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Abstract

Computer simulators play a key role in modern science and engineering as a tool for under-
standing and exploring physical systems. Calibration and validation are important parts of
the use of simulators. Calibration is a necessary part of assessing the predictive capability
of the model with fully quantified sources of uncertainty. Field observations for physical
systems often have diverse types. New methodology for calibration with generalized mea-
surement error structure is proposed and applied to the parallel deterministic transport
model for the Center for Exascale Radiation Transport at Texas A&M University. Vali-
dation of computer models is critical for building trust in a simulator. We propose a new
methodology for model validation using goodness-of-fit hypothesis tests in a Bayesian model
assessment framework. Lastly, the use of a hidden Markov model with a particle filter is
proposed for detection of anomalies in time series for the purpose of identifying intrusions
in cyber-physical networks.

Keywords: Computer Model Calibration; Bayesian; Computer Experiments; Verification
and Validation; Particle Filtering
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Chapter 1

Introduction

Many systems in physics and engineering involve understanding complex relationships be-
tween the inputs to the system and the observable outputs of interest. Explicit modeling of
these relationships as indirectly observable, latent response functions is valuable for under-
standing the processes governing the system and for making predictions. For instance, in
computer experiments, the response function of a physical system can be modeled as a com-
bination of the computer model (or simulator) and systematic bias between the simulator
and experiment. Understanding this latent discrepancy function is important to calibra-
tion and prediction (Kennedy and O’Hagan, 2001; Higdon et al., 2004). This thesis covers
the modeling of latent functions with two broad contexts. In chapters 3 and 4, the latent
function modeling is for calibration and validation of computer experiments, while Chapter
5 is focused on the estimation of a latent function describing the behavior of periodic time
series for purposes of intrusion detection.

The work in Chapters 3 and 4 is motivated by a collaboration with the Center for
Exascale Radiation Transport (CERT) at Texas A&MUniversity. The parallel deterministic
transport (PDT) code is used at CERT for prediction of radiation and particle transport
in complex geometries (Adams et al., 2013). Experiments with an Americium-Beryllium
neutron source and graphite bricks are modeled with PDT as part of the work with CERT.
The goals of CERT include: (i) calibration of model parameters of PDT to improve the
predictive model; (ii) calibration of the level of impurity in each graphite brick and the
distribution of impurity level from brick-to-brick; and (iii) validation of PDT on a series of
experiments of increasing complexity.

Background on computer model calibration with Gaussian process emulators is given
in Chapter 2 in order to set the stage for the new developments in Chapters 3 and 4. The
chapter presents the model proposed by Kennedy and O’Hagan (2001) for Bayesian model
calibration with unknown model discrepancy. Background on Gaussian process regression
is also outlined in Chapter 2.
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In Chapter 3, a new approach to calibration of computer models is developed to handle
the structure of count data from the CERT experiments. The proposed Bayesian framework
generalizes the work by Kennedy and O’Hagan (2001) to non-Gaussian responses. To
facilitate this method, a strategy for sampling the latent mean function is presented. The
proposed approach is demonstrated using the CERT application and synthetic examples.

Chapter 4 moves from calibration to validation of computer models. The foundation
for use of PDT in scientific applications is the trust that the model is able to accurately
reproduce physical observations. Assessment of validity involves accounting for uncertainty
due to stochastic variation inherent in the data and that due to lack of knowledge of aspects
of the computer model (parameters, the response function of the simulator, etc). If the
simulator is able to predict the true response of the physical system, we would expect
that the distribution function of the simulator output predicted by propagating sources
of stochasticity through the computer model would be the same as that of the observed
data. We propose a new methodology for assessment of the validity of computer models
combining methods for Bayesian model assessment and frequentist goodness-of-fit testing.
The proposed procedure mitigates some issues with existing methodology in the literature
and provides both qualitative and quantitative assessment of the model validity.

The motivating application changes from CERT to intrusion detection in engineered
control systems in Chapter 5. Engineered systems (e.g. the power grid) are a critical part
of the infrastructure in the United States and Canada. The safe operation of these facilities
is coordinated with control systems involving networked computers coupled to the physical
infrastructure. These computers can be vulnerable to intrusion and attack which threaten
the stable operation of the system. Anomalous behavior in the system may be an indication
of intrusion, so methods for quickly detecting these anomalies are critical. In Chapter 5,
a method combining a hidden Markov Model for time series alignment, particle filtering,
and on-line quality monitoring is proposed to identify anomalous behavior. The hidden
Markov model is used to estimate the shared latent function describing the behavior of the
time series, taking into account the varied timing of structure in the series. The method is
demonstrated on synthetic examples, as well as data from the heating, ventilation, and air
conditioning system of a large office building.
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Chapter 2

Background on Model Calibration
and Gaussian Processes

The use of large-scale computational models is playing a growing role in major science
and engineering research. The simulators are critical tools for developing understanding
of complex physical systems. They attempt to encode the entirety of our knowledge of
physical processes mathematically and use numerical algorithms to solve these equations
and approximate a physical system response. For experimenters, the simulators can be
used to meet a variety of goals e.g. attempting to gain qualitative insight into the dynamics
that arise in a system, estimating the risk of a quantity of interest reaching a desired (or
undesired) threshold, or indicating how a system responds to changes in model inputs to
assist in designing a planned experiment.

Typically, a physical system has some set of inputs that govern the behavior of the
model and a quantity of interest (QoI) - the measurable outcome of the observed system or
experiment. In order to be modeled, a physical system or experiment must be converted to a
digital representation in the simulator and the numerical methods for running the simulator
must be configured for this representation. The simulator requires setting different types of
parameters: (i) physical constants and other values relevant to the underlying mathematical
model (ii) values needed for evaluation of the model that may not be physical but may be
needed in the software implementation of the model, and (iii) parameters required for the
numerical methods to run the simulator. If the parameters are related to the quality of the
numerical method to approximate the underlying mathematics of the system, (e.g. spatial or
temporal discretization parameters), typically testing the quality of this approximation falls
into the process of model verification which will be discussed in Chapter 3. For parameters
of type (i) and (ii), model calibration is the process of estimating the values that make
the model consistent with the observations. Loeppky et al. (2006) separated these into
calibration and tuning parameter respectively, however for the remainder of this work we
will not distinguish the two, instead treating both as calibration parameters.
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In this thesis, the uses of the simulator range from computer model calibration to as-
sessing the model’s ability to capture the important features of the system’s response (i.e.,
model validation). Many simulators can be computationally demanding, with only a limited
number evaluations may be feasible. Consequently, for model calibration and validation, a
statistical emulator of the simulator is required (Sacks et al., 1989). Frequently Gaussian
processes are used for this task. An introduction to Gaussian processes is covered in Section
2.1. Background for computer model calibration is then presented in Section 2.2.

2.1 Background on Gaussian Processes

A Gaussian process (GP) is a type of nonlinear regression model that has a wide range of
application (Rasmussen and Williams, 2006). Denote the d-dimensional vector of model
inputs as x and the response of the computer model at x as Y (x). A GP is specified by
a mean function, m(x), and a covariance function, 1

κr(xi,xj), that defines how deviations
from the mean function are correlated at locations in the input space. The covariance
function is often specified as the product of the inverse of a precision parameter, κ, and a
correlation function, r(xi,xj). The model specified by the GP is:

Y (x) = m(x) + Z(x),

E[Y (x)] = m(x),

V ar[Y (x)] = 1
κ
, and

Cov[Y (xi), Y (xj)] = 1
κ
r(xi,xj).

(2.1)

The correlation function specifies the properties (e.g. smoothness, periodicity, station-
arity) of members of the function space and determines the distribution on this space. A
stationary covariance function is one where the covariance depends only on the distance be-
tween input locations (Rasmussen and Williams, 2006). In this work, we will focus on the
squared-exponential correlation function, commonly used for emulating computer models
(Sacks et al., 1989; Higdon et al., 2004; Rasmussen and Williams, 2006). That is:

r(xi,xj) =
d∏
`=1

e−β`(xi,`−xj,`)
2
, (2.2)

where d is the number of input dimensions in the model and β` > 0. A value of β` = 0
indicates that the response is insensitive to variation in the `th covariate.
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The predictive distribution at x∗, conditional on observed data {xi,yi; i = 1, ..., nobs},
is Gaussian with (Jones et al., 1998):

E[Y (x∗) | y1, ..., yn] = 1
κ
r(x∗,x)TΣ−1

x (y−m(x)), and (2.3)

V ar[Y (x∗) | y1, ..., yn] = Σx∗ − 1
κ2 r(x

∗,x)TΣ−1
x r(x∗,x). (2.4)

Here, Σx is the covariance matrix of the observed data, Σx∗ is the covariance matrix of the
new observations at new covariate values, κ is the precision parameter, and r(x∗,x) is the
nobs × nnew matrix of correlations between the observed outcomes and nnew new values.
The predicted mean in Equation 2.3 can be viewed as a weighted mean of the observed
data, where the weights depend on the correlations between observations at the predicted
locations and the observed locations.

A common choice of mean function for the GP emulator is to center the observed data
by subtracting the sample mean of the observations and use a constant function m(x) = 0
(Higdon et al., 2008; Goh et al., 2013). We will use this approach to modeling the mean
function throughout this work.

GPs have the beneficial property of interpolating at observed inputs (Jones et al., 1998),
however, for computational stability, a small constant, often called a “nugget”, is added to
the diagonal of the covariance matrix for the emulator (Gramacy and Lee, 2012). While
the use of the “nugget” relaxes the ability of a GP to strictly interpolate, the nugget can
be controlled to allow the emulator to approximately interpolate to as high precision as
numerical stability will allow.

GPs are particularly well-suited for the task of emulating deterministic computer model
output due to the flexibility in modeling complex response surfaces, the ability to interpolate
observed values and to provide a foundation for assessment of uncertainty in the model
response at unobserved inputs Sacks et al. (1989); Jones et al. (1998). Kennedy and O’Hagan
(2000) propose a GP as a fast emulator for computationally-intensive computer models
including joint prediction. They then propose to use this emulation in the process of model
calibration in Kennedy and O’Hagan (2001). Calibration will be the focus of later discussion
in 2.2 and beyond.

Gramacy and Lee (2008) developed a treed GP method for regression and emulation of
simulators in order to accommodate non-stationarity. This worked by fitting independent
GPs to different partitions of the input space. Ba et al. (2012) propose to use a composite
of two Gaussian processes with a spatially-varying variance model for non-stationarity and
heteroscedasticity. The composite Gaussian processes capture variation at different scales
similar to methods proposed in Ferreira and Lee (2007). Gramacy and Apley (2015) propose
a method for extending the use of GPs in computer emulation to large data environments by
use of a local approximation. By performing a greedy search over points near the required
prediction location, a subset of observations can be used that approximately minimize the
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mean-squared prediction error among possible subsets. Gramacy et al. (2015) apply this
method to emulating a radiative shock model. Gramacy and Lee (2012) propose a GP
for use with a single-index model. Here, the simulator response surface is modeled as a
1D function in a single direction defined by a linear combination of the inputs. Gramacy
and Lian (2012) then model the 1D function with a GP. Treating a complex simulator by
a low dimensional function is justified in Constantine et al. (2014). Gramacy and Polson
(2011) proposed a sequential Monte Carlo approach for fitting GP models in regression and
classification in the case of on-line acquisition of data. Bastos and O’Hagan (2009) propose
a number of numerical and graphical diagnostics for assessing the quality of an emulator.

Gaussian processes are also used for emulation of computer models for the purpose of
objective optimization. Jones et al. (1998) discuss the use of GPs to approximate “black-
box” functions for optimization by an expected improvement algorithm. They utilize the
estimates of uncertainty provided by GPs for balancing global and local search. This work
plays a foundational role in Bayesian optimization (Brochu et al., 2010). Lee et al. (2011)
propose GPs for use in optimization with unknown constraints, where both the approxi-
mation to the response surface of the model and the domain to which the optimization is
constrained must be learned from data. Lindberg and Lee (2015) later use GPs for and
propose an asymmetric entropy measure to assist in optimizing near or on the boundary of
this sort of unknown constraint region.

Savitsky et al. (2011) and Shang and Chan (2013) proposed using Gaussian process
regression with non-Gaussian responses. They show the value in using a GP as a flexible
regression tool for modeling complex relationships but do not relate their regression ap-
proach with computer model emulation or calibration. A similar method for using GPs
to model count data in spatial statistics is used in the log-Gaussian Cox process model
(Diggle, 1985). Diggle et al. (2007) gives an overview of methods for Gaussian processes
in spatial statistics including MCMC approaches and show examples using an R package
geoRglm (Christensen and Ribeiro Jr, 2002). Their focus is on 2D Gaussian processes for
spatial models and do not extend to higher dimensional problems nor to learning parameters
related to the inputs to the Gaussian process as in computer model calibration.

In the machine learning community, Titsias and Lawrence (2010) propose a latent vari-
able GP model for unsupervised learning of relationships between observed variables using
variational Bayesian inference. Gal et al. (2015) proposed the use of this latent variable
model with categorical observations.

2.2 Background on Computer Model Calibration

In some applications, model calibration is the stated goal. That is, using a limited number
of field observations and evaluations from the computer model, the aim is to (i) estimate
calibration parameters that govern the simulator response (Kennedy and O’Hagan, 2001);
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and (ii) build a predictive model for reality that is “better” than using either the simulator
or the experimental observations alone.

The standard approach for calibration and prediction for computer experiments was put
forth in Kennedy and O’Hagan (2001). They proposed to view field data as noisy versions of
a discrepancy adjusted computer model. An additional problem is that some of the inputs
(calibration parameters, θ) to the computer model are neither adjustable, nor measurable,
in the physical system and have to be estimated. Often computing costs dictate that the
computational model must be replaced with a GP emulator of the response surface of the
computer model. The Kennedy-O’Hagan (KOH) model can be summarized below:

Yo = η(x,θ) + δ(x) + ε,

Yc = η(x, t),

η(x, t) ∼ GP (0,Σ(x, t,ωc)),

δ(x) ∼ GP (0,Σ(x,ωδ)), and

ε ∼ N(0, σ2),

(2.5)

where Yo and Yc are the field and computer model observations respectively. The response
surface of the simulator is η(x, t), δ(x) is the discrepancy between the response surface for
the simulator and the true response surface, and ε is the random error. Additionally, we
follow the convention of Kennedy and O’Hagan (2001), where x are observable or adjustable
physical inputs, t are the inputs to the computer model to be calibrated from data, and θ are
the values for t which best model the true response. Lastly, ω represents hyper-parameters,
with a subscript indicating their associated distribution in the hierarchical model, with
subscript c for the emulator of the computer model, δ for the discrepancy, and o for the
field observations. The above model specification leads to a multivariate normal likelihood
function of the form outlined in Higdon et al. (2004).

As illustrated in ?, ?, ?, and ?, there is an identifiability issue between the calibration
parameters and the discrepancy function. By varying the discrepancy, the quality of fit to
the data can be the same for a wide set of calibration parameters, meaning the posterior
for the calibration parameters will be dependent on the choice of prior for the discrepancy.
? proposed a form of discrepancy model attempting to correct this identifiability issue.

This model has been widely used and extended in many scientific applications. Higdon
et al. (2004) model calibration to a charged particle accelerator and to a spot welding pro-
cess model. Reese et al. (2004) propose a method to integrate expert judgment into the
Kennedy and O’Hagan model for calibration. For handling multivariate observed outcomes,
Bayarri et al. (2007b) use a wavelet decomposition and perform Gaussian process emulation
on the wavelet coefficients. Higdon et al. (2008) similarly handle multivariate outcomes us-
ing principal components decomposition of the outcome variable. Liu et al. (2009) discuss
the benefit of “modularization” in calibration with the Kennedy-O’Hagan framework. They
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discuss benefits, beyond simply reduced computational resources, that separating the esti-
mation of emulator parameters from the estimation of calibration parameters and model
discrepancy. Jacob et al. (2017) have recently discussed these benefits in a wider statistical
model context. Qian et al. (2006) proposes a model for improving the quality of an emu-
lator of a low-quality simulator by using limited observations of a high-quality simulator.
Later, Qian and Wu (2008) and Goh et al. (2013) propose methods of combining the out-
put of multiple experiments with a experimental observations for calibration beyond that
discussed in Kennedy and O’Hagan (2001).

Heitmann et al. (2006) use the Kennedy-O’Hagan model to calibrate cosmological pa-
rameters using limited runs of an expensive simulator. Bayarri et al. (2009) use GP emula-
tion to perform risk assessment with a volcanic flow model. They emulated the computer
model for assessing the probability of flow depth exceeding dangerous levels, however their
code did not require calibration at the stage that it was published. Henderson et al. (2009)
and Henderson et al. (2010) do Bayesian calibration as part of a hierarchical model using
a non-normal stochastic simulator with Binomial outcomes and experimental data normal
observational errors. They model the probability of neuron survival in their simulator using
a GP; however, they do not consider non-normal experimental data, model discrepancy and
the flexibility that the generalized model allows in incorporating it, nor do they consider
implementing the calibration framework more generally for other forms of non-normal out-
comes. Oakley and Youngman (2017) propose calibration where the GP is used to estimate
the expensive likelihood function, rather than emulating the computer model directly.

Some methods of Bayesian model calibration have been proposed with emulators besides
GPs. Higdon et al. (2013) propose the ensemble Kalman filter as a computationally cheap
alternative to doing full GP emulation for calibration. Pratola and Higdon (2016) propose
emulating the response surface of the computer model with Bayesian additive regression
trees to deal with high-dimensional input spaces and complex high-dimensional response
surfaces. Sargsyan et al. (2015) propose an approach to calibration using polynomial chaos
expansions (PCE) use approximate Bayesian computation (ABC) for fitting the model.
Chakraborty et al. (2017) propose an alternative polynomial method with similar control
over interpolation and assessment of uncertainty between observations and investigating this
method may be a valuable path of future research. Joseph and Kang (2011) proposed an
innovation on inverse distance weighting as an interpolation technique and showed strong
performance of the model compared with the Gaussian process. They also proposed an
approach for building confidence intervals for estimating uncertainty in emulator response
for their regression-based inverse distance weighting model.

