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Abstract

In this thesis, we consider problems where the true underlying models are complex and
obtaining the maximum likelihood estimator (MLE) of the true model is challenging or
time-consuming.

In our first paper, we investigate a general class of parameter-driven models for time series
of counts. Depending on the distribution of the latent variables, these models can be highly
complex. We consider a set of simple models within this class as a basis for estimating the
regression coefficients in the more complex models. We also derive standard errors (SEs)
for these new estimators. We conduct a comprehensive simulation study to evaluate the
accuracy and efficiency of our estimators and their SEs. Our results show that, except in
extreme cases, the maximizer of the Poisson generalized linear model (the simplest estimator
in our context) is an efficient, consistent, and robust estimator with a well-behaved standard
error.

In our second paper, we work in the context of display advertising, where the goal is to
estimate the probability of conversion (a pre-defined action such as making a purchase)
after a user clicks on an ad. In addition to accuracy, in this context, the speed with which
the estimate can be computed is critical. Again, computing the MLEs of the true model
for the observed conversion statuses (which depends on the distribution of the delays in
observing conversions) is challenging, in this case because of the huge size of the data set.
We use a logistic regression model as a basis for estimation, and then adjust this estimate for
its bias. We show that our estimation algorithm leads to accurate estimators and requires
far less computation time than does the MLE of the true model.

Our third paper also concerns the conversion probability estimation problem in display
advertising. We consider a more complicated setting where users may visit an ad multiple
times prior to taking the desired action (e.g., making a purchase). We extend the estimator
that we developed in our second paper to incorporate information from such visits. We
show that this new estimator, the DV-estimator (which accounts for the distributions of
both the conversion delay times and the inter-visit times) is more accurate and leads to
better confidence intervals than the estimator that accounts only for delay times (the D-
estimator). In addition, the time required to compute the DV-estimate for a given data set is
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only moderately greater than that required to compute the D-estimate – and is substantially
less than that required to compute the MLE.

In summary, in a variety of settings, we show that estimators based on simple, misspecified
models can lead us to accurate, precise, and computationally efficient estimates of both the
key model parameters and their standard deviations.

Keywords:Kullback-Leibler information; Bias-adjustment; Parameter-driven models; Time
series; Count data; Generalized linear model; Generalized linear mixed model; Hidden
Markov model; Display advertising; Conversion probability; Survival times; Censoring.
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“How strange and foolish is man. He loses his health in gaining wealth. Then, to regain his
health he wastes his wealth. He ruins his present while worrying about his future, but
weeps in the future by recalling his past. He lives as though death shall never come to

him, but dies in a way as if he were never born!”

– Ali ibn Abi Talib
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Chapter 1

Introduction

1.1 Overview

Estimating the parameters of a complex model can be a challenging problem. The challenges
can have a variety of root causes, including intractability of the likelihood or the size of the
data set. One way of simplifying estimation in such cases is to maximize the likelihood of a
simpler model chosen to approximate the complex model, especially if we are interested in
estimating of a subset of the complex model’s parameters.

In this thesis, we introduce three settings where the true models are complex and obtain-
ing the maximum likelihood estimator (MLE) can be difficult. We propose some alternative
simple models that have likelihoods that can be maximized efficiently. Since these simple
models are misspecified, their maximizers are sometimes biased for the parameters of the
true models. In these cases, we adjust the estimates for their bias to obtain accurate es-
timates of the parameters of the true models. We use the Kullback-Leibler information
criterion (KLIC) approach to determine the adjustment. In addition, we derive standard er-
rors (SEs) of the adjusted estimators. Our estimators are, in general, accurate and efficient,
and require a relatively short computation time.

1.2 Previous work

Since the general idea of this thesis is approximating complex models using simple misspec-
ified models, we list some previous work in this area. This section is intended to supplement
the literature review in each paper, which is, in general, specific to the settings we consider
there.

The results in our papers rely on two key works by Halbert White. White [1982] shows
that when the observations are independent, under mild conditions, the MLE of the parame-
ters based on a misspecified model is consistent for the minimizer of the KLIC (Theorem 2.2
of White 1982). In a second paper, White [1984] develops asymptotic covariance matrices
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for estimators based on general dynamic models that are accurate even when the models
are misspecified.

Much additional research has been conducted on the impact of model misspecification
on parameter estimation or prediction in different contexts. Neuhaus et al. [1992] consider a
misspecified mixing distribution in logistic-normal models. They conclude that, although the
MLE of the regression coefficients can be biased, the magnitude of this bias is typically small.
Gustafson [2001] considers the estimation of the scale parameter in a general class of models,
under model misspecification, using Kullback-Leibler divergence. Chow [1984] builds on the
work of White [1984], deriving the asymptotic covariance matrix of the ML estimator of a
misspecified model in an economics context. Heagerty and Kurland [2001] investigate the
impact of model violations on the MLE of regression coefficients in a generalized linear mixed
model. Bates and White [1985] present a general theory of consistent estimation for possibly
misspecified dynamic models. ten Have et al. [1999] show that fitting a misspecified model
to binary data with multiple levels of clustering can lead to bias in the regression coefficient
estimators. Tan et al. [1999] show that, in clustered binary data, marginal quantities (such
as sensitivity and specificity) are unbiased under misspecification of the distribution of the
random effects. Many authors point out that the regression coefficient estimates may not
be sensitive to the violation of the random effect assumptions in generalized linear mixed
models (see, e.g., Huber 1967 and Heagerty and Zeger 2000). Rizopoulos and Verbeke [2008]
suggest an alternative parameterization for random effects and parameters, and investigate
the effect of misspecifying the random effects distribution on the MLEs in a longitudinal
response process. All of the mentioned work, among others (see, e.g., Takeuchi 1976, Zeger
and Liang 1986 and Liang and Zeger 1986), are either not directly relevant to our problems,
especially for the correlated observations probelm in Chapter 2 (see, e.g., Berk 1966, Berk
1970 and Huber 1967), or they lead us to the same results as the ones proposed by White.

1.3 Motivating references for this dissertation

We have two main motivating references for this dissertation. The first is Davis et al. [2000],
who propose the maximizer of the simple Poisson generalized linear model as an estimator
of the regression coefficients in a complex model for time series of counts. The second is
Chapelle [2014], who considers the context of display advertising, and studies the MLE of
the probability that a click on an online ad converts (i.e., results in a pre-defined action
by the user, such as a purchase). The computation of the MLE in the first setting can be
challenging due to the complex structure of the likelihood, and in the second setting due to
the large size of the data set.
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1.4 Display advertising overview

The main motivating application in chapters 3 and 4 is display advertising. Since this topic
is fairly new, we briefly introduce some key terms and definitions in this section.

A newly developed method to advertise products (for selling or buying) is display ads
on the Internet (see Muthukrishnan 2009). A diverse set of problems have arisen within this
context (see, e.g., McAfee et al. 2010, Tietenberg 2010, and Varian 2007).

The two most common forms of online advertising are paid search advertising and
display advertising. The former is the the most common advertising form where adver-
tisers pay to have their ads displayed to users as they type queries into search engines. The
latter is a newly developed, popular form of online advertising where ads can be displayed
as banners in various sizes and positions in different webpages. These banners can have dif-
ferent forms, including text, images, and video. In this thesis, although we focus on display
advertising, our findings can be applied to paid search advertising with some small modifi-
cations1. Display advertising has four main components: advertisers, publishers, users, and
connectors (or ad networks). Advertisers want to promote their products. Publishers own
webpages with some available spots for ads. Users consume services provided by publishers
on different webpages. Finally, the main component, connectors (e.g., Google) look for the
“best” match of the other three components, in a way to maximize their own profit. In this
thesis, we consider an advertiser point of view, and track the display advertising procedure
only after a click event occurs. After such an event, the advertiser can track the conversion
status of the click (converted or not), and the conversion delay (the time until conversion,
should it occur). Figure 1.1 shows the observed conversion statuses and conversion delays
of users after they click an ad, over time.

Some key terms in display advertising are defined as follows2:

• Reach: Number of people who can potentially view the online ad.

• Click-through Rate (CTR): The chance that a user clicks on an online ad.

• Conversion Rate (CVR): Percentage of users who clicked on an ad who eventually
convert.

• Campaign: Process of planning, creating, buying, and tracking an advertising pro-
cedure.

• Impressions: Number of times a banner or text ad was requested and presumably
seen by a user.

1Source: Google Ads Display Network, available at http://www.google.com/ads/displaynetwork

2Source: Google Analytics Partners, available at http://www.kasatria.com
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Figure 1.1: Illustration of observed conversion statuses and conversion delays in display
advertising

• Traffic: Number of visitors and visits that a website receives.

One attractive feature of online display advertising is that advertisers can control the
advertising method and the associated costs according to their budget and goals. The three
main payment approaches for online ad placement are3:

• Cost per thousand impressions (CPM): Advertisers pay for every 1000 impressions of
their ads. This approach is appropriate if the number of people who see their banner
needs to be guaranteed.

• Cost per click (CPC): Advertiser pays only for the traffic that goes to their website
(i.e., via a click on their ad). The CPC (which is the most popular payment way) is
a preferred method of payment for advertisers who need to guarantee that they pay
only for those users who click on the advertising link or banner and then go to their
site.

• Cost per action (CPA): Advertisers pay for every converted click. The CPA is a pre-
ferred method of payment for advertisers who want to guarantee the number of con-
versions generated as a result of an advertisement.

We focus on only the CPA approach in this thesis.

3Source: Ontario advertising company, available at https://www.ontario.ca

4
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1.5 Thesis structure

This thesis is structured as a series of five chapters, each with a unique focus. The current
chapter and Chapter 5 provide introductory information and a summary of our conclusions,
respectively. The other three chapters are written as stand-alone papers – though they have
related themes, as described above. The three papers have been submitted in different top
statistical journals. I am the primary author of all the papers, but others have contributed
in each, as described in the following sections. My supervisor, Dr. Rachel MacKay Altman,
offered comments on the entire thesis.

1.5.1 Overview of Chapter 2

Chapter 2 is entitled “Parameter-Driven Models for Time Series of Count Data”, by Safari
A., Altman R. M., Leroux B., and has been submitted to Biostatistics.

The focus of the paper is the estimation of the regression coefficients of time series of
count data. We consider a general class of parameter-driven models for such data. While
this class is highly flexible (and includes some common models as special cases), maximum
likelihood (ML) estimation of the regression coefficients of models in this class can be chal-
lenging. We study the behaviour of three simple estimators of the regression coefficients. We
show that the estimator based on the Poisson generalized linear model performs remarkably
well in terms of bias and efficiency, even if the data are overdispersed or autocorrelated. We
also derive a standard error (SE) for our estimators that is simpler and more accurate than
those suggested in the literature. At the end, we show how our methods and results can be
applied in practice, and include a detailed analysis of polio and epileptic seizure data sets.

1.5.2 Overview of Chapter 3

Chapter 3 is entitled “Display advertising: Estimating conversion probability efficiently”, by
Safari A., Altman R. M., Loughin T. M., and has been submitted to the Annals of Applied
Statistics.

The context of this paper is display advertising. Our focus is the development of an
accurate and computationally efficient estimator of the probability that a click on an online
ad will convert. Computational efficiency is critical in this Big Data setting where publishers
need to re-estimate conversion probability rapidly and frequently as time progresses and
more data accrue. At any time point, conversion probability can be estimated based on a
model for data collected on clicks observed prior to this time, namely the conversion statuses
and the delays in observing conversions. The maximum likelihood estimate (MLE) of the
parameters of this model is computationally expensive. Instead, we consider a different
estimator based on a simple logistic regression model (which we call the naive model) that
treats the current conversion statuses of the clicks as their eventual ones. The naive model
ignores the delays in conversion and the maximizer of the likelihood of this model leads to
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an under-estimate of conversion probability. However, we can adjust this estimator for its
bias by incorporating information from the delay times. We also propose an algorithm to
compute the standard error (SE) of our bias-adjusted estimator efficiently. We show how our
methods and results can be applied to a real data set. We also conduct a simulation study
where we show that our adjusted estimator (which we call the D-adjusted estimator) has
relatively low bias and much lower computational time than the MLE, and has an accurate
SE.

1.5.3 Overview of Chapter 4

Chapter 4 is entitled “Conversion probability estimation in display advertising: Incorporat-
ing information from multiple visits to the same ad”, by Safari A., Altman R. M., and has
been submitted to the Journal of Computational and Graphical Statistics.

This paper is an extension of the paper described in Chapter 3. In particular, we consider
the case where users may visit an ad multiple times after their click prior to making a
purchase or taking some other pre-defined action. Our goal in this paper is to incorporate
both conversion delay time and users’ previous visits to estimate the conversion probability
more accurately. As in Chapter 3, we build our estimator based on a naive logistic regression
model that treats the current conversion statuses of the clicks as their eventual ones, and
then adjust its bias. In this paper, however, we not only adjust the estimator based on the
delay time distribution, but also based on the distribution of the number of visits. Similar to
Chapter 3, our new bias-adjusted estimator (DV-adjusted) has much lower computational
time relative to the MLE of the true model. With a simulation study, we show that although
the DV-adjusted estimator is slightly more computationally expensive than the D-adjusted
estimator, it’s more accurate with almost zero bias at the end of the observation period in
our simulation study, whereas the D-adjusted estimator remains biased for longer.
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Chapter 2

Parameter-Driven Models for Time
Series of Count Data

The chapter derives, with few modifications, from:
Safari, A., Altman, R. M., Leroux, B., 2018. Parameter-Driven Models for Time Series of
Count Data, In preparation.

2.1 Abstract

This paper considers a general class of parameter-driven models for time series of counts.
The maximum likelihood estimator (MLE) of such models can be challenging to obtain.
Therefore, we instead propose the maximizers of two simple intermediate models: the 2-
state Poisson mixture model and the 2-state Poisson hidden Markov model (HMM). We
evaluate the accuracy and efficiency of these estimators relative to the maximizer of the
Poisson generalized linear model (GLM) considered in the literature. Moreover, we derive
standard errors (SEs) for all three estimators and propose a simple algorithm to compute the
SEs efficiently. Our results, based on a comprehensive simulation study, show that except in
extreme cases, the MLE of the GLM is an efficient, consistent, and robust estimator with a
well-behaved estimated standard error. The MLE of the HMM is appropriate only when the
true model is extreme relative to the GLM. Our results are applied to problems concerning
polio incidence and daily numbers of epileptic seizures.

2.2 Introduction

Cox [1981] defines two classes of models for time series data: parameter-driven models
(PDMs) and observation-driven models (ODMs). In an ODM, autocorrelation is introduced
through the dependence of the conditional expectation of the current observation on the
past observations (e.g. an AR(1)), whereas a PDM uses a set of latent variables to explain
the autocorrelation. A key feature of PDMs is that the observed data are assumed to be
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independent given the values of the latent variables. The class of PDMs includes moving av-
erage models, hidden Markov models (HMMs), generalized linear mixed models (GLMMs),
and hierarchical generalized linear models (see Lee and Nelder 1996). ODMs and PDMs
have different properties and usages (see Davis and Yam 2004 for more details). For exam-
ple, in the case of ODMs, evaluating the likelihood and estimating the model parameters are
typically straightforward, and, for this reason, ODMs are often used for forecasting. On the
other hand, the interpretation of PDMs is usually simpler than that of ODMs. Specifically,
on the marginal level, properties of PDMs are often easier to establish than those of ODMs,
especially when the data are non-normally distributed. PDMs thus provide a convenient
way of modeling overdispersion and autocorrelation. However, PDMs tend to have more
complicated likelihoods, and hence estimation of these models is challenging.

