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Abstract

Bayesian model averaging (BMA) is a widely used method for model and variable selection.
In particular, BMA with Bayesian Information Criterion (BIC) approximation is a frequen-
tist view of model averaging which saves a massive amount of computation compared to
the fully Bayesian approach. However, BMA with BIC approximation may give misleading
results in linear regression models when multicollinearity is present. In this article, we ex-
plore the relationship between performance of BMA with BIC approximation and the true
regression parameters and correlations among explanatory variables. Specifically, we derive
approximate formulae in the context of a known regression model to predict the BMA be-
haviours from 3 aspects — model selection, variable importance and coefficient estimation.
We use simulations to verify the accuracy of the approximations. Through mathematical
analysis, we demonstrate that BMA may not identify the correct model as the highest prob-
ability model if the coefficient and correlation parameters combine to minimize the residual
sum of squares of a wrong model. We find that if the regression parameters of important
variables are relatively large, BMA is generally successful in model and variable selection.
On the other hand, if the regression parameters of important variables are relatively small,
BMA can be dangerous in predicting the best model or important variables, especially when
the full model correlation matrix is close to singular.

The simulation studies suggest that our formulae are over-optimistic in predicting posterior
probabilities of the true models and important variables. However, these formulae still
provide us insights about the effect of collinearity on BMA.

Keywords: All subsets regression, Simulation, Model selection, Variable importance, Ex-
pected residual sum of squares.
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Chapter 1

Introduction

In statistical analysis, regression is almost always performed in settings where the “true
model” is unknown. By true model we mean whatever probability distribution generates the
observed data (Hocking, 1996). The problem is often approached by assuming a convenient
model structure that approximates the true model, and for which parameter estimation
and inference are relatively easily performed (Davison and Demetrio, 2002). It is typical
that the model we choose is not the true model, but we hope it is a “good model”. A good
model should capture the important effects of explanatory variables on the response, while
filtering out noise from the particular dataset (Burnham and Anderson, 2002). However, in
reality, we often do not know which model to choose that gives the best approximation to
the truth. Parameter estimation and subsequent inferences based on the chosen model are
typically performed without acknowledging this uncertainty.

An alternative approach is to propose several candidate models as approximations to the
truth and let data decide which one is the best. In particular, in multiple linear regression,
a primary question is often to identify which variables are important to the model. Many
methods have been developed to perform model selection and variable selection in regression
settings. For example, classical approaches include stepwise regression, all subsets regression,
selection based on information criteria, and others (Hocking, 1996).

These methods often lead to the selection of a single model as the “best”. The parameter
estimates and conclusions reached after such a process depend on treating the winning
model as if it had been the only one considered. As a result, “the consequent uncertainty is
not usually incorporated into the inference” (Davison and Demetrio, 2002). This may “lead
to underestimation of uncertainty about quantities of interest and hence to overoptimistic
and biased inferences” (Davison and Demetrio, 2002).

With concern regarding the cost of ignoring model uncertainty, Bayesian model averaging
(BMA) was proposed by Raftery (1995). BMA provides a way to combine models and
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give further inference. It incorporates model uncertainty into the parameter estimates and
inferences by estimating a posterior probability that each considered model is the correct
one, given the data. Then inferences can be based on posterior means (weighted averages) of
quantities across models (Raftery, 1995). Conducting fully Bayesian analysis is challenging,
but BMA can be used in a frequentist way using an easily computed quantity, the Bayesian
Information Criterion (BIC), to provide an approximation to the Bayes factor for each
model. Such approximation makes BMA computationally simple and fast. Moreover, if
we apply BMA to all subsets regression, it performs model selection (selecting the “best”
model) and variable selection (selecting the most important variables) simultaneously. In
other words, we can easily obtain the posterior probability of each model, and from this
each variable, and hence have a measure of variable importance (Raftery, 1995).

The large sample behaviour of BMA is trustworthy. Wasserman (2000) claimed that BMA
is consistent for model selection, which means the posterior probability of the correct model
or the model closest to the true model converges to one as the sample size increases. An
interesting question is how accurate BMA is in small samples. In particular, it is important
to understand how BMA reacts when the covariates are highly correlated. Multicollinearity
often causes difficulty for estimating regression parameters (Hocking, 1996), and hence may
also disturb BMA in multiple regression.

The goal of this paper is to gain a better understanding of the effect of multicollinearity
on BMA. Specifically, we focus on a 3 variable problem with a known true model where
all subsets regression is used for model and variable selection. We use a combination of
mathematical analysis and simulations to analyze the behaviour of the BIC approximation
to BMA. We identify situations where BMA provides misleading results in model selection,
variable importance and coefficient estimation. In particular, our results corroborate those
from Ghosh and Ghattas (2015), who studied a similar problem from a different perspective.
We show BMA may fail to select the correct model when great multicollinearity exists.
Also, the posterior probabilities for unimportant variables may be inflated and coefficient
estimates may give signs and/or values that do not make sense. From this study, we “pave
the way” for developing preliminary diagnostics of BMA applications.

The outline of the paper is as follows. Chapter 2 reviews the BMA structure and BIC
approximation. Chapter 3 provides details on the mathematical analysis to assess the effect
of collinearity on BMA. The results of mathematical analysis are given in Chapter 4. Chapter
5 describes the simulation study used to corroborate the results from Chapter 4. We draw
conclusions and discuss possible further research in Chapter 6.
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Chapter 2

Background and Literature Review

2.1 A Review of BMA Structure from a Bayesian Perspec-
tive

Bayesian model averaging can be studied from either Bayesian or frequentist perspectives.
Bayesian estimation expresses model and variable uncertainty and views all unknown pa-
rameters as random variables (Raftery, 1995). The comprehensive Bayesian approach to
model selection and estimation starts by considering that data are generated from one of
K candidate models M1, M2, ..., MK . For now, we allow these models to be arbitrarily
different. Later we will focus on linear regression models that differ only in the variables
they contain. We denote the set of all possible models the model space by M. Each Mk

(k = 1, ...,K) has its corresponding model parameter vector θk. We assign a prior proba-
bility pr(Mk) to each model as the probability thatMk is the correct model, and a prior
probability distribution pr(θk|Mk) to the parameters of each model. Then pr(D|θk,Mk) is
the likelihood of the data underMk (Hoeting et al., 1999).

The posterior probability for a modelMk is

pr(Mk|D) = pr(D|Mk)pr(Mk)∑K
l=1 pr(D|Ml)pr(Ml)

(2.1)

using Bayes’ theorem, where

pr(D|Mk) =
∫
pr(D|θk,Mk)pr(θk|Mk)dθk (2.2)

is the integrated likelihood of modelMk.
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The posterior probabilities in (2.1) can be used as a straightforward model selection criterion
by selecting the most likely model (Fragoso and Neto, 2014). Such a model is often referred
as the highest probability model (HPM) (Ghosh and Ghattas, 2015).