8



Chapter 3

Generalized Calibration of
Computer Models with Gaussian
Processes

The new methodology proposed in this chapter is motivated by effort to calibrate a radi-
ation transport model used in neutron detection experiments by the Center for Exascale
Radiation Transport (CERT) at Texas A&M University. Radiation transport models play
a key role in simulating high-energy-density physical systems and are often a key compu-
tational bottleneck. The simulator that has been developed uses the parallel deterministic
transport code (PDT) for predicting radiation and particle transport in complex geometries
with high-fidelity and for scaling the calculations for large parallel computing architectures
(Adams et al., 2013). Calibration and quantification of prediction uncertainty with PDT is
an important part of CERT.

The experimental data for this application comes in the form of neutron counts, where
the discrete nature of the response is inconsistent with the support and structure of the
usual Gaussian likelihood used for model calibration. In this chapter, we develop new
methodology for Bayesian model calibration for count data. Our aim is to perform model
calibration with uncertainty assessments that are faithful to the nature of the data. We
utilize an elliptical slice sampling approach to fitting this model proposed by Murray et al.
(2010) for efficient sampling of latent Gaussian processes for fitting the model. The pro-
posed modeling framework is quite general and can also be used with other non-continuous
observation error for model calibration such as categorical or survival data. Our proposed
approach also allows the Kennedy-O’Hagan calibration framework to be embedded into dif-
ferent Bayesian hierarchical models which reflect the structure of the observation error and
scientific understanding of the generating processes.

In this chapter, we discuss the proposed approach to model calibration for non-continuous
outcomes, including model discrepancy of the form described in Kennedy and O’Hagan
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(2001). The proposed hierarchical model is outlined in Section 3.3, followed by application
of the model on simulated data in Section 3.4 and in calibration of a radiation transport
model in Section 3.5, and concluding with discussion in Section 3.7.

3.1 Calibration with Gaussian Observations

The standard approach for calibration and prediction for computer experiments put forth
in Kennedy and O’Hagan (2001) was described in Section 2.2. The KOH model is restated
below, in a slightly different form as a precursor to the new methodology:

Yo(x) = η(x,θ) + δ(x) + ε,

Yc(x, t) = η(x, t),

η(x, t) ∼ GP (0,Σ(x, t,ωc)),

δ(x) ∼ GP (0,Σ(x,ωδ)), and

ε ∼ N(0, σ2I),

(3.1)

with a slight change in notation for the field observations to note the dependence of the
field and simulator observations on x and t.

This model specification can be expressed to explicitly include the mean response surface
µ(x) = η(x,θ) + δ(x). The field data are noisy observations of this function at a location
x. The computer model data, with discrepancy and at the best value of the calibration
parameters θ, are observations of this surface with some systematic discrepancy:

Yo(x) = µ(x) + ε and

Yc(x,θ) = µ(x)− δ(x).

This form is identical to the typical Kennedy-O’Hagan approach, but the latent space
is explicitly expressed instead of being marginalized implicitly. The minus sign for the
discrepancy is only present to illustrate the equivalence with (2.5) but does not limit the
model form for the discrepancy.

3.2 Generalized Regression Models

Generalized linear models are ubiquitous in statistics as an extension of linear regression
models (McCullagh et al., 1989). These models account for the support of the data (e.g., in-
teger count data) and corresponding variability. In the context of uncertainty quantification
in computer experiments, the likelihood is important for properly capturing the distribution
of the outcome.
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For generalized linear models, the mean of an outcome variable, Y, is specified as a
function of a linear combination of the predictors via a link function related to the assumed
response distribution (Agresti, 2013). More specifically, this can be viewed as modeling the
latent mean function µ(x):

Y ∼ f(y;µ = µ(x),ωo) and

µ(x) = g−1(xβ),

where f(·) is a density function parameterized to have a mean µ(x), parameter vector ωo
to specify the remainder of the density function, x is an length p vector of covariates, n
is the number of observations, β is a p × 1 vector of linear coefficients, and g−1(·) is the
inverse link function connecting the linear combination of covariates to the latent mean.
For a standard linear model, the density, f(·) is normal, the link function is the identity,
and φ is the residual variance. For count data, on the other hand, the distribution could be
Poisson, with the log-link function used to connect the mean response and the covariates
(see, for example, Agresti (2013) or Gelman et al. (2013)).

As discussed in Section 2.1, Savitsky et al. (2011) and Shang and Chan (2013) propose
using GP regression models for non-Gaussian responses. Instead of modeling the mean
function as a linear combination of the covariates, the mean is modeled as a random function
z(x), with a Gaussian process defining a distribution on the class of random functions. This
leads to the following model specification (Savitsky et al., 2011):

Y ∼ f(y;µ(x)),

µ(x) = g−1(z(x)), and

z(x) ∼ GP (0,Σ),

where µ(x) is a latent mean of the parametric distribution f(·) as a function of the covariate
information.

3.3 Calibration with Non-Gaussian Observations

For the radiation transport application that motivated this work, the response variable
comes in the form of neutron counts. For this data, as well as other non-continuous re-
sponses, we propose to replace the Gaussian observation likelihood with a distribution from
a parametric family with density f(x). We denote the expected response for the physical
system as µ(x) and propose the following specification to combine field observations and
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simulation outputs for model calibration:

Yo(x) ∼ f(µ = µ(x),ωo),

µ(x) = g−1(η(x,θ) + δ(x)),

Yc(x, t) = g−1(η(x, t)),

η(x, t) ∼ GP (0,Σ(x, t,ωc)), and

δ(x) ∼ GP (0,Σ(x;ωδ)).

(3.2)

The simulator at some value of its calibration parameters is treated as an observation of
the underlying mean function of the process generating the field data with a systematic
discrepancy.

For generalized linear models, the link function serves two main purposes: it connects the
linear combination of regression coefficients to the mean of the observations, and it allows
the support of the linear predictor to match that of the mean for the likelihood. Because the
Gaussian process is capable of capturing complex, non-linear response surfaces, the second
purpose, controlling the support, is most important here. The link function is likely to act
on the simulator output as well, to place its values on the same support as the Gaussian
process. For continuous Gaussian outcomes the link function is the identity, as in linear
models, and ωo is the variance, σ2. In the proposed setup, the log-link function is used to
constrain the Poisson mean to the positive real numbers.

In the previous section, when the distribution for the mean and observations were both
normal, the latent mean at each input setting need not be directly estimated as it can
be analytically marginalized. For non-normal likelihood models, this is no longer possible.
Explicitly marginalizing the latent space via integration would be an expensive calculation
in this context, however, as we will discuss in Section 3.3.1, this can be addressed when
fitting a Bayesian model by augmenting the parameter space to include the values of mean
function, µ(xi), at each unique location xi for the experimental data in the input space.
This adds a potentially large number of correlated parameters required for inference, which
can be difficult for computation.

In this chapter, the focus is on count data. We will take the Poisson regression approach,
performing calibration on the intensity function using the model in Equation (3.2) and the
log-link function. Potential over-dispersion or under-dispersion can be handled in the same
manner as in classical generalized linear models(Agresti, 2013; Savitsky et al., 2011).

3.3.1 Bayesian Model Inference

Fully accounting for uncertainty in estimation of model parameters and in prediction is
important for computer simulation. In Bayesian inference, the uncertainty in the calibration
parameters, θ, and in predictions for new observations, Yo(x∗), can be summarized by their
posterior distributions. This includes uncertainty due to marginalizing over the hyper-
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parameters of the model, {ωc,ωδ,ωo}, and the unobserved expected values for the field
data {µ(x1), ..., µ(xnu)} where nu is the number of unique input vectors. Field observations
at the same location, x, share a single latent mean parameter µ(x).

For example, the posterior distribution for the calibration parameters, upon observation
of the simulator and field data is:

π(θ | Yc, Yo)

=
∫
π(θ,ωc,ωδ,ωo, µ(x) | Yc, Yo)dωcdωδdωodµ(x)

∝
∫
π(θ,ωc,ωδ,ωo)π(µ(x) | θ,ωc,ωδ)π(Yo | µ(x),ωo)π(Yc | µ(x),ωc)dωcdωδdωodµ(x),

where π(·) denote the prior distributions for the model parameters and where the probabil-
ity distribution of the observed data may include parameters ωo or ωc for the experimental
and simulator observations respectively. The integral is over the full support of the param-
eters. A common method to approximate this integral is to use Markov Chain Monte Carlo
(MCMC) (Robert and Casella, 2005), which we will discuss later in this section.

The prior distributions for the model parameters must be specified. We follow Higdon
et al. (2004) and use independent prior distributions for the calibration parameters (θ),
the correlation hyper-parameters for the emulator and discrepancy (β,γ), the precision
parameters for the emulator and the discrepancy (κc, κδ), and any parameters governing
the likelihood ωo. The Gaussian process prior specification for the latent mean function,
conditional on the other model parameters, has already been discussed in Section 3.2.

The prior distributions that we use are summarized in (3.3). A common prior distri-
bution for calibration parameters is a uniform distribution over the plausible range elicited
from experts working with the simulator (Higdon et al., 2004). The range should be made
wide enough to ensure that the best value for the calibration parameter does not fall out-
side the range. By scaling the inputs to the unit hypercube, independent Uniform(0,1), or
equivalently Beta(1,1), distributions are chosen for the prior specification.

We utilize independent, Exponential(1
4) prior distributions for each β`. The motiva-

tion for this prior distribution comes from an equivalent parameterization of the squared-
exponential covariance used in Linkletter et al. (2006) and Higdon et al. (2008):

r(xi,xj) =
d∏
`=1

ρ
4(xi`−xj`)2

` .

The parameter ρk can be interpreted as the correlation between two observations at a
distance of half the input space in the kth dimension, assuming the input space has been
scaled to the unit cube, [0, 1]p, in p dimensions (Linkletter et al., 2006). An uninformative,
Uniform(0,1) prior distribution on ρk is equivalent to the Exponential(1

4) prior distribution
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for βk after transformation. We use the exponential parameterization to avoid sampling
with a hard upper bound on the parameter.

For the discrepancy correlation parameter γ, a prior distribution with more probability
mass near 0 can be used to express a priori expectation that the discrepancy function is
smoother than the emulator, while still only weakly imposing this prior preference. We use
independent Exponential(1

2) prior distributions for each γk, which is equivalent to indepen-
dent Beta(2,1) prior distributions on ρδ.

It is not straightforward to assign prior distributions to the precision parameters. One
option is to assign a weak prior to the precision for both the emulator, κc, and for the
discrepancy, κδ. This ignores the prior expectation that the computer model should account
for a larger fraction of the variability in the underlying true response function than the
discrepancy - that the computer model is at least a reasonable approximation to the true
system. Instead, we can quantify this prior information by choosing a prior distribution on
the discrepancy parameter such that the prior expected variability of the discrepancy is a
small percentage of the combined variability of the simulator and the discrepancy. Choosing
this percentage to be 10% was reasonable in the examples:

1/E[κδ]
1/E[κδ] + 1/E[κc]

≈ 0.10.

The scale of the prior distribution for both precision parameters remains to be set.
Modeling the standardizing the output of the computer model as a GP and setting the
total expected prior variance to 1 is a common approach to choosing a prior on the precision
(Higdon et al., 2008; Linkletter et al., 2006). Because of the link function, the Gaussian
process describing the mean function may not be operating on the same scale as the observed
data, so the outcome data cannot be standardized in the usual way. We instead standardize
the link-transformed simulator output and latent mean values by the mean and standard
deviation of the transformed simulator values. The transformation must be accounted for
in the log posterior evaluations for sampling as well. Doing this allows us to set the prior
distribution for the emulator precision parameter to correspond to a prior mean on the
emulator variance of 0.9. After the standardization, we follow the approach of Higdon et
al. (2008) and use an informative Gamma prior distribution for the precision parameters.

π(θ) ∼ Beta(1, 1),

π(βk) ∼ Exponential(1/4),

π(γ) ∼ Exponential(1/2),

π(κc) ∼ Gamma(5, 3.6), and

π(κδ) ∼ Gamma(5, 0.4).

(3.3)
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Conditional on the hyperparameters, the GP prior distribution is specified for the trans-
formed latent mean function, π(g(µ(x)) | θ,ωc,ωδ). To translate this to a distribution on
the latent mean, π(µ(x) | θ,ωc,ωδ), the Jacobian of the transformation is required. Be-
cause the link acts on each mean parameter separately, the Jacobian is the determinant of
a diagonal matrix. For instance, with a log-transformation, the Jacobian is the product of
the inverses of each latent mean value, 1/µ(x).

Bayesian inference can be carried out using MCMC samples from the posterior distribu-
tion of the model parameters conditional on the observed field and simulator data. Unlike
in previous work in computer model calibration, where the latent mean function can be
marginalized trivially, the latent function values are treated as parameters. What this im-
plies in practice is that not only do the model parameters have to be sampled, but so do
the values of the mean function µ(x) for the field data. The latent mean values are highly
correlated, which can make sampling difficult.

A straightforward MCMC approach would be to use single Metropolis-Hastings (MH)
updates to each parameter individually. While this method works, it is inefficient for sam-
pling the latent function values because of the aforementioned strong correlations between
values. Neal (1998) and Savitsky et al. (2011) use a staged, random-walk MH sampler to
alternate between updating the latent function values as a group with the other parameters
fixed, then updating the remaining parameters. They do so multiple times per full iteration
of the MCMC to improve the mixing. Elliptical slice sampling, as discussed in Murray et
al. (2010), has been proposed as a more efficient alternative to sampling from Gaussian
processes. We use elliptical slice sampling in this work based on empirical evidence of effi-
ciency in test problems and the ability to avoid choosing the fixed Markov transition scale
parameter in Neal (1998). The sampling approach used is summarized in Algorithm 1 and
discussed in more detail in Appendix 1.

Algorithm 1 MCMC Sampling for Generalized Kennedy-O’Hagan Model
1: for i = 1→ nsamples do
2: Single-site updates to model parameters
3: for j = 1→ nωc do
4: Sample hyperparameter ωc,j with Metropolis-Hastings (MH)
5: for j = 1→ nωδ do
6: Sample hyperparameter ωδ,j with MH
7: for j = 1→ nωo do
8: Sample hyperparameter ωo,j with MH
9: for j = 1→ nθ do

10: Sample calibration parameter θj with MH
11: Elliptical slice sampling for g(µ(x∗))
12: Iterate

Often, one is interested in obtaining predictions and uncertainty estimates of the latent
mean function at unobserved values of the inputs or of new observations. Using the output
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from the Markov chain above, obtain samples of the link-transformed predicted mean using
the normal conditional distribution defined in Equations (2.3) and (2.4). The mth sample
of the predicted, link-transformed mean is drawn according to:

π(g(µ(x∗)) | µ(x)(m),θ(m),ω(m)
c ,ω

(m)
δ ) ∼ N

( 1
κ(m) r(x, x

∗)T (Σ(m)
x )−1(g(µ(x)(m))− 0),

1
κ(m) −

1
(κ(m))2 r(x,x

∗)T (Σ(m)
x )−1r(x,x∗)

)
.

(3.4)

Applying the inverse link function gives samples from the posterior distribution for the
latent mean at the new location. Samples for future field observations can then be obtained
by drawing from the distribution proportional to the likelihood:

Yo(x∗) ∼ π(µ = µ(x∗),ωo) ∝ f(µ = µ(x∗),ωo).

3.4 Implementation and Performance

Here we show the performance of the proposed methodology on a series of examples. First,
we consider the case of a simulator that, conditional on the correct specification of the
calibration parameters, has no discrepancy. Next, we explore a setting where there is a
systematic discrepancy (i.e., the mean of the field data does not match the simulator for
any values of the calibration parameters).

3.4.1 Simple Model Without Discrepancy

The first example has a simulator with two calibration parameters and one physical input
variable. The computer model in this example is well-specified - the simulator is the mean
function at the true values of the input parameters. Let:

Yc(x, t1, t2) = t2
3t1

Γ(t1)(x+ 2.2)t1−1e−3(x+2.2), (3.5)

where t1 and t2 are the calibration parameters and x is an input. For the field data, the
process mean is specified as in (3.5) with calibration parameters θ1 = 1.4 and θ2 = 80. This
function was chosen to represent a rise-decay response on a scale such that the observed
counts with this Poisson rate function are low, emphasizing the discrete, bounded support
for the observations.

Two scenarios for the field data are considered - one with replicates and one without.
The field data consist of no = 8 values at unique values for x in the interval [−2, 3.8].
Additionally, no = 40 values were generated with 5 at each of 8 unique x values to show
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the value of replicate observations. We will also evaluate the simulator at nc = 30 locations
selected using a maximin Latin hypercube design generated using the lhs package in R

(Carnell, 2012). The ranges for t1 and t2 are [1.0, 2.1] and [40, 100] respectively; however,
for the analysis all inputs are rescaled to ∈ [0, 1] as discussed in Section 3.3.1. The ranges
were selected to cover θ1 and θ2 while allowing for an amount of variability typical of
a computer experiment application. We used the prior distributions from (3.3) for the
calibration and hyper-parameters.

