φ(th, Zi,wi(th),βi,γ), we estimate µh by plugging in the
current estimate of βi and γTi = (γT1 ,γT2 ,γT3 ). We get 0 = µ̂(0) ≤ µ̂(1) ≤ · · · ≤ µ̂(H)
by ordering these estimate in the data. Then the baseline function can be specified as
λ0(µ) =

∑H
h=1Ch1{µ̂(h−1)<µ≤µ̂(h)}. Now let the derivative of E(t)(l(Θ)) w.r.t Ch be equal to

zero, then we obtain the maximum likelihood estimate for Ch:

Ĉh =
∑n
i=1E

(t)
i [δi1µ̂(h−1)<µi≤µ̂(h) ]∑n

i=1E
(t)
i [{µ̂(h) − µ̂(h−1)}1{µ̂(h)≤µi}]

.

If we insert the baseline hazard function λ̂0(µ) into the conditional log likelihood, then we
have

Q(Θ|Θ(t)) =
n∑
i=1

E(t)
[
δi log{

H∑
h=1

Ĉh1{µ̂(h−1)<µi≤µ̂(h)}}+ δi(γT1Z + γT2 βi +

w(t|γ3))−
H∑
h=1

Ĉh{µ̂(h) − µ̂(h−1)}1{µ̂(h)≤µi} +

mi∑
j=1

log f(Yij |βi,α, σ2) + log f(βi|b,B)
]
.

After we have obtained the estimate for the parameters b, B, α, σ̂2, and the baseline hazard
function λ̂0(t), the last parameter to estimate is γ. The estimate for γ has no closed-form. So
we use the numeric optimization algorithm such as optim() in R to estimate γ in the M-step.

B.2 The result from simulation 1 when N=500
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Table B.1: Mean, bias, RMSE of the parameter estimates using our proposed MCEM algo-
rithm for Model using 100 simulation replicates in the first simulation study (N = 500).

The longitudinal submodel The survival submodel
Parameters True Mean Bias RMSE True Mean Bias RMSE

Age (per year) -0.17 -0.17 -0.00 0.011 0.02 0.02 -0.00 0.001
Female 5.39 5.36 0.03 0.187 -0.23 -0.23 0.00 0.010
Black -3.69 -3.70 0.01 0.208 0.17 0.17 -0.00 0.009
Other -6.45 -6.45 0.00 0.195 0.23 0.23 -0.00 0.010

TX era 1993− 1997 7.56 7.58 -0.02 0.198 -0.29 -0.29 0.00 0.010
TX era 1998− 2002 10.75 10.72 0.03 0.211 -0.76 -0.76 -0.00 0.010
TX era 2003− 2007 16.52 16.56 -0.04 0.208 -0.95 -0.95 0.00 0.010

PKPRA 1− 29 -0.93 -0.93 0.00 0.054 0.06 0.06 -0.00 0.003
PKPRA 30− 100 -2.35 -2.39 0.04 0.155 0.27 0.27 0.00 0.010

HLA Mismatch 1− 6 -1.54 -1.54 -0.00 0.056 0.24 0.24 -0.00 0.011
Dialysis time 0.1− 1 years -0.27 -0.27 0.00 0.062 0.07 0.07 -0.00 0.005
Dialysis time 1.1− 2 years -0.52 -0.52 0.00 0.052 0.08 0.08 0.00 0.005

Dialysis time 2.1− 3 -0.67 -0.67 0.00 0.059 0.33 0.33 0.00 0.005
Dialysis time > 3 years -0.96 -0.95 -0.01 0.067 0.38 0.38 -0.00 0.005

Decreased Donor -1.15 -1.16 0.01 0.056 0.14 0.14 -0.00 0.005
β1 48.94 49.51 -0.57 1.074
β2 -1.36 -1.50 0.14 0.455
γ21 -0.07 -0.07 -0.00 0.001
γ22 -0.21 -0.21 -0.00 0.005
γ3 -0.13 -0.13 -0.00 0.005
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