In this paper, we focus solely on the study of PDMs for time series of count data. In
particular, we use the setting of Zeger [1988] where, conditional on latent variables, the
observations are Poisson distributed with log mean specified by a linear function of pre-
dictors and latent variables. Zeger [1988] introduces a consistent quasi-maximum likelihood
estimator (QMLE) of the regression coefficients in such models. Others have used this ap-
proach in different areas of application (e.g., Campbell 1994, Brannas and Johansson 1994,
Albert et al. 1994, and McShane et al. 1997). Although computationally more feasible than
maximum likelihood estimation, the quasi-maximum likelihood estimation is still a complex
approach, and is not available in standard statistical software packages. Davis, Dunsmuir
and Wang 2000 (henceforth called DDW) suggest estimating the regression coefficients using
the maximizer of the likelihood of a Poisson generalized linear model (GLM). They prove
under general conditions that, although this estimator is based on a misspecified model, it
is consistent for the true regression coefficients. They also derive its asymptotic variance-
covariance matrix. The GLM-based estimator has advantages like simplicity and robustness.
However, to the best of our knowledge, its efficiency has not been studied. Similarly, the
consistency of estimators of other PDMs is typically the only property studied (e.g., Davis
and Wu 2009 and Neuhaus et al. 2013).

Our goal in the present paper is to investigate the efficiency of the GLM estimator rela-
tive to that of two other simple estimators. In particular, we introduce two approximating
models that can be considered intermediate to the simple GLM and the complex true PDM:
Poisson finite mixture models (FMMs) and Poisson HMMs. We then evaluate the bias and
standard errors (SEs) of our three estimators of the regression coefficients. These estimators
are all within the class of PDMs that we consider, but unlike the maximum likelihood es-
timators (MLEs) of some models, are easy to compute. In addition, we derive an estimator
of the asymptotic variance-covariance matrices for these estimators and propose a simple
algorithm to compute these matrices efficiently.

The remainder of the paper is organized as follows. In §2.3, we specify the Poisson PDM
of Zeger [1988] and present some special cases of his model. We emphasize the Poisson FMM
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and HMM, the two new intermediate models that we consider as a basis for estimating the
regression parameters of this model. In §2.4, we derive estimators of the asymptotic SEs
of the GLM, FMM, and HMM estimators. In §2.5, we illustrate the performance of the
estimators and their standard errors for certain choices of the true model. In §2.6, we present
results on the relative performances of the estimators for a broad class of true models and
provide some general rules for efficient estimation of regression coefficients in the context of
time series of counts. In §2.7, we present applications of our results to problems concerning
polio incidence (in Zeger 1988 and DDW) and daily numbers of epileptic seizures. We
conclude with a discussion in §2.8.

2.3 Model specification and estimation

Let Y = (Y1, . . . , Yn) be the observed counts, and let α = (α1, . . . , αn) be the latent variables
(discrete or continuous). We assume, as for all PDMs, that {Yt} are independent given {αt}.
Following Zeger [1988], we model Yt | αt as having a Poisson distribution with

log (E [Yt | αt]) = X ′tβ + αt (2.1)

where Xt is a d-dimensional vector of covariates at time t and {αt} is a general stationary
process with E [exp (αt)] = 1, V ar (exp(αt)) = σ2

α, Cov (exp(αt), exp(αs)) = γt−s, and
Corr(exp(αt), exp(αs)) = ρt−s, where t ≥ s. We assume that the first entry of Xt is a 1,
i.e., that the first entry of β is the intercept. Then the likelihood of the true model can be
written as

L =
∫
α

n∏
t=1

P (yt | αt)dG(α1, . . . , αn) (2.2)

where P is the Poisson probability mass function and G is the joint cumulative distribution
function of the latent variables. Depending the distribution of the latent variables (G),
(2.2) can be a complex function with no closed form, and obtaining its maximizer can be
challenging.

One way to understand the implications of the assumed (conditional) model on the
resulting distribution for the observed data is to examine the marginal moments. In Zeger’s
model, the effect of the covariates on the marginal moments and the mean-variance and
mean-covariance relationships are easy to determine. In particular, the first and second
marginal moments are:

µt ≡ E (Yt) = exp
(
X ′tβ

)
(2.3)

V ar (Yt) = µt + µ2
tσ

2
α (2.4)

Cov(Ys, Yt) = µsµtγt−s, t ≥ s (2.5)

Corr(Ys, Yt) = µsµtγt−s√
(µs + µ2

sσ
2
α)
(
µt + µ2

tσ
2
α

) , t ≥ s (2.6)
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Equation (2.4) shows that µ2
tσ

2
α is the extra-Poisson variation and is a function of σ2

α. In
addition, from (2.5), Davis et al. [2000] show that | Corr(Ys, Yt) |≤| ρt−s |, regardless of the
distribution of the latent process. Consequently, detecting and analyzing the latent process
based on the observed data can be challenging.

Zeger’s model is quite general, and, for this reason, includes many common models
for time series of counts. In §2.3.1, we discuss some estimators of the parameters of these
models that have been studied in the literature. In §2.3.2 and §2.3.3, we present two new
estimators of the regression parameters in (2.1), the FMM and HMM estimators, using the
idea of intermediate models. Like the GLM estimator, these new estimators are based on
(usually) misspecified but simple models.

2.3.1 Existing estimators

In this section, we describe two estimators of the regression parameters in (2.1) proposed
in the literature: DDW’s estimator (which we call the GLM estimator) and the MLE.

We first describe the GLM estimator in our notation. If we set αt ≡ 0 in (2.1), then
{Yt} are treated as independent and as following a Poisson GLM. The Poisson GLM cor-
rectly specifies the marginal mean of (2.1), but misspecifies its conditional mean. The GLM
estimator is the maximizer of the associated likelihood function. DDW suggest using this
(d-dimensional) estimator to estimate the regression coefficients in Zeger’s model and show
that, for any stationary non-negative or mixing process αt, the estimator is consistent for the
regression parameters. However, the efficiency of this estimator is questionable since it may
not use all of the information in the autocorrelation and overdispersion in the observations.

Another existing estimator of the parameters in (2.1) is the MLE based on the true
model (at least when the true model is a GLM, FMM, a HMM with few hidden states,
or a GLMM). Depending on the complexity of the true model, obtaining the MLE can be
challenging. For instance, Nelson and Leroux [2008] study the MLE when the true model
is a Poisson GLMM. To describe this estimator in our notation, let {αt} be an unobserved
AR(1) process and set αt = c+ φαt−1 + δt, t = 1, . . . , n, where δ ∼ N(0, σ2). To satisfy the
constraint E(exp(αt)) = 1, set c = − σ2

2(1+φ) . Consequently, αt ∼ N(− σ2

2(1−φ2) ,
σ2

1−φ2 ) (DDW).
Then, the process {Yt} is treated as following a Poisson GLMM.We call the maximizer of the
associated likelihood function the GLMM estimator. The GLMM estimator can incorporate
information in the overdispersion and autocorrelation. However, the associated likelihood
function does not have a simple algebraic form, and numerical methods typically do not
perform well for such high dimensional integrals. Nelson and Leroux [2008] use Markov
chain Monte Carlo methods to approximate the likelihood and obtain the maximizer. Their
simulation studies suggest that, when the true model is a Poisson GLMM, the GLMM
estimator (i.e., the MLE) is consistent for the regression parameters. However, computations
are expensive, particularly for large sample sizes. Thus, we do not consider their context
further in this paper.
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In practice, the true underlying model is almost always unknown. Even when the true
model is specified, obtaining the MLE is usually difficult. Thus, in the following two sub-
sections, we propose two new simple estimators based on models that are intermediate to
the GLM and true model, the FMM and HMM. The FMM and HMM capture overdisper-
sion and/or autocorrelation that the GLM does not; our goal in this paper is to explore
the properties of the maximizers of the likelihoods associated with these models relative to
those of the GLM estimator.

2.3.2 Poisson FMM estimator

Since Poisson GLMs can’t capture overdispersion in the observations, we suggest basing
estimation on the Poisson FMM, a model that is within the class (2.1), but more flexible
than the GLM. In particular, we consider the model where the latent variables {αt} are
independent and multinomial distributed with k possible outcomes (αt ∈ {S1, . . . , Sk}), and
corresponding probabilities pi = P (αt = Si), i = 1, . . . , k. The process {Yt} is thus treated
as following a Poisson mixture model. The likelihood associated with this model can be
expressed as

L =
n∏
t=1

k∑
i=1

P (Yt = yt | αt = Si)pi, (2.7)

where P (Yt = yt | αt = Si) is the Poisson probability mass function with corresponding
mean parameter µt exp(Si). We define the FMM estimator as the maximizer of (2.7). For
the purpose of simplicity, we restrict our study to the case where k = 2 (henceforth called
FMM2). Optimization of the likelihood function is easy in this case and the estimator is of
dimension just d+ 2 for k = 2.

Like the GLM estimator, the FMM2 estimator may not use all of the information in
the autocorrelation in the observations. However, it can capture the information in the
overdispersion. Therefore, we expect it to be more efficient than the GLM estimator when
overdispersion is present.

2.3.3 Poisson HMM estimator

The second model we suggest for estimation purposes is the Poisson HMM, which allows
for both autocorrelation and overdispersion. A stationary Poisson HMM can be defined by
allowing αt in (2.1) to follow a Markov chain (MC) with k hidden states (αt ∈ {S1, . . . , Sk}),
transition probabilities Pij , i, j = 1, . . . , k, and limiting probabilities πSj , j = 1, . . . , k. As
an aside, the Poisson FMM is a special case of the Poisson HMM where the rows of the
transition probability matrix, {Pi,j}, are identical.
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The likelihood function of the Poisson HMM can be expressed as

L =
k∑

i1=1
πSi1

P (Y1 = y1 | α1 = Si1)
k∑

i2=1
Pi1,i2P (Y2 = y2 | α2 = Si2) . . . (2.8)

k∑
in=1

Pin−1,inP (Yn = yn | αn = Sin)

This expression is equivalent to a product of matrices. We define the HMM estimator as
the maximizer of (2.8). For a small number of hidden states, k, the HMM estimator is
easy to compute using numerical methods. As in the case of the FMM estimator, we thus
restrict attention to the case where k = 2 (henceforth called HMM2). We expect the HMM2
estimator, which can use the information in the overdispersion and autocorrelation in the
data but has dimension of just d + 3, to be more efficient than the GLM and FMM2
estimators when overdispersion and autocorrelation are present.

2.4 SE of the estimators

In this section, we develop approximate SEs for our two new estimators (the HMM2 and
FMM2 estimators) and the previously developed GLM estimator (DDW). In addition, we
propose a simple and computationally efficient algorithm to compute these SEs. White
[1984] develops asymptotic covariance matrices for estimators based on dynamic models
(which include Poisson HMMs, FMMs and GLMs) even when the models are misspecified.
Let M be the (possibly misspecified) model that we fit to the data, θ be the vector of
parameters in this model, θ̂n be the MLE of θ based on the assumed model M , and gt be
the conditional distribution of Yt given Y1, Y2, . . . , Yt−1 under the model M . White [1984]
shows that asymptotically

√
nI
∗−1/2
n H∗n(θ̂n − θ∗) ∼ N(0, 1), where

H∗n = E

[
n−1

n∑
t=1

∂2 log gt (Yt|Y1, . . . , Yt−1, X, θ
∗
n)

∂θ∗n
2

]
and

I∗n = V ar

[
n−1/2

n∑
t=1

∂ log gt (Yt|Y1, . . . , Yt−1, X, θ
∗
n)

∂θ∗n

]
. (2.9)
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Under mild conditions, White [1984] shows that Ĥn and În are consistent estimators of Hn

and In, where

Ĥn = n−1
n∑
t=1

∂2 log gt (Yt|Y1, . . . , Yt−1, X, θn)
∂θn

∣∣∣∣∣
θn=θ̂n

and

În = n−1
n∑
t=1

∂ log gt (Yt|Y1, . . . , Yt−1, X, θn)
∂θn

∂ log gt (Yt|Y1, . . . , Yt−1, X, θn)t

∂θn

+ n−1 ∑̀
τ=1

n∑
t=τ+1

{
∂ log gt (Yt|Y1, . . . , Yt−1, X, θn)

∂θn

∂ log gt (Yt−τ |Y1, . . . , Yt−τ−1, X, θn)t

∂θn

+ ∂ log gt (Yt|Y1, . . . , Yt−1, X, θn)t

∂θn

∂ log gt (Yt−τ |Y1, . . . , Yt−τ−1, X, θn)
∂θn

}∣∣∣∣∣
θn=θ̂n

. (2.10)

White [1984] suggests using ` < n1/3.
To approximate the SE of the HMM2 estimator, we use the algorithm of Lystig and

Hughes [2002] to compute partial derivatives of the conditional pmf, gt, in Ĥn and În

efficiently (gt is equivalent to Λt = P (Yt|Y1, . . . , Yt−1) in the notation of Lystig and Hughes
[2002]).

For the GLM estimator, DDW propose a SE that depends on well-behaved estimates
of the latent process’ moments, which are not easy to obtain. As an alternative, since the
GLM is a specific case of the HMM, we can use (2.10) to obtain a SE of the GLM estimator
that is independent of the latent process’ parameters. Evaluating (2.10) in the GLM case
is straightforward since Ĥn is the usual estimated covariance matrix of the GLM estimator
when the GLM is the true model, and the elements of În are products of the first derivatives
of the Poisson GLM log-likelihood function.

Equation 2.10 can in fact be used to obtain SEs for all of our estimators (and for the
FMM and HMM estimators based on any number of hidden states), since they are all special
cases of the HMM.

2.5 Performance of the estimators and their standard errors
for special cases of the true model

This section details a simulation study of the three estimators described in §2.3: the GLM,
FMM2, and HMM2 estimators. We consider certain true models in the class (2.1) to il-
lustrate our key points, and report our general results concerning models in this class in
§2.6.

The true models considered in this secion include GLMMs and HMMs, with parameters
chosen to achieve different degrees of variation and autocorrelation in the observations (see
(2.4) and (2.6)). Specifically, we consider values of σ2

α that lead to a variety of overdispersion
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Figure 2.1: Two distributions with low (a) and high (b) separation probability (shaded area).

(OD) factors, defined as

ODt ≡
V ar(Yt)
E(Yt)

(2.11)

= 1 + σ2
αµt

Likewise, we choose a variety of values for Corr(Yt, Ys) (emphasizing in particular
Corr(Yt, Yt−1), which we call AC1) in order to investigate the impact of the autocorrelation
on the performance of our estimators.

In addition, we consider a third property of the data, which we call “separation proba-
bility” (SP). Specifically, in the case where the latent variable takes on k different values, we
have k different conditional distributions for the observations. For each t, we define SPSj ,Sj+1

as one minus the overlap probability of each “adjacent” pair of conditional distributions,
i.e., if S1 < · · · < Sk, we have the following k − 1 values of SP :

SPSj ,Sj+1 = 1−
∞∑
i=0

min{P (Yt = i | αt = Sj) , P (Yt = i | αt = Sj+1)} (2.12)

j = 1, . . . , k − 1. SP represents the closeness of the conditional Poisson distributions. Fig-
ure 2.1 shows two examples with low (a) and high (b) SP. In the case where the latent
variable is continuous (e.g., the Poisson GLMM described in §2.3), we define SP = 0.