The joint posterior distribution of the statistical model and calibration parameters was
sampled using the MCMC scheme in Section 2.3. We ran two Markov chains and obtained
45,000 samples in each from the posterior distribution as described in Section 3.3.1, after
discarding 5,000 samples per chain used in the MCMC burn-in phase. The Gelman-Rubin
diagnostic, implemented in the R package coda (Plummer et al., 2006), was equal to 1.0 for
all parameters. The maximum 95% upper confidence limit was 1.03 across all parameters in
both cases, which indicates convergence of the sampler (Gelman and Rubin, 1992; Plummer
et al., 2006). We chose a conservatively large number of samples to assure convergence,
however examination of the traceplots indicated the sampler was well-mixed and converged
within one thousand samples.

Figure 3.1 shows a comparison between the true response from Equation (3.5) and the
posterior predictive mean from the proposed model in Equation (3.2) for the unreplicated
and replicated scenarios (Figures 3.1(a) and 3.1(b) respectively). The dashed lines in Figure
3.1 reveal close agreement between the estimated 95% prediction intervals from the model
in red and the 95% prediction intervals based on Poisson errors with the true mean function
in black. This agreement is much closer in Figure 3.1(b) with the replicate observations.
The blue shaded region is a 95% credible interval for the mean. For both cases, the true
mean is contained within the credible band, with the band for the larger sample size being
tighter to the true mean.

To test the empirical coverage of the 95% credible interval when no = 8, 4,000 test
samples were generated at 40 evenly spaced locations in X. The data generation and model
fitting procedure above was repeated 200 times and the empirical coverage on the test set
was 97.3%.

Figure 3.2 shows histograms of the draws from the posterior distribution for the calibra-
tion parameters θ1 and θ2 in the two cases outlined above. The posterior distribution for
both θ1 and θ2 are peaked near the true value. In Figure 3.2(a) neither posterior distribu-
tion is strongly concentrated, as the limited number of observations and high measurement
variance only discount extreme values. With the addition of the replicates, the posterior
distribution is more concentrated near the true value in Figure 3.2(b).
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Figure 3.1: Comparison of the true mean function and predictive intervals (black) with the
estimated mean and intervals (red) for no = 8 in (a) and no = 40 evenly spread across 8
unique input values in (b). A 95% pointwise credible interval for the mean is shown in blue
and observations shown as black points for both cases.
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Figure 3.2: Histograms of the posterior samples of marginal distribution of the calibration
parameters using the extension of the Kennedy-O’Hagan work outlined in Equation (3.2).
The value for the calibration parameters used to generate the data are shown as a vertical
red line.

3.4.2 Simple Model with Discrepancy

Consider the case where the simulator cannot adequately capture the true response function
due to model form error. In this setting, a discrepancy function is required to account for
portion of the signal in the field observations missing from the simulator. For this example,
the previous mean function is modified to:

µ(x) = 80 31.4

Γ(1.4)(x+ 2.2)1.4−1e−3(x+2.2)(1 + 1
2sin(πx)). (3.6)

The computer model in this example in the same as specified in (3.5). The additional
component in the system mean function is a periodic variation about the same curve with
the amplitude varying with the level of the underlying signal. Figure 3.3(a) and 3.3(b) show
this added periodic variation that is not included in the simulator.
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Proceeding as before, we consider a setting with no = 8 field observations and nc = 30
simulator runs chosen as a maximin Latin hypercube design. For data analysis, we use the
prior distributions and sampling procedure outlined in Section 3.3.1. The same analysis is
repeated with 5 replicates at each of the 8 locations of the field observations, leading to a
total of no = 40 points.

Figure 3.3(a) shows one example of the full model fit with the discrepancy. As in Figure
3.1, the true mean function in black, and the predicted mean function with estimated 95%
prediction intervals in red. The central 95% predictive intervals based on the generating
mean function and Poisson error are plotted in black. The interval in black is not what
we would expect to recover with a sample of data, but the target in the limiting case with
infinite data. We can see that the model, with n = 8 is unable to reconstruct the underlying
discrepancy between the simulator and the field observations. Despite the amplitude of the
discrepancy being large, it is on the same order as the error variance due to the Poisson
nature of the data. In this case, the amount and precision of data is unable to overcome
the a priori assumption of a small discrepancy. In Figure 3.3(a), the predictive interval for
the limiting case (black) noticeably extend beyond the estimated prediction intervals (red),
leading to an empirical predictive coverage probability of 90.6%. This example illustrates
a potential difficulty in estimating a discrepancy with limited, high-variance observations.

Obtaining five replicate observations at each of the previously sampled points provides
a better estimate of the mean function at different locations in the parameter space. The
addition of replicate observations allows the model to estimate the discrepancy as shown
in Figure 3.3(b). We again test the empirical coverage of the 95% credible interval when
no = 8, by generating 100 test samples at each of 40 evenly spaced locations in X, then
repeating 200 times. The estimated prediction intervals in Figure 3.3(b) closely match the
prediction intervals based on Poisson errors with the true mean function, leading to an
empirical predictive coverage of the model with the replicates was 93.5%.

Because of the large model discrepancy, the posterior distribution for the calibration
parameters is not tightly constrained near the values used to generate the data. The his-
togram of from the posterior distribution of the calibration parameters in Figure 3.3(c)
shows the posterior distribution for θ1 is concentrated near the lower end of the prior range
and the posterior distribution for θ2 still allows for a number of possible values, though it is
peaked away from the correct value. In general, calibration in the presence of discrepancy
is difficult to impossible (Loeppky et al., 2006). Instead, in these cases, one is tuning to
find good parameters for prediction.

3.4.3 Exploring the Simple Models

We continue the above examples, exploring the coverage of prediction intervals while varying
the total number of observations, the number of replication observations at a particular value
of x, and the scale of the observations. The reason for varying the scale of the model is
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Figure 3.3: Comparison between the true response from Equation (3.6) in black and the
posterior predictive mean from the proposed method in red. The dashed lines in red indicate
the estimated 95% prediction intervals from the model. In (a) no = 8, while in (b) no = 40
spread across 8 unique values in x. We see that with little data, the discrepancy is unable to
be reconstructed due to the high variance. The replicate values in (b) allow the discrepancy
term in the calibration model to account for systematic bias in the simulator and better
reconstruct the true function. In (c) the samples from the posterior distribution for the
calibration parameters are not concentrated near the true values because the simulator
cannot accurately describe the data.
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Figure 3.4: Comparing n = 8 with no replicates for output data on three orders of magni-
tude. The qualitative ability of the model to capture a periodic discrepancy for different
magnitudes of outcome is clearly visible.
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Figure 3.5: Comparing the ability to recover the model discrepancy for data with n = 8,
n = 16, and n = 32.

that the Poisson variance is equal to its mean. As the mean of the observed data increases
in magnitude, the standard deviation of the Poisson error shrinks in a relative sense.

In Figure 3.4, we compare the ability of the model to estimate the model discrepancy
at different magnitudes of outcomes. For the lowest magnitude, the signal-to-noise ratio,
µ(y)
σ(y) , is approximately 3.5. The model is unable to capture even a large discrepancy given
the level of noise. As the signal-to-noise increases to approximately 11, the model is able to
roughly capture the shape of the discrepancy and by a signal to noise of 35, the discrepancy
is easily captured.

In Figure 3.5, we compare the qualitative ability to recover the periodic model discrep-
ancy for data with n = 8, n = 16, and n = 32. Figure 3.5a is the same example as Figure
3.4b.

By looking at cases with 4 replicates at each of two unique locations in the input space,
we can see the value of using the simulator for prediction within the domain. In Figure 3.6,
the shape of the estimated curves is entirely informed by the output of the simulator in this
region. Because there are no field observations in the central portion of the input space, the
model discrepancy is not identifiable. Coverage of the prediction intervals depends strongly
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Figure 3.6: Comparing n = 8 with 4 replicates at each observations for the case with and
without discrepancy. The simulator provides information about the shape of the function
between the observed locations, however the model discrepancy is not identifiable without
observations at more unique locations.

on the prior variance for the Gaussian process model of discrepancy. In Figure 3.6c, the
prior variance is not large enough to account for the added periodic signal. The empirical
prediction interval coverage for this case in repeat simulations was 59.4%.

3.4.4 High Dimensional Model Without Discrepancy

The same methodology can be applied to a higher dimensional input space. Instead of
specifying a particular functional form for the true function to generate synthetic data,
realizations from a 7-D Gaussian process are drawn, treating the first two dimensions as
physical inputs and the remaining five as calibration parameters. This approach is taken to
obtain empirical coverage probabilities of the method for a class of random functions. First,
hyper-parameters are drawn from the prior distributions in Equation (3.3) and independent
Latin hypercube designs for 20 field, 70 simulator, and 100 hold-out validation design points.
To replicate the typical choice to run the simulator on a wider range of physical input
values than is used for the field measurement, the simulator design points are generated
on the range [0, 1], while the field and validation design points are generated on the range
[0.2, 0.8]. The simulator observations and the latent mean for the field and validation
measurements are obtained as a draw from the resulting Gaussian process. To make the
scale and magnitude of the data in this example comparable to the previous, the draw
from the Gaussian process is multiplied by 0.4, added to 1.45, and exponentiated. Finally,
field and validation measurements are obtained as Poisson draws with the generated latent
mean.

This data generating procedure was repeated 50 times and used to obtain 100,000 sam-
ples from the posterior distribution of the calibration model using the sampling described in
Section 3.3.1, as well as empirical coverage probabilities for the 50× 100 validation points.
The empirical coverage probability for the 95% predictive interval on the hold-out set was
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97.54% coverage. This is consistent with the conservative coverage of the interval on the
lower dimensional model as well.

3.5 Calibration of Radiation Transport Model

CERT is focused on high performance computing and simulation of radiation transport
in high-energy-density conditions. Adequately modeling the flow of energy mediated by
radiation in these conditions is crucial for capturing the overall complex behavior of physical
systems. The CERT team develops and uses PDT for high-fidelity modeling of radiation
and particle transport (Adams et al., 2013). Calibration and uncertainty quantification of
PDT are important for understanding the model’s predictive capability and the ability to
validate the model to new experimental conditions.

One focus of this work is to utilize PDT to quantitatively predict the measured neutron-
detector count rate in experiments as a function of many variables, including those whose un-
certainties are judged to play important roles. CERT experiments extensively use graphite,
which is an important neutron “moderator” used in nuclear reactors and other applica-
tions involving neutron scattering. Impurities in the graphite can significantly change
the neutron-transport properties of graphite, but the impurity concentration in CERT’s
graphite is unknown. The purpose of the work presented was to calibrate a model that
accounts for the effects of impurities on the neutron transport in CERT’s graphite. Ex-
periments have been carried out measuring the neutron-detector count rate given neutrons
emitted from an Americium-Beryllium source and transported through an experimental
apparatus in which a graphite brick can be placed.

The experiment first measures the count rate in air only, which forms a baseline. Later
CERT experiments will employ many graphite bricks, so interest is not only in characterizing
the impurity in a single brick, but understanding the brick-to-brick variation as well. Each
graphite brick, i, is exposed to the neutron source for time τi. The source is also exposed
for time τair without a graphite brick to characterize the baseline emission rate.

PDT can inform the relationship between the concentration of impurities and attenua-
tion of neutrons by modeling the count rate at the detector with and without the graphite
between the source and the detector. The simulator uses two scalar model parameters:
impurity concentration (in parts per million) and the neutron source axial position. Both
are calibration parameters and there are no physically measured inputs in this application.
The source axial position is a calibration parameter shared among graphite bricks, while
each brick has its own impurity concentration. Simulator data from PDT was obtained
from a size nc = 32 maximin Latin hypercube design for the two inputs.

Understanding the distribution of impurities between bricks is of primary interest for
making predictions of future experiments. In order to characterize the uncertainty in im-
purity for a single brick as well as the brick-to-brick variation, this calibration parameter
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is treated as a random effect. That is, since each brick can have different impurity concen-
trations, the interest lies in estimating parameters that govern the calibration distribution
instead of a constant value. For the population distribution, we will use a truncated normal
distribution on the [0, 1] interval, with hyperparameters µimp, σ2

imp.
In Section 3.5.1, we will look at time-resolved data for each of the individual bricks.

In Section 3.5.2, we will apply the proposed methodology to an expanded model including
both the experimental observations through air and with graphite.

3.5.1 Poisson Calibration of Radiation Transport Model

Using only the observations on graphite bricks, the calibration is performed using the pro-
posed methodology. The motivation for this example is two-fold: (1) to assess whether the
observations for each brick are time-homogeneous and therefore can be treated as a single
observation with a long exposure and (2) to illustrate how to use the methodology in cases
where the data are inhomogeneous in time.

The simulator informs us of how the count rate through graphite varies as a function of
the calibration parameters. In the experiments, the data are collected over time, and we are
interested in assessing whether there is evidence for a time-varying discrepancy. We model
the observations as having a constant, “best” value of the calibration parameters for each
brick and allow the discrepancy to handle any time-dependence. This leads to the following
specification:

Yo,i ∼ Poisson(λ(θi,x)),

log(λ(θi,x)) = η(θi) + δ(x),

log(Yc(ti)) = η(ti),

η(t) ∼ GP (0,Σ(t,ωc)),

θi,imp ∼ N[0,1](µimp, σ2
imp),

µimp ∼ Unif(0, 1), and

σ2
imp ∼ Unif(0, 0.25).

(3.7)

In (3.7), x denotes time (we avoid using t to avoid confusion with the calibration inputs
to the model). The Gaussian process parameter prior distributions are as defined in Section
3.3.1.

We have 6 bricks with 100 observations taken at 3.6 second intervals for each. The
sampling approach discussed in Section 3.3.1. 5,000 samples from the posterior distribution
for the statistical model parameters, calibration parameters, and model discrepancy are ob-
tained via MCMC. Figure 3.7 shows the posterior predictions of the mean function through
time, with 95% credible intervals for the mean. Because any deviation from horizonal in
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Figure 3.7: Observations of time-resolved detector count data for neutrons through each
of 6 graphite bricks are shown as black points. The estimated time-varying mean function
is shown in red with corresponding 95% credible intervals. There is no evidence of time-
varying discrepancy in the observed count data for any of the experimental bricks.

the mean function is well within the credible interval for all bricks, there is no evidence of
a time-varying discrepancy.

3.5.2 Expanded Calibration of Radiation Transport Model

We can more fully utilize the data for this system by embedding the simulator in a larger
Bayesian model. Instead of simply modeling the count rate through graphite, the simulator
can be used to model the attenuation of neutrons by the graphite as a function of the
brick-specific model parameters, α(t). This demonstrates the flexibility in modeling that
the approach allows. Because there is no evidence for time-varying signal, the observations
on a brick can be treated as iid Poisson observations. Using the approach described in this
chapter, the detector counts for each observation are modeled to have a Poisson likelihood,
leading to the following model without accounting for model discrepancy:
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Yair ∼ Poisson(λτair),

Yi ∼ Poisson(α(θi)λτi),

logit(α(θi)) = η(θi),

logit(Yc(ti)) = η(ti),

η(t) ∼ GP (0,Σ(t,ωc)),

θi,imp ∼ N[0,1](µimp, σ2
imp),

µimp ∼ Unif(0, 1), and

σ2
imp ∼ Unif(0, 0.25).

(3.8)

The observations through air simply depend on the baseline count rate of the source, λ, while
the observations through graphite additionally depend on the attenuation - the fraction of
incident neutrons blocked by the graphite. The dependence on time, x in Section 3.5.1, is
dropped because each set of time-homogeneous Poisson observations can be combined to
single observation with a known time exposure. The simulator provides information about
the attenuation for a given brick geometry. As before, PDT must be emulated, in this case
with a Gaussian process.

Further experiments provided nbricks = 10 bricks, each with a total exposure of 3,600 s,
while the baseline emission rate was obtained from an exposure of τair =10,800 s. Figure
3.8 shows the observed simulator data from PDT plotted versus each input parameter used
in the computer experiment. The solid blue and red lines show the effect of each input,
averaging the emulator over the other two inputs. The horizontal gray lines indicate the
observed experimental data. The calibration process can be thought of as finding the values
of the inputs that make the simulator compatible with the observed data (i.e., the gray lines).
From this plot, it is clear that the observed data are only consistent with very low values
of the impurity concentration and high values of the axial position. We also see that the
brick-to-brick variation is small compared to the emulator response surface variation within
the explored range of the model parameters.

We fit the model in (3.8), using prior distributions specified in Section 3.3.1 for the
GP hyper-parameters, as a full Bayesian model using the sampling methods discussed in
Section 3.3.1. We obtained 100,000 samples from the posterior distribution after discarding
5,000 samples used in the burn-in phase.

Figure 3.9 shows histograms of the MCMC samples from the posterior marginal distri-
bution for the calibration parameters for each individual brick. The posterior distribution
is consistent with our intuition from Figure 3.8. The posterior distribution of impurity
concentration for each brick is tightly constrained against the lower boundary of the pa-
rameter range, which is consistent with the intuition gleaned from Figure 3.8. The posterior
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Figure 3.8: Projections of the simulator data to each calibration parameter dimension. The
absorption ratio is clearly more sensitive to the impurity concentration than to the source
position. Experimental measurements on ten bricks are indicated by the ten horizontal gray
lines. They are not points because they do not have a measured value for any calibration
parameter. We can see clearly that the experimental data is consistant with axial position
values near the top of its input range and near the low end of the impurity concentration.

uncertainty for the impurity concentration in each brick is smaller than their brick-to-brick
variability.

Because the impurity concentration is modeled hierarchically from a population of bricks,
we can also look at the posterior distribution for the “between brick” distribution. It is im-
portant to account for this source of variability for making predictions of future bricks that
may not have been previously used in an experiment. A histogram of samples from the pos-
terior for the calibration distribution for impurity concentration is shown in Figure 3.10(a)
and the histogram of samples from the posterior distribution of the shared calibration pa-
rameter is shown in Figure 3.10(b). While the observations of ten bricks clearly inform
the marginal distribution of the impurity concentration, the data only weakly constrain the
source position in the upper half of its input range.