Model averaging refers to the process of estimating some quantity under each model and
then averaging the estimates according to the posterior probability of each model. For
example, if ∆ is some quantity of interest, then the posterior distribution of ∆ given data
D is

pr(∆|D) =
K∑

k=1
pr(∆|Mk, D)pr(Mk|D). (2.3)

The posterior mean and variance of ∆ are:

E(∆|D) =
K∑

k=1
E(∆|D,Mk)pr(Mk|D)

and

V ar(∆|D) =
K∑

k=1
[V ar(∆|D,Mk) + E2(∆|D,Mk)]pr(Mk|D)− E2(∆|D)

where E(∆|D,Mk) and V ar(∆|D,Mk) are the posterior expectation and variance of ∆
under modelMk. See Raftery (1993) and Draper (1995).

The posterior mean of ∆ is the average of the expectations of ∆ under each model under
consideration, weighted by the posterior model probabilities.

2.2 A Frequentist View of Bayesian Model Averaging

Even though constructing a BMA analysis seems intuitively easy, there are some difficulties
in its implementation. First, the size of the space of interesting models can grow very large.
For example, in linear regression with p explanatory variables, all subsets regression results
in 2p models. Thus, the exhaustive summation in (2.3) becomes impractical with large p.
One approach to tackle this problem is to average over a subset of models supported by the
data and discard models with small posterior probabilities. To achieve this, the Occam’s
window method by Madigan and Raftery (1994) averages over a subset of models selected by
the ratio of their posterior probabilities to the highest posterior probability, which greatly
reduces the number of models.

Second, the process of carrying out the fully Bayesian computation is complicated. Tierney
and Kadane (1986), found a method that uses a Laplace transformation to approximate
integral (2.2) to simplify integration for generalized linear models and some other model
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classes. However, the specification of priors is still left as a challenge. While most researchers
seem to agree that the uniform prior on pr(Mk) is reasonable, there remains some discussion
on the choice of pr(θk|Mk).

This lack of consensus regarding priors on the model parameters allowed Raftery (1986,
1995) to develop a different perspective of BMA using a different set of priors. Specifically,
Raftery (1986, 1995) introduced the BIC approximation to the Bayes factor, which allows
posterior probabilities to be calculated with minimal effort.

BIC is defined as
BIC = −2 log(L̂) + q log(n)

where L̂ is the maximized likelihood and q is the number of parameters.

In the context of linear regression with independent and identically distributed (iid) normal
errors that we are interested in, suppose thatMk, k = 1, ...,K, are linear regression models
based on different subsets of p explanatory variables X1, . . . , Xp. Then the parameters θk

consist of q = p + 2 parameters including regression parameters {βi : Xi ∈ Mk}, the
intercept and the model variance. Then BIC for each model simplifies to

BICk = n log(RSSk

n
) + q log(n) + C

where RSSk is the residual sum of squares under Mk and C is a constant that does not
depend on q, or k.

It is beyond the scope of this paper to discuss the details of the derivation of this BIC
approximation (see Section 4 in Raftery (1995) for details). Roughly, if we assume a uni-
form prior on each model (ie, pr(Mk) = 1

K , k = 1, ..,K) and Jeffreys’ priors (Kass and
Wasserman, 1996) with carefully chosen constants for θk, (ie, pr(θk|Mk) is a multivariate
normal prior with mean at the maximum likelihood estimate and variance equal to the
expected information matrix for one observation)(Raftery, 1995), the posterior probability
can be approximated by:

p̂r(Mk|D) ≈ π̂k =
exp(−1

2∆BICk)∑K
l=1 exp(−1

2∆BICl)
(2.4)

where ∆BICk = BICk−BICmin, with BICmin = mink BICk. We can also replace ∆BICk

with BICk in the above formula (Raftery, 1995). We use the hat symbol to emphasize
quantities that are obtained from data.
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When π̂k replaces pr(Mk|D) in (2.3), we can easily obtain a weighted average of the es-
timates of the interesting quantity ∆ from different models. For example, in all subsets
regression with p covariates, if ∆k is an indicator for the presence of variable Xi in a model,
one can use (2.3) to calculate the posterior probability that each variable belongs in model,
and hence rank variable importance. Mathematically, we have

γ̂i = P̂ (βi 6= 0) =
K∑

k=1
π̂k1(Xi ∈Mk) (2.5)

(i = 1, ..., p), where 1(Xi ∈ Mk) is the covariate indicator. Barbieri and Berger (2004)
refer γi as the posterior inclusion probability for variable Xi. Higher γi indicates higher
importance of variable Xi.

On the other hand, when ∆k represents a coefficient βi that is common to all models, one
can use (2.3) to obtain the posterior mean for coefficient estimation. The estimated posterior
mean for βi is

β̂i =
K∑

k=1
π̂kβ̂i,k

where β̂i,k is the estimate of βi in modelMk.

2.3 Properties of the BIC Approximation to BMA

When people use the BIC approximation instead of the fully Bayesian approach, they are
often unaware that there are some fundamental differences between these two. In particular,
the performance of BMA greatly depends on the choice of priors (both the priors on regres-
sion hyperparameters and model probability priors) (Fernandez et al., 1998). One of the
desired properties of any model- or variable-selection tool is consistency. In BMA, assuming
that the correct model is in our model space, we would like to have the posterior probability
of the correct model to converge to 1 as the sample size increases (Fernandez et al.1998).
Fernandez et al. (1998) theoretically determined that some prior combinations would lead
to consistency, but some other cases failed. When applying the BIC approximation to BMA,
Wasserman (2000) claimed that under weak conditions, the approximation achieves the de-
sired consistency. In addition, under regularity conditions, the posterior probability of the
model that contains the closest approximation to the true distribution tends to 1 if the true
model is not in the model space considered (Wasserman, 2000). Wasserman (2000) also
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pointed out that when the true model is in two or more nested models, BMA favours the
parsimonious model and convergence happens faster if candidate models are not nested.

Even though BIC approximation to BMA is consistent, various critiques arose to question
the validity of BIC approximation under finite samples. In particular, Weakliem (1999)
argued that the Jeffreys’ prior is too spread out, which causes the BIC approximation to
be overly conservative. In response to Weakliem’s doubt, Raftery (1999) admitted that
“BIC is likely to be conservative relative to Bayes factors based on informative priors”. It
follows that, in most cases, “if BIC finds evidence for an effect, we should agree that data
support the effect and not necessarily conversely”. Wasserman (2000) also claimed that BIC
approximation seems to work well in well-behaved problems with moderate to large sample
sizes, but can break down in irregular cases.