In summary, we consider three data properties (OD, AC1 and SP) as factors that may
affect the efficiency of our estimators. In our simulation studies, we choose the parameters
of the true models to achieve different levels of these factors, as described in table 2.1. AC1
and SP lie between 0 and 1 (we consider only positive values for AC1 since we are interested
only in the effect of its magnitude). OD, on the other hand, can be any value greater than
one. We choose the levels of OD and AC1 based on real data sets (the ones used in this
paper and those provided by Weib 2009, Zhu 2012, and Liboschik et al. 2017). We define
low, medium, and high levels of SP relative to the boundaries of the [0, 1] interval. Note that
OD, AC1, and SP cannot always be manipulated separately. For instance, in the Poisson
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HMM with k = 2 and a fixed transition probability matrix, all the three data properties
are increasing functions of the first hidden state, S1.

We focus on two main cases. In study 1, the true models are chosen such that the MLEs
are easy to compute. We then compare the sample bias (i.e., the average value of βi − β̂i
across replicates for each i) and sample variances (SVs) of our estimates to those of the
MLEs of the true models. In this way, we get a sense of how much information we lose
by fitting a misspecified model (under the assumption that the MLE is the most efficient
estimator). In study 2, the MLE of the true models are too expensive to compute. Therefore,
we simply compare the bias and SVs of our estimators (which are all based on misspecified
models).

In our studies, we consider covariates of different forms, including binary, normally
distributed, and a trend. We investigate two sample sizes, n = 100 and n = 1000. We
fix β0 = 2 and β1 = 0.5. We tried other values for the regression coefficients, but they
seemed to have limited effect on the bias and efficiency results, as long as the levels of the
three factors remain approximately constant. Therefore, for simplicity, we fix these values
and change only the values of the other parameters to achieve different levels of the three
factors of interest. We generate 4000 replicates for each run.

2.5.1 Study 1

We first consider the case where the true model is a stationary Poisson HMM with K = 2
hidden states. The 2-state HMM normally has 3 free parameters (say S1, p11, and p22).
However in this study, for simplicity, we fix the elements of the transition probability matrix
at p11 = p22 = 0.9 and vary only the value of S1. We use a binary covariate.

The simulation results show that all the estimators are approximately unbiased even for
n = 100; the magnitude of the estimated bias was always less than or equal to 0.005, i.e., very
small relative to the true values of β0 and β1 (see online material, table SM 2). Figure 2.2
shows the ratios of the SVs of the HMM2 estimator (the MLE of the true model, in this case)
to those of the GLM and FMM2 estimators for different sample sizes and different levels
of the factors. The GLM and FMM2 estimators perform well at the low level of the factors
where the true model is close to a GLM. Otherwise, the HMM2 estimator outperforms the
GLM and FMM2 estimators. The efficiency of the GLM and FMM2 estimators relative to
the HMM2 estimator is lower at the high level of the factors, where relative efficiency can
be as low as 55%. However, based on the real data sets we have examined, we expect the
levels of the factors in practice to be less than our high level. The trends in SV ratios for
different sample sizes are similar.

2.5.2 Study 2

In this study, we investigate the performance of the GLM, FMM2, and HMM2 estimators
when the true model is complex. In particular, we consider the case where the data gen-
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Table 2.1: Factor levels in simulation study

Low Medium High

OD* 1.5 3 5
AC1* 0.15 0.25 0.5
SP*+ 0.25 0.45 0.7

* Averaged over the covariate values
+ This factor is 0 for GLMMs

n
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 1
0
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n
 =

 1
0
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Low Medium High
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Figure 2.2: Ratio of the SVs of the HMM estimator (the MLE) of the slope to that of the
GLM and FMM estimators when a 2-state Poisson HMM is the true model. The solid black
line indicates where the efficiency of the estimators would be equal to that of the MLE of
the true model. All three factors are simultaneously set to the levels indicated on the x-axis.
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Figure 2.3: Ratio of the SVs of the GLM estimator to those of the HMM and FMM estimators
when the 4-state Poisson HMM is the true model. The solid black line indicates where
the efficiency of the estimators would be equal to that of the GLM. All three factors are
simultaneously set to the levels indicated on the x-axis.

erating mechanism is a Poisson HMM with K = 3 or K = 4, or a Poisson GLMM. The
3-state and 4-state HMMs have d+ 8 and d+ 15 free parameters, respectively, and the like-
lihood associated with the GLMM consists of an n-dimensional integral. For these reasons,
computing the MLEs of the parameters of these models and their SEs is computationally
challenging.

As in study 1, we vary the Sj ’s and fix the elements of the transition probability matrices
at pii = 0.9 and pij = 0.1/(k−1), where i 6= j. We use different forms of covariates, including
binary, seasonal, and trend, in this study. We choose the values of the parameters in the
true models to achieve different levels of the factors described in Table 2.1 (except that SP
is fixed at 0 when the Poisson GLMM is the true model).

Our results show that all the estimators are approximately unbiased; the magnitude of
the estimated bias was always less than or equal to 0.005 (see online materials, tables SM
3-6 and 8-12). When the Poisson HMM (with 3 or more hidden states) is the true model
but the number of hidden states is assumed to be 2, again the GLM and FMM2 estimators
perform well at the low level of the factors. The HMM2 estimator outperforms all the other
estimators (see fig. 2.3) and the FMM2 estimator has the second lowest SV at higher levels
of the factors. The results are similar when the true model is a 3-state Poisson HMM (see
online supplementary material, table SM 3).

In contrast, when the true model is a Poisson GLMM (especially with a trend covariate),
the efficiency of the GLM estimator is at least as good as those of the HMM2 and FMM2
estimators (fig. 2.4).
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Figure 2.4: Ratio of the SVs of the GLM estimator of the slope to those of the HMM and
FMM estimators when the Poisson GLMM is the true model. The solid black line indicates
where the efficiency of the estimators would be equal to that of the GLM. OD and AC1 are
simultaneously set to the levels indicated on the x-axis. SP is treated as 0.

We also looked at the performance of the 3-state Poisson HMM and FMM estimators
in our simulation study. However, because these estimators were poorly behaved (even for
n = 1000), we have omitted the details of these findings.

2.5.3 Sample SD and SE of the estimators

In this section, we use a simulation study to evaluate the performance of the SEs that we
developed in §2.4. We use the same true models considered in studies 1 and 2. We assess the
SEs of only the GLM and HMM2 estimators, i.e., the most efficient estimators identified
in this context. We treat the sample SDs (SSDs) of the estimates (across replicates) as the
true SDs for the purpose of this section, and then compare the SSDs to the average SEs
of the estimators (computed as proposed in §2.4). We choose ` = 1 in (2.10) after having
experimented with different values.

Table 2.2 shows the SSD and the average SE of the GLM and HMM2 estimators of β1 for
the high level of the factors, n = 1000, and one covariate (binary or trend). The results are
similar for other more moderate levels of the factors and for n = 100 (see online material,
tables SM 21-22). In addition, we compare the average values of the DDW and White [1984]
SEs of the GLM estimator. Both SEs are quite accurate when we have one binary covariate
in true model, regardless of the latent process distribution. When the true model has a
trend, both underestimate the true SE, but our SE based on the method of White [1984]
always performs better than that of DDW, sometimes dramatically. (See online material for
other cases, tables SM 21-22, 25-26, and 28.)
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Table 2.2: Performance of the SEs of the estimators based on different (misspecified) models

HMM Estimator GLM Estimator
True model CovariateSample SDAsy SE (White)Sample SDAsy SE (DDW)Asy SE (White)

Poisson 2-state HMM Binary 0.012 0.012 0.025 0.025 0.026
Poisson 2-state HMM Trend 0.012 0.012 0.068 0.034 0.039
Poisson GLMM Binary 0.030 0.030 0.025 0.024 0.025
Poisson GLMM Trend 0.054 0.046 0.040 0.019 0.033

2.6 General results concerning the estimators and their stan-
dard errors

Our simulation studies in the previous section illustrate the effect of three factors (OD,
AC1 and SP) on the performance of the HMM2, FMM2 and GLM estimators and their
SEs for certain true models that have a single covariate. In this section, we report on the
performance these estimators more generally, i.e., for any choice of true model in class (2.1).
We study the effect of including multiple covariates as well as the effect of the level of OD,
AC1, and SP. With respect to the latter, of the 27 possible combinations of levels of these
factors, we study 22. (See online material for details of each setting, table SM 16.) Due
to constraints inherent to models in class (2.1), we are not able to simulate data for five
combinations, e.g. low OD and high AC1 and SP. We call each combination of factor levels
a run.

Table 2.3 shows a summary of the most efficient estimator (indicated by ∗) for each run
where the model had a single covariate. All the estimators are approximately unbiased. In
this table, we include only the most extreme runs where the GLM estimator is the most
efficient estimator (since models associated with the less extreme runs are even closer to
the GLM), and the least extreme runs where the HMM2 estimator is the most efficient
estimator (since models associated with more extreme runs are even closer to the HMM).
See online material (table SM 16) for results from other runs. In general, we recommend
the GLM estimator as a consistent, efficient and robust estimator. The HMM2 estimator
performs better only if the SP factor is at its high level, or the SP and AC1 factors are both
at at least their medium level. In other words, when the data arise from model (2.1) with a
latent variable that is either continuous or takes on closely spaced values, we recommend the
GLM estimator. The HMM2 estimator is appropriate only when the latent variable takes on
highly separated values. We never recommend the FMM2 estimator because, even when the
FMM is the true model, the FMM2 estimator is not substantially more efficient than the
GLM estimator in the cases we considered (see online materials, table SM 1). Interestingly,
the OD factor doesn’t have a big impact on the efficiency of the estimators.
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Table 2.3: Most efficient estimators for different levels of the factors when the model has
one covariate

Factor Estimator
Run OD AC1 SP GLM HMM2

1 High Medium Low *
2 Medium High Low *
3 High Low Medium *
4 Low Medium Medium *
5 Medium High Medium *
6 Medium Low High *

We also conducted studies where the true model had multiple covariates of different
forms. Our results show that the number and form of covariates affect the efficiency of
the estimators (see online materials, tables SM 17-28). For instance, estimating a trend
effect is challenging and the chance of underestimating its SE is high when using either the
HMM2 or GLM estimator, especially when other covariates are present in the model. In
general, the SE of the GLM estimator is better-behaved than that of the HMM2 estimator
when we have many covariates in the model. In particular, when the HMM2 estimator is
more efficient (e.g. runs 4-6 in table 2.3), the SE of the HMM2 estimator can be severely
negatively biased (as low as 50% of the SSD), whereas the SE of the GLM estimator is
approximately unbiased (except the estimator of the coefficient of the trend, where both
SEs are negatively biased). Therefore, we recommend the GLM estimator, regardless of the
levels of the factors in table 2.1.

In practice, when the response is a function of one covariate, the factors in table 2.1
can be estimated. Thus, the problem can be classified according to the runs in table 2.3
and the best estimator identified. However, when we have multiple covariates in the model,
estimating factors described in table 2.1 could be challenging. As an alternative, we can fit
a GLM to the observed counts, compute the standardized residuals, and then estimate the
factors for these residuals. In this way, we can classify models with any number of covariates
according to table2.3.

To summarize, we present some guidelines for choosing the “best” estimator (i.e., the
estimator with high relative efficiency and well-behaved SE) among the three estimators
in practice (where the true model is unknown). In particular, we recommend the HMM2
estimator only when the model has fewer than 4 covariates and SP is at its high level (or SP
and AC1 are both at their medium level). Otherwise, in light of its consistency, efficiency,
robustness, and well-behaved SE estimate, we recommend the GLM estimator.
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Figure 2.5: (a) Time series plot of polio data and (b) histogram of standardized residuals
obtained after fitting the Poisson GLM

2.7 Application

We now apply our findings from the previous sections to real applications. We first re-
analyze the polio data considered by Zeger [1988] and DDW. We then present a second
application concerning the daily numbers of epileptic seizures.

2.7.1 Polio Incidence Data

Zeger [1988] analyzed the monthly number of cases of polio reported by the U.S. Centers for
Disease Control from 1970 - 1983 (168 months) to assess whether the data provided evidence
of a long-term decrease in the rate of infection. His analysis was based on a QMLE of the
time trend. The data are displayed in fig. 2.5 (a). The polio counts display overdispersion
relative to the Poisson distribution (ÔD = 2.40). To compare our approach with that of
DDW, we consider the same set of covariates.

No separation among latent distribution is visible (see the Poisson GLM residuals in
fig. 2.5 (b)), estimated AC1 and OD of the Poisson GLM standardized residuals are low
(0.17) and medium (2.40), respectively, suggesting that the true data generating mechanism
is less extreme than that in run 1 in table 2.3. In addition, we have multiple covariates,
including a trend. Therefore, the GLM estimator is the best choice in terms of efficiency
and accuracy of its SE.

Table 2.4 shows the GLM estimates of the regression parameters along with their SEs
based on our approach and on those of DDW. The SEs of all the covariate coefficient
estimates (especially the trend) vary considerably across methods. To give more context for
these differences, DDW reported the SEs of the GLM estimates (Table 1 of DDW and third
column in table 2.4) based on some additional model assumptions (including the assumption
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Table 2.4: GLM estimates and SEs (polio dataset). The values in the third column are
DDW’s SEs, computed after making additional assumptions about the model for the latent
process. The values in the fourth column are also DDW’s SEs, but computed without these
assumptions. The values in the fifth column are our SEs, based on the approach of White
[1984].

Covariate Est Asy SE (DDW - extra assumptions) Asy SE (DDW) Asy SE (White)

Intercept 0.207 0.205 0.040 0.112
Trend ×10−3 -4.799 4.115 1.788 2.548
cos(2πt/12) -0.149 0.157 0.009 0.136
sin(2πt/12) -0.532 0.168 0.082 0.191
cos(4πt/12) 0.169 0.122 0.035 0.149
sin(4πt/12) -0.432 0.125 0.046 0.149

that the latent process follows an AR(1) model; see §4 of Zeger 1988). They didn’t offer
a way to check these assumptions and we can’t verify them easily. We therefore focus on
SEs computed without making further assumptions. Specifically, we compute DDW’s SEs
of the GLM estimates using method of moment estimates of the latent process covariances
(see DDW and Zeger 1988). These values (fourth column of table 2.4) differ substantially
from the model-based values in the third column. We recommend using our SE based on the
approach of White [1984] (fifth column of table 2.4) because it performs better in general
(according to our simulation study). Importantly, the trend based on our estimated SE is
not significant (at α = 0.05), whereas it is significant based on that of DDW. This difference
in conclusions is notable; given the poor performance of DDW’s SE, particularly in the case
of a trend, presumably the conclusion based on our SE (non-significance) is the more reliable
of the two.