3.6 Additive Gaussian Error with Constrained Model-Form
Error

For some computer models, the observed model response may have constraints that are
inconsistent with those of the observed noise in the experimental systems.

In the nuclear cross-section modeled discussed in Helgesson et al. (2017), the response of
a perfect model is restricted to the positive real domain. The potentially imperfect simulator
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Figure 3.9: Posterior marginal histograms for the impurity concentration of each of the ten
bricks. The impurity concentration is tightly contrained for each brick, even when fully
accounting for uncertainties in the problem.
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Figure 3.10: Posterior histogram for the population distribution of the impurity concen-
tration, as well as the posterior distribution for the shared calibration parameters. The
marginal posterior distribution for the impurity concentration is more tightly constrained
by the ten observations than that of the axial position.
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also satisfies this constraint, so modeling with any form of model discrepancy should as well.
The experimental observations are not considered subject to the same constraint, as the
observations are treated as having multivariate normal error.

Helgesson et al. (2017), used synthetic examples related to fission cross section models
to assess the improved prediction with model-form uncertainty by using an additive Gaus-
sian process model for the discrepancy. This model did not adhere to the aforementioned
constraints, but provided a reasonable accounting of uncertainty for prediction. For the
synthetic examples, the true experimental response function was:

Yo(x) = (
√
x+ 0.5x)e−x/2 (3.9)

and the simulator with model-form error was:

Yc(x, t) = (θ1
√
x+ θ2/

√
(x)) ∗ e−x/θ3 .

The statistical model fit is similar to (2.5), but with a known, non-diagonal experimental
covariance matrix Σε and not requiring the emulation of the simulator:

Yo(x) = η(x,θ) + δ(x) + ε,

Yc(x, t) = η(x, t),

δ(x) ∼ GP (0,Σ(x,ωδ)), and

ε ∼ N(0,Σε).

(3.10)

This model formulation does not respect the a priori knowledge that the true mean
function is known to have support only for positive values - µ(x) = η(x,θ) + δ(x) has
support on the real line for each value of x. A natural way to handle discrepancy for
outcomes restricted to positive real numbers is to estimate the discrepancy of the log-
transformed data. However, the measurement error is Gaussian on the untransformed scale
of the experimental data, so fitting the full model with the log-transformation is not feasible.

The method proposed in Section 3.3 can be used to model the simulator with discrepancy
on the log-transformed space, while still evaluating the field observation Gaussian likelihood
on the original space. The model is the same as the above, but with:

Yo(x) = µ(x,θ) + ε

log(Yc(x,θ)) = log(µ(x,θ))− δ(x).
(3.11)

This model can be fit using the sampling discussed in 3.3.
The statistical models in Equation 3.10 and Equation 3.11 are compared on two sets of

six synthetic experimental observations. The first case is six observations from Equation 3.9
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Figure 3.11: Estimation of true response curve for synthetic example relating to fission cross
section models. The image on the left shows the case where the experimental measurements
have uncorrelated Gaussian error but the model has a systematic bias. The image on the
right includes an experimentally measured error covariance on the field data.

with a diagonal experimental covariance matrix; the second case is generated with correlated
errors. The synthetic observations with the diagonal covariance matrix are shown in the
left panel of Figure 3.11 and the correlated errors in the right panel.

Both models are estimated using Markov Chain Monte Carlo. Figure 3.11 shows the
result of estimating the true experimental response function with 95% credible intervals in
orange and the true response function in green. It is clear that the credible interval cap-
tures the true signal well, even with correlated experimental errors. However, the credible
intervals extend far below zero, especially for large values of x, even though it is known the
true function does not drop below zero.

Figure 3.12 show the estimated response function from fitting the model in Equation
3.11. The prediction bands still capture the true curve, while respecting the constraints on
the model form. Additionally, the uncertainty near small values of the response surface is
much smaller, reflecting the knowledge that the true response is likely to be on a similar
order of magnitude to the estimated response.

3.7 Summary of Generalized Calibration

We have proposed a method for computer model calibration with Poisson outcomes using
Gaussian process emulators in a similar vein to the Kennedy-O’Hagan framework. The
performance of the methodology was shown on simulated examples and was used to perform
calibration of a radiation transport model. The proposed approach requires sampling the
latent mean function at each unique observed location in the input space. An elliptical
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Figure 3.12: Estimation of true response curve for synthetic example relating to fission cross
section models. The image on the left shows the case where the experimental measurements
have uncorrelated Gaussian error but the model has a systematic bias. The image on the
right includes an experimentally measured error covariance on the field data.

slice sampler was proposed in Section 3.3.1 and provides an efficient means for sampling the
latent mean function parameters.

Because the sampler must be augmented with the mean function, the method can be
slow as the number of observations becomes large. Additionally, storing these samples adds
to the computational memory requirements of sampling from the posterior distribution.
One way to address the scaling limitations of the memory is to only keep the current state
of the Markov chain for the latent mean function parameters. An alternative may be to use
inducing point methods described in Quiñonero-Candela and Rasmussen (2005).

For count data, when the number of counts is large, the normal approximation to the
Poisson distribution is reasonable, and the Kennedy-O’Hagan framework can be used. In
cases such as these, results using the proposed method from this work will likely agree
with results using the classical Kennedy-O’Hagan framework. The benefit of the proposed
framework in those cases is to incorporate likelihood structure other than the mean and
variance into the model and to build a generative model which connects more closely to the
actual process, with downside of the extra computational cost for sampling the latent mean
values.

The proposed framework can easily be extended to other forms of observational data.
Consider the case that observed data is binary instead of Poisson and the simulator provides
information about the probability that the outcome Yo = 1 as a function of some physical
and calibration inputs. An instance would be labeling the quality assessment of an industrial
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part as {Pass,Fail}. The above framework can be applied with the following model:

Yo,i ∼ Bernoulli(p(θi,xi))

logit(p(θi,xi)) = η(θi,xi) + δ(xi)

logit(Yc(ti,x)) = η(ti,x)

η(t,x) ∼ GP (0,Σ(t,x,ωc)).

(3.12)

where the transformation logit(p) = log( p
1−p) is used to keep the transformed emulator

bounded between (0,1). If the outcome data has c > 1 categories, the approach can be
used, but requires c − 1 latent mean functions directly analogous to those in multinomial
or probit regression in generalized linear models.

Lastly, for computational convenience, the emulation of the computer model and the
calibration can be modularized as described in Bayarri et al. (2007a). In this empirical Bayes
approach, point estimates of the hyperparameters of the emulator, commonly the posterior
mean or maximum value, are passed forward to the calibration stage. This approach usually
ignores propagation of uncertainty in the hyperparameters into the final prediction estimates
and posterior distributions of calibration parameters. Their work has indicated that this
has minimal impact (Bayarri et al., 2007a).
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Chapter 4

Validating Predictive Distributions
from Complex Simulators

4.1 Background for Model Validation

Large-scale computational models are critical for developing our understanding of complex
physical systems and for use in decision-making related to policy and risk assessment.
Developing methods for building trust in the quality of the model, and understanding the
limitations of conclusions drawn from the model, play an important role in their use (Post
and Votta, 2005; Oberkampf and Roy, 2010). The processes of verification and validation
for scientific models provide the basis of building evidence for this trust in a simulator.

Verification is the task of ensuring the simulator is adequately solving the specified
mathematics of the physical theory for the system. The simulator is designed to solve these
equations, however numerical approximations are often necessary, (e.g. discretization of the
computational domain) (Oberkampf and Roy, 2010). Additionally, simulators may contain
bugs or improperly applied algorithms (Post and Votta, 2005). These sources of error can
contribute to deviations between the simulator output and that of the mathematical model.
A verified model is one in which these issues are considered negligible (Oberkampf and Roy,
2010). Throughout this chapter, the simulators are assumed to be verified.

For use in decision making and risk assessment, it is not enough for a model to solve
the underlying mathematical model properly, it must also adequately reflect the behavior
of the system of interest. Validation is the comparison of the computer model output to
observations from the system and the assessment of the ability of the model to predict
aspects of real-world systems (Oberkampf and Roy, 2010).

Validation is performed in the presence of various sorts of uncertainty. In this field, it is
conventional to classify the sources of uncertainty into two broad categories: (i) epistemic
uncertainty due to insufficient knowledge about aspects of the system (e.g. the value of
parameters that govern the model), and (ii) aleatoric uncertainty due to random variability
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inherent in the physical systems. We will describe these types of uncertainty in more detail
in Section 4.1.2. Several approaches to statistical model validation have been proposed and
several of these will be briefly discussed shortly (Hills and Trucano, 1999, 2002; Mahadevan
and Rebba, 2005; Rebba et al., 2006; Bayarri et al., 2007a; Ferson et al., 2008; Roy and
Oberkampf, 2011; Sankararaman and Mahadevan, 2011; Wang et al., 2012).

In this chapter, we propose a new method for validating a computer model by comparing
the cumulative distribution of the outcome generated by uncertainty propagation through
a simulator to observed outcomes. The proposed method uses a form of Bayesian posterior
predictive model checking to investigate the ability of the simulator to generate predicted
distribution functions for the output of interest similar to the observed distribution in field
data, while also accounting for epistemic uncertainty about model parameters. The proce-
dure gives both qualitative and quantitative comparisons of the distribution of observations
generated by the simulator to the distribution of the field data. We additionally propose
a hypothesis test as a decision rule for evidence against model validity that has a known
asymptotic bounds on the probability of falsely declaring a model invalid.

The chapter is organized as follows: First, epistemic and aleatory uncertainty are intro-
duced in Section 4.1.1. In Section 4.1.2, a brief re-review of computer model calibration;
this time in the context of model validation that requires the introduction of new notation
for this setting. Section 4.1.3 introduces the idea of uncertainty propagation and 4.1.4 es-
tablishes the background and key concepts for model validation. Section 4.1.5 illustrates
one common method for validation and highlights some issues the proposed methodology
attempts to overcome. In Section 4.2 we propose a new procedure for Bayesian model val-
idation accounting for and separating aleatoric and epistemic uncertainties. In Section 4.3
performance of the proposed validation methodology is explored using a set of synthetic
numerical examples. The approach is applied to the radiation transport application that
motivated this work in Section 4.4. Final thoughts are presented in Section 4.5.

4.1.1 Epistemic and Aleatory Uncertainty

Different forms of uncertainty are commonly present during the process of calibration and
validation. It is common to classify uncertainty from inputs to the experimental or com-
puter experiments into two categories: aleatory uncertainties and epistemic uncertainties
(Oberkampf and Roy, 2010). Aleatory uncertainties arise from aspects of the system that
have uncontrolled variation from observation to observation, where the variability can be
characterized by a sampling distribution. For example, additive Gaussian noise typically
assumed in many models is one form of aleatory uncertainty. Another example is that a
graphite brick in a neutron transport experiment may have a specified level of impurity,
but because of uncontrolled variation in the process of making and storing the bricks, the
realized impurity level in a population of bricks may vary according to a probability distri-
bution centered near the specified level. The uncertainty in the QoI in a neutron transport
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experiment attributable to the variation in brick impurity cannot be reduced for predic-
tion or reliability assessment of future experiments. Aleatory uncertainties are sometimes
referred to as “irreducible” error for this reason (Oberkampf and Roy, 2010).

Epistemic uncertainties arise from a lack of knowledge about components of the system.
One example is uncertainty due to the lack of knowledge of the best value for calibration
parameters. Unlike aleatory uncertainties, epistemic uncertainties do not have any inherent
variability. There are several approaches to incorporating epistemic uncertainty includ-
ing interval-based assessment of uncertainty (Ferson et al., 2003) or with the probabilistic
models using Bayesian methods (Gelman et al., 2013). Whether uncertainty in a variable is
epistemic or aleatoric can depend on the context in a model. While the aleatory uncertainty
in brick impurity cannot be reduced when sampling a brick for each experiment from the
population of bricks, if one specific brick is used with a fixed amount of impurity, knowledge
about the impurity level for that brick can be improved through observation and as such is
an epistemic uncertainty.

The Bayesian framework is commonly use for calibration, where aleatory and epistemic
uncertainties are not separated. Instead, as described in the previous chapter, all uncer-
tainties in the statistical model are quantified using probability distributions. The prior
distribution for a parameter represents a quantification of what values are thought to be
plausible before data are collected, as specified by the support of the prior distribution, and
how prior information supports some values relative to others in the assumed probabilistic
model.

There is a parallel between epistemic/aleatory uncertainty and fixed/random effects in
statistical models. The variability between units in a random effect model can be charac-
terized by a probability distribution, but cannot be eliminated when sampling observations
from new units. This variability is aleatoric. For a fixed effect, the uncertainty is only in
the lack of knowledge of the magnitude of the effect. It has no intrinsic variability and so
this uncertainty is epistemic.

4.1.2 Calibration in the Context of Model Validation

As discussed in the previous chapter, the calibration of computer models is concerned
with using physical observations to constrain the uncertainty in model parameters and
give evidence for which values of these parameters are consistent with the observed data.
Calibration improves the ability to find valid parameter combinations, while also restricting
the space to only parameter values consistent with calibration observations in a way that
gives desirable statistical properties. The process of calibrating a model and using validation
to ensure that the model gives outputs that are consistent with observations is the core to
building trust with a model. At a coarse level, the calibration-validation path is as follows:
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1. Calibrate the simulator to constrain the plausible parameter values using observed
data.

2. Test the calibrated model against the observed data to ensure baseline validity, po-
tentially by cross-validation.

3. Conduct an independent experiment on the system for the purposes of validation.

4. Run the computer model on the design of the validation experiment.

5. Assess the validity of the model by comparing simulator outputs to the observations
from the validation experiment.

6. Improve model if there is evidence the model is invalid in Step 5 or design further
validation tests to further probe the validity of the simulator.

In this chapter we shall depart from the notation of the previous chapter somewhat
to differentiate between aspects of the statistical model for calibration and for validation.
The model has physical inputs, xc,s, and calibration inputs required to evaluate the model,
tc,s. Evaluation of the simulator at those inputs produces as an output, yc,s. The first
subscript denotes that the variable is for calibration, c, while the second subscript indicates
the variable is used with the simulator, s. The proposed methodology focuses on determin-
istic simulators that output scalar QoIs, but can be adapted to stochastic or multivariate
outputs (or both). Furthermore, the physical inputs, xc,s, may be considered known to high
precision, or could be stochastic and characterized by a probability distribution. To distin-
guish between these two settings, we will refer to inputs that are known with a lowercase
xc,s and inputs that have aleatory uncertainty with an uppercase Xc,s.

An important part of the process of computer model calibration is finding the value
or potentially set of values for the calibration parameters θc,s that make model predictions
most consistent with observed data, xc,f , yc,f , in order to reduce epistemic uncertainty. Here
the second subscript, f , indicates the variable is for field observations.

For a computer model to be valid, there should be no evidence of model discrepancy at
some value of the calibration parameter. In the model calibration context, this would mean
the KOH model would have no discrepancy term. That is:

Yc,s = ηc(xc,s,Xc,s, t),

Yc,f = ηc(xc,f ,X∗c,f ,θ) + ε

θ ∼ π(θ), and

X∗c,f ∼ π(X),

(4.1)

where ε represents measurement error and is often modeled as a mean zero Gaussian random
variable, though this error need not be Gaussian nor strictly additive error as discussed
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in the previous chapter. X∗c,s is the unobserved value of the random physical input in
the field data and ηc(xc,s,Xc,s, t) denotes the computer model configured to simulate the
calibration experiment. We will continue to focus here on Gaussian process emulators,
therefore ηc(xc,s,Xc,s, t) in Equation 4.1 is modeled as:

ηc(xc,s,Xc,s, t) ∼ GP (0,Σ).

The hyperparameters of the Gaussian process have been suppressed for brevity. When
attempting to validate the model, we take the view that a model is not considered valid
if it requires a discrepancy model. As proposed by Bayarri et al. (2007a) and Wang et al.
(2012), a non-zero discrepancy is an indication that the model is not valid.

4.1.3 Uncertainty Propagation

In some investigations, interest lies understanding how uncertainties in experiments propa-
gate to prediction uncertainty (Smith, 2013). One may be interested in propagating both
epistemic uncertainty in parameter values and aleatoric uncertainty from measurement er-
ror or stochastic inputs through a model for building prediction intervals incorporating all
sources of uncertainty. Alternatively, one may be interested in predicting the probability
distribution induced in the QoI by propagating sources of aleatory uncertainty through the
model and assessing how that distribution changes due to epistemic uncertainty. This is
done for reliability assessment (Karanki et al., 2009), to explore properties of the distribu-
tion of the QoI Ghosh and Mujumdar (2009), and for validation of a simulator Gel et al.
(2013); Lee et al. (2016); Roy and Balch (2012).

Let Fc,f (y) be the cumulative distribution function (CDF) for the field observations,
Yc,f , defined as Fc,f (y) = P (Yc,f ≤ y). Here Yc,f is the random variable denoting the field
observations. Given a sample of size nc,f of field observations, the empirical cumulative
distribution function (ECDF), F̂c,f (y), is the fraction of observed values less than or equal
to y. The CDF for the data can be predicted by propagating the known sources of variability
across the simulator.

The statistical properties of the inputs and other sources of variability are often well
characterized by a probability distribution on the inputs π(X) and another distribution for
measurement error. In light of the known sources of uncertainty, a valid simulator can be
used to attempt to better understand properties of the distribution of Yc,f . For a given
simulator and known sources of variability (i.e. in input distributions and noise), denote
the predicted cumulative distribution function of the outcomes be F̃c,f (y | t). Improved
information about the value of the calibration parameters allows for better understanding
of the predicted distribution of outcomes.

One simple method for uncertainty propagation is to use Monte Carlo sampling from the
distributions of the sources of variability and propagating these through the computational
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model. This is, of course, infeasible if the simulator is computationally expensive. As with
model calibration, the simulator can be emulated for purposes of uncertainty propagation.