Although it is known that the BIC approximation has some defects, Fragoso and Neto’s
(2015) review on BMA found that most articles use the BIC approximation since the BIC
values can be easily obtained from most software. The use of BIC approximation eliminates
many computational difficulties with the Markov chain Monte Carlo process that are en-
countered in the fully Bayesian approaches. It makes BMA analysis straightforward and
immediately available from maximum likelihood estimates (Fragoso and Neto, 2015). Such
significant computational savings often outweigh the defects of BIC approximation.

2.4 BMA and All Subsets Regression under Collinearity

All subsets regression is a common technique for model and variable selection in linear re-
gression and related techniques. It estimates models for all possible combinations of explana-
tory variables and determines which set performs the best according to some predetermined
criteria such as Akaike’s information criterion (AIC) or BIC (Elliot et al., 2016). Similar to
all other regression problems, collinearity is among the top concerns by researchers working
with this method. When collineaity exists, the common criteria in all subsets regression can
have very low success rate in identifying the correct model (Becker et al., 2014). Even when
the correct model is chosen, collinearity can inflate the variance of ordinary least squares
parameter estimates and yield incorrect sign and magnitude of the estimates (Hocking,
1996).

As we mentioned earlier, BMA is more reliable for model and variable selection than se-
lecting a single model in all subsets regression since it incorporates selection uncertainty.
Unfortunately, it is known that BMA with regression models can inherit problems with
collinearity. Ghattas and Ghosh (2015) demonstrated via real data analysis and simulation
studies that some priors may be more adversely affected under strong collinearity than oth-
ers. They studied 4 different priors for regression coefficients and found that some priors led
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to markedly better predictive performance than others. The HPM can also be different if
different priors are chosen. Second, the prediction performance of the HPM and the median
probability model (MPM) (Barbieri and Berger, 2004) can be greatly affected by collinear-
ity. The MPM is defined to be the model consisting of those variables whose γi values are at
least 0.5. Barbieri and Berger (2004) claimed that “the MPM considerably outperforms the
HPM in terms of predictive performance”. In contrast, Ghattas and Ghosh (2015) showed
that under collinearity the HPM could provide better prediction than MPM.

We are unaware of any research done explicitly on the effect of collinearity when BMA is
applied with BIC approximation. We aim to address this gap.
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Chapter 3

Mathematical Analysis of BMA on
All Subsets Linear Regression
Model

This chapter describes the mathematical analysis we did to study the collinearity effect
on BMA applications. The definition of collinearity effect largely depends on the goal of
the study. In this paper, we focus on its effect from three aspects: model selection, variable
importance and coefficient estimation. These aspects correspond to the most popular usages
of BMA methods (Fragoso and Neto, 2015). In particular, we looked into the 3 variable
all subsets regression model with various coefficients and correlation structures. We first
conducted a mathematical approximation of the entire BMA process and identified cases
when BMA gives wrong or misleading results in expectation. All cases were then tested via
simulation studies described in Chapter 5. We hope the mathematical analysis can explain
the simulation results, and hence offer insight for when BMA can be safely applied on
regression models.

3.1 Model Setups

To fix ideas, suppose there are three covariates and the true linear model that generates
data is

Y = β1X1 + β2X2 + ε (3.1)

where Y = (y1, ..., yn)′ is the vector of responses. Also, X1 and X2 are n-vectors of values
from covariates X1 and X2. A third variable, X3 is measured but is not related to the
response. As usual, the random errors ε ∼ N(0, σ2I) are assumed to be independent. The
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variance of εi (i = 1, ..., n) is σ2 and is fixed at 1. The variance term is not our primary
interest, and our analysis can be easily generalized to cases where εi has variance other than
1. We also fixed sample size n = 100 throughout the analysis.

Let X = (X1,X2,X3)′. Without loss of generality, assume all covariates are standardized.
This significantly simplifies the subsequent calculations because X ′X can be expressed in
terms of correlation matrix.

X ′X = nR = n


1 r12 r13

r21 1 r23

r13 r23 1


where rij is the sample correlation between Xi and Xj (i, j = 1, 2, 3). We will show that
we can approximate the entire BMA/BIC process using functions of only the parameters,
β1, β2, r12, r13 and r23. We will investigate the BMA behaviour under different parameter
combination settings.

It is important to know the constraints on the correlation matrix of 3 variables. For each
particular pair of rij and rjl, Cholesky-decomposition of correlation matrix shows ril is
bounded by

rijrjl ±
√

(1− r2
ij)(1− r2

jl)

(i, j, l = 1, 2, 3). The correlation matrix is singular when ril is at the boundaries.

All subsets regression takes 23 = 8 possible models Mk (k = 1, ..., 8) on the 3 variables.
The 8 models are:

• M1: Y = ε

• M2: Y = β3X3 + ε

• M3: Y = β2X2 + ε

• M4: Y = β1X1 + ε

• M5: Y = β2X2 + β3X3 + ε

• M6: Y = β1X1 + β3X3 + ε

• M7: Y = β1X1 + β2X2 + ε

• M8: Y = β1X1 + β2X2 + β3X3 + ε

10



M7 is the true model. These 8 models form the model space that we will later use in BMA
applications.

3.2 Expectation of Model Posterior Probability

All analysis for model selection, variable importance and coefficient estimation depends on
the behaviours of model posterior probabilities (2.4), whereas model posterior probabilities
are functions of BIC for each model and hence the corresponding residual sum of squares
(RSS) in regression. We hope to understand the posterior probabilities by looking at their
expectations.

For each model, the RSS is a quadratic form Y ′(I−Hk)Y , whereHk = Xk(X ′kXk)−1X ′k
is the hat matrix of the fitted modelMk and Xk is the model covariate matrix. We derive
the expectation of RSS:

E(RSSk|Mk) = σ2(n− p) + (Xoβo)′(I −Hk)(Xoβo)

where p is the number of nonzero β coefficients in the regression model. We denote βo =
(β1, β2)′ andXo = (X1,X2)′ as the regression coefficients and covariance of the true model.

Table 3.1 shows all E(RSS) for all 8 models. The 0’s and 1’s in columns 2–4 are indicators
for whether each covariate appears in the model.