2.7.2 Daily number of epileptic seizures

The second application that we consider is a series of counts of myoclonic seizures suffered
by one patient on 204 consecutive days. In the neurology literature, Poisson HMMs appear
to be common for the analysis of seizure counts (see e.g. Hopkins et al. 1985 or Franke
and Seligmann 1993). In particular, Albert [1991] and Le et al. [1992] fit a Poisson 2-state
HMM to these counts. Since other predictor variables for this patient are not available, we
consider only a trend effect in the model.

The data are illustrated in fig. 2.6 (a). We can see medium estimated AC1 and high
estimated OD in the GLM residuals. In addition, the histogram of the Poisson GLM stan-
dardized residuals suggests at least two components (i.e., the true model might be a Poisson
HMM), but with low SP (fig. 2.6 (b)). Since the properties of the residuals are similar to
those of run 1 in table 2.3, we recommend the GLM estimator. Table 2.5 shows the esti-
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Figure 2.6: (a) Time series plot of epileptic seizure counts and (b) histogram of standardized
residuals obtained after fitting the Poisson GLM

Table 2.5: GLM and HMM estimates and SEs (seizure dataset).

GLM Estimate HMM Estimate
Covariate Est Asy SE (DDW) Asy SE (White) Est Asy SE (White)

Intercept 0.179 0.481 0.42 -0.170 0.283
Day -0.006 0.363 0.172 -0.933 0.820

mated coefficients and their SEs. As expected, the GLM estimator does have smaller SEs
than does the HMM2 estimator.

These results are consistent with our findings that the HMM2 estimator is more efficient
only when the true model is an “extreme” HMM.

2.8 Discussion

In this paper, we considered a general class of models for time series of counts (2.1). We
conducted a comprehensive study of the accuracy and efficiency of three estimators, the
GLM, FMM2, and HMM2 estimators, and the accuracy of their SEs.

Our results showed that except in extreme cases, the GLM estimator is the most efficient.
In addition, the GLM estimator is consistent and robust, has a well-behaved estimated
SE, and is easy to compute using standard software (although computing its SE requires
specialized code). The GLM estimator has particular advantages over the MLE in the usual
case where the distribution of the latent variable is unknown (and may be complex) since
specification of this distribution is unnecessary for the purposes of computing both the
estimate and its SE.
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We considered other estimators including the 3-state FMM and HMM estimators, nega-
tive binomial (Davis and Wu 2009), and Zeger’s QMLE, as well, but they were less efficient
than the HMM2 estimator, or poorly behaved, or their SEs were poorly behaved (see §2.5).

Initially, we thought of the HMM with x number of hidden states (HMMx) as an ap-
proximation to the GLMM. Thus, we expected that the HMMx estimator (for x > 2) would
perform better than the GLM or HMM2 estimator when the true model was a GLMM,
HMM3, HMM4, etc. But that was not the case, at least for the sample sizes we considered.
Interesting future work could include the exploration of complex true models where the
HMMx estimator does perform well.

We proposed three main factors (OD, AC1 and SP) associated with the true model that
could affect the performance of the estimators. We then considered a broad set of simulation
runs (including extreme cases) by changing the levels of our factors. Surprisingly, OD, which
is an obvious violation of the assumption of a Poisson GLM, had limited effect on the relative
efficiency of the estimators – even the Poisson GLM estimator. In other words, the extra
variability impacts the variance of all estimators, but seems to inflate all variances similarly.

In addition, we developed SEs for our estimators. To the best of our knowledge, our
SEs for the Poisson HMM and FMM estimators are unique. Our SE for the Poisson GLM
estimator is easier to compute and more accurate than the existing SEs. Moreover, we
showed in §2.7 that we might obtain different (possibly wrong) conclusions by using less
accurate SEs.

We focused on the efficiency of the covariate coefficient estimators in this paper. However,
in our simulation studies, we also considered the intercept estimators. Our results show
that all our intercept estimators are approximately unbiased. Both DDW’s and our SEs
underestimate the true SD of both the GLM and HMM estimators. But, in general, our
SE is relatively closer to the SSD of the GLM intercept estimates. Developing a SE that is
approximately unbiased for all the coefficient estimators (including the intercept), is a topic
for future work.
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Chapter 3

Display advertising: Estimating
conversion probability efficiently

The chapter derives, with few modifications, from:
Safari, A., Altman, R. M., Loughin, T. M., 2018. Display advertising: Estimating conversion
probability efficiently, In preparation.

3.1 Abstract

The goal of online display advertising is to entice users to “convert” (i.e., take a pre-defined
action such as making a purchase) after clicking on the ad. An important measure of the
value of an ad is the probability of conversion. The focus of this paper is the development of
a computationally efficient, accurate, and precise estimator of conversion probability. The
challenges associated with this estimation problem are the delays in observing conversions
and the size of the data set (both number of observations and number of predictors). Two
models have previously been considered as a basis for estimation: A logistic regression model
and a joint model for observed conversion statuses and delay times. Fitting the former
is simple, but ignoring the delays in conversion leads to an under-estimate of conversion
probability. On the other hand, the latter is less biased but computationally expensive to
fit. Our proposed estimator is a compromise between these two estimators. We apply our
results to a data set from Criteo, a commerce marketing company that personalizes online
display advertisements for users.

3.2 Introduction

Display advertising is a relatively new type of online advertisement where advertisers pay
publishers to present their ads (also known as impressions) on different webpages. Depending
on the purpose of the advertisement, different payment options can be used. These options
include cost per impression, where the advertisers pay the publishers to display their ads
(whether the user clicks the ad or not), cost per click, where the advertisers pays for an
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impression only if a user clicks on it, and cost per action (CPA), where advertisers pay only
if the user takes a predefined action (conversion) after clicking the ad, such as purchasing
a product or service Muthukrishnan [2009], Chapelle [2014].

For profitability, the CPA option requires that publishers make a “good” match between
advertisers and customers. In particular, they should display ads with high expected earn-
ings per impression, i.e., ads where the customer’s probability of clicking and the subsequent
probability of the click’s converting are high. McAfee [2011]. The entire process of ad se-
lection needs to be completed in the time between when a user opens a page and when the
page is fully rendered. Thus, the publisher has a very short time in which to choose which
ad(s) to display to the user. Great progress has been made predicting whether a user will
click on an impression in the context of search advertising (see for example Hillard et al.
[2010], or McMahan et al. [2013]) and display advertising (see for example Chapelle et al.
[2014], or Agarwal et al. [2010]). However, little is known about estimating the probabil-
ity of conversion. For instance, Rosales et al. [2012] perform an experimental analysis (on
a private Yahoo data set) to show the advantage of conversion probability over the click
probability as a measure of profitability in display advertising, and point out the lack of
inference about this new measurement in the literature.

The main issue in conversion probability estimation is the delay between the click and
the eventual conversion status of the click (called the conversion delay), which can vary
from a few milliseconds to months. In other words, eventual conversion status (converted or
unconverted) is unknown for clicks where the conversion delay is censored. Chapelle [2014]
proposed using the maximum likelihood estimator (MLE) of the conversion probability
based on a delay feedback model (DFM), a mixture model for observed conversion status
that depends on the delay distribution. Although his estimator is accurate when the model is
correctly specified, his approach is not computationally efficient. Efficiency is critical in this
Big Data setting where publishers need to re-estimate conversion probability rapidly and
frequently as time progresses and more data accrue (i.e., real-time updating). In addition,
the performance of his estimator is unknown when the delay distribution is not exponential.

Our goal in this paper is to develop a method for estimating probability of conversion
with high accuracy and in a computationally efficient manner. In particular, we introduce
a new estimator based on the logistic regression model that (wrongly) treats all conversion
statuses as known, and then reduce the bias of this estimator through a novel application
of the Kullback-Leibler distance. We evaluate the accuracy and computational efficiency of
this new estimator compared to those of Chapelle’s estimator. In addition, we study the
performance of these estimators when the delay distribution is misspecified.

In §3.3 we define some notation and present the DFM of Chapelle [2014]. In §3.4, we
introduce our estimator along with an algorithm to evaluate it efficiently for a given data set.
Section §3.5 presents an application of our results to a data set released by Criteo Chapelle
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[2014], and §3.6 describes a simulation study that illustrates the accuracy, precision, and
computational efficiency of the estimators.

3.3 Model specification

In this section, we describe the DFM developed by Chapelle [2014]. The assumptions of
the DFM (and of our methods that follow) are: i. the true conversion probability is fixed
over time, ii. the predictors don’t depend on time, iii. a converted click can never become
unconverted, iv. an unconverted click with delay time less than a fixed time period (the
conversion window) can convert, v. an unconverted click with delay time greater than the
conversion window cannot convert (in other words, an unconverted click can convert any
time within the conversion window, W ), and vi. W is long enough that only a negligible
proportion of conversions occur outside this window.

Let the data collection start at time 0. Label clicks sequentially in time as 1, 2, 3, . . . . Let
ti,0 be the time of click i – treated as non-random for the purposes of this paper. Throughout,
we use bold letters to denote vectors. For instance, xi ≡ (xi,1, . . . , xi,k) is a 1 × k vector
of covariates associated with click i, e.g., attributes of the user and/or origin website. We
define xi,1 = 1 ∀i so as to include an intercept. Define Ci to be the eventual conversion
status indicator for click i, i.e. Ci = 1 if click i ever converts and Ci = 0 otherwise. Let
T ci be the time at conversion if Ci = 1; if Ci = 0, then fix T ci = ti,0 + W . Then the delay
time Di is defined as Di = T ci − ti,0 (so that Di = W if Ci = 0). Given xi and Ci = 1, let
hi(d) = h(d | xi, Ci = 1) and Hi(d) = H(d | xi, Ci = 1) be the conditional pdf and cdf,
respectively, of Di.

Now suppose that at a given moment t > 0 we wish to estimate the conversion proba-
bility of a click with covariates xi. Define ai(t) = min{t− ti,0,W} to be the age of click i.
Since we treat ti,0 as non-random, ai(t) is non-random as well.

For subsequent derivations, we consider a given fixed time t and suppress t in our
notation for convenience. At this time, say n clicks have accumulated. Let Yi be the current
conversion status indicator of click i = 1, . . . , n, i.e., Yi = 1 if click i converted prior to time
t and Yi = 0 otherwise. Note that Di is observed prior to t if Yi = 1, and is greater than or
equal to ai (right censored) if Yi = 0.

To the best of our knowledge, the DFM is the only model for conversion probability
in the literature that incorporates conversion delays, i.e., that is based on the bivariate
response for each click, (Yi, Di). In this model, Ci is assumed to follow a logistic regression
model with pi = P (Ci = 1|xi) = exp(β′cxi)

1+exp(β′cxi) . Given Ci = 1 and xi, delay times are assumed
to follow an exponential distribution with rate λi = exp(β′dxi). The log-likelihood function
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of the DFM is then

` (βc,βd|y,d) = −
∑
i:yi=1

{log [P (Ci = 1|xi)] + log(λi)− λidi}

−
∑
i:yi=0

log [1− P (Ci = 1|xi) + P (Ci = 1|xi) exp(−λiai)]

For later derivations in this paper, we will require a different form for `. Specifically, we
define Zi as

Zi(ai) ≡ Zi := min(Di, ai), (3.1)

so that 0 ≤ Zi ≤ ai. Note that Zi is a function of a single random variable, Di. We can
define an equivalence relationship between Yi and Zi as

Zi < ai ⇐⇒ Yi = 1 (3.2)

Zi = ai ⇐⇒ Yi = 0

Then, the likelihood function of the DFM can be rewritten in terms of the zi’s (realizations
of the Zi’s) as

Lg (βc|z) =
∏
i

(pih(zi))I(zi<ai) (1− piH(zi))I(zi≥ai) . (3.3)

(See Appendix 3.8.1 for the proof.)

3.4 Estimation

As discussed by Chapelle [2014], the likelihood function in (3.3) is non-convex with no
closed form for the MLE. Therefore, its optimization is very slow. For this reason, we
consider alternative estimators in this section.

3.4.1 Naive estimator

A simple (but misspecified model) for observed conversion status is the logistic regression
model where the current conversion statuses of the clicks are treated as their eventual con-
version statuses. In other words, conversion delay time (and the possibility that unconverted
clicks with age less than W could convert) are ignored. Chapelle [2014] calls this model the
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“naive model”. The likelihood function of this model is

Lf (α|z) = f (z|α) (3.4)

=
n∏
i=1

f (zi|α)

=
n∏
i=1

[
θ
I(zi<ai)
i (1− θi)I(zi≥ai)

]
,

where θi = exp(α′xi)
1+exp(α′xi) is the conversion probability of the ith click and α is a vector of

regression coefficients. The likelihood function of the naive model is convex and computa-
tionally efficient to optimize. However, the MLE of θi is biased low for the true probability
of conversion, since some unconverted clicks could convert later.

3.4.2 Bias - adjusted estimator

In this section, we introduce a new estimator to adjust for the bias in the naive estimator.
We use the Kullback-Leibler information criterion (KLIC) approach White [1982]. Suppose
that g(z|βc) is the true data-generating distribution, but that f(z|α) is the assumed model.
Then the KLIC can be computed as follows:

KLIC (g|f ; α,βc) = Eg

(
ln
[
g(z|βc)
f(z|α)

])
= Eg (ln [g(z|βc)])− Eg (ln [f(z|α)])

= Eg (ln [g(z|βc)])− Eg

(
ln
[∏
i

f(zi|α)
])

= Eg (ln [g(z|βc)])−
∑
i

Eg (ln [f(zi|α)])

= Eg (ln [g(z|βc)])

−
∑
i

[pi ln (θi)Hi(ai) + ln (1− θi) (1−Hi (ai) pi)]

White [1982] shows that the MLE of the parameters in the misspecified model is con-
sistent for the minimizer of the KLIC. We use his results to adjust the naive estimator and
remove its asymptotic bias relative to the true model. In other words, we assume that the
true model is (3.3) and treat the parameters of the true model, βc, as known. Then we
minimize the KLIC with respect to the parameters of the misspecified model, α, resulting
in estimating equations that depend on both βc and the unknown KLIC minimizer, α̃. We
then solve for βc.
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The details are as follows. First, we have

∂ KLIC (g|f ; α,βc)
∂αj

∣∣∣∣∣
α̃

= 0 (3.5)

⇒
∑
i

piHi(ai)xi,j =
∑
i

xi,j θ̃i , j = 1, . . . , k (3.6)

where θ̃i = θi|α̃, and k is the number of regression coefficients. Treat Hi and α̃ as known for
the moment. Note that the equations in (3.6) are algebraically equivalent to the weighted
quasi-score equations associated with a logistic regression model (with θ̃i taking the place
of the usual response variable). Thus, they can be solved efficiently for βc.

In the usual case where Hi and α̃ are unknown, we plug in consistent estimates. In
particular, we compute θ̂i, the MLE of θi from (3.4), which is consistent for θ̃i (by White’s
theorem).