A common class of surrogate models for uncertainty propagation are generalized poly-
nomial chaos (gPC) methods (Xiu and Karniadakis, 2002). These methods give efficient
estimation of the first two moments of the outcome variable. Monte Carlo can be performed
on the gPC surrogate for estimation of other aspects of the distribution. We instead use
the Gaussian process surrogate, because epistemic uncertainty in the response surface at
un-evaluated locations results in uncertainty in the potential distribution of the outcome.

4.1.4 Validation of Computational Models

The goal of validating a computer model is to assess the ability of the model to reflect
the behavior of the physical data, taking into account sources of variation and noise in the
physical system. The process should account for all sources of uncertainty in the computer
model and field observations.

Common practice is to apply a validation test to a set of data independent of the set
used to calibrate the model. However, a first check to ensure that the simulator is, at
minimum, able to replicate the calibration data can be valuable. Identifying that the model
is unable to replicate the calibration data can save the resources to simulate and carry out
the collection of validation data before the model deficiencies are addressed.

Depending on the setting, interest could lie in validating predictions of specific cases
or validation predictive distributions. If all physical inputs to the model are measurable
and can be considered known, then validation of specific model predictions, ŷ(x,θ) involves
looking for evidence that the mean predictive error, E [ŷ(x,θ)− yv,f ], is not zero. For
systems in which inputs are variable and the predictive distribution is of interest, the goal
is to probe for evidence against the hypothesis that the observed field data is distributed
according to the distribution function generated by the simulator.

Zhang and Mahadevan (2003) apply Bayesian hypothesis testing to the problem of
computer model reliability and validation. They use conventional Bayesian hypothesis
testing with Bayes factors and proposed a method for marginalizing over uncertainties
in computer model parameters. Mahadevan and Rebba (2005) consider validation using
Bayesian hypothesis testing for the problem of calibration of computer models using Bayes
networks. They propose building Bayes networks for representing the relationships in the
joint distribution between parameters for a computer model or hierarchy of computer models
and sharing information about parameters from different designed experiments. Rebba and
Mahadevan (2008) proposed a Bayesian method for validation of specific predictions by
assessing the posterior probability that |ytrue − ŷ| ≤ ∆crit for some model prediction ŷ and
acceptable error threshold ∆crit. This approach has been expanded by Jiang and Mahadevan
(2009), Sankararaman and Mahadevan (2011) and Mullins et al. (2016).
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Wang et al. (2012) proposed an alternative approach to Bayesian model validation, fit-
ting a Bayesian model with a flexible discrepancy term δ(x) and validating the model based
on the posterior probability that the discrepancy is “small”. Specifically, they declared a
model as valid if the absolute value of the upper and lower credible values for the discrep-
ancy, |U(δ(x))| , |L(δ(x))| were both less than some critical value, ∆crit. Yuan and Ng (2015)
use the Wang et al. (2012) approach to model validation, but in an integrated loop with
calibration and sequential design. They discuss model validation and using maximum en-
tropy or integrated prediction MSE-based sequential designs for obtaining new experiment
or simulator results in the process of updating and validating a computer model. Bayarri
et al. (2007a) similarly discuss validation in the context of estimation of model discrepancy,
or bias, and assessing validity of the model by estimating the probability of the model with
bias to predict within a given tolerance with high probability.

A frequentist approach to validation of specific model predictions using confidence in-
tervals for the model discrepancy was proposed by Hills and Trucano (2002) and advocated
in Oberkampf and Roy (2010). They propose to build a confidence interval for Ytrue − Ŷ
that has a specified asymptotic coverage probability. A model is considered statistically
valid if the confidence interval contains 0.

For systems in which inputs are variable and the predictive distribution is of interest, the
goal is to probe for evidence against F̃ (yv,f ) d=F (yv,f ) where F̃ (yv,f ) is the predicted CDF
from the simulator and F (yv,f ) is the distribution function for the field data. For a valid
simulator, one would expect those distributions to be equal. Ferson et al. (2008) proposed
an area metric for measuring the distance between a predicted and empirically estimated
distribution function as a means for validating with distributions. This area metric uses
the area between the predicted distribution function and the observed ECDF as a measure
of discrepancy. Oberkampf and Roy (2010) briefly discuss the use of other goodness-of-fit
tests such as the Kolmogorov-Smirnov statistic for validating predictive distributions, but
focus more on the validation test in the next section.

4.1.5 The P-Box for Model Validation

Oberkampf and Ferson (2007) proposed a method for validating a simulator and making
reliability assessments on quantities of interest using an approach they called the “p-box
method”. The p-box uses the cumulative distribution function of the QoI and accommo-
dates epistemic uncertainty in knowledge of parameters using an interval that bounds their
plausible values.

Suppose we are interested in observations of a QoI, y, whose distribution is a function of
parameters t that have fixed but unknown values, θ. For a given value of input parameters
t, there is a unique CDF, F (y; t). The p-box is designed to be used if the value of θ is only
known to be in some interval, [tl, tu], but no other information about the uncertainty in θ
can be claimed. For each value of t within the interval, a CDF can be constructed. From
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the set of all CDFs generated by t in the interval, the p-box is defined as the region interior
to the inside the convex hull of the CDFs.

For an example, suppose the hypothesized distribution is Gaussian with the mean only
known to be located in the range µ ∈ [−1.5, 1.5] and a known standard deviation of 0.25.
That is,

Y = µ+ ε, where ε ∼ N(0, 0.252).

For each µ in the interval, there is a corresponding CDF. Figure 4.1 shows an example
of a p-box, shaded in grey, formed by the interior of the convex hull of the Gaussian CDFs.

The convex hull is known in closed form for only a small set of parametric distribu-
tions. When working with the output of a complex simulator, the p-box validation testing
procedure first builds the convex hull by evaluating F (y, t) for some collection of values of
t = {t(1), . . . , t(M)}, sampled on the interval (for example by simple random sampling or
using a Latin hypercube design) (Roy and Oberkampf, 2011). The bounds of the p-box are
then formed by finding the minimum and maximum value of the set of CDFs for each y.

For model validation, a metric of discrepancy between the empirical distribution function
of the data and the p-box is used to assess whether the model is an adequate replication
of the experimental measurements. The idea is that when the ECDF for the observations
is far from the p-box, there is evidence that the model is not valid. Roy and Oberkampf
(2011) recommend using the area metric (Ferson et al., 2008), defined as the area between
the ECDF and the boundaries of the p-box:

A =
∞∫
−∞

max
(
inf F(y)− F̂ (y), F̂ (y)− supF(y), 0

)
dy, (4.2)

where inf F(y) − F̂ (y) is the distance between the lower boundary of the p-box at y and
the ECDF, F̂ (y)− supF(y) is the distance between the ECDF and upper boundary of the
p-box at y. The inclusion of zero ensures that there is no contribution to the area metric
when the ECDF is in the interior of the p-box at y.

The second panel of Figure 4.1 shows an example of the area metric discrepancy between
the p-box and an ECDF in red. For the empirical distribution in the illustration in Figure
4.1, a sample of n = 25 was drawn from a mixture of two Gaussians, one with mean
of 0.5 and one with mean of 2.5, each with standard deviation of 0.25 and both mixture
components having equal probability. The area of this region is the value of the area metric,
in this case the value is 0.443.

The p-box validation framework has two main drawbacks. The first relates to deciding
when the area test statistic is large enough to justify rejection of the model. The area
metric has the same physical units as the QoI, which is part of the motivation for choosing
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Figure 4.1: Left: Example of the p-box with an empirical CDF . Right: The p-box with
the area of discrepancy between the ECDF and the p-box shaded in red. The area metric
is the calculated area of the red region.

the area metric over the Kolmogorov-Smirnov or Cramer-von Mises test statistic. While
the statistic is in the same units as the QOI, as stated in Ferson et al. (2008), “This area
is thus a function of the shapes of the distributions, but is not readily interpretable as a
function of the underlying random variables”. Presumably because the interpretation of the
magnitude of the statistic is unclear, Ferson et al. (2008) and Roy and Oberkampf (2011)
give no guidance for choosing a threshold for determining when the discrepancy is large
enough to consider the model invalid. Oberkampf and Roy (2010) use the relative size of
the metric as a way to compare the quality of fit of different models, rather than testing
the validity of a particular model and suggest that if one is interested in statistical evidence
against a model, that standard statistical tests, such as the Kolmogorov-Smirnov test, be
used.

A second drawback relates to using the convex hull of the p-box as the basis for model
validation. The issue is that the ECDF of field observations may be contained within
the p-box, without being similar to any individual CDF. As a result, the simulator, and
associated uncertainty, may not be capable of generating the output CDF but would pass
the validation test regardless.

For instance, let us look at a simple example without a simulator to illustrate this issue.
Consider the case that a hypothesized distribution is Gaussian with the mean only known
to be located in the range µ ∈ [−1.5, 1.5] and a known standard deviation of 0.25. Figure
4.2 shows the p-box for this case, with the interior of the convex hull in gray. Suppose that
the true generating distribution of the data was a from a mixture of two Gaussians, one with
mean -1 and one with mean 1, each with a standard deviation of 0.25 and having mixture
probability of 0.5. The plot on the left of Figure 4.2 shows the ECDF of a sample of size
n = 25 from that mixture distribution and the right shows with sample size n = 1000, which
is a close approximation for the true CDF for the mixture of two Gaussian distributions. It is
clear that the both empirical distributions fall well within the p-box. By the p-box method,
this model would be viewed as valid. However, the ECDF for n=25 and the true CDF
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resembles none of the individual CDF from the hypothesized distributions. This example
will be discussed further in Section 4.3.

Figure 4.2: P-Box with interior shaded for case of normally distributioned observations
with unknown mean constrained to an interval. The ECDF for a mixture of two normal
distributions is shown for the n = 25 case on the left and n = 1000 on the right. In
both cases the p-box indicates no discrepancy between the empirical and hypothesized
distribution, despite the generating distribution not being in the hypothesized class.

As an aside, in addition to model validation, the p-box can be used for reliability assess-
ment without reference to the observed ECDF. The bounds of the convex hull can be used
to bound the probability that y is over or under a given reliability threshold given the epis-
temic uncertainty related to t. For instance, for the p-box in Figure 4.1, the upper bound
on P (y ≤ −1.5) is 0.5, which can be found by identifying the boundary of the p-box at
y = −1.5. Similarly, the upper bound on the value of ythresh such that P (y ≤ ythresh) = 0.5
is 1.5, which can be found by finding the rightmost edge of the p-box where the y-axis is
equal to 0.5. The discussed issues exist with use of the p-box for model validation arise
due to the fit between the p-box and the observed ECDF. The p-box for reliability uses
only statements about the bounds of the p-box and so avoids limitations concerning the
comparison with the ECDF.

4.2 Bayesian Goodness-of-Fit Decomposing Epistemic and
Aleatoric Uncertainty

In order to avoid the drawbacks described in Section 4.1.5, a method that uses statistical
goodness-of-fit tests with Bayesian model checking to compare the predicted distribution of
the QoI with observations is proposed to assess the epistemic uncertainty in the goodness-
of-fit. In Section 4.2.1 background on posterior p-values for a Bayesian model is presented
and a goodness-of-fit procedure to assess the ability of the simulator and statistical model
to generate data consistent with field observations is proposed. A formal test is proposed
in Section 4.2.2 to allow for a validation assessment with conservative asymptotic control
over the probability of a false rejection when the model is valid.
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4.2.1 Bayesian Model Validation With Predictive P-values

Bayesian predictive p-values have a long history of association with model assessment for
Bayesian computation (Gelman and Rubin, 1992; Gelman et al., 1996, 2013). The idea
is that (i) a Bayesian model specifies a probabilistic generating process for the observable
data and, (ii) if the model is valid, data generated from the model should be quantitatively
similar to field data. The steps of posterior predictive model checking are as follows (Gelman
et al., 2013):

1. Obtain samples from the posterior distribution for model parameters.

2. Generate synthetic data from probabilistic model.

3. Compute a measure of discrepancy between the data generated from the probabilistic
model and observed data, either

• using a classical hypothesis test for a measure of discrepancy, or

• calculating the fraction of statistics from the synthetic data that are “more ex-
treme” than the observed - the posterior predictive p-value.

The measure of discrepancy should be sensitive to some aspect of the model of scientific
interest.

For this setting, using the posterior distribution for the model parameters, the posterior
predictive model for the calibration data can be written:

θ ∼ π(θ | yc,f ),

Xc ∼ π(Xc),

Yc,f = ηc(Xc,f ,θ) + ε, and

ηc(Xc,s, t) ∼ GP (0,Σ).

(4.3)

For a given set of calibration parameters and a realization from the GP emulator, the
distribution for the inputs X can be propagated through the emulator to give an estimate
of the CDF of the calibration data: F̃c,f (y | θ). Here, we considered the case with only
stochastically varying physical inputs Xc,f and no known inputs xc,f . We will discuss the
case with both Xc,f and xc,f in the discussion in Section 4.5.

Given a set of M samples from the posterior distribution for the calibration parameters
and response surface, there is a collection of estimated distributions generated from the
model: {F̃ (1)

c,f (y), ..., F̃ (M)
c,f (y)}. The collection of estimated CDFs can be compared to the

ECDF of the observed calibration data using one of many classical tests for goodness-of-
fit (see D’Agostino and Stephens (1986) for a coverage of classical goodness-of-fit tests).
For any of these tests, a test statistic is compared to its known sampling distribution if
the data were generated from a process with a hypothesized distribution function, F (y).
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Unlikely values of the test statistic given the sampling distribution indicate evidence that
the predictive distribution from the model is not consistent with the observed data. For
the examples in Section 4.3 and 4.4, we will use the Kolmogorov-Smirnov (K-S) test. The
motivation for that choice is discussed in Section 4.2.3.

Applying the K-S test to the set of CDFs generated from the model gives a set of p-
values such that pj = P

(
D > d(F̃ (j)

c,f (y), F̂c,f (y))
)
for j = 1, ...,M , where d(F̃ (j)

c,f (y), F̂c,f (y))
is the observed K-S test statistic and D is a random variable distributed according to the
distribution of the K-S test statistic under the null hypothesis that observed ECDF comes
from the hypothesized distribution (or that the distributions are equal in the case of a
two-sample test).

Let {p1, . . . , pM} be the set of p-values obtained from application of the K-S test with
the null hypothesis:

H0: The field data and sample from F̃
(j)
c,f (y) have the same distribution function

for each of the j = 1, . . . ,M . The resulting set of p-values can be summarized graphically
using histograms or plotting the p-value against each corresponding values of θ.

The posterior probability, conditioned on the calibration data, of rejecting the model
can be estimated by the fraction of p-values which would reject the model. Put another
way, this posterior probability is the probability that the model would be rejected, given the
epistemic uncertainty in the parameters and emulation in the model. While these summaries
give exploratory views of the quality of fit of the model, a formal test will be discussed in
Section 4.2.2.

Using the same data to estimate parameters and perform hypothesis testing can make
the test conservative (Durbin, 1973; Bayarri and Berger, 2000), therefore a set of validation
data independent from the calibration data is valuable to statistically assess the model.
Given the posterior distribution for the calibration parameters, the hierarchical model for
the data in the validation experiment is:

θ ∼ π(θ | yc,f ),

Xv ∼ π(Xv),

yv,f = ηv(Xv,s,θ) + ε, and

ηv(Xv,s, t) ∼ GP (0,Σ),

(4.4)

where ηv(x,X, t) is the simulator in the configuration for the validation system and yv,f

is the validation field observations. Here ε has the same distribution as in the calibration
set. This would be a strong assumption to make and the discussion will return to handling
validation set specific parameters in Section 4.2.4. We can again generate a set of predicted
distribution functions by sampling through the model,{F̃ (1)

v,f (y), ..., F̃ (M)
c,f (y)}. For sample j,

the null hypothesis that yv,f have distribution F (j)
v,f (y) can be tested using p-values from the

K-S test: pj = P
(
D > d(F̃ (j)

c,f (y), F̂c,f (y))
)
for j = 1, ...,M . Each of these p-values is from
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a valid classical hypothesis test for the specific set of parameters. The collection can again
be summarized graphically or by statistics of their distribution.

The histograms of the posterior distribution of p-values and the estimated posterior
probability of rejecting the null hypothesis can be used as summaries to indicate the va-
lidity of the model. The posterior probability of rejecting the null hypothesis indicates the
probability, as a measure of epistemic uncertainty, that prior information and calibration
data have given to model parameters that are inconsistent with the observations in the val-
idation test. A high posterior probability of rejecting the model gives evidence against the
model validity. However, these posterior summaries may be deceptive in judging the model’s
validity when the parameter and emulator uncertainty are still large. Figure 4.5 shows an
example of these p-values plotted against the unknown model parameter for the synthetic
example. For the plots in the upper row of Figure 4.5, although the model generating the
observed data is in the set of hypothesized models in the example, nearly all the p-values
shown are small and indicate the model should be rejected. Because the uncertainty in the
value of the unknown parameter is large compared to the range of parameters consistent
with the validation data, posterior probability of rejecting the model can be large despite
the model being valid.

A reasonable interpretation of the collection of p-values in Figure 4.5 is that the re-
maining uncertainty in the calibrated model is large and incorporating additional data into
the calibration may greatly improve the model. Depending on the application, it may be
prudent to reject the validity of the model in this case, as predictions from the model with
the large uncertainty may be poor reflections of future observed data. However, this is an
application specific decision. In the next section, a formal test is introduced for evidence
that the simulator is unable to generate the observed output distribution.

4.2.2 Formal Validation Test

The goal of the validation test is to assess any evidence that the model is inconsistent with
observed data. Typically a decision must be made regarding whether to trust the model
given that evidence. Statistical tests provide procedures with known properties to justify
the those decisions.