Table 3.1: Expectation of RSS

Models X1 X2 X3 E(RSS)

M1 0 0 0 nβ2
1 + 2nr12β1β2 + nβ2

2 + σ2n
M2 0 0 1 n(1− r2

13)β2
1 + n(1− r2

23)β2
2 + 2n(r12 − r13r23)β1β2 + σ2(n− 1)

M3 0 1 0 nβ2
1(1− r2

12) + σ2(n− 1)
M4 1 0 0 nβ2

2(1− r2
12) + σ2(n− 1)

M5 0 1 1 nβ2
1(1− r2

12+r2
13−2r12r13r23

1−r2
23

) + σ2(n− 2)

M6 1 0 1 nβ2
2(1− r2

12+r2
23−2r12r13r23

1−r2
13

) + σ2(n− 2)
M7 1 1 0 σ2(n− 2)
M8 1 1 1 σ2(n− 3)

As shown in Table 3.1, the E(RSSk) for Mk is in the form of fk(βi, rij , n) + σ2(n − p),
where fk(βi, rij , n) is a function of coefficient parameters, variable correlations and sample
size. The function fk(βi, rij , n) is never negative and can be viewed as the bias in RSS. The
bias is always 0 if the model we are fitting is or contains the true model. However, as we
will see in Chapter 4, some combinations of βi and rij values will result in very small bias in
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E(RSSk) for some k 6= 7 and promoteMk to appear better thanM7 even when it should
not.

Similarly, the variance of the residual sum of squares for each model is

V ar(RSSk|Mk) = 2σ4(n− p) + 4σ2(Xoβo)′(I −Hk)(Xoβo)

From there, we can further get the expectation of BIC by applying second order Taylor
expansion (we drop the hat of π̂ for easier notation).

E(BICk) = E(n log(RSS
n

) + p log(n)|Mk)

≈ n log(E(RSSk)
n

)− n

2
V ar(RSSk)
E2(RSSk) + p log(n)

Note that we express the penalty as p log(n) rather than q log(n), because q = p+ 2 for all
models. The additional 2 log(n) is common to all models and irrelevant to model compar-
isons.

The final step is to obtain the expectation of the model posterior probabilities, which is more
complex. The exact expectation of posterior probability can be obtained by viewing (2.4) as
a softmax mapping whose inputs are BICk. Assume BIC is a real valued vector indexed
by k, and −1

2BIC has mean µ and covariance matrix Σ. Note that µ and Σ are greatly
determined by the β1, β2, r12, r13 and r23. Daunizeau (2017) derived the approximation of
the expected log-softmax based upon a second order Taylor expansion:

E(log πk(BICk)) ≈ log πk(µ) + 1
2 tr[(π(µ)π(µ)T −Diag(π(µ)))Σ] (3.2)

where π(x) is a vector whose entries are the softmax functions πk(x).

In the above approximation, the second term on the right hand side is independent of k.
Therefore, under the same parameter and correlation setting,

E(log πk(BICk)) ≈ log πk(µ) + C1

for some constant C1 across all 8 models.

Daunizeau (2017) claimed that the approximation does not ensure a proper normalization,
i.e. 1 =

∑
k expE(log πk(BICk)) may not be satisfied.

Exponentiating both size of the previous equation, we have
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expE(log πk(BICk)) ≈ C2πk(µ)

For some constant C2 independent of k. However, by Jensen’s inequality,

expE(log πk(BICk)) ≤ E(πk(BICk))

In order to fully obtain E(π̂k), we need to work out the explicit expression of (3.2) which
might be overly complicated for our purposes.

There are several approximations to the expectation of posterior probability, each with
its own drawbacks and imperfections. For analytical simplicity, we propose Ẽ(π̂k) as an
estimate of E(π̂k).

Ẽ(π̂k) =
exp(−1

2E(BICk))∑8
l=1 exp(−1

2E(BICl))
(3.3)

Even though Ẽ(π̂k) is not the same as E(π̂k), we will study its features using simulations
and we hope it mimics E(π̂k) reasonably well. If so, Ẽ(π̂k) would allow us to explain the
BMA process with less calculation.

3.3 A Study on (3.3)

Before we use Ẽ(π̂k) to identify combinations of the parameters β1, β2 and r12, r13, r23,
we want to evaluate its accuracy. To do this, we evaluated Ẽ(π̂k), k = 1, ..., 8, for 1,024
combinations of the parameters. We then simulated data from these same combinations
and estimated each π̂k empirically for comparison.

The parameters were chosen on a five dimensional grid to cover a wide range of parameters.

• β1 = −1,−0.5, 0.5, 1

• β2 = −1,−0.5, 0.5, 1

• r12 = −0.9,−0.5, 0.5, 0.9

• r13 = −0.9,−0.5, 0.5, 0.9

• For each pair of r12 and r13. We divide the possible range of r23 into 16 equal length
intervals and take r23 equal to the right point of either the 1st, 5th, 11th or 15th
interval.
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Then we additionally simulated data from each of these combinations to obtain an unbiased
empirical estimate of model posterior probabilities. We fixed sample size at n = 100 and
σ2 = 1. We generated the explanatory variablesXi (i = 1, 2, 3) from the multivariate normal
density N(0,R), such that cor(Xi, Xj) = rij . The response variable Y was generated from
the true model (3.1) and the procedure was repeated 100 times to generate 100 datasets.
For each of the 100 runs, we fitted all 8 models. and obtained the estimates π̂k,c from the
model BICs as in (2.4) for each parameter combination c (c = 1, . . . , 1024).

We calculated Ẽ(π̂k,c) according to (3.3) for each k. We also calculated π̄k,c as the mean of
π̂k,c over 100 runs. We then compared π̄k,c with Ẽ(π̂k,c) for each k.

Figure 3.1: Box plots of the predicted model posterior probability minus the simulated mean
of model posterior probability for all models.

The results are moderately satisfying. Figure 3.1 shows the box plots of Ẽ(π̂k,c) − π̄k,c,
k = 1, ..., 8. For all the combinations we tested, π̄k,c and Ẽ(π̂k,c) are very close for all
models except the true model M7. We found Ẽ(π̂k) tends to underestimate the posterior
probabilities ofM3 throughM6, and overestimate the posterior probabilities ofM8 slightly.
The overestimation onM7 is more severe.M3 andM4 are the one-variable models which
contain only one important variable.M7 andM8 are the models whose E(RSS) have no
bias term (see Table 3.1). For some parameter combinations, Ẽ(π7) and π̄7 can differ by at
most 0.2, whereas they differ by at most 0.13 for other k. The two quantities are mostly
consistent with each other in terms of model selection. For 85% of the times, Ẽ(π̂k,c) agrees
with π̄k,c in that they both assign the largest probability to the same model.
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3.4 Computations for Variable Importance and Parameter
Estimation

From the previous simulation, we see Ẽ(π̂k) and π̄k mostly agree on selecting the HPM.
With this feature in mind, we will continue to use Ẽ(π̂k) as a substitute for E(π̂k) due to
its simple structure.