To estimate Hi, given the family of distributions of the delay (e.g., exponential), we can
find the MLE of the delay distribution parameters. However, since the censoring rate could
be very high, especially when t is small, this MLE can be quite biased (see, e.g., Shen and
Yang [2015], Wan et al. [2015b], and Hirose [1999]). As a remedy, we can adjust for the delay
rate estimator bias as well. Firth [1993] proposes a general approach to bias reduction using
on a penalized score function. Pettitt [1998] apply Firth’s approach to obtain the penalized
likelihood when the responses are exponentially distributed and possibly censored at a fixed
censoring time for all the observations. We extend bias adjustment approach of Pettitt [1998]
by relaxing fixed censoring time for all the observation (i.e., each click has its own censoring
time) to adjust the delay rate estimator for its bias. In other words, using our notation, the
penalized likelihood can be written as

L∗(λ|z) =
∏
i∈S∗

(λi)−2hi(zi)Hi(ai), (3.7)

where λi = exp(β′dxi) as before,

hi(zi) =
{
λi exp(−λizi), zi < ai

exp(−λizi), zi = ai
, (3.8)

Hi(ai) = 1−exp(−aiλi), and S∗ = {i : Ci = 1}. Note that since in the application, we don’t
know the eventual conversion status of clicks (especially for recent clicks), we approximate
S∗ by Ŝ∗ = {i : yi = 1} ∪ {i : yi = 0, ai < W}, which the approximation improves as time
goes on. In other words, we exclude only unconverted clicks with ai longer than W in (3.7)
since we assume they never convert, and thus don’t contribute information about the delay
distribution.
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When the delays follow a Weibull distribution, we cannot obtain a closed form for the
Firth [1993] penalized likelihood function. However, if we make the usual assumption that
only the scale parameter of the Weibull distribution depends on the covariates, we can
obtain the Weibull penalized likelihood function for a fixed shape parameter as

L∗w(γ, ν|z) =
∏
i∈S∗

(
ν

γi

)2
hwi (zi)Hw

i (zi), (3.9)

where hwi and Hw
i are the pdf and cdf, respectively, of the Weibull distribution with scale

parameter γi = exp(βtdxi) and shape parameter ν. We suggest first estimating the shape
parameter, ν, by its MLE, and then treating it as a known parameter in (3.9).

We call the convergence probability estimator based on exponential and Weibull distri-
butions for the delays the E-bias-adjusted and W-bias-adjusted estimators, respectively.

To summarize, we obtain our bias-adjusted estimate of βc as follows:

1. Compute the MLE of α based on the naive model (3.4).

2. Compute the maximum penalized likelihood estimates of the delay distribution pa-
rameters using Firth’s approach (i.e. (3.7) if the delay distribution is exponential or
(3.9) if the delay distribution is Weibull).

3. Compute the bias-adjusted estimate β̂c by solving the equations in (3.6), substituting
the estimates of α and the delay distribution for their true values.

Standard GLM software can be used to compute the estimates in Steps 1 and 3, while
packages such as brglm in R can be used to compute the estimates in Step 2. Thus, an
advantage of the bias-adjusted estimator is that it can be computed efficiently and easily.

The similarity between (3.6) and the weighted quasi-score equations associated with a
logistic regression model suggests that a SE for β̂c (or p̂i, the estimator of pi) could be
efficiently computed as a function of the derivative of the left side of (3.5). We explore the
validity of this SE in §3.6.

3.5 Application

In this section, we apply our results from the previous sections to a publicly available
data set released by Criteo, a commerce marketing company that connects publishers and
advertisers1. The data concern a collection of clicks that accrued over a period of two
months, with W = 30 days Chapelle [2014]. The eventual conversion statuses of the clicks
are also included in the data set.

1The data set is available at http://research.criteo.com/outreach/
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In this data set, each row corresponds to a display ad chosen by Criteo and subsequently
clicked by the user. The first two columns are click time and conversion time, where the
latter is blank for unconverted clicks. The data set has 17 covariates (8 integer-valued and
9 categorical variables). Except for campaign ID (one of the categorical variables), the
definitions of the covariates are undisclosed (due to confidentiality issues).

To evaluate the performance of our bias-adjusted estimators (i.e., E-bias-adjusted and
W-bias-adjusted estimators) in this section, we investigate their bias, SE, and computation
time relative to three other estimators: the naive estimator, the oracle estimator (the MLE
of the logistic regression model based on the eventual conversion statuses of the clicks), and
the maximizer of the DFM when the distribution of the delays is treated as exponential
(Chapelle’s estimator). Note that the oracle estimate is not obtainable in practice, where
at any time t, the delay distribution parameters will be unknown. However, we include this
estimator as a “gold standard” to which we compare the other estimators.

Following Chapelle [2014], we use log-loss to measure the bias of each estimator. Log-loss
is a measure of the distance between parameter estimates and the true quantity of interest.
In our case, log-loss is algebraically equivalent to the negative log-likelihood (NLL) of the
logistic regression model (treating eventual conversion statuses as the true quantities of
interest).

Estimating the parameters in the DFM can be very slow, depending on the number of
covariates in the model. For instance, say we choose a subset of the covariates in the full data
set such that we have 300 covariate coefficients (corresponding to the continuous covariates
and the dummy variables that represent the categorical covariates) in the model. Obtaining
the MLE of the DFM is approximately 500 times slower than computing the bias-adjusted
estimator. To keep the parameter estimation time feasible in our data analysis, we use only
the first 100 covariates from the data set in our analyses in this section. Note that, in this
paper, we are interested only in the relative performances of the estimators given a set of
covariates; variable selection in this context is an important topic for future research.

Since the data set is huge, we use data splitting and use only a random sample (ap-
proximately 10%) of the data set as our training set. We then obtain our estimates on the
training set and compute NLL on the rest of the data set (our test set). We repeat this
procedure 40 times and report the average of the NLLs.

Figure 3.1 shows the average (over the 40 random splits of the data) NLL of the esti-
mators at different time steps. The DFM estimator has convergence problems, especially
when the number of known conversions is not large relative to the number of parameters
(i.e., over the first two weeks of the observation period). After excluding the problematic
estimates, the DFM estimator still behaves poorly (top plot of figure 3.1). To illustrate the
differences among the other estimators better, we omit the DFM estimator from the plot
(bottom plot of figure 3.1). The E-bias-adjusted estimator appears to outperform the other
estimators. Specifically, the E-bias-adjusted estimator appears to outperform the W-bias-
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Figure 3.1: Two views of the average NLL of the estimators at different time steps (averaged
over 40 random splits of the data): with the DFM estimator (top) and without the DFM
estimator (bottom)

Table 3.1: Average computation time (in seconds) of each estimate over repeated data
splitting and different time steps. Approximately 100 covariates are included in the model.

Estimator Run time
Naive 4.67
E-Bias-adjusted 120.67
W-Bias-adjusted 158.30
DFM 2545.82

adjusted in the first month, and they perform similarly in the second month. In addition,
as we obtain more new clicks and more information about the old clicks, the NLL of the
estimators appears to decrease and get closer to that of the oracle estimator.

Table 3.1 shows the average computation time (in seconds) of the estimates based on
repeated data splitting when we have approximately 100 covariates in the model. The
computation time of the DFM estimator is about 21 times longer than that of the E-bias-
adjusted estimate, and the computation time of W-bias-adjusted estimator is about 30%
longer than that of the E-bias-adjusted estimator.

As a final note, the distribution of the observed delays of converted clicks looks closer
to Weibull than exponential (see online material and also, e.g., Ji et al. [2016]) and thus the
assumption of exponential delay times in the DFM is unreasonable. However, the MLE (i.e.,
of the maximizer of the model based on a Weibull distribution for the delays) has serious
convergence issues and very long computation time. Thus we did not study the performance
of this estimator in detail.
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3.6 Accuracy, precision and computational efficiency of the
bias-adjusted estimators

In this section, we use a simulation study to evaluate the performance of our estimators.
We investigate their bias, SE, and computation time. Besides the estimators mentioned in
§3.5, since we know the delay distribution in our simulation study, we consider the true-
bias-adjusted estimator (the bias-adjusted estimator computed using the true cdf of the
delay distribution, so that the weights in (3.6) are known). The true-bias-adjusted estimator
helps us to gauge how much we lose by estimating the delay distribution parameters with
(3.7) (or (3.9)).

We suggest using bias of the estimated probabilities as a measure of error in the sim-
ulation study. Average bias at time t is defined as 1

n

∑
i (pi − p̂i) for an estimator of pi,

p̂i. Recall that the pi’s vary according to covariates; average bias can be interpreted as an
estimate of the marginal bias of the estimator of probability of conversion (in contrast with
E[pi − p̂i], which represents the bias of p̂i conditional on xi).

3.6.1 Simulation study design

Since our focus in this paper is display advertising, we use a real data set (the Criteo
data described in Section 3.5) to inform the design of our simulation study. Specifically, we
pick approximately 8500 clicks (n ≈ 8500) from a campaign with a large number of clicks.
For this campaign, the average conversion probability was moderate (∼ 30%). We use the
covariates values given in the Criteo data set by Chapelle [2014] and keep these values the
same across runs. Since for the selected clicks some covariates have only one value (or have
only a few values that differ from the mode), we use only three of the categorical variables
(resulting in 16 dummy variables) and four of the integer-valued covariates in the original
data set.

We conduct two simulation studies. In the first, we generate exponential-distributed
conversion delays. In the second, we generate Weibull-distributed conversion delays. The
parameters of these distributions are set to their estimated values based on the observed
delays in the chosen campaign (using only converted clicks). In other words, the estimated
parameters based on the Criteo data become the true parameter values in the simulation
study. Similarly, we estimate the regression coefficients of the conversion probability model
by fitting a logistic regression to the final conversion status of the clicks in the data set. We
then use these estimated coefficients as the true coefficients in the simulation studies (see
online material for the covariates and coefficients we use).

We consider two factors affecting the performance of the conversion probability estima-
tors: average conversion probability and average delay time, where average means across
all clicks of the campaign. We choose the levels of the factors based on the range of the
conversion probabilities and delays in the real data set; see table 3.2 for details. To keep
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Table 3.2: Levels of the factors in the simulation
studies

Factor Low Medium High
Conversion probability† 0.1 0.3 0.6
Delay mean* 2 4 7
† averaged across all clicks
* in days

the simulation study feasible and the number of parameters in the model manageable, we
assume no interaction among the covariates – in particular no interaction between campaign
and the other covariates. Under this assumption, we can vary the factors of interest (average
conversion probability and average delay time) simply by varying the values of the inter-
cepts and of the campaign effects in both the delay and conversion models while keeping
the other covariate coefficients (and the shape parameter, in the Weibull case) fixed.

To create a realistic scenario in our simulation studies, we track the clicks since start of
the data collection at t = 0, and evaluate the estimators at 17 different time steps over a
two month period (with time steps spaced far enough apart such that approximately equal
numbers of clicks occur in each interval). At each time step t, we consider only clicks that
occurred by t. Similarly, we treat a click as converted only if we observe its conversion by t
and its age is less than W = 30 days. Otherwise, we treat it as unconverted.

3.6.2 Study 1

We first consider the case where the conversion delays follow an exponential distribution.
In other words, we generate data from Chapelle’s DFM. Thus, the MLE of the DFM and
the E-bias-adjusted estimator are based on the correct model.

Figure 3.2 shows the average bias of the estimators over time when both factors (av-
erage conversion probability and average delay) are at their medium level. As expected,
since the DFM is the true model in this study, its maximizer (the MLE) outperforms all
other estimators (except the oracle estimator). In particular, it appears to be less biased
than the E-bias-adjusted estimator (especially over the first month). That said, the bias of
both estimators seems quite small in the second month (less than 0.007 on average). The
true-E-bias-adjusted estimator appears to perform slightly better than the E-bias-adjusted
estimator (especially over the first month), and the naive estimator appears to remain bi-
ased even after two months by approximately 0.05. The overall trend in bias is similar when
we use other levels of the factors given in table 3.2. As expected, when the average delay
is at its low level, the accuracy of the naive estimator appears to be almost as high as the
other estimators. Moreover, the MLE of the DFM behaves poorly when the average delay
is high and average conversion probability is low (see online materials).
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Figure 3.2: Average bias of the estimators over time for the medium level of the factors
when the delays follow an exponential distribution

3.6.3 Study 2

In this study, we consider a Weibull distribution for the delays.
We compute all the estimators (including the W-bias-adjusted estimator) over time as in

study 1. Note that in this case, the maximizer of the DFM and the E-bias-adjusted estimator
are both based on the (misspecified) exponential distribution for the delay times. Thus, the
former is no longer the MLE and we call it DFM estimator in this study. We do not study
the MLE (i.e., the maximizer of the DFM modified to allow a Weibull distribution for the
delays) due to convergence issues and very long computation times. In addition, Since the
true-E-bias-adjusted estimator hasn’t been derived for this study, we don’t consider the
estimator here.

Figure 3.3 shows the average bias of the E-bias-adjusted andW-bias-adjusted estimators,
along with that of the oracle and naive estimators over time when both factors (average
conversion probability and average delay) are at their medium level. Over the first three
weeks, the E-bias-adjusted estimator appears to slightly outperform the W-bias-adjusted
estimator. However, both estimators perform similarly after the third week. In addition,
the computation time of the W-bias-adjusted is approximately 30% more than that of the
E-bias-adjusted estimator. Therefore, we consider only the E-bias-adjusted estimator for
the remainder of this paper.

Figure 3.4 shows the bias of the estimators over time when both factors, average conver-
sion probability and average delay, are at their medium level. In contrast with study 1, the
E-bias-adjusted estimator appears to outperform the DFM estimator. In particular, as time
goes on, the bias of the E-bias-adjusted estimator nearly disappears, whereas the bias of the
DFM estimator does not. In addition, the bias of the E-bias-adjusted estimator shows that
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Figure 3.3: Average bias of the bias-adjusted estimators over time for the medium level of
the factors when the delays follow a Weibull distribution

the maximum penalized likelihood estimator of the parameters in the delay time model (see
(3.7)) performs well even when the delay distribution is misspecified, especially for t ≥ 30.
The trend in bias is similar for other levels of the factors given in table 3.2. Again, when the
delay mean is in its low level, the accuracy of the naive estimator is almost as high as the
other estimators. Similar to study 1, the DFM estimator behaves poorly when the average
delay is high and average conversion probability is low (see online materials).

3.6.4 Coverage probability of the bias-adjusted estimator

As mentioned in §3.4.2, we can efficiently compute a SE for p̂i as a function of the derivative
of the left side of (3.5) by using the delta method (built-in predict.glm function in R). In
this section, we study the validity of our SE.

Figure 3.5 shows the average coverage probability (CP) associated with 95% confidence
intervals for conversion probability based on the E-bias-adjusted estimator over time when
the delays follow exponential or Weibull distributions. In the first month, the average CP is
below the nominal level (approximately 88%). However, in the second month, the average
CP is more than 92%. To show the closeness of the average CP to the nominal value of
0.95 at each time point more carefully, we add the non-rejection region for the score test of
whether CP differs from 0.95. This region is defined as (0.95− 2

√
0.95(1− 0.95)/R, 0.95 +

2
√

0.95(1− 0.95)/R) ≈ (0.94, 0.96), where R = 2000 is the number of replicates. The CP
when the delays are exponential-distributed (so that the E-bias-adjusted estimator is based
on the correct model) is not significantly different the nominal coverage level at the last 4
time steps. In contrast, when the delays are Weibull-distributed, the CP differs significantly
from 0.95 except at the last time step. In other words, CP is lower when the E-bias-adjusted
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Figure 3.4: Average bias of the estimators over time for the medium level of the factors
when the delays follow a Weibull distribution

Table 3.3: Average computation times (in seconds) of each estimator over different time
steps along with its SSD for the medium level of the factors (Study 2)

Estimator Run time average (SSD)
Naive 0.09 (0.04)

Bias-adjusted 5.16 (2.38)
DFM 24.54 (4.02)

estimator is based on a misspecified model, but our results suggests that it converges to
0.95.