To test the null hypothesis that the observed field data is generated from the predictive
distribution from the model for some set of calibration parameters, in the presence of
epistemic uncertainty in the values of the calibration parameters and emulation of the
simulator, we propose the following procedure:

1. Sample CDFs as in Section 4.2.1.

2. Perform goodness of fit test (K-S) to compare validation observations with each gen-
erated CDF.
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3. Identify pγ , the maximum p-value over a 100(1 − γ)% credible interval for the cali-
bration parameters and emulator response.

4. Reject the model and conclude evidence against the model validity if pγ + γ ≤ α.

If a model is not rejected, one concludes is that there is not evidence that predictive dis-
tribution is inconsistent with the observed data. The parameter γ specifies the coverage to
the credible interval. From Step 4, it is clear that if γ > α, the test will never reject.

In classical testing of composite hypotheses with a nuisance parameter θ, the p-value of
a test will depend on the value of the nuisance parameter. Berger and Boos (1994) show
that building a 100 ∗ (1 − γ)% confidence interval for θ and then rejecting the hypothesis
test if the maximum p-value over that interval is less than α+γ is a valid level α hypothesis
test. Because of the emulation and typically small sample sizes of experimental data,
valid confidence intervals are rarely practical (Easterling and Berger, 2002). Instead the
100(1− γ)% Bayesian credible interval, calculated using the posterior samples, is used. To
do so we use the 100(1−γ)% highest posterior probability samples to estimate this interval
and maximize the p-value of the goodness-of-fit test over the interval.

With some assumptions on the prior distributions, most notably that the true value for
the parameters are in the support, the Bayesian credible interval will asymptotically have
the specified coverage (Gelman et al., 2013). Using this, it is shown that this test is a valid
level α test using the same strategy for a proof given in Berger and Boos (1994):

Proposition 4.2.1. Assume that there is a value θ0 for which the null hypothesis that
the model CDF is equal to the CDF of the field data is true. Let Cγ be a 100(1 − γ)%
credible interval for θ and pγ = sup

θ∈Cγ
p(θ) + γ where p(θ) is the p-value of the chosen level

α hypothesis test as a function of the calibration parameter θ. Then a test to reject the null
hypothesis when pγ < α will falsely reject the null with probability ≤ α.

Proof.

P (pγ ≤ α) = P (pγ ≤ α, θ0 ∈ Cγ) + P (pγ ≤ α, θ0 /∈ Cγ)

≤ P (pγ ≤ α, θ0 ∈ Cγ) + P (θ0 /∈ Cγ)

= P

(
sup
θ∈Cγ

p(θ) + γ ≤ α, θ0 ∈ Cγ

)
+ γ

≤ P (p(θ0) + γ ≤ α) + γ

= P (p(θ0) ≤ α− γ) + γ

= α− γ + γ

= α.
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In the finite data case, the coverage will depend on the exact specification of the statisti-
cal model including the prior distributions. In this case, the typical arguments for Bayesian
quantification of uncertainty motivate use of the credible intervals. When the distribution
for a parameter is uniform, such that there is no reasonable preference for any 100 ∗ (1− γ)
interval in the support of the distribution, we recommend simply sampling over the entire
uniform distribution. The distribution for a parameter is typically only uniform before
performing any model calibration, as the calibration process will typically be informative
in some manner for a parameter.

The test from Berger and Boos (1994) is known to be conservative (Bayarri and Berger,
2000), however utilizing this test allows for asymptotic control of the probability of falsely
rejecting the model in the decision. This control supplements the use of Bayesian predictive
summaries discussed in the Section 4.2.1. Algorithm 2 displays the discussed Monte Carlo
approach.

Algorithm 2 Algorithm for validation of Bayesian predictive distributions from a model
with epistemic and aleatoric uncertainty.
1: procedure Bayesian Distribution Validation(α, γ : α > γ)
2: Obtain M posterior samples of parameters θ with epistemic uncertainty
3: Calculate ECDF of the data:

F̂ (y) = 1
n

m∑
j=1

I(yj ≤ y)

4: for i=1 to M do
5: Draw m samples of X from their aleatoric probability distribution: f(x | θi)
6: Generate m simulated values y(s)

1 , . . . , y
(s)
m from the statistical model f(y | θ, x) including

emulator uncertainty
7: Approximate the model CDF using m samples:

F̂i(y) = 1
m

m∑
j=1

I(y(s)
j ≤ y)

8: Calculate test statistic, GOF (·) between experimental and simulated CDFs:
Ti = GOF (F̂i(y), F̂ (y))

9: Calculate p-value, pi
10: Retain 100 ∗ (1− γ)% highest posterior probability samples
11: Mγ ← number of posterior samples retained
12: Calculate fraction of samples for which GOF rejects the model

r = 1
Mγ

Mγ∑
j=1

I(pj + γ < α)

13: if r == 0 then
14: Reject model
15: else
16: Report r, {p1, . . . , pMγ

}

4.2.3 Choice of Goodness-of-Fit Test

As mentioned in Section 4.2.1, there are many goodness-of-fit tests that could be used in the
proposed procedure. The one-sample Kolmogorov-Smirnov test uses the maximum distance
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between the ECDF and the hypothesized CDF as a test statistic (Smirnov, 1948):

d =
√
n sup

∣∣∣F̂ (y)− F̃ (y)
∣∣∣ .

If F̃ (y) is also approximated by a sample, the two-sample K-S test can be used:

d =
√

n1n2
n1 + n2

sup
∣∣∣F̂ (y)− F̃ (y)

∣∣∣ ,
where n1 and n2 are the number of samples used to estimate F̂ (y) and F̃ (y) respectively
(Smirnov, 1948).

The distribution of the test statistic is independent of the hypothesized distribution
function in the one-sample case (D’Agostino and Stephens, 1986), and is a general test of
discrepancy between an estimated and hypothesized distribution. Because the empirical
distribution is tightly constrained near zero or one in the tails, the K-S test is weakly
sensitive to variation in these locations.

The Anderson-Darling (AD) test improves the power of the test to detect discrepancy
in the tails of the distribution by using the integrated, squared difference between the CDFs
and adding a weight to the integral that depends on y:

d = n

∫ ∞
−∞

∣∣∣F̂ (y)− F̃ (y)
∣∣∣2 [F̃ (y)(1− F̃ (y))]−1dF̃ (y).

The weight allows the test to be sensitive in the tail variation, but relies on having a closed
form for the model CDF. Because the model CDF must commonly be estimated using
Monte Carlo for simulators, see Section 4.1.3, we did not feel this test would be generally
feasible in our applications.

The χ2 goodness-of-fit test is another alternative to the K-S test. The domain of y is
partitioned into K bins. For bin k with boundaries `bk and ubk , the expected fraction of
observations that one would expect to fall into the bin is p̃k = F̃ (ubk) − F̃ (`bk). Given a
sample of size n, the χ2 test statistic is:

χ2 =
K∑
k=1

(ok − npk)2

npk

where ok is the observed number of observations in bin k. Given a true, simple null, this
statistic has a χ2

K−1 sampling distribution. There are multiple strategies for how to bin the
domain, which are discussed in D’Agostino and Stephens (1986). To optimize the power
of the test against general alternatives, D’Agostino and Stephens (1986) recommend equal
probability bins with the number of bins to be chosen based on the sample size. The bins
can also be chosen to increase power against deviations in specific regions.
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For composite null hypotheses with parameters with epistemic uncertainty, choosing the
parameters to minimize the χ2 test statistic or equivalently, to maximize the multinomial
likelihood leads to a χ2 test with K − p − 1 degrees of freedom instead of K − 1, where p
is the number of parameters (D’Agostino and Stephens, 1986). There is a subtle problem
with using this for our application, which arises because of the epistemic uncertainty due
to emulating the simulator. This is uncertainty in the response surface at any location in
the domain that the simulator has not been evaluated, effectively adding infinite parame-
ters to optimize the χ2 test statistic. Additionally, for a GP covariance function like the
squared-exponential, if there is any smooth, bounded function for which the expected bin
probabilities equal the observed and the aleatoric input uncertainty is not a point mass
at an observed value of the simulator, the support of the Gaussian process emulator is
large enough to allow response surfaces that can make the χ2 test statistic almost arbi-
trarily small. The instances of the GP that reach that minimum may have extremely low
probability, but would still be an optimal solution if optimizing over the entire support.

4.2.4 Handling Validation Specific Parameters

It may be the case that the statistical model for the validation experiment contains pa-
rameters that are not able to be informed by the calibration experiment. For example,
consider:

X ∼N(µ, σ2),

εc ∼N(0, σ2
εc),

εv ∼N(0, σ2
εv),

Yc =fc(X) + εc, and

Yv =fv(X) + εv.

In this case, the distribution of Yv depends on εv, which is not informed by observations
of Yc. This can be addressed in a few ways:

• The parameters that govern εv can be drawn from their prior distribution. This may
give a high probability to poor values for εv if the prior distribution is wide.

• Design a pilot experiment to obtain a posterior distribution for εv given the pilot data.

• Estimate the posterior distribution for εv using a statistic ancillary to the calibrated
model. For instance, εv in the example above could be estimated using replicates
with a center point design in the validation experiment, whose sample variance only
depends on σ2

εv and not the rest of the model.
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4.2.5 Validation and Coherent Updating

Given that a model has been shown to generate a predictive distribution consistent with
the validation data for some set of sampled parameter values, the natural question that
arises is whether future predictions should use only those parameters, rather than the full
calibration distribution.

The proposed approach separates the tasks of calibration and validating the model. Cal-
ibration uses Bayesian updating to account for epistemic uncertainty in a coherent manner
within the framing of the statistical model. The task of validation is meant to use data to
probe whether the statistical model is reasonable and as such, in a sense stands outside of
the model.

If the model should be updated to take advantage of information in the validation data,
the coherent approach is to recalibrate the model using Bayesian updating to obtain new
posterior distributions. Prediction accounting for the epistemic uncertainty in the model is
consistently done using the Bayesian model.

4.3 Validation Examples

4.3.1 Single Parameter Gaussian Example

Assume that the experimental inputs, {X1, ..., Xn}, are hypothesized to be generated iid

from a normal distribution with a mean of 0 and standard deviation σ = 0.25. Two synthetic
experiments will be conducted, a calibration experiment and a validation experiment. For
this example, a very simple simulator will be used with a difference in functional form
between the calibration and validation system, shown in Equation 4.5. A priori plausible
values for t are known to lie within the interval [−1.5, 1.5], but beyond that no other
information is known. Both the calibration and validation experiment are collected with
sample sizes n = 25 and n = 1000, respectively. Three examples will be considered - one
where the simulators given in Equation 4.5 and assumed normal model for the input are
valid, one where the simulator is invalid, and one where the hypothesized input distribution
is not valid.

ηc(X, t) = (X + t) and

ηv(X, t) = (X + t)3.
(4.5)

For both, first we perform a validation check using the a priori interval for θ with the
proposed method and compare to the p-box formulation to check validity of the assumed
Normal model. We then update the information about θ to the Bayesian posterior dis-
tribution. After updating, the validity of the model will be tested both with the same
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calibration data and using the sample from the validation experiment. In all applications
of the proposed validation test, we use a γ = 0.01.

4.3.2 Case: Valid Model

Let the yc,1, . . . , yc,n be generated iid from the hypothesized model and let θ = 1 where θ
is the value of t used to generate the field data. We first construct the p-box as described
in Section 4.1.5. The output of the calibration distribution is Normal in this example with
t controlling the location, so the p-box can be computed analytically. Figure 4.3 shows the
p-box using the prior interval. The ECDF for both the n = 25 and n = 1000 samples both
fall entirely inside the p-box, leading to an area metric value of 0, giving no evidence for
invalidity of the model.

We then perform the proposed Bayesian predictive test procedure. We first sample
from the Uniform(-1.5,1.5) prior distribution for θ. For each sample θ(m), we sample from
the hypothesized normal distribution for X and use this sample and the simulator ηc(X, t)
from Equation 4.5 to estimate the hypothesized CDF of Yc. The top row of Figure 4.4 and
Figure 4.5 show summaries from this a priori validation check for the n = 25 and n = 1000
examples. The top row of Figure 4.4 shows M = 200 sampled model CDFs and the ECDF
of the synthetic data. It is clear visually that a set of model CDFs in blue closely resemble
the ECDF of the calibration data in red.

Because the prior distribution is uniform, as recommended we do not limit the testing
procedure to only a 100(1 − γ)% interval. The top row of Figure 4.5 show the p-values
resulting from the Kolmogorov-Smirnov test as a function of the sampled model parameter
θ. Because only predicted CDFs generated by parameters in a small range around θ = 1
were consistent with the observations, 92% and 97% of p-values would be rejected in a level
α = 0.05 test. Despite this, the maximum p-value from the test is well over 0.05, so we,
correctly, do not find evidence against the validity of the model.

Figure 4.3: P-Box showing the ECDF entirely contained within the convex hull of the
hypothesized CDFs. The sample size is n = 25 in the left panel and n = 1000 in the right
panel.

51



Figure 4.4: Collection of CDFs from null. The top row contains sampled CDFs from the
prior distribution for θ and the ECDF of the synthetic data for the n = 25 and n = 1000
cases. The bottom row uses the same two sample sizes, but using samples from the posterior
distribution for θ after calibration.

The calibration data provides information on the model parameter θ, so through Bayesian
updating, we can obtain a posterior distribution: π(θ | yc). Sampling from this posterior
distribution, we generated a set of predicted CDFs for the calibration data, shown on the
bottom row of Figure 4.4. The spread of the predicted CDFs has greatly decreased due
to the additional information. We then retain only the 99% highest posterior probability
samples for the proposed testing procedure, which corresponds to γ = 0.01. The bottom
row of Figure 4.5 shows the generated p-values from Algorithm 2 as a function of θ. The
majority of the resulting p-values fail to reject at a level α = 0.05 and it’s clear there is
little evidence that the model is not valid.

We can then move on to testing the model against a set of data using the validation
experiment. In this case, we will propagate the uncertainty in X through the function ηv(X)
for different values of θ from the posterior distribution π(θ | yc). The bottom row of Figure
4.6 shows the generated CDFs in blue compared to the ECDF of the validation data in red.
The predicted CDFs appear visually consistent with the ECDF. The top row of Figure 4.6
shows a histogram of the p-values from the test, with a large fraction being greater than
α = 0.05. This validation test again indicates, correctly, that there is no evidence that the
model is invalid.

4.3.3 Case: Invalid Simulator

In this synthetic example, the true relationship between X and the observed variable is
shown in Equation 4.6 below, which is distinct from Equation 4.5 for any value of t. Be-
cause only the outcome yc is observed, and not the inputs X, we cannot directly compare
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Figure 4.5: P-value of the K-S test for each sampled CDF as a function of the sampled
parameter θ. The top row uses the prior distribution for θ with n = 25 and n = 1000
observations uses to test. The bottom row uses the same two sample sizes, but using
samples from the posterior distribution for θ.

predictions from the functions in Equations 4.5 and 4.6. Again, the validation test will
be performed a priori, followed by updating the information about θ using the calibration
data. We then test the validity of the model using both the calibration and validation data.
As in the previous example, we also compare the ECDF of the calibration data to the p-box
defined using the prior interval on θ.

yc = ηc(X, t) = 0.7 sin( 2π
0.2(X + 0.8))/(X + t− 0.2) and

yv = ηv(X, t) = 0.343 sin3( 2π
0.2(X + 0.8))/(X + 0.8)3.

(4.6)

In Figure 4.7, the ECDFs of the mixture model are nearly contained within the p-box
for both samples. For n = 25 there is a small area in which the ECDF protrudes outside
the p-box, with an area metric value of 0.028. This appears to be minimal evidence against
the model. In the n = 1000 case, there is the p-box procedure found no evidence at all for
the model to be invalid.

The top row of Figure 4.8 shows the same summaries as the last example from the
Bayesian predictive validation procedure. The two images on the top left show M = 200
sampled model CDFs with the parameters drawn from the prior distribution for θ. It is
clear visually that the ECDF in red does not share a common form with any of the predicted
CDFs.

The top right plots again show the p-values resulting from the proposed validation test as
a function of the sampled model parameter θ. In this case, all generated p-values reject the
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Figure 4.6: Top: Histogram of p-values from validation experiment for small data (left) and
large data (right) case. Right: Empirical CDF of validation data along with the collection
of model CDFs in small data (left) and large data (right) cases.

validity of the hypothesized model at a level α = 0.05. For the n = 1000 case, the p-values
are all precisely equal to γ indicated that the p-value from each individual Kolmogorov-
Smirnov test was equal to 0. This was not the case for n = 25, however the p-values peak
well short of the critical threshold, indicating evidence that the model is not valid.

By constraining the range of sampled values of θ through calibration, values of θ may
be found that are able to generate distributions consistent with the data. Sampling from
the posterior distribution given the observed yc, we generated a set of predicted CDFs for
the calibration data, shown on the bottom left of Figure 4.8. The generated CDFs show
little overlap with the empirical distribution. The bottom right plots show the generated
p-values from the proposed method as a function of θ. The p-values still fall well short of
the critical α = 0.05, so there is again clear evidence that the model is not valid. At this
point, the model is clearly rejected, however, we will continue to the validation step for
pedagogical purposes.

As in the previous example, we will propagate the uncertainty in X through the function
ηv(X) for different values of θ from the posterior distribution π(θ | yc). The bottom row of
Figure 4.9 shows the generated CDFs in blue compared to the ECDF of the validation data
in red. Again the distribution functions are entirely inconsistent with one another visually.
Similarly, corresponding p-values for the goodness-of-fit test for each sample CDF were
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Figure 4.7: P-Box showing the ECDF entirely contained within the convex hull of the
hypothesized CDFs

Figure 4.8: Left: Collection of CDFs Right: Plot of p-values vs. value of the parameter

computed. Histograms of the p-values from the test are shown in the top row of Figure 4.9.
For both the n = 25 and n = 1000 case, the p-values are much smaller than the α = 0.05
threshold, showing clear evidence that the model is invalid.