In this section, we will consider variable importance and coefficient estimation as one group
since both of them are applications of formula (2.3).

To assess variable importance, we get the expectation of γ̂i in (2.5).

E(γ̂i) = E(
K∑

k=1
π̂k1(Xi ∈Mk)) =

K∑
k=1

E(π̂k)1(Xi ∈Mk)

Since Ẽ(π̂k) is our estimate of E(π̂k), we define

Ẽ(γ̂i) =
K∑

k=1
Ẽ(π̂k)1(Xi ∈Mk) (3.4)

as an estimate of E(γ̂i).

A full analytic approach to understand the effect of BMA on coefficient estimation is again
challenging. We first observe that, due to the structure of Xk, the expectations of ordinary
least squares (OLS) estimates β̂k under each specific model are easy to compute.

Table 3.2 shows the expectation of OLS estimates E(β̂k|Mk) = E((X ′kXk)−1X ′kY |Mk)
under each model.

However,

E(β̂i) = E(
K∑

k=1
π̂kβ̂i,k)

(i = 1, 2, 3). π̂k and β̂i,k may not be independent. Thus, the joint distribution of π̂k and β̂i,k

is needed in order to compute the expectation of coefficient estimates exactly. We have no
formal estimate of this joint distribution. Instead, to achieve easy calculation and structure,
we use

Ẽ(β̂i) =
K∑

k=1
Ẽ(π̂k)E(β̂i,k) (3.5)
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to approximate the E(β̂i).

Table 3.2: Expectation of Model Parameters

Models X1 X2 X3 E(β̂1) E(β̂2) E(β̂3)

M1 0 0 0 0 0 0
M2 0 0 1 0 0 r13β1 + r23β2
M3 0 1 0 0 r12β1 + β2 0
M4 1 0 0 β1 + r12β2 0 0
M5 0 1 1 0 β2 + r12−r23r13

1−r2
23

β1
r13−r12r23

1−r2
23

β1

M6 1 0 1 β1 + r12−r23r13
1−r2

23
β2 0 r23−r12r13

1−r2
13

β2

M7 1 1 0 β1 β2 0
M8 1 1 1 β1 β2 0

3.5 Methods for Main Study

Using the mathematical derivations developed in the previous two sections, we now want to
broadly explore how BMA works across a wide range of parameter combinations. We analyze
the BMA behaviour in model selection, variable importance and coefficient estimation,
respectively. To do so, we test 96,800 combinations of β1, β2, r12, r13, and r23 on a five
dimensional grid, maintaining n = 100 and σ2=1. We chose the parameter combinations as
follows:

1. β1 and β2: ±1, ±0.8, ±0.6, ±0.4, ±0.2.

2. r12 and r13: ±0.9, ±0.7, ±0.5, ±0.3, ±0.1, 0.

3. For each pair of r12 and r13, we chose 8 points for r23 by taking the midpoints of 8
equal intervals of its range.

The choice of parameter combinations is an extension of the parameters used in the simu-
lation study in Section 4.3.

We calculate Ẽ(π̂k,c) (k = 1, .., 8, c = 1, . . . , 96800), Ẽ(γ̂i,c) and Ẽ(β̂i,c) (i = 1, 2, 3) ac-
cording to equations (3.3), (3.4) and (3.5). We wish to identify dangerous cases of BMA in
model selection and variable importance. By dangerous cases, we mean the cases where the
formulas predict that BMA may give wrong or misleading answers on average.

We say that BMA is successful for model selection if the true model is chosen as the
HPM according to Ẽ(π̂k). Otherwise it is dangerous to use for model selection. When it
is dangerous, we use Table 3.1 and other mathematical results to explain why the correct
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model is not chosen. To better understand BMA’s performance on model selection, we define
the Margin m as

m(Ẽ(π̂)) = Ẽ(π̂7)−max{Ẽ(π̂1), Ẽ(π̂2), ..., Ẽ(π̂6), Ẽ(π̂8)}

where Ẽ(π̂) is a vector whose entries are Ẽ(π̂k).

The Margin measures the minimum amount of posterior probability by which the true
model is correctly classified. Higher positive Margin means the posterior probability is more
accumulated at the true model and the true model is more clearly distinguished from the
rest. A negative Margin indicates a dangerous case for model selection.

Regarding variable importance, we follow Barbieri and Berger (2004) that a variable is iden-
tified as important if γi > 0.5. Then we categorize a successful case c of variable importance
if Ẽ(γ̂1,c) > 0.5, Ẽ(γ̂2,c) > 0.5 and Ẽ(γ̂3,c) < 0.5 are satisfied simultaneously. Otherwise,
the case is classified as dangerous for variable importance.

We will classify all the 96,800 cases into 4 groups according to their BMA performance in
the math analysis: successful in model selection and variable importance (SS), successful in
model selection and dangerous in variable importance (SD), dangerous in model selection
and successful in variable importance (DS), dangerous in model selection and dangerous
variable importance (DD). Within each group, we study coefficient estimation. If Ẽ(β̂3,c)
is largely different from 0 or Ẽ(β̂i,c) (i = 1, 2) is largely different from its corresponding
parameter βi, BMA is less satisfying and gives biased coefficient estimates. We define the
Approximate Bias D for each parameter as:

D(Ẽ(β̂i)) = Ẽ(β̂i)− βi

where β3 is taken as 0. Approximate Bias measures how biased our coefficient estimates are.

All the above analyses are based on the mathematical derivations and approximations in
Chapter 3. It can be viewed as our prediction of BMA performance for each parameter
combination setting. We conduct simulation studies in Chapter 5 to verify how well these
formulae predict BMA results.
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Chapter 4

Results of Math Analysis

4.1 Observations of BMA in Model Selection

We summarize the model selection results of the 96,800 parameter combinations in Table
4.1.

Table 4.1: Frequency and Percentage of each Model being Selected as HPM

Models X1 X2 X3 Frequency as HPM Percentage as HPM

M1 0 0 0 2,320 2.40%
M2 0 0 1 1,008 1.04%
M3 0 1 0 10,488 10.80%
M4 1 0 0 10,401 10.70%
M5 0 1 1 0 0%
M6 1 0 1 0 0%
M7 1 1 0 71,240 73.60%
M8 1 1 1 0 0%

We see that the true modelM7 is correctly chosen as the expected HPM for only 73.60%
of the parameter combinations. Also, M3 and M4 are tied as the HPM for 1,343 cases
(1.39%). This happens when β2

1 = β2
2 and the two models have the same expected RSS.M5

andM6 never have the highest expected posterior probability, and never outperformM7.
The same happens for M8. We will look into the details why M1 to M4 can have higher
expected posterior probabilities.