To compute the SE (and CP) associated with the DFM estimator, we could compute the
Hessian matrix of the estimates for each replicate. However, this matrix was non-positive-
definite for most replicates. For this reason, we omit results concerning the DFM estimator.
The results for the other runs are similar (see online material).

3.6.5 Computation time

Given the very short time available for choosing an ad and publishing it on the host website
– and the huge number of ad requests and new campaigns at any time – publishers need to
refit the model and obtain the conversion probabilities frequently. Therefore, computation
time is a critical issue in display advertising. Table 3.3 shows the average computation times
of the estimates along with their sample standard deviation (SSD) when the true delay
distribution is Weibull (Study 2) and the factors are at their medium level. In particular,
the computation time of the DFM estimator is more than 5 times that of the E-bias-adjusted
estimate. For the levels of the factors that we considered, this ratio can be between 4 and
8. The computation time of the estimates is similar for Study 1.
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Figure 3.5: Average coverage probability of the 95% CI for conversion probability based on
the E-bias-adjusted estimator over time for the medium level of the factors (studies 1 and 2)

3.7 Discussion

In this paper, we developed a method for estimating probability of conversion efficiently and
with high accuracy. In particular, we introduced a bias-adjusted estimator based on a simple
(misspecified) logistic model, and evaluated its accuracy and computational efficiency.

As an alternative, we could obtain the MLE and bias-adjusted estimators by assuming
a Weibull distribution for the delays, which would allow greater flexibility in the model and
would, in particular, provide a better description of the the delays in the Criteo data (see
online material). However, the MLE of this model suffers from both convergence issues and
lengthy computation times. Moreover, the W-bias-adjusted estimator is not as consistent
and efficient as the E-bias-adjusted estimator. Therefore, we recommend the E-bias-adjusted
estimator even when the delays follow a Weibull distribution.

Since clicks have different associated true probability of conversion, the estimators of
these probabilities (and their bias) have different variances. When computing the average of
bias, one may account for these differences by weighting each bias by its true SD, especially
when the range of the true probabilities is large. In our case, there was no difference between
behaviour of the estimators in bias and weighted bias.

In some cases, the conversion probability can be close to zero, i.e., the boundary of the
parameter space. To check the behaviour of the estimators in such cases, we considered not
only the simulation runs at the low level of average conversion probability in our study
(i.e., 0.1), but also an additional run with the average conversion probability equal to 0.05.
Lower true conversion probability seems to lead to a lower absolute average bias for all the
estimators (as expected). However, the trends in average bias across estimators are similar
to those when average conversion probability is higher.
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To reduce overall computation time in the example, we used data splitting to obtain the
estimates in our application. Comparing the performance of the estimators over the entire
data set could be another interesting problem.

Our estimation method incorporates data only from users’ final click on an ad. In other
words, we ignore users’ previous (unconverted) clicks on the same ad. Interesting future
work could be a model that can capture the information in the historical unconverted clicks
of the users.

3.8 Appendix

3.8.1 Likelihood of Z

To prove (3.3), we first derive the cdf of Zi as

GZi(zi) = P (Zi ≤ zi) (3.10)

= P (Zi ≤ zi|Ci = 1)P (Ci = 1)

+ P (Zi ≤ zi|Ci = 0)P (Ci = 0)

=


0 if zi ≤ 0
Hi(zi)pi if 0 < zi < ai

1 if zi ≥ ai
,

where pi = exp(β′cxi)
1+exp(β′cxi) . Therefore, the likelihood function is

Lg (βc|z) = g (z) (3.11)

=
∏
i

g (zi|ai)

=
∏
i

(pih(zi))I(zi<ai) (1− piH(zi))I(zi≥ai) .
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Chapter 4

Conversion probability estimation
in display advertising:
Incorporating information from
multiple visits to the same ad

The chapter derives, with few modifications, from:
Safari, A., Altman, R. M., 2018. Conversion probability estimation in display advertising:
Incorporating information from multiple visits to the same ad, In preparation.

4.1 Abstract

One important problem in display advertising is estimating the probability of conversion
(i.e., the probability that a user takes a pre-defined action such as making a purchase)
after the user clicks on an ad. The main challenges involved in this estimation are the
delays in observing conversions and the size of the data set. Earlier estimators of conversion
probability include information from the distribution of the delays in observing conversions.
However, these estimators are based on the assumption that a user can click only once
on a given ad prior to taking the desired action. We propose a new estimator that uses
information not only in the distribution of the delays, but also in the distribution of inter-
visit times. Using a simulation study, we show that our estimator is computationally efficient
and more accurate than estimators that ignore the information in the inter-visit times. In
addition, the coverage probabilities of confidence intervals based on this estimator are close
to their nominal values.

4.2 Introduction

Given the important role of online advertising, research on display advertising (displaying
ads on different webpages) is expanding quickly. Depending on the purpose of the adver-
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tising, different payment methods can be used. We focus on the cost per action (CPA)
method in this paper, where the publisher is paid only if the user takes a pre-defined action
on the advertiser website after clicking on the ad (conversion). See, e.g., Brea [2014] for
other payment methods.

In the CPA setting, publishers need to choose ads with high conversion probability for
a given user. Therefore, estimating the conversion probability for a given ad and user is
an important question – one that, due to the delays between clicks and conversions, can
be challenging to address. Safari et al. and Chapelle [2014] incorporate these conversion
delay times when estimating conversion probability. They use a “last-touch attribution”
(LTA) method, which assumes that only the last publisher influences the probability of a
click’s transforming into a conversion. LTA ignores users’ previous viewings of the same ad
(possibly displayed by different publishers on different webpages) and assumes that con-
version is a result of the attribution of the last visit before the conversion. However, many
authors have shown the benefits of using another online conversion attribution method,
“multi-touch attribution” (MTA) Atlas [2008], over LTA. That literature emphasizes the
information we can gain by considering users’ previous visits. For instance, Li and Kannan
[2014] recommend that advertisers consider users’ previous visits to gain a better under-
standing of the contribution of different publishers and ads to conversion probability. In a
data-driven analysis, Berman [2013] concludes that estimating the attribution of each visit
(and of its associated publisher) using the MTA method, provides publishers with greater
accuracy in choosing the “best” ad for a given user and publisher. Diemert et al. [2017] (us-
ing unpublished data from Criteo) argue that using the MTA method improves the accuracy
of choosing the “best” match between ad and user. Jordan et al. [2011] (one of our main
motivating papers) suggest based on their (unpublished) data that conversion is a result
not only of the actions of the last publisher, but rather of a combination of the actions of
all publishers. Finally, Ji et al. [2016] propose a probabilistic model to predict the eventual
conversion status via MTA. Specifically, they extend the setting of Chapelle’s model to a
context where visits can occur. However, their final model is very complex. Even though
they make some further assumptions to simplify this model, they end up with a two stage
estimator where the estimating equation in the second stage is essentially the same as that
of Chapelle [2014], and similarly computationally inefficient. Nevertheless, they advocate
the importance of the information in users’ previous visits in the analysis of conversion
probability. Although all the above papers discuss the importance of the potential infor-
mation in users’ visit history, they do not consider conversion probability estimation via
MTA.

Our goal in this paper is to use both the conversion delay times and users’ previous
visits to estimate conversion probability accurately and in a computationally efficient way.
Similar to Safari et al., we build our estimator based on a naive logistic regression model
that treats the current conversion statuses of the clicks as their eventual ones, and then use
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the Kullback-Leibler information criterion (KLIC) to adjust the bias in the estimator. In
this paper, however, we adjust the estimator based on not only the delay time distribution,
but also the distribution of the number of visits. In addition, we show how much accuracy
we lose by ignoring the extra information from the users’ previous visits.

The remainder of this paper is organized as follows. In §4.3, we define our notation and
explain how previous models for conversion statuses and delay times are misspecified in the
case when visits can occur. In §4.4, we introduce a new approach for estimating conversion
probability, along with an algorithm to compute these estimates efficiently for a given data
set. Section 4.5 describes a simulation study that illustrates the accuracy, precision, and
computational efficiency of the estimators. We conclude with a discussion in §4.6.

4.3 Model specification

In this section, we define our notation and present a model for observed conversion statuses,
visit times, and delay times.

Label clicks sequentially in time as 1, 2, 3, . . . , and let xi be a 1× k vector of covariates
associated with click i, e.g., attributes of the user and/or origin website. (We use bold
letters, e.g., xi = (xi,1, . . . , xi,k), for vectors throughout this paper.) We define xi,1 = 1 ∀i
so as to include an intercept. Define Ci to be the eventual conversion status indicator of
click i, i.e., Ci = 1 if click i ever converts and Ci = 0 otherwise. Thus, we are interested in
estimating P (Ci = 1). We define Vi to be the eventual number of visits associated with click
i. Note that Vi = 0 if the user clicked and never visited. Let Ti,j be the age of click i at its
jth visit, j = 1, . . . , Vi. Let ti,0 be the observed time of the ith click (treated as non-random
for the purposes of this paper). In addition, for clicks that eventually convert, we define T ci
as the age of click i at conversion, and Si = T ci − Ti,Vi as the time between the last visit
and conversion. Under this definition, conversion, if it occurs, is assumed to occur after the
last visit, i.e., conversion does not coincide with an additional visit.

Let W be the chosen “conversion window”, i.e., the maximum length of the delay per-
mitted between click and conversion. (We assume thatW is selected to be long enough that
only a negligible proportion of conversions occur outside this window.) The delay time for
click i, Di, is defined as

Di =
{
T ci , Ci = 1
W, Ci = 0

.

We then define T ∗i,j = Ti,j−Ti,j−1 as the time between the (j−1)th and jth visits associated
with the ith click.

We make the following assumptions (using the framework of Chapelle [2014] and Safari
et al.): i. the true conversion probability is fixed over time, ii. the predictors don’t depend
on time, iii. a converted click can never become unconverted, iv. an unconverted click with
delay time less than W could convert.
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An additional assumption – which differentiates the present work from that of Safari
et al. and Chapelle [2014] – is that a user can visit an ad multiple times within the conversion
window and that inter-visit times are independent. We refer to the user’s first click as simply
“click” and all subsequent clicks as “visits”. Thus, a user can “click” only once but can
“visit” repeatedly. As with delays, we assume that only a negligible proportion of visits
occur outside of the conversion window.

Now suppose that, at a given moment t > 0, we wish to estimate the conversion proba-
bility pi of click i (with covariates xi) based on the conversion statuses of the clicks observed
prior to time t. Due to the conversion delay issue, we may not know the eventual conversion
statuses of these clicks at time t. Therefore, we define additional variables to represent the
observed characteristics of these clicks at time t. Specifically, at this time, we say that N(t)
clicks have accumulated. Let Yi(t) be the current (observed) conversion status indicator of
click i = 1, . . . , N(t), where Yi(t) = 1 if click i converted prior to time t and Yi(t) = 0
otherwise. Define ai(t) = t− ti,0 to be the age of click i, i.e., the time since the user clicked.
Since ti,0 is treated as non-random, ai(t) is treated as non-random as well. Note that Di is
observed prior to t if and only if Yi(t) = 1 or ai(t) ≥W . Similarly, Di is right censored (i.e.,
greater than or equal to ai(t)) if and only if Yi(t) = 0 and ai(t) < W . Finally, let Oi(t) be
the observed number of visits associated with click i by time t, TOi

i (t) = (Ti,1, . . . , Ti,Oi(t)),
and let

Ri(t) =
{
Si if Yi(t) = 1
ai(t)− Ti,Oi(t) if Yi(t) = 0

(4.1)

be the “remainder” (the time elapsed since the last observed visit, truncated at conversion,
if it occurs). We can define an equivalence relationship between Yi and (Ri, Ti,Oi) as

Ri(t) < ai(t)− Ti,Oi(t) ⇐⇒ Yi(t) = 1 (4.2)

Ri(t) = ai(t)− Ti,Oi(t) ⇐⇒ Yi(t) = 0

We treat (Oi(t),TOi
i (t), Ri(t)) as the observed data for the ith click at time t. For subsequent

derivations, we consider a fixed time t and suppress t in our notation for convenience.
Let (βc,βv,βt) be the covariate coefficients in the models for the distribution of con-

version status, number of visits, and inter-visit times and remainders, respectively. For
simplicity, we assume that the T ∗i,j ’s, Si’s, and Vi’s are independent, and that for each i, the
T ∗i,j ’s and Si (if Ci = 1) are exponential distributed with rate parameter λi = exp(β′txi).
We assume a logistic regression model with covariate coefficients βc for conversion status.
(The exponential and logistic models are consistent with the approaches of Safari et al.
and Chapelle [2014].) Finally, we assume that the number of visits, Vi, follows a Poisson
distribution with mean γi = exp(β′vxi).
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Let fX and FX be generic representations of the pmf (or pdf) and cdf, respectively, of a
random variable X. We can then write the contribution of the ith click to the likelihood as

Li (βc,βv,βt|ri, oi, toi
i )

=


pifVi(oi)fT oi

i
(toi
i )fSi(ri), ti,oi + ri < ai

fT oi
i

(toi
i ) {pi[1− FSi(ri)]fVi(oi)+

(1− pi)fVi(oi) + [1− FVi(oi)][1− FSi(ri)]} , ti,oi + ri = ai

(4.3)

See appendix 4.7.1 for the derivation.
Let TO be the concatenated vector (T1, . . . ,TN ). We define the full likelihood as

L (βc,βv,βt|r,o, to) =
N∏
i=1
Li (βc,βv,βt|ri, oi, toi

i ) (4.4)

Maximizing the full likelihood (4.4) is computationally burdensome. Therefore, in § 4.4,
we present some alternatives to the maximum likelihood estimator (MLE) of βc (the param-
eter of primary interest). We describe three estimators from the literature and a fourth novel
estimator obtained by approximating the full likelihood with tractable objective functions.

4.4 Estimation of βc

In order to compute the MLE of βc, we would need to maximize (4.4) with respect to all
the parameters simultaneously. Since maximization of (4.4) can be slow and inefficient (cf.
Safari et al.), in this paper, we consider alternative estimators of βc. In § 4.4.1, we discuss
some existing estimators of βc. In § 4.4.2, we develop a new estimator that incorporates
information in visits as well as delay times.

4.4.1 Existing estimators of βc

In this section, we present three estimators of βc proposed in the literature: the “naive
estimator”, the maximizer of the likelihood associated with the Chapelle’s model, and the
bias-adjusted estimator developed by Safari et al..

Naive estimator

The naive estimator of βc is based on the simple idea of treating current conversion statuses
of the clicks as their eventual conversion statuses (an assumption that may or may not be
correct for unconverted clicks), and ignoring possible conversion delays. In other words, Ci
is treated as equal to Yi(t) for each i and t. The likelihood function associated with this

45



model is then

Lf (α|r,o, to) = fO,TO (o, to)
N∏
i=1

[
θ
I(ti,oi

+ri<ai)
i (1− θi)I(ti,oi

+ri=ai)
]
, (4.5)

where θi = exp(α′xi)
1+exp(α′xi) is the conversion probability of the ith click, and α is a vector

of regression coefficients. Note that the product in (4.5) is equivalent to the likelihood
associated with a logistic regression model. The naive estimator of βc is defined as the
maximizer of this part of the likelihood.