4.3.4 Case: Invalid Input Distribution

When testing the predictive distribution against observed data, the validation test is prob-
ing the entire model, not just the simulator. If the input distribution is incorrect, the
propagated uncertainty through the simulator may lead to poor predictions of the output
distribution. In this example, the simulator will be correct, however, rather than a sin-
gle normal distribution, the input data, X, is instead drawn iid from a mixture of two
Gaussians, one with a mean of 0 and the other with a mean of -2 and both components of
the mixture having equal probability. We follow the same procedures as the previous two
examples.
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Figure 4.9: Top: Histogram of p-values from validation experiment for small data (left) and
large data (right) case. Right: Empirical CDF of validation data along with the collection
of model CDFs in small data (left) and large data (right) cases.

In Figure 4.2, the ECDFs of the mixture model are contained entirely within the p-box
for both samples. The p-box procedure again finds no evidence at all for the model to be
invalid, even though it is clear to see that the ECDF does not appear to be normal.

The top row of Figure 4.10 shows same summaries as the last examples from the Bayesian
predictive validation procedure. The two images on the top left show M = 200 sampled
model CDFs with the parameters drawn from the prior distribution for θ. It is clear visually
that the ECDF in red displays a long plateau that is not seen in the sampled model CDFs.

The top right plots again show the p-values resulting from the proposed validation test
as a function of the sampled model parameter θ. In this case, all generated p-values reject
the validity of the hypothesized model at a level α = 0.05.

We can again update the information about θ using the calibration data. Using the
posterior distribution, we obtain the CDFs shown on the bottom left of Figure 4.10. The
generated CDFs are now visibly barely overlapping with the empirical distribution. The
bottom right plots show the generated p-values from the proposed method as a function of
θ. The p-values still fall well short of the critical α = 0.05, so there is again clear evidence
that the model is not valid. As in the previous example, the model is clearly rejected.
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Figure 4.10: Left: Collection of CDFs Right: Plot of p-values vs. value of the parameter

4.3.5 Emulated Simulator for Validation Experiment Example

As a continuation of the previous examples, the validation simulator, instead of being simply
the cube of the input X, is a slightly more complex function:

yv = ηv(X) = sin(π ∗ (X − 1)) ∗ e−1.5(X−1).

Instead of being able to arbitrarily evaluate the function, we instead emulate the sim-
ulator using a Gaussian process and m = 10 realizations of ηv(X). Figure 4.11 shows 100
realizations from the Gaussian process emulator in black and the actual curve for ηv(X) in
red. The spread in the black curves reflects the lack of knowledge of the output of ηv(X)
at those locations.

Using the calibration data from the valid model example, we then generate predictive
CDFs from the model for M = 1000 samples from the posterior distribution for θ, as
done in the validation tests above. The larger size of Monte Carlo samples is beneficial to
accommodate the extra variation due to emulator uncertainty. The ECDF of the validation
data looks qualitatively similar to the CDFs generated propagating X through the emulator
in on the left of Figure 4.12. The plots on the right of Figure 4.12 show the p-values obtained
applying the proposed validation testing procedure. For both the large and small sample
size validation data sets, the p-values indicated there is not evidence that the model is
invalid. For the large validation set size case, a larger percentage, 93.8%, reject the null.
Nevertheless, the large p-values indicate that the current validation test does not show
evidence that the model is invalid.
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Figure 4.11: Results of emulating the validation simulator function using a Gaussian process.
The curve representing the true simulator is shown in red, while 100 realizations of random
functions from the Gaussian process are shown in black. The spread of the Gaussian
process realizations between observed values of ηv(X) indicate the epistemic uncertainty in
the function output.

4.3.6 Testing Coverage and Power of Previous Examples

In Section 4.3.1, we walked through carrying out the validation test on a set of single
instances of examples. For the remainder of this section, the examples will be repeated to
investigate the performance of the proposed testing procedure by estimating the probability
of false positives in examples where the model is valid and show the power to detect the
invalidity of the model in the other cases, as the deviation from the hypothesized model
grows.

4.3.7 False Positive Rate With the Valid Model

We can repeat the previous valid model example 1,000 times to get an estimate of the
probability of obtaining a false positive given a valid model. The formal test should control
the probability of false positives to be less than α, where we use α = 0.05. We repeat the
prior validation test, the validation test on the calibration data, and the validation test on
the independent validation data set. For each we also repeat the n = 25 and n = 1000
sample sets.
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Figure 4.12: Left:Empirical CDF of validation data along with the collection of model
CDFs using the emulator in small validation data (left) and large data (right) cases.Right:
Plot of p-values vs. value of the parameter

Calibration Validation
n = 25 n = 1000 n = 25 n = 1000

Prior Posterior Prior Posterior Prior Posterior Prior Posterior
0.001 0.036 0 0 0.047 0.05 0.002 0

Table 4.1: Fraction of false positives in the proposed tests from Section 4.2.2 on 1,000
repetitions of the valid model case in Section 4.3.1

Table 4.1 shows the fraction of false rejections in the 1,000 replications. Each of the
eight cases rejected less than or equal to the level α = 0.05. In five of the eight cases, two
or less replications out of 1,000 falsely rejected the model. These do indicate some evidence
that the test is conservative, though the false positive probability is controlled to be less
than the level of the test.

4.3.8 False Positive Rate With Emulated Simulator

Like in the previous section, we would like to show the properties of the test when the sim-
ulator must be emulated. The emulation example from Section 4.3.1 is repeated 200 times
to get an estimate of the probability of obtaining a false positive given a valid, emulated
model. We repeat the prior validation test and the validation test on the calibration data
for both the n = 25 and n = 1000 sample sets. In Table 4.2, we see an empirical estimate
of the probability of false positives when testing with level α = 0.05 and γ = 0.01 using
200 replications of the synthetic example. For each case, the fraction of false positives is
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n = 25 n = 1000
Prior Posterior Prior Posterior
0.00 0.0 0.005 0.04

Table 4.2: Fraction of false positives in the proposed tests from Section 4.2.2 on 200 repe-
titions of the emulated model case in Section 4.3.1

conservative; with n = 25, testing by propagating either the prior or posterior led to no
false rejections of the model in 200 replicates.

4.3.9 Statistical Power for the Invalid Input Distribution

In the previous example in which the input distribution was invalid, the hypothesized distri-
bution was Gaussian but the actual generating distribution for the example was a Gaussian
mixture model. We showed an example where the formal test was able to successfully reject
the model. In this section, we will show the power of the test to detect the invalidity as a
function of the separation between modes of the mixture model.

The previous mixture model had components with means of 0 and -2 with each com-
ponent of the mixture having equal probability. Each component was separated from the
overall mean of -1 by 1 unit. For this section, let ∆ be the distance from -1 to each mixture
component center. In each case, the standard deviation for the mixture components is 0.25.
We test the power of the model to detect the incorrect predictive distribution at values of
∆ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

We generate synthetic data and perform the validation test 200 times for each value of
∆. Figure 4.13 shows the fraction of correct detections of the model being invalid in each
of 4 cases: the validation test using the same data used to calibrate the model with n = 25,
the same but with n = 1000, the validation test using an independent validation set with
n = 25, and the same with n = 1000.

4.4 Validation on Radiation Transport Model

As discussed in the previous chapter, the Center for Exascale Radiation Transport is focused
on high-fidelity modeling of radiation transport. The goals of experiments at CERT are to
calibrate the impurity model in PDT and show the model is valid through a sequence of
experiments of increasing complexity.

One focus of this work is to utilize PDT to quantitatively predict the measured neutron-
detector count rate in experiments as a function of many variables, including those whose un-
certainties are judged to play important roles. CERT experiments extensively use graphite
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Figure 4.13: The panels show the estimated power to detect the discrepancy in the dis-
tribution function between model predictions from a Gaussian model and the generated
observations from a mixture of Gaussians as a function of the separation of the mixture.

bricks whose impurities can significantly change its neutron-transport properties. The pre-
vious chapter focused on the calibration of the model, including calibrating the distribution
of the impurities from brick to brick.

Understanding the distribution of impurities between bricks is critical for assessing the
aleatory uncertainties for performing the model validation. In order to characterize the un-
certainty in impurity for a single brick as well as the brick-to-brick variation, this calibration
parameter is treated as a random effect. That is, since each brick can have different impu-
rity concentrations, the interest lies in estimating parameters that govern the calibration
distribution instead of a constant value. As mentioned previously, we will use a truncated
normal distribution with hyperparameters µimp, σ2

imp on the [0, 1] interval for the population
distribution.

The full model used for calibration is given in 3.8. We previously discussed the results of
the calibration, so now we can move on to performing the validation tests with the model.
First, we can test the model using the nbricks = 10 observations from calibration using
Algorithm 2 with γ = 0.01. Samples from the posterior distribution of the model were
obtained in the calibration process and can be used for validation. The QoI for validation
is the ratio of the count rate through the graphite bricks to the count rate through air.

We first drew values of parameter with epistemic uncertainty: θ,ωc, λ, µimp, and σ2
imp.

Conditioning on the drawn hyperparameters for the parent distribution of the impurities,
we sampled n = 100 impurity values to propagate their aleatory uncertainty. Next the
epistemic uncertainty in model response was incorporated by sampling the response from
the Gaussian process emulator for PDT at the 100 locations. The predicted values from
the emulator are combined with the sampled baseline rate λ and experimental exposure
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time to generate synthetic Poisson counts for both the air and graphite experiments. These
n = 100 counts through graphite are then divided by the counts through air and the
resulting collection gives an estimate of the CDF of ratio of count rates. This process is
repeated M = 10, 000 times, with the 100∗ (1−γ) highest probability estimates being kept,
using the log posterior from the calibration sampling and the epistemic uncertainty from
the emulation.

Figure 4.14 shows the collection of estimated CDFs in blue, with each blue curve gen-
erated at a sample from the posterior distribution after calibration of epistemic uncertain
parameters. These curves are compared to the ECDF of the 10 calibration observations.
The histograms showing the epistemic uncertainty in Kolmogorov-Smirnov test statistic and
the p-value of the test are also shown in Figure 4.14. While many p-values are small enough
to reject the model, there are values for the calibration parameters in the interval such that
there is not evidence against the model, so overall there is not evidence against the validity
of PDT based on the calibration data.

The large epistemic uncertainty in the test statistic seen in the bottom of Figure 4.14
indicates that more calibration data may be able to more strongly probe the model fidelity.

Figure 4.14: Top: Comparison of ensemble of model CDFs (blue) to the ECDF of the
calibration data (orange) Left: Histogram of p-values from the above ensemble using a
Kolmogorov-Smirnov test Right: Histogram of test statistic values from the above ensemble
using a Kolmogorov-Smirnov test

62



A separate validation experiment consisting of nbricks = 3 observations provides an
extrapolative test of the model. We again follow Algorithm 2 with γ = 0.01 to test the
model validity. The new experiment requires a new emulator for the computer model. The
hyperparameters for the emulator are estimated using only the simulator results.

We again draw values of parameter with epistemic uncertainty from the posterior cali-
bration samples: θ, λ, µimp, and σ2

imp. We also draw Gaussian process parameters ωc from
the emulation in the previous paragraph. A n = 100 sized sample of impurity values are
then drawn as before, followed by the response of the emulator and the synthetic count
rate ratios. This process is also done M = 10, 000 times, with the 100 ∗ (1 − γ) highest
probability estimates being kept.

Figure 4.15 shows the collection of estimated CDFs in blue, compared to the ECDF
of the 3 calibration observations. The histograms showing the epistemic uncertainty in
Kolmogorov-Smirnov test statistic and the p-value of the test are also shown in Figure 4.15.
Again there is not evidence against the model. It is noteworthy that the goodness-of-fit test
here is assessing statistical evidence for a difference between the predicted distribution from
the model and the observed data with only 3 observations. The test has very low power to
find a deviation due to the limited validation and future collected data would be valuable
for a more stringent assessment of model validity. It is important to remember that the
result of the test is not that the model is valid, but that there isn’t any evidence that it is
not valid.

4.5 Summary and Discussion

In this chapter, we propose a new approach to testing computer simulator validity in pre-
dicting the distribution of observations of a QoI. The method provides both qualitative
and quantitative information regarding the ability of the simulator and statistical model
to reflect the distribution of the physically observed data. The proposed method uses a
Bayesian statistical model to express epistemic uncertainty about model parameters and
generate predicted distributions of the QoI via Monte Carlo. The procedure avoids some
challenges with the p-box method for model validation and the formal test gives asymptotic
control of the probability of falsely declaring a model invalid for predicting the distribution
of outcomes.

The goal of the proposed method is to give evidence that the simulator is able to generate
the distribution of outcomes consistent with the observed distribution in field observations.
This is only one aspect of testing whether a model is valid. The process of testing validity
in different areas to probe the quality of predictions is a critical aspect of model building
(Gelman and Shalizi, 2013). The cycle of building the model, using validation testing to find
areas in which the model does not adequately represent reality, and improving the model
is the core of computational science (Oberkampf and Barone, 2006; Gelman and Shalizi,
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Figure 4.15: Top: Comparison of ensemble of model CDFs (blue) to the ECDF of a vali-
dation experiment (orange) Left: Histogram of p-values from the above ensemble using a
Kolmogorov-Smirnov test Right: Histogram of test statistic values from the above ensemble
using a Kolmogorov-Smirnov test

2013). The proposed method is not intended as a rubber stamp to indicate that a model is
the true representation of the underlying system, rather it gives evidence that the model is
capable of representing the true observed distribution.

In Section 4.2.2, the maximum p-value in the credible interval is found via Monte Carlo
sampling from the posterior distribution of the calibration parameters. This is a form of
optimization by random search of the high probability region. In Section 4.2.2, the control
of the false positive rate relies on finding the maximum p-value in the interval. This can
be difficult because the test statistics and p-value do not necessarily have derivatives - the
model CDF and ECDF of the validation data are both step functions - and so cannot be
found by derivative-based optimization. Use of derivative-free optimization (Conn et al.,
2009; Rios and Sahinidis, 2013) is a potential direction for future work to have greater
assurance of finding the maximum p-value. Another potential avenue for future work is
in implementation of other goodness-of-fit measures, for instance Kolmogorov-Smirnov for
multiple, correlated outputs (Li et al., 2014).
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In Equations (4.3) and (4.4), we considered the case with only stochastically varying
physical inputs Xc,f and no known inputs xc,f . If we have both Xc,f and xc,f , the predictive
distribution then depends on the value of xc,f , F̃c,f (y | θ,xc,f ). Individual goodness-of-
fit tests could be done for each value of xc,f , but if the observations are conditionally
independent given xc and θ, the u-pooling method of Ferson et al. (2008) can be used to test
the distributions at once. Under the hypothesis that yv,f have distribution F̃ (Yc,f | xc,f ),
applying the probability integral transform ui = F̃v,f (yi | xc,f ) results in independent
uniform random variates, ui ∼ Uniform[0,1] (Ferson et al., 2008). We can use this u-
pooling approach when generating CDFs from the emulator for the proposed methodology.
For each sample from the posterior distribution in Algorithm 2, a goodness-of-fit test can
then be applied testing for uniformity of the u-pooled observations.
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Chapter 5

Temporal Alignment of Replicate
Time Series and Particle Filtering
For Intrusion Detection

5.1 Introduction and Background

The detection of anomalies in time series data is of interest in a wide range of applications.
For cybersecurity, the fast identification of an intrusion into a computer network may be
critical to secure operation of the system. Entire industries are dedicated to developing
products for intrusion detection in different contexts (Jackson and others, 1999).

Major engineered systems play an important role in national infrastructure in the United
States and Canada. Examples include the power grid, waste water treatment, and pipeline
operations. These facilities have control systems that manage their operation and ensure
that the processes stay in safe operating regimes. Modern systems often have networked
computers to communicate and coordinate operation coupled to the physical infrastructure.
These networks have the potential to be vulnerable to intrusion and attack by outside actors.

Because control systems are designed to maintain stable operation for a system, under-
standing the typical behavior of measurements is important for identification of deviations
that may indicate a security event. Doing so requires methodology that can estimate very
diverse characteristic patterns that can be used to quickly identify unexpected behavior.

This chapter presents a new approach that combines a time series alignment model,
particle filtering, and on-line quality monitoring to identify anomalous behavior. The goal
of the methodology is to (1) estimate the characteristic behavior of the time series taking
into account the varied timing of structure in the series, (2) filter new data as it arrives,
and (3) use the filtering results to identify anomalies. We present an approach that can be
applied to time series with diverse characteristic shapes, including those that might arise
from communication/control networks. This approach is specifically intended to capture
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variation in overall scale and shifts in the temporal location of features in these characteristic
shapes.

The proposed approach builds on the continuous profile model (CPM) developed in
Listgarten et al. (2004). The CPM takes multiple time series replicates as input and uses a
hidden Markov model (HMM) framework to temporally align them to a shared latent curve.
We make several significant modifications to the CPM to accommodate anomaly detection
in the sorts of data described in the application in Section 5.6.5. These modifications allow
us to use particle filtering to obtain estimates of the current hidden state with uncertainty
for on-line data collection. The modifications include incorporating periodicity in the latent
trace as well as a number of important choices in setting the prior parameters of the HMM.
To make the model practical for our large data sets, the implementation takes advantage of
sparsity in the model, providing substantial computational gains over the implementation
in Listgarten et al. (2004).