It should be obvious from (2.4) that higher posterior probability corresponds to lower
E(BIC). And E(BIC) can be approximately expressed in terms of E(RSS) as the fol-
lowing:
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E(BIC) ≈ n log(E(RSS))− n log(n)− 2σ2n

E(RSS) + nσ4(n− p)
E2(RSS) + p log(n)

That is, in our case, smaller E(RSS) guarantees smaller E(BIC) for a fixed p. For com-
paring models with different p, the smaller model is preferred as long as its E(RSS) is not
too much larger than that from the larger model. We can explain the observed cases from
the last chapter by comparing the E(RSS) formulae derived in Table 3.1.

Whenever there is very little signal from the explanatory variables in the data, BMA tends
to select the most parsimonious model,M1. This happens when both β1 and β2 are close
to 0, which makes the bias term in E(RSS1) close to 0.

The “most false” model is M2, since it contains one spare variable and neither of the
important variables. This model beats modelsM5,M6, andM8 whenever β2, β1, or both,
respectively, are very small, and/or when the magnitudes of the correlations between X3

and X1, X2, or both, respectively, are very large. In these cases, the smaller penalty forM2

overcomes the tiny increase in bias in its E(RSS). However, among one variables models,
it is rather surprising to haveM2 outperformM3 andM4.

Mathematically, we can see from Table 3.1, E(RSS2) < E(RSS3) whenever

n(1− r2
13)β2

1 + n(1− r2
23)β2

2 + 2n(r12 − r13r23)β1β2 < nβ2
1(1− r2

12)

similarly forM4.

In other words, due to “unlucky” combinations of coefficient and correlation structure,M2

outperformsM3 when
|r12β1 + β2| < |r13β1 + r23β2|

andM2 outperformsM4 when

|β1 + r12β2| < |r13β1 + r23β2|

Thus, the strong correlation between the spare variable X3 and an important variable, plus
the weak correlation between the two important variables will deceive BMA to select M2

rather thanM3 orM4.

Another unpleasant result that can be more misleading is whenM2 outperformsM7. This
happens when E(BIC7) > E(BIC2) and hence a small bias in E(RSS2). If we look at the
bias term f2(βi, rij , n) from Table 3.1, in order for the bias to be small, we need low values
of the coefficient parameters and/or large correlation between X3 and each of X1 and X2,
and as small a value of r12 as possible.
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Thus, if f2(βi, rij , n) is small enough such that E(RSS2) = δE(RSS7) for some δ > 1 and
δ ≈ 1, we can show E(BIC7) > E(BIC2) for sample size not too large.

We have

E(BIC7)−E(BIC2) = (1
δ
−1) 2nσ2

E(RSS7)+(1− 1
δ2 )n(n− 1)σ4

E2(RSS7) −
nσ4

E2(RSS7)+log(n)−n log(δ)

(4.1)

Recall E(RSS7) = n − 2 and σ2 = 1. The Equation (4.1) shows, if δ ≈ 1 and n is not too
large, the first two terms are close to 0 and n

E2(RSS7) = O( 1
n). When log(n) > n log(δ) −

n
E2(RSS7) , (4.1) can be positive and hence allowM2 outperformM7 on average. However,
as n increases, (4.1) will be guaranteed to become negative since n log(δ) grows much faster
than log(n). In other words, in expectation, as n increases M2 cannot outperform M7

anymore.

At last, we expectM3 (orM4) to outperformM7 in expectation when β1 (or β2) is small,
or when |r12| is close to 1. In either of these two circumstances, BMA will favour the more
parsimonious model compared to the true model.

M5 andM6 can never outperformM7 in expectation because the bias terms in the RSS,
f5(βi, rij , n) and f6(βi, rij , n) are never negative. Hence, for models with p = 2, E(RSS7)
is always smaller than E(RSS5) and E(RSS6), which guarantees a smaller E(BIC7) and a
larger Ẽ(π7). Moreover,M8 can never outperformM7 becauseM8 contains the true model
M7, and BMA will favour the parsimonious model.

4.2 Observations of BMA in Variable Importance and Coef-
ficient Estimation

After getting all models’ posterior probabilities for different parameter combinations, we
now pay attention to the results for variable importance and coefficient estimation. It is
desirable to have high Ẽ(γ̂1) and Ẽ(γ̂2), and low Ẽ(γ̂3) for BMA to successfully classify
the importance of all three variables. Out of the 96,800 parameter combinations, a rather
modest 67.12% of them have both Ẽ(γ̂1) and Ẽ(γ̂2) bigger than 0.5 while Ẽ(γ̂3) < 0.5. For
96.83% of the combinations, at least one of X1 or X2 is recognized as important.

For cases where the true model is selected, variable importance is generally also successful.
For 89.33% of the cases when BMA selects the correct model, it is also successful in variable
importance. Among the 25,560 cases when BMA is dangerous in model selection, only 1,336
of them correctly select important variables. Even worse, 496 of them select X3 instead of
X1 or X2. This scenario happens when BMA puts too much weight on the models which
contain X3, especially for the cases thatM2 is selected as HPM.
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We divided the cases into 4 groups based on their model selection and variable impor-
tance performance based on our formulas (Table 4.2). Obviously, there is strong association
between the two criteria.

Table 4.2: Number of Cases Within Each Group

Variable Importance
Model Selection Successful Dangerous Total

Successful 63640 7600 71240
Dangerous 1336 24224 25560
Total 64976 31824 96800

We describe the features of the parameter combinations for each group in Table 4.3. We
define the coefficient parameters as High if |βi| is mostly higher than 0.5 for the parameter
combinations classified in each group, and Low if |βi| is mostly lower than 0.5. We define
it as Lower if there are more values less than 0.5. We also calculate the determinant of
X ′X for each parameter combination within each group and report the median of the
determinants for each group (See Appendix A). Smaller determinant of X ′X implies the
correlation matrix from a parameter combination is closer to its boundary.

Table 4.3: Coefficient Estimation of Each Group

β1 β2 Median of determinant

SS High High 0.33
SD Lower Lower 0.21
DS Low Low 0.14
DD Lower Lower 0.13

From Table 4.3, we summarize main findings for our predictions of BMA behaviours in model
selection and variable importance. First, if both βi (i = 1, 2) are substantially different from
0 and the determinant is large, our prediction will suggest BMA to be more likely successful
in both model selection and variable importance. Second, if both βi are close to 0 and the
determinant is relatively small, our analysis suggests those are probably the dangerous cases
in at least one of model selection or variable importance.