The function (4.5) is convex and computationally efficient to optimize. However, the
estimator of conversion probability based on this model is biased low, since some of the
unconverted clicks could convert later.

Delay feedback model estimator

The delay feedback model (DFM) developed by Chapelle [2014] and studied by Safari et al.
forms the basis of a second estimator of βc. The DFM describes the distribution of conversion
statuses at time t under the assumption that no visits can occur. Under this assumption, r
represents the entirety of the observed data. Safari et al. show that the likelihood function
associated with the DFM is

Ld (βc|r ) =
N∏
i=1

[pifSi(ri)]
I(ri<ai) [1− piFSi(ri)]

I(ri=ai) . (4.6)

Chapelle [2014] applies the DFM in a context where visits can occur but are not recorded.
If a visit occurs, he assumes that it is the last (i.e., that Oi = Vi). He then treats the time
of this visit as click time – and measures age, delay time, and conversion window from this
newly defined click time. However, when visits can occur, delays are no longer exponential
random variables, but rather a random sum of exponential distributed random variables.
Thus, the likelihood (4.6) is misspecified in the case when visits can occur. Given the possible
impact of this misspecification on the MLE of βc based on (4.6), and given that maximizing
(4.6) can be very time-consuming (Safari et al.), we do not consider this estimator further
in this paper.

Delay-adjusted estimator

A third estimator of βc in the literature is that proposed by Safari et al.. This estimator
is based on the naive estimator, but with a bias adjustment computed using the KLIC
approach. Specifically, Safari et al. assume that the true model is the DFM and treat its
parameters as known. Then they minimize the KLIC with respect to the parameters of the
naive model. Therefore, they obtain parameters of the DFM in terms of the naive model’s
parameters, which can be estimated by maximizing the likelihood function associated with
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the naive model. Since this adjustment is based only on the delay distribution, we call
this estimator the delay-adjusted (D-adjusted) estimator (equivalent to the E-bias-adjusted
estimator in the terminology of Safari et al.).

If a user can visit only once (so that delay time is exponential), this bias adjustment
is asymptotically exact. However, if a user can visit multiple times (so that delay time
is a random sum of exponential random variables), this adjustment is inaccurate. In the
other hand, as time goes on, the bias correction disappears (i.e., the D-adjusted estimator
approaches to the naive estimator). Since the naive estimator is a consistent estimator for
the true conversion probability after substantial time has passed (no adjustments needed),
the D-adjusted estimator is asymptotically consistent for the true conversion probability as
well.

4.4.2 Delay-visit-adjusted estimator of βc

In this section, we develop a new estimator based on the naive estimator adjusted for bias
using both the delay and inter-visit time distributions. Rather than working with the com-
plicated likelihood (4.4), our strategy is to specify three simpler objective functions that we
maximize to estimate βt, βv, and βc sequentially. In particular, we first consider an approxi-
mation of (4.4) that allows β̂t to be estimated separately from βc and βo. We then maximize
an approximation of L

(
βc,βv, β̂t|r,o, to

)
that allows β̂v to be estimated separately from

βc. Finally, we estimate βc using the naive approach described in Section 4.4.1, with a bias
correction determined using the KLIC approach of Safari et al. applied to the distribution
of R conditional on O and TO, evaluated at β̂v and β̂t. We call β̂c the delay-visit-adjusted
(DV-adjusted) estimator.

We justify our approach as follows. First, we note that for every click i for which ai ≥W ,
the random variables Oi = Vi, TOi

i = T Vi
i , and Ri (which equals Si if the ith click converts

and ai − Ti,Vi otherwise) are independent. As time goes on, the proportion of such clicks
approaches 100%, and both the likelihood (4.4) and the product of our chosen objective
functions approach the product of the marginal distributions of Oi, Ri, and T Vi

i . Therefore,
our estimate of βc is asymptotically equivalent to the MLE (and to the naive estimator).
However, we expect that after only a relatively short time has passed (our scenario of
interest), our estimator will outperform the MLE.

We now describe our approach in detail. We select an objective function for estimating
βt in two steps. First, we assume that pi ≡ 1 in (4.4). With this approximation, βt can be
estimated separately from βc and βv. In particular, taking pi ≡ 1, the portion of (4.4) that
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depends on βt is

Lt(βt|o, t∗, r)

=
N∏
i=1


oi∏
j=1

fT ∗i,j
(t∗i,j)

 [fSi(ri)]I(ti,oi
+ri<ai)[1− FSi(ri)]I(ti,oi

+ri=ai)

=
N∏
i=1

oi∏
j=1

λi exp(−λit∗i,j) ·
N∏
i=1

[λi exp(−λiri)]I(ti,oi
+ri<ai)[exp(−λiri)]I(ti,oi

+ri=ai).(4.7)

Note that, as a consequence of our approximation, the last factor in (4.7) (wrongly) includes
contributions from clicks that may not convert or have another associated visit. However,
as time passes, the proportion of these clicks goes to 0 and the approximation improves.

The second product in (4.7) – the objective function associated with the remainders – is
equivalent to the usual likelihood associated with right-censored exponential observations.
In our context, when t is small, the censoring rate can be very high. In the presence of
substantial censoring, the estimator of βt can be quite biased (see, e.g., Wan et al. [2015a],
Shen and Yang [2014]). Thus, our second step in choosing an objective function for estimat-
ing βt is to adjust this portion of (4.7) according to the penalized score method of Firth
[1993]. Firth’s method is a general approach to bias reduction. Pettitt [1998] use this idea
to obtain the penalized likelihood when the responses are exponentially distributed and
possibly censored at a fixed censoring time for all observations. We extend their approach
by relaxing the assumption of a fixed censoring time for all observations, and allowing the
remainder associated with each click to have its own censoring time. The adjusted form of
(4.7) is then

L∗t (βt|o, t∗, r)

=
N∏
i=1

oi∏
j=1

λi exp(−λit∗i,j) ·

N∏
i=1

[λi exp(−λiri)]I(ti,oi
+ri<ai)[exp(−λiri)]I(ti,oi

+ri=ai)(λi)−2[1− exp(−λiri)].(4.8)

We maximize the objective function L∗t to estimate βt.
Given β̂t, we now develop an objective function for estimating βv. Specifically, in (4.4),

we assume pi ≡ 0. With this approximation, βv can be estimated separately from βc. The
portion of (4.4) that depends on βv is then

Lv(βv|o, to, r ; β̂t) =
∏

i∈{ti,oi
+ri<ai}

fVi(oi) ·

∏
i∈{ti,oi

+ri=ai}
{fVi(oi) + [1− FSi(ri)][1− FVi(oi)]} , (4.9)
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The second product in (4.9) (wrongly) assumes that unconverted clicks never convert. How-
ever, again, as time passes, the proportion of these clicks goes to 0 and the approximation
improves.

Finally, we estimate β̂c given β̂t and β̂v. One option is to maximize the portion of (4.4)
that depends on βc, i.e.,

Lc
(
βc|r,o, toi ; β̂v, β̂t

)
=

N∏
i=1

{
pif̂Vi(oi)f̂Si(ri)

}I(ti,oi
+ri<ai) ·

{
pi[1− F̂Si(ri)]f̂Vi(oi) + (1− pi)f̂Vi(oi) + [1− F̂Si(ri)][1− F̂Vi(oi)]

}I(ti,oi
+ri=ai)

.(4.10)

However, the process of maximizing (4.10) is relatively slow. Instead, we use a version
of the KLIC approach of Safari et al.. Specifically, we derive a bias-adjustment for α̂ (the
estimator of the naive model). To this end, we estimate the expected value (under the true
model) of the log ratio of the distributions of (R,O,T ) under the true and naive models. We
find the minimizer, α̃, of this function (in terms of βc, βo, and βt). Using this relationship
and our estimates α̂, β̂t and β̂v, we obtain an estimate for βc.

The details are as follows. Noting that the distribution of (O,T ) is the same under both
the true and naive models, the ratio of interest is equivalent to the ratio of the distributions
of R conditional on (O,T ) under the two models. The KLIC (where the expectation is with
respect to the distribution in (4.4)) is then

KLIC (α;βc,βo,βt)

= E

ln

L
(
βc,βv,βt|R,O,TO

)
Lf (α|R,O,TO)


= E

ln

L
(
βc,βv,βt|T ,O,TO

)
/fO,T (O,T )

Lf (α|R,O,TO) /fO,T (O,T )


= constant− E

{
N∏
i=1

[
θ
I(Ti,Oi

+Ri<ai)
i (1− θi)I(Ti,Oi

+Ri=ai)
]}

, (4.11)

where “constant” means independent of α.
To evaluate (4.11), we separate the joint distribution of (R,O,T ) into the product of

the conditional distribution of (R | O,T ) and the joint distribution of (O,T ). We define
the expectation with respect to the former as the “conditional KLIC” (CKLIC).

The conditional distribution of R under the true model is

fR|O,T (r | o, t) =
N∏
i=1

f
Ri,Oi,T

Oi
i

(ri, oi, toi
i )

fT oi
i

(toi
i ) {fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]}

. (4.12)

49



See appendix 4.7.2 for the derivation.
Therefore, the CKLIC is

CKLIC (α;βc,βo,βt)

= constant−
N∑
i=1

{
ln(θi)

pifVi(Oi)FSi(ai − Ti,Oi)
fVi(Oi) + [1− FVi(Oi)][1− FSi(ai − Ti,Oi)]

+ ln(1− θi)
[
1− pifVi(Oi)FSi(ai − Ti,Oi)

fVi(Oi) + [1− FVi(Oi)][1− FSi(ai − Ti,Oi)]

]}
(4.13)

See appendix 4.7.3 for the derivation.
Evaluating the expectation of the CKLIC with respect to the joint distribution of (O,T )

to obtain the KLIC is challenging. We thus instead compute the empirical estimate of the
KLIC by evaluating the CKLIC at the values of O and T observed in our sample:

K̂LIC (α;βc,βo,βt)

= constant−
N∑
i=1

{
ln(θi)

pifVi(oi)FSi(ai − ti,oi)
fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]

+ ln(1− θi)
[
1− pifVi(oi)FSi(ai − ti,Oi)

fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]

]}
(4.14)

White [1982] shows that the MLE of a misspecified model is consistent for the minimizer
of the KLIC. The minimizer of (4.14), α̃, can be estimated using the equations

∂ K̂LIC (α;βc,βo,βt)
∂αj

∣∣∣∣∣
α̃

= 0 (4.15)

⇒
∑
i

pifVi(oi)FSi(ai − ti,oi)
fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]

xi,j =
∑
i

xi,j θ̃i , j = 1, . . . , k.

Here θ̃i = θi|α̃, and k is the number of regression coefficients. If we solve the equations in
(4.15) for βc, we will obtain a formula to estimate the parameters of the true model, βc. In
other words, using the estimates α̂, β̂t and β̂v and estimating α̃ by α̂, we can compute an
estimate of βc. Note that the equations in (4.15) are equivalent to the weighted quasi-score
estimates and thus can be solved efficiently – much more quickly than the score equations
based on (4.10).

To summarize, we follow the steps below to obtain our bias-adjusted estimate of βc:

1. Compute the estimate of βt from (4.8).

2. Compute the estimate of βv from (4.9).

3. Compute the MLE of α based on the naive model (4.5).

50



4. Compute the bias-adjusted estimate β̂c by solving the equations in (4.15), substituting
in the estimates of α, βv, and βt obtained in steps 1–3.

4.5 Simulation study

In this section, we use a simulation study to evaluate the performance of our DV-adjusted
estimator. We investigate its bias, standard error (SE), and computation time relative to
four other estimators: the naive estimator, the oracle estimator (the MLE of the logistic
regression model based on the eventual conversion statuses of the clicks), the true-DV-
adjusted estimator (the delay-visit adjusted estimator computed using the true distribution
of the inter-visit and delay times), and the delay adjusted D-adjusted estimator due to
Safari et al..

The oracle and true-DV-adjusted estimates are not obtainable in practice, where at any
time t, the delay, inter-visit, and remainder distribution parameters – as well as some Ci’s
– will be unknown. The true-DV-adjusted estimator helps us to gauge how much we lose
by estimating the parameters involved in (4.8) and (4.9), while the oracle estimator is the
most accurate estimator that we can apply to a given data set.

To evaluate the D-adjusted estimator in our setting (i.e., where visits can occur), we
assume that Vi = Oi, and treat time of the last visit as the click time. This assumption, also
made by Chapelle [2014], is incorrect for some clicks. However, as time goes on, the propor-
tion of clicks for which Oi < Vi goes to 0. Therefore, the bias correction is asymptotically
accurate, even in our setting. By comparing the performance of the D- and DV-adjusted
estimators, we can observe the increase in accuracy of the estimate of β̂c resulting from
using the information in the observed number of visits.

We use bias of the estimated probabilities of conversion as a measure of error in the
simulation study. Bias at time t is defined as 1

N

∑
i (pi − p̂i) for an estimator of pi, p̂i. Recall

that the pi’s vary according to covariates; average bias can be interpreted as an estimate of
the marginal bias of the estimator of probability of conversion (in contrast with E[pi − p̂i],
which represents the bias of p̂i conditional on xi).

We were unable to procure a data set that contains users’ visit history of an ad. Instead,
to inform the design of our simulation study, we pick approximately 8500 clicks (N ≈
8500) from a campaign with a large number of clicks and moderate average conversion
probability (∼ 30%) from the publicly available data1 originally studied by Chapelle [2014]
(sub-sampled as described in Safari et al.). The data include four continuous and three
categorical covariates that are measured on each click.

We consider four factors affecting the performance of the conversion probability estima-
tors: average conversion probability, average delay time, average number of visits (where

1The data set is available at http:/research.criteo.com/outreach
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Table 4.1: Levels of the factors in the simulation
study – averaged across all clicks

Factor Low Medium High
Conversion probability 0.1 0.3 0.6
Delay mean* 7 4 2
Number of visits 3 7 10

* in days

average means across all clicks in the campaign), and delay distribution (exponential or
Weibull). Table 4.1 shows the levels of the factors we chose based on the range of the con-
version probabilities and delays in the real data set (we use some online resources to choose
values for the average number of visits – including online statistical reports 2, realistic sim-
ulation algorithms 3 and display marketing reports Brea [2014]). To keep the simulation
study feasible with a manageable number of unknown parameters in the model, we assume
no interaction between the covariates. Consequently, the covariate coefficients remain fixed
across different campaigns. I.e, we generate data for each simulation run by varying only
the intercepts in the delay, visit, and conversion models, while keeping all other coefficients
fixed.

We use these data to choose the true parameter values in our simulation study. Specif-
ically, we take βt as the MLE of the parameters of the delay distribution (assumed to be
either exponential or Weibull) based on the observed delays in the chosen campaign (using
only converted clicks). Similarly, we choose βc as the MLE of the parameters of the logistic
regression model fit to the final conversion status of the clicks in the data set. The data set
does not provide information about the distribution of number of visits. So, for simplicity,
we choose βvj = βcj for all j > 1. See online material for details regarding the covariates
and coefficients we used.