The predicted Margin for each group is also shown in Figure 4.1(a). The Margins are
negative for group DS and DD because they do not select the correct model. The medians
of Margin for group SS and DD are more clearly away from 0. In the SD and DS groups,
when BMA is dangerous in just one of model selection or variable importance, the Margins
are closer to 0. It means that in the SD and DS groups, the posterior probability of the true
model is mildly different from the other models (small margin).

It is rather intuitive that ifM7 is clearly better than others, then automatically, β1 and β2

get high probabilities. Thus, a high margin predisposes the case to be successful in variable
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Figure 4.1: Mathematical Analysis Results of the 4 Groups

(a) Predicted Margin for each group
(b) Predicted Approximate Bias for approximate
expectation of β1 coefficient estimator: D(Ẽ(β̂1))

(c) Predicted Approximate Bias for approximate
expectation of β2 coefficient estimator: D(Ẽ(β̂2))

(d) Predicted Approximate Bias for approximate
expectation of β3 coefficient estimator: D(Ẽ(β̂3))

selection. If the Margin isn’t high, then other models rather than the true model have high
probabilities too, and they may promote β3 or fail to promote both β1 and β2.

Figures 4.1(b), 4.1(c) and 4.1(d) show the estimated density curves for the Approximate
Bias of each coefficient βi. We are not surprised that when BMA is dangerous in model
selection and/or variable importance, the densities of Ẽ(β̂i) (i = 1, 2, 3) are more spread
out, whereas for group SS, the densities of D(Ẽ(β̂i) have clear peaks at 0. Among the groups
except for SS, DS has smaller Approximate Bias for all βi compared to the groups that are
dangerous in variable importance.
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Chapter 5

Simulation Study

Our mathematical analysis predicts BMA performance over different parameter combina-
tions. We now describe the simulation study used to verify the observations we noticed
earlier.

We take the same parameter combinations (β1, β2, r12, r13, r23) used in the mathematical
analysis. For each parameter combination, c = 1, . . . , 96800, we simulated the explanatory
variables Xi (i = 1, 2, 3) from the multivariate normal N(0,R), such that cor(Xi, Xj) = rij .
The response variable Y was generated from the true model (3.1) and the process was
repeated 100 times to generate 100 datasets. For each of the 100 runs, we fitted all 8 models
and obtained the following statistics.

• π̂k,c is the realized model posterior probability. It is calculated from the model BICs
as in (2.4).

• Variable importance for Xi (i = 1, 2, 3) is γ̂i,c =
∑8

k=1 π̂k,c1(Xi ∈Mk).

• β̂i,c (i = 1, 2, 3) is the estimated model coefficient for each variable. It is the sum of
β̂i,k weighted by model posterior probabilities π̂k,c. See (3.5).

We define the average of each of the 3 statistics of the 100 runs as π̄k,c, γ̄i,c and β̄i,c, which
are the counterparts of Ẽ(π̂k,c), Ẽ(γ̂i,c) and Ẽ(β̂i,c) in the math analysis, respectively.

Similar to what we have done in the mathematical analysis, if π̄7 is the highest posterior
probability, we say its corresponding parameter combination is successful in BMA model
selection, dangerous otherwise. Also, if γ̄1 and γ̄2 are bigger than 0.5 while γ̄3 is less than
0.5, it is a successful case of variable importance.

We keep the same 4 groups as defined in math analysis. For model selection, we calculate
the Margin m(π̄) and compare it with m(Ẽ(π̂)) for each of the 4 groups. If the simulated

23



Margin is similar to the predicted Margin for a group, math analysis well predicts BMA in
terms of selecting the correct HPM.

To better understand our prediction regarding variable importance, we obtain the odds
ratio of each variable across the 4 groups. Specifically, we look at

ORi = γ̄i/(1− γ̄i)
Ẽ(γ̂i)/(1− Ẽ(γ̂i))

(i = 1, 2, 3) for each of the 4 groups. If ORi is higher than 1 for some i, then on average
Ẽ(γ̂i) underestimates γ̄i. Our math analysis would predict Xi to be less important than it
really is.

Finally, we will compare the Approximate Bias D(β̄i) with D(Ẽ(β̂i)) to assess whether (3.5)
gives a reasonable prediction of the BMA coefficient estimation.

5.1 Results of Simulation Study

Table 5.1 shows the confusion matrix of the math prediction and simulation study. The worst
classifications happen among the cases when we predict BMA to be dangerous in only one
respect (the SD and DS groups). When our formulae predict a case as SD, simulation will
mostly classify such case as DD. Thus, Ẽ(π̂k) is rather optimistic in predicting posterior
probability of the true model when there is confusion in the variable importance measures.
Similarly, the simulation classifies about half of the DS cases as DD. The formulas are most
accurate at predicting DD cases, where the simulation agrees in 98.48% of those cases.

Table 5.1: Confusion Matrix of 4 Groups

Simulation Result
Math Prediction SS SD DS DD Total Percentage Correct

SS 56288 1187 356 5809 63640 88.45%
SD 88 601 17 6894 7600 7.91%
DS 0 0 635 701 1336 47.53%
DD 31 154 182 23857 24224 98.48%
Total 56407 1942 1190 37261 96800

Figure 5.1 shows the simulated Margin m(π̄) for model posterior probabilities versus the
predicted Margin m(Ẽ(π̂)), with groups classified according to the math predictions. The
scatter plots of SD and DS are more discrete due to fewer observations in these groups.

In general, the predicted Margin overestimates the simulated Margin except for group DD.
This implies that when the formulae predict successful model selection (SS and SD groups)
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Figure 5.1: Simulated Margin versus predicted Margin for each group

(a) SS (b) SD

(c) DS
(d) DD

with a positive Margin, the simulation may indicate less certainty for the correct model,
or even a preference for a different model, resulting in a negative margin. In SS, it is
worthwhile to note that when the predicted margin is at least 0.1, the simulations rarely
suggest (0.13%) that a different model is best. On the other hand, simulated margins for the
SD group are usually below zero, indicating that the predicted failure of variable selection
usually implies failure for model selection in the simulation. Most SD cases are classified as
DD in simulations.

The predicted Margin also overestimates the simulated Margin in general in DS. When
we see a negative Margin in DS, the simulated Margin is likely to be more negative. The
DD group has the most accurate prediction on Margin, agreeing with the high correct
classification rate in Table 5.1.

Moreover, Figure 5.2 shows the box plots of odds ratios. For all 4 groups, the odds ratio
for each of X1’s and X2’s posterior probabilities is lower than 1, but is higher than 1 for
X3. In other words, on average, Ẽ(γ̂i) overestimates γ̄i for X1 and X2, but underestimates
for X3. The overestimation seems extremely severe for SS, but most predicted SS cases are
also observed to be SS. We found in the SS group, the predicted Ẽ(γ̂1) and Ẽ(γ̂2) are very
close to 1 too often, whereas the simulations suggest that they should be more moderate.
The underestimation of Ẽ(γ̂3) is not as severe by contrast, so it would seem that the real
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Figure 5.2: Odds Ratio boxplot for each of the 3 regression coefficients, separated by pre-
dicted groups

(a) Odds Ratio for X1: OR1 (b) Odds Ratio for X2: OR2

(c) Odds Ratio for X3: OR3

problem with identifying cases lies in overconfidence about the importance of real variables
as opposed to misidentifying details of the unimportant variable.

Finally, we compare the parameter estimates. Figure 5.3 shows the density plots of Approx-
imate Bias for the simulated coefficients. If we compare them with Figures 4.1(b), 4.1(c)
and 4.1(d), the simulated Approximate Bias results agree with those of the predicted Ap-
proximate Bias for all 3 coefficients that group SS has the smallest Approximate Bias for βi

(i = 1, 2, 3), followed by group DS. All bias estimates have more variability than their cor-
responding predicted values, perhaps partly because these bias estimates are based on only
100 estimates per case. In addition, scatter plots show D(Ẽ(β̂i)) predicts D(β̄i) reasonably
well (See Appendix B).
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Figure 5.3: Parameter estimation of simulation studies

(a) Approximate Bias of simulated mean of β1 co-
efficient: D(β̄1)

(b) Approximate Bias of simulated mean of β2 co-
efficient: D(β̄2)

(c) Approximate Bias of simulated mean of β3 co-
efficient: D(β̄3)
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Chapter 6

Discussion and Conclusion

This paper aims to understand the BIC approximation to BMA in the presence of collinear-
ity. We studied the 3 variable all subsets regression problem and derived the approximate
expectation of model posterior probability (Ẽ(π̂i)), approximate expectation of variable im-
portance (Ẽ(γ̂i)) and approximate expectation of coefficient estimators (Ẽ(β̂i)) to predict
the BMA results for model selection, variable importance and coefficient estimation. These
predictions were then compared with simulated data. We found that our approximate for-
mulas for these quantities tend to be overoptimistic in predicting successful model selection
and variable importance. In general, our formulae overestimate the posterior probabilities
of the correct model and of the important variables. To be more specific, when we predict a
parameter combination to be a dangerous case of model selection and/or a dangerous case
in variable importance, it will most likely to be dangerous in both applications.

The prediction with regards to coefficient estimation is more accurate. We compared the
Approximate Bias of each coefficient between the math prediction and the simulation. We
found D(Ẽ(β̂i)) (i = 1, 2, 3) predicts D(β̄i) reasonably well.

In this study, we offered a way to systematically investigate BMA in the presence of multi-
collnearity. The math formulae are easy to compute for any number of variables and other
combinations of variables in the true model. One could easily extend the math analysis to
these cases in the hopes of discovering a pattern to when BMA could or should not be used.
Thus, the entire body of the study is a proof of concept to show that there is potential for
using theoretical analysis to identify when BMA can be successful in applications.

As with any study, there are certain limitations to our results. We restricted our analysis in
the 3 variable all subsets regression scenario where the true model is in the form of (3.1). We
also restricted sample size n = 100. More research is required to generalize our findings to
the situations with more complex model and correlation structures.Throughout the analysis,
we assumed the true model is known, which is rarely valid in reality. Researchers may
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substitute the true model with the best predicted model in order to use the mathematical
approach in this paper, or may investigate what would happen under a variety of plausible
true models, given a particular observed correlation structure among explanatory variables.
When there are many covariates or the candidate models are not linear regressions, the
analytic approach may not be applicable. In addition, when it is believed that complex
correlation structure exists, it might be more desirable to use the fully Bayesian approach
of BMA and incorporate that information into priors instead of using the BIC version of
BMA.

Finally, although we did not do it, we could consider developing a diagnostic for “safe”
BMA usage by analyzing the correlation matrix for X. This relates to the observation that
certain correlation structures tend to lead to greater likelihood of dangerous cases. We fixed
r12 and r13 and let r23 vary within its range, but it would be better to study the boundary
of the correlation matrix in 3 dimensions to obtain a better understanding of the correlation
structure. Using correlation to identify these cases, rather than the regression parameter
values, is important because we never can know the parameters in practice, but we can
measure the correlation directly on X.
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Appendix A

We give the box plot of the determinant of X ′X for each group. We see the median of
determinate is relatively higher for cases that are predicted to be successful in both model
selection and variable importance compare to the cases that are predicted to be dangerous
in both of the two aspects. However, such amount may not be significant in predicting BMA
performance.

Figure A.1: Determinant of the Full Model Correlation Matrix Boxplot

We also give the histograms for the coefficient parameters observed in each of the predicted
groups. In group SS, most β1 and β2 have values grater than 0.5. By contrast, β1 and β2
in group DS are mostly clustered between -0.4 and 0.4. The histograms of group SD and
group DD are similar, while β1 and β2 have the highest densities around -0.2 to 0.2, they
are also uniformly spread for all other tested values.
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Figure A.2: SS β1 and β2 Histograms

Figure A.3: SD β1 and β2 Histograms

Figure A.4: DS β1 and β2 Histograms
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Figure A.5: DD β1 and β2 Histograms
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Appendix B

We give the scatter plots for D(β̄i) versus D(Ẽ(β̂i)) (i = 1, 2, 3) for all 4 groups. The
D(β̄i) measures the Approximate Bias of each simulated mean of coefficient and D(Ẽ(β̂i))
measures the Approximate Bias of each of the predicted coefficient. We see that on average,
D(Ẽ(β̂i)) well predicts D(β̄i) for all the groups.

Figure B.1: Simulated Approximate Bias (D(β̄1)) versus predicted Approximate Bias
(D(Ẽ(β̂1))) of β1 scatter plot
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Figure B.2: Simulated Approximate Bias (D(β̄2)) versus predicted Approximate Bias
(D(Ẽ(β̂2))) of β2 scatter plot

Figure B.3: Simulated Approximate Bias (D(β̄3)) versus predicted Approximate Bias
(D(Ẽ(β̂3))) of β3 scatter plot
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