We use the T0’s and the x’s from the available data set. For each click i, we generate
Vi, then independent inter-visit times T Vi

i , and then Ci. For any click i with Ci = 1, we
also generate Si. Following Chapelle [2014], we assume W = 30 is large enough that all
visits occur within the conversion window. In other words, we assume that a negligible
proportion of clicks convert outside the conversion window. To create a realistic scenario
in our simulation studies, we track the clicks and the subsequent visits since click time of
the first click (which we call t = 0), and evaluate the estimators at 10 different, equally
spaced time steps over a two month period. At each time step t, we consider only clicks
that occurred by t. Similarly, we treat a click as converted only if we observe its conversion

2E.g. Econsultancy, available at https://econsultancy.com

3E.g. MacPaw Inc., available at http://analyzecore.com
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by t (and that its age is less than W ). Otherwise, we treat it as unconverted. In addition,
for each click, we consider only visits that occurred by time t.

4.5.1 Study 1

We first consider the case where the Si’s and inter-visit times follow an exponential distri-
bution. Thus, the DV-adjusted and true-DV-adjusted estimators are based on the correct
model.

Figure 4.1 shows the average bias of the estimators over time when all three factors,
average conversion probability, average delay, and average number of visits, are at their
medium level. Except for the oracle estimator, the DV-adjusted estimator seems to outper-
form all the other estimators until three weeks after the first click, after which the true-DV-
adjusted estimator appears to perform better. To show the closeness of the average bias to
the nominal value of 0 at each time point more carefully, we add the non-rejection region
(NRR) for the score test of whether average bias differs from 0. The NRR is defined as
(2
√

0.95(1− 0.95)/R, 2
√

0.95(1− 0.95)/R) ≈ (0.013, 0.013), where R = 1000 is the number
of replicates. The average biases of the true-DV-adjusted and DV-adjusted estimators are
not significantly different the nominal bias level after one month and six weeks, respectively.
The D-adjusted estimator appears to be less biased than the naive estimator, but neither
converges to the bias NRR after two months. The trends in average bias seem to be similar
when we use other levels of the factors given in table 4.1. As expected, when the average
number of visits is low, the accuracy of the DV-adjusted and D-adjusted estimators appear
to be similar, and when both average delay time and number of visits are at their low level,
the accuracy of all the estimators are similar (see online materials).

4.5.2 Study 2

In this study, we consider a Weibull distribution for the Si’s and inter-visit times. Conse-
quently, all of our estimators, even the true-DV-adjusted estimator, are based on a mis-
specified model. Since the true-DV-adjusted estimator hasn’t been derived for this study,
we don’t consider this estimator here.

We compute the five estimates over time as in study 1. Note that in this case, the
D-adjusted and DV-adjusted estimators are based on the (misspecified) exponential distri-
bution. Figure 4.2 shows the average bias of the estimators over time when all the factors
(average conversion probability, average delay, and average number of visits) are at their
medium level with the bias NRR (shaded area). Again, the DV-adjusted estimator appears
to outperform the other estimators (except the oracle estimator). In particular, the aver-
age bias of the DV-adjusted estimator essentially disappears within the first two months,
whereas the average biases of the D-adjusted and naive estimators do not. The trends in
the bias of the estimators appear to be similar when we use other levels of the factors given
in table 4.1. As in study 1, when average number of visits is low, the accuracies of the
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Figure 4.1: Average bias of the estimators along with the bias NRR over time for the medium
level of the factors when the Si’s and inter-visit times follow an exponential distribution

DV-adjusted and D-adjusted estimators seem similar, and when both average delay time
and number of visits are at their low level, the accuracies of all the estimators seem similar
(see online materials).

The results of study 2 are important in that they show the robustness of the DV-
adjusted estimator to misspecification of the delay distribution. In particular, even if the
delay distribution is not exponential (as appears to be the case in the Criteo data set), the
DV-adjusted estimator has minimal bias after two months.

4.5.3 Coverage probability of the bias-adjusted estimators

The estimating equations (4.15), which are equivalent to weighted quasi-score functions,
suggest an efficient method for obtaining a standard error (SE) for the DV-adjusted and
D-adjusted (see Safari et al.) estimators. In this section, we study the validity of our SE
(via the coverage probability of confidence intervals for the probability of conversion).

Figure 4.3 shows the estimated coverage probability (CP) associated with (nominal) 95%
CIs for conversion probability (for each estimator at each time point) when the Si’s and
inter-visit times follow a Weibull distribution (study 2). In the first month, as expected, the
estimated CPs of the estimators are below the nominal level (approximately 75%). However,
in the second month, especially after 40 days, the estimated CPs of the estimators are more
than 92%. As expected, the estimated CPs based on the D-adjusted estimator appear to
be always smaller than those of the DV-adjusted estimator. To show the closeness of the
average CP to the nominal value of 0.95 at each time point more carefully, we add the
NRR for the score test of whether CP differs from 0.95, which is approximately (0.94, 0.96)
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Figure 4.2: Average bias of the estimators with the bias NRR over time for the medium
level of the factors when the Si’s and inter-visit times follow a Weibull distribution

for R = 2000. The estimated CP of the DV-adjusted estimator is not significantly different
from 0.95 at the last 2 time steps. In contrast, the estimated CP of the D-adjusted estimator
differs significantly from 0.95 even after two months. The results for other runs are similar
(see online material).

4.5.4 Computation time

Since publishers need to re-compute the estimates of the regression coefficients frequently
(using the new clicks that arrive), and since the number of clicks associated with a given
campaign can be huge, computational efficiency of the conversion probability estimate is
critical. Table 4.2 shows the average and sample standard deviation (SSD) of computation
times (in seconds) for the estimators when the true distribution of the Si’s and inter-visit
times is Weibull (study 2) and the factors are at their medium level. As expected, since the
DV-adjusted estimator has an extra step (the estimation of βv in the visits model) relative
to the D-adjusted estimator, its computation time is almost 30% greater than that of the D-
adjusted estimator. However, given the high accuracy of the DV-adjusted estimator relative
to the other estimators presented in §4.5.1 and §4.5.2, and also a fairly small computation
time difference relative to other estimators, we recommend the DV-adjusted estimator in
practice. The computation time of the estimates is similar for study 1.
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Figure 4.3: Estimated coverage probability of the 95% CI based on the DV-adjusted and
D-adjusted estimators along with the NRR over time for the medium level of the factors
(study 2)

Table 4.2: Average (SSD) computation time (in seconds) for each estimator over different
time steps for the medium level of the factors (study 2).

Estimator Average (SSD) Run time
Naive 0.10 (0.03)
D-adjusted 6.61 (3.22)
DV-adjusted 8.98 (3.58)
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4.6 Discussion

In this paper, we developed a method for estimating the probability of conversion efficiently
and with high accuracy. In particular, we introduced a bias-adjusted estimator based on a
simple (misspecified) logistic model that can incorporate information from the conversion
delay distribution and also from users’ visits. Our estimator requires far less time to compute
than does the MLE, and is more accurate than the bias-adjusted estimator that uses the
information in the delay distribution alone.

To simplify calculations, we assumed that the T ∗i,j ’s and Si are identically distributed,
and that the Vi’s are Poisson distributed. Extending our methods to allow for alternative
distributional assumptions is a promising avenue for future research.

Since clicks have different associated true probabilities of conversion, the estimators of
these probabilities (and their biases) have different variances. When computing the average
bias, accounting for these differences by weighting each bias by its true SD could be desir-
able, especially when the range of the true probabilities is large. In our case, however, the
difference in behaviour of the bias and weighted bias was minimal.

Another challenging question in display advertising is to assign the contribution of each
ad displaying source (e.g., search, video, mobile app) when a conversion occurs. Currently,
most algorithms give full credit to only the source associated with the last visit prior to
conversion. Interesting future work would be to build on the model described in this paper
and obtain a “fair” contribution algorithm.

4.7 Appendix

4.7.1 True likelihood

We find the contribution to the likelihood of the ith click in two different cases.

• Case 1: ti,oi + ri < ai

Li (βc,βv,βt|ri, oi, toi
i ) = pifVi(oi)fTOi

i

(toi
i )fSi(ri) (4.16)
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• Case 2: ti,oi + ri = ai

Li (βc,βv,βt|ri, oi, toi
i )

= pifOi,T
Oi
i ,Ri

(oi, toi
i , ri | Ci = 1)

+ (1− pi)fOi,T
Oi
i ,Ri

(oi, toi
i , ri | Ci = 0)

= pi
∑
v

f
Oi,T

Oi
i ,Ri

(oi, toi
i , ri | Ci = 1, Vi = v)fVi(v)

+ (1− pi)
∑
v

f
Oi,T

Oi
i ,Ri

(oi, toi
i , ri | Ci = 0, Vi = v)fVi(v)

= pifTOi
i

(toi
i )[1− FSi(ri)]

∑
v

fVi(v)1(oi<=v)

+ (1− pi)fTOi
i

(toi
i )
∑
v

fVi(v)
{

1(oi=v) + 1(oi<v)[1− FT ∗i,oi
(ri)]

}
= pifTOi

i

(toi
i )[1− FSi(ri)]P (Vi ≥ oi)

+ (1− pi)fTOi
i

(toi
i )
{
fVi(oi) + [1− FVi(oi)][1− FT ∗i,oi

(ri)]
}

(∗)= f
T

Oi
i

(toi
i )pi {[1− FSi(ri)]P (Vi ≥ oi)− fVi(oi)− [1− FVi(oi)][1− FSi(ri)]}

+ f
T

Oi
i

(toi
i ) {fVi(oi) + [1− FVi(oi)][1− FSi(ri)]}

= f
T

Oi
i

(toi
i )pi {[1− FSi(ri)]fVi(oi)− fVi(oi)}

+ f
T

Oi
i

(toi
i ) {fVi(oi) + [1− FVi(oi)][1− FSi(ri)]}

= f
T

Oi
i

(toi
i ) {pi[1− FSi(ri)]fVi(oi)

+ (1− pi)fVi(oi) + [1− FVi(oi)][1− FSi(ri)]}

(*): Note that the factor 1 − FSi(ri) at the end of the line relies on the assumption that,
for each i, the T ∗i,j ’s and Si are iid.

4.7.2 Conditional pdf of Ri

The conditional distribution of Ri under the true model is

fR|O,T (r | o, t) =
f
Ri,Oi,T

Oi
i

(ri, oi, toi
i )

f
Oi,T

Oi
i

(oi, toi
i ) , (4.17)
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where the numerator is the true joint distribution given in (4.3). The denominator can be
found by integrating the joint distribution over ri:

f
Oi,T

Oi
i

(oi, toi
i ) =

∫ ai−ti,oi

0
f
Ri,Oi,T

Oi
i

(ri, oi, toi
i )dri

= pifVi(oi)fT oi
i

(toi
i )FSi(ai − ti,oi)

+ fT oi
i

(toi
i ) {pi[1− FSi(ai − ti,oi)]fVi(oi)

+ (1− pi)fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]}

= fT oi
i

(toi
i ) {fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]} (4.18)
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4.7.3 CKLIC computation

CKLIC (α;βc,βo,βt)

= E

ln

L
(
βc,βv,βt|R,O,TO

)
Lf (α|R,O,TO)


= E

ln

L
(
βc,βv,βt|T ,O,TO

)
/fO,T (O,T )

Lf (α|R,O,TO) /fO,T (O,T )


= E

ln

L
(
βc,βv,βt|R ; O,TO

)
Lf (α|R ; O,TO)


= E

{
ln
[
L
(
βc,βv,βt|R ; O,TO

)]}
−

N∑
i=1

E
{

ln
[
Lf
(
α|Ri ; Oi,TOi

i

)]}
= constant

−
N∑
i=1

{∫ ai−ti,oi

0
ln[f(ri | oi, toi

i ; α)]g(ri | oi, toi
i ; βc)dri

}
= constant

−
N∑
i=1

 ln(θi)
f
Oi,T

Oi
i

(oi, toi
i )

∫ ai−ti,oi

0
f
Ri,Oi,T

Oi
i

(ri, oi, toi
i )dri

+ ln(1− θi)
f
Oi,T

Oi
i

(oi, toi
i )

[
1−

∫ ai−ti,oi

0
f
Ri,Oi,T

Oi
i

(ri, oi, toi
i )dri

]
= constant

−
N∑
i=1

{
ln(θi)

pifVi(oi)fT oi
i

(toi
i )FSi(ai − ti,oi)

fT oi
i

(toi
i ) {fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]}

+ ln(1− θi)
[
1−

pifVi(oi)fT oi
i

(toi
i )FSi(ai − ti,oi)

fT oi
i

(toi
i ) {fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]}

]}
= constant

−
N∑
i=1

{
ln(θi)

pifVi(oi)FSi(ai − ti,oi)
fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]

+ ln(1− θi)
[
1− pifVi(oi)FSi(ai − ti,oi)

fVi(oi) + [1− FVi(oi)][1− FSi(ai − ti,oi)]

]}
(4.19)
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Chapter 5

Conclusion

In this thesis, we consider model parameter estimation problems where the true underlying
models are complex. We build estimators based on a simpler, misspecified models, and
adjust for bias in the estimators, if necessary.

The focus of Chapter 2 is the estimation of the regression coefficients in models for time
series of count data. We consider a general class of parameter-driven models for such data.
While this class is highly flexible (and includes some common models as special cases), com-
putation of the MLE of the regression coefficients of models in this class can be challenging.
We study the behaviour of three simple estimators of the regression coefficients. We show
that the estimator based on the Poisson generalized linear model performs remarkably well
in terms of bias and efficiency, even if the data are overdispersed or autocorrelated. We also
derive a SE for our estimators that is simpler and more accurate than those suggested in the
literature. We show how our methods and results can be applied in practice, and include a
detailed analysis of polio and epileptic seizure data sets.

The context of Chapter 3 is display advertising. Our focus is the development of a
computationally efficient and accurate estimator of the probability that a click on an online
ad will convert. We show how to obtain a consistent estimate of this probability based
on a simple logistic regression model (which ignores the conversion delay times) and a
bias adjustment determined using the KLIC approach (which uses the information in the
conversion delay distribution). With a simulation study, we show that our adjusted estimator
(which we call the D-adjusted estimator) has relatively low bias and computational time,
even when the bias adjustment is based on incorrect assumptions. We apply these findings
to the problem of estimating the probability of conversion in a real data set.

In Chapter 4, we extend our estimator in Chapter 3 to allow for visits to the ad after
the click of a user. We propose a method for estimating the probability of conversion with
high accuracy. In particular, we use the KLIC approach to obtain a bias-adjusted estimator
based on a simple (misspecified) logistic model. In this way, we incorporate information
from both the conversion delay and inter-visit time distributions. This new estimator has
a reasonable computational time (relative to that of the MLE of the true model), and has
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a smaller bias than that of either the maximizer of the logistic regression model or the
D-adjusted estimator.

In conclusion, we show that, for some problems, the maximizers of the likelihoods of
simple, misspecified models are accurate, efficient estimators parameters of the true models.
In other cases, where these estimators are biased for the parameters of interest, we can
examine the true underlying model, and employ bias correction techniques (e.g., the KLIC
approach and the penalized likelihood approach of Firth [1993]). By adjusting the estimators
and their SEs in this way, we can obtain approximately unbiased estimators with accurate
SEs.
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Appendix A

Supplementary materials

Supplementary materials for all the three papers are available at
http://researchdata.sfu.ca/pydiopublic/0734e7
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