Other approaches for temporal alignment of time series have been developed. For func-
tional data analysis, methods for alignment of curves to a common shared function are
called registration (Ramsay, 2006). Landmark registration requires a set of features on the
series be defined such that these features will be aligned and the timing of intermediate
observations are warped to align between the features (Kneip and Gasser, 1992). The main
drawback of this approach is that the features must occur in each observed series and am-
biguity over the location of a feature can lead to poor alignment (Ramsay, 2006). For the
series of interest in the applications considered here, a prior determination of key features
and assurance of their existence across series was not considered feasible.

In shift registration, the observation times for each series are linearly transformed to
align the curves to a common function. Gaffney and Smyth (2005) propose a two-stage
procedure for clustering series based on their behavior and aligning each cluster to a common
function. Liu and Yang (2009) propose a method for simultaneous alignment and clustering
using a linear transformation of the time in each series. The linear transformation of time
limits the flexibility of the model for alignment. The proposed method using the CPM allows
the alignment to shift and scale time differently throughout a series. More flexible methods
for shift registration include dynamic time warping, in which a time series is aligned to a
template series to minimize the time-normalized distance (Sakoe and Chiba, 1978). This
series may be another time series or an idealized prototype curve. Kneip et al. (2000)
propose a method for curve registration to a given template via local regression. For our
application data, the latent behavior of the system needs to be estimated from observations,
as for most series, a prototypical example is not available. Finally, Ramsay and Li (1998)
propose a method for curve registration with smooth, monotone transformations. This
method allows flexible temporal warping for series alignment by iteratively estimating the
shared, latent function, then using B-splines to estimate the time-warping function for each
series to the latent function. While the model allows flexible temporal alignment, it can
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provide poor estimates when there is local structural variation in the signal, as discussed
in Section 4.2 of Ramsay and Li (1998). The CPM model is able to both capture local
structural variation as well as the flexible temporal alignment.

The work in this chapter is motivated by anomaly detection on heating, ventilation, and
air conditioning (HVAC) data collected at the National Security Sciences Building (NSSB)
in Los Alamos National Laboratory. For each time series of interest, the approach involves
the following steps:

1. Characterize typical daily behavior with the modified version of the CPM to obtain
a latent trace for a sample of time series replicates believed to be anomaly-free.

2. Align new measurements to the estimated latent trace using a particle filter with the
CPM.

3. Use the filtered residuals and process control methods to detect behavior that could
indicate an anomaly as we monitor the building.

Section 5.2 describes the original CPM of Listgarten et al. (2004) and our innovations are
outlined in Section 5.3. In Section 5.4 we propose to use a particle filter with the CPM that
supports efficient on-line prediction and filtered residuals while accounting for uncertainty
in the predicted states. Section 5.5 introduces the methodology for intrusion detection
integrated with the proposed alignment model. Section 5.6 explores the performance on
synthetic and measured data. Finally, discussion of the model and future work is in Section
5.7.

5.1.1 Background on Hidden Markov Models

Hidden Markov models (HMM) are a form of state space model with a discrete set of
S unobservable states, {π1, . . . , πS}. The HMM is defined by these states, the transition
probabilities between states, and the emission probabilities that encode the way in which
an observation is generated from a given state (Bishop, 2006).

Figure 5.1 shows a diagram of a simple discrete state space. There are three states
and the allowed transitions are shown with arrows. For this illustrative example, let the
transition probabilities be as follows: the probability of a transition from a state to itself is
0.95; for states 1 and 3, the probability of transitioning to state 2 is 0.05; from state 2, the
probability of transitioning to state 1 or 3 is 0.025 each. This is called a “Markov model”
because the probability of the current state only depends on the immediate previous state,
not on earlier states or the value of previous observations.

The hidden aspect of the HMM comes from the fact that the states are not observed,
but each state “emits” an observation according to the properties of the state. The emission
probability is the likelihood of a particular value of an observation given a state from which
it is generated. Suppose that the mean responses for each state are -1,0, and 1 respectively

68



Figure 5.1: Diagram of a simple 3 latent state HMM. The states are shown as colored circles
and allowable transitions are shown as arrows.

and that the observation from a state is emitted with additive Gaussian error with standard
deviation 0.25, 0.5, and 0.25 respectively. Figure 5.2 shows data generated from this simple
HMM. The color corresponds to the state that emitted the observation.

When one fits an HMM, the state information is unknown and must be estimated. The
full likelihood for a sequence of observations from an HMM, is the product of the initial
state probability, transition probabilities between states, and the emission probabilities for
each observation.

Hidden Markov models have been successfully used for a wide range of applications.
For example, (Jelinek, 1997) present the use of HMMs in speech recognition. Starner and
Pentland (1997) utilize an HMM for real-time sign language recognition. HMMs are used
widely in natural language processing (Manning et al., 1999; Rabiner and Juang, 1986).
Eddy (1998) provides an overview of profile hidden Markov models, used for alignment of
discrete sequences for genetic and protein sequencing applications.

5.2 Hidden Markov Model For Characterizing Typical Be-
havior

Listgarten et al. (2004) developed the CPM to do temporal and scale alignment of replicate
time series. Their primary goal was to estimate a latent curve that could be viewed as “a
single, superresolution fusion of the data” to gain insight into the system (Listgarten et al.,
2004). In contrast, our goal is to use the CPM to estimate the persistent behavior of the
system to facilitate detection of outliers that would indicate anomalous system behavior.
The different observed time series share the same features, but the timing of these features
may be varied from one observed series to the next. The estimation of the shared behavior
is done by aligning time series from the system to the estimated typical behavior using the
hidden Markov model and then using the estimated model with a particle filter to obtain
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Figure 5.2: Data generated by the simple HMM in Figure 5.1. A sequence of 500 observa-
tions are shown, with the color corresponding to the state.

on-line residuals. The residuals are then used with a process control method to detect
indications of intrusion.

5.2.1 The Continuous Profile Model

This section introduces the CPM as laid out in Listgarten et al. (2004). Suppose we have
K exchangeable time series, xk = (x1,k, x2,k, . . . , xNk,k) for k = 1, . . . ,K. The goal of the
CPM is estimate the shared signal of the K time series, allowing the timing of this behavior
to change between series and accounting for local variation, as well as differences in scale
between series. Let the function z(t) be the unobserved latent trace representing the shared
behavior in the collection of observed time series. In the CPM, this function will be observed
at a discrete number of latent times.

Let π(m,q) = {τ (m), φ(q)}, be a hidden Markov state, where τ (m) is the latent time state
and φ(q) is a multiplicative scaling factor state (here we have overloaded the notation φ to
describe both the state and the value of the scale factor applied to z(t) when in state φ).
A time state τ (m) has a corresponding value of the QoI, the value of the function for that
time state, z(τ (m)). The scaling state φ(q) shifts the value for the curve in state π(m,q) to be
z(τ (m))φ(q). The local scale changes attempt to capture short term systematic deviations
from the characteristic behavior. In total there are Q scaling states, φ(1), . . . , φ(Q) and M
latent time states, {τ (1), . . . , τ (M)} leading to M × Q total hidden Markov states in our
model specification. The M latent times are considered equally spaced within their range.
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Each time series, indexed by k, also has a global scaling factor, uk, which shifts the
entire series relative to the unobserved function z(t). With this scaling factor, the emission
probability can be defined for a given latent state. For observation Xi,k, indexed by i in
time series k, given the state πi,k and global scaling factor for the series uk, the expected
value of the scaled latent curve is z(τi,k)φi,kuk. An observation “emitted” from this state has
additive Gaussian noise with mean 0 and variance σ2

x so that the model for an observation:

Xi,k = z(τi,k)φi,kuk + ei,k and

ei,k ∼ N(0, σ2
x).

(5.1)

To specify the full hidden Markov model, we additionally need the transition proba-
bilities. Let Tπi−1,πi be the probability of transitioning from state πi to πi+1. Here i is
indexing the observation in a series, though to clarify, the transition probabilities only de-
pend on the current and target hidden Markov state, not on the index for a given current
and target state pair. The notation with i is used here to connect to the particle filtering in
later sections. The scale and time states are treated independently, therefore the transition
probabilities are factored,

Tπi−1,πi ≡ P (πi | πi−1) = P (φi | φi−1)P (τi | τi−1) ≡ Tφi−1,φiTτi−1,τi . (5.2)

While the transition probabilities Tφi−1,φi and Tτi−1,τi for the scale and time states can be
estimated from observed data, Listgarten (2007) found that the improvement in quality of
fit on both test and training data was small when learning the transition probabilities and
that the computational cost was a factor of 8 larger. Instead it was recommended to select
the transition probabilities a priori.

Listgarten et al. (2004) impose several constraints on the possible state transitions to
achieve both realism and tractability. The transitions between scale states are constrained
to occur only between neighboring scales φ(q) instead of allowing arbitrary scale changes
between observations xi,k. Similarly only jumps in time of up to J time states are allowed
by the model and only in the forward time direction. Transitions from a time state τj to
itself are given probability zero. In the examples we use J = 3. These constraints make
the transition matrix extremely sparse, which gives computational benefits both for fitting
the model, as described in Section 5.3, and for filtering with on-line collection of data in
Section 5.4.

Listgarten et al. (2004) and Listgarten (2007) use uniform transition probabilities for
both scale and temporal states. While we follow the uniform recommendation for the scale
state transition probabilities Tφi−1,φi , Section 5.3 introduces a different treatment of the time
state transition probabilities Tk,τi−1,τi which improved performance with on-line filtering.
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The complete log-likelihood for the CPM is:

`({π1,1, . . . , πNK ,K}, z,φ, {u1, . . . , uk}, σ2
x) =

K∑
k=1

log(π1,k) +
Nk∑
i=2

Tπi−1,k,πi,k −
1
2Nk log(σ2

x)− 1
2

Nk∑
i=1

(xi,k − z(τi,k)ukφi,k)2/σ2

 , (5.3)

where the terms in the outermost parentheses are the log probability of the initial state
of series k, the transition probability between states for series k, and the sum over the
logarithm of the emission probability for observations in series k, respectively.

Generating observations from this model is done by following these steps:

1. An initial observation for the series is “emitted” from some state π(m1,q1) with a global
scaling factor u.

2. The system then transitions to a new state along the latent curve with a multiplicative
scaling according to the transition probabilities of the hidden Markov model.

3. The cycle of emission followed by transition continues until the end of the day is
reached.

Each transition moves through states corresponding to different times along this curve, with
the size of the steps through latent time states controlling the timing of features in z(t).

Figure 5.3 illustrates the steps for the alignment model on a single series from the
synthetic example. Looking at panel (a) we see how the observed time series (red) is
aligned to the latent trace (blue). In panel (b), the aligned points in blue have been shifted
downward by the global scaling parameter, u. In panel (c), the blue points are again shifted
to show the effect of the local scaling, φ. For instance, the blue points for the first 8
observations of the day have been shifted vertically relative to the rest of the aligned curve
to account for the extra separation between the early and later observations in the series.
Lastly in panel (d) the effect of time warping is shown, as the blue values have been shifted
from their latent time τ in the previous panels to the observed time with the observations.
The remaining separation between the blue and red points is the residual error.

Section 5.2.2 discusses choosing the number of states. Listgarten et al. (2004) also
impose smoothness on the latent trace z. We discuss how Listgarten et al. (2004) handled
each of these below and Section 5.3 describes proposed innovations to the model for use
with time series for anomaly detection.

5.2.2 Number of Latent Time States

In specification of the model, the number of latent states must be chosen. The time states
amount to a horizontal shift (a shift in time) for each series to the latent trace. For the
time warping/alignment to work, the latent time states are required to have finer time grid
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(a) (b)

(c) (d)

Figure 5.3: Steps of the continuous profile model. The latent curve is shown in black in each
panel. Panel (a) shows the observed series (ti, Xi) in red and the locations on the latent
trace that they align (τi, z(τi)) in blue. In (b), the blue points include the global scaling,
(τi, z(τi)uk). Panel (c) includes the local scaling factors in the blue points, (τi, z(τi)ukφi),
shifting some of the data closer to the scale of the observations. Finally, in (d), the time
warping is removed, such that the blue points have been moved to their observed time,
(ti, z(τi)ukφi). The remaining deviations between observed points and latent points is due
to irreducible noise.

than any of the measured time series (M � maxNk). To see this, consider having the
same number of latent time states as observations, M = Nk. Then each observation could
have precisely one potential time state in a period. If an observation xm instead was best
aligned to another, later time, then observation xM would no longer have an open state to
be aligned to in the implementation of Listgarten et al. (2004). Instead, if M = Nk, their
implementation would simply only allow the one-to-one matching of states and no time
warping. The development of periodic edge transitions that will be discussed in Section
5.3 would allow the last observation to be aligned to the beginning of the latent curve.
However, it is still undesirable for the states to only be able to warp forward in that case.

The goal of the alignment is that the observed series can have the timing shifted to align
common behavior across multiple series. This goal requires states to be both compressed
in time (moved more closely together) and expanded. Figure 5.4 attempts to illustrate this
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with a simplified diagram. The observations in blue are aligned to the latent time states, τ ,
in red. The upper panel shows the states aligned with equal spacing in time. The bottom
panel shows that, if an observation is aligned to a later time state, it must push the last
state or states off the end of the period.

Figure 5.4: Illustration of the issue with having only M = Nk latent time states. In the top
panel, each observation (blue) is mapped to a time state with no gaps. The bottom panel
shows that to allow observation 3 to be aligned to a later time (state 4), the remaining
observations are all pushed back such that observation 5 must be pushed past the end of
the “day” to the beginning.

By having a finer grid of latent time states, the transitions through the latent curve can
move more slowly or more quickly as the indicated by the features in the data. Figure 5.5
shows a similar illustration to Figure 5.4, but where the number of latent times is larger
than the number of observations in a series. The top panel is again equally spaced in time,
but now there are open latent states. The utility of those states is clear in the lower panel,
which shows how the observations can be aligned with unequal spacing through the latent
states, but still keep the full series on a single “day”. Even with the periodic implementation,
it is still not desirable to force the later observations past the end of the series. No single
series of Nk observations will enter all the latent time states, but will transition through in
order to align the observed behavior to the characteristic behavior.

For example, Figure 5.6 shows the alignment of a series from the synthetic example in
Section 5.6.2. The observations for times between 10 and 15 clearly correspond to the fast
drop in the latent curve and are aligned forward in latent time as such. If the number of
latent states was equal to the number of observations, each subsequent observation would
need to be aligned at least that far ahead. With approximately 2 latent states for each
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Figure 5.5: Illustration of the benefit of the finer grid of latent times, with M = 2Nk. In
the top panel, each observation (blue) is mapped to a time state and the set of observations
are equally spaced through the “day”, as in the top panel of Figure 5.4. Now there are open
states however. The bottom panel shows the observations aligned such that their spacing
is no longer even. The additional states allow the observations to be aligned to different
parts of the latent trace without forcing an observation off the end of the “day”.

potential observed state, the later observations are not forced ahead, but can step more
slowly through latent times to stay aligned to the curve.

Following Listgarten et al. (2004), we found that using the number of time states to
be slightly more that two times the length of the longest observed times series to perform
adequately. That is M = (2 + ε) maxNk, where ε is a small additional buffer of states. In
our implementation we choose ε = 0.1 but found the model insensitive to variations in the
range 0.01 ≤ ε ≤ 0.1. As the intent of ε is to be a small buffer of additional states beyond
a strict multiple, larger values for the additional buffer we not considered.

The choice of the number of latent scaling states Q is a balance between computational
cost and the need for enough resolution to capture small local variation from the latent
curve. The total number of hidden Markov states is Q∗M with M large due to the number
of states needed for the alignment in time. As will be discussed in Section 5.3.3, the large
state space is a significant computational burden, so the number of scaling states Q must
remain small for computational feasibility. The trade-off for using a small Q is that the
local variation away from the latent curve will be modeled with low resolution, which can
lead to structure in the residuals. For the examples we used Q = 5, which performed well
empirically.

75



Figure 5.6: Example of alignment of observations to a latent curve. The red points show
observed values of the time series and the estimated locations on the latent trace are shown
with the line from the point to the thick, black curve.

5.2.3 Smoothness of the Latent Trace

The complete log-likelihood for the model was stated in Equation 5.3. This likelihood does
not explicitly restrict the smoothness of the trace and therefore can result in substantial
complexity in potential latent curves. To encourage smoothness in the estimated latent
trace z, Listgarten (2007) introduced a penalty to the log-likelihood on differences between

adjacent values in the latent trace, −λũ
∑τ−1
j=1 (z(τj+1)− z(τj))2, where ũ = u2 = 1

N

K∑
k=1

u2
k.

This penalty is equivalent to assuming a conditional N(zi, 1
2λũ) prior distribution on zi+1

in a Bayesian inference setting, where λ is a free parameter which can be chosen using a
validation set, cross validation, or prior information. It is worth noting that the penalty is
not scale-invariant, so reasonable prior knowledge may be difficult to obtain.

The complete log-likelihood with the penalty is:

`({π1,1, . . . , πNK ,K}, z,φ, {u1, . . . , uk}, σ2
x, λ) =

K∑
k=1

log(π1,k) +
Nk∑
i=2

Tπi−1,k,πi,k −
1
2Nk log(σ2

x)− 1
2

Nk∑
i=1

(xi,k − z(τi,k)ukφi,k)2/σ2
x


− λũ

τ−1∑
j=1

(z(τj+1)− z(τj))2.

(5.4)
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The term ũ is included in Equation (5.4) to ensure the smoothness penalty λ is effective
at encouraging smooth solutions (Listgarten, 2007). Without ũ, the penalty term in Equa-

tion (5.4) is −λ
τ−1∑
j=1

(z(τj+1)− z(τj))2. Because the mean for an observation is z(τi,k)φi,kuk,

dividing z(τi,k) by a constant B and multiplying uk by B results in the same likelihood.

The penalty term is − λ
B

τ−1∑
j=1

(z(τj+1) − z(τj))2, which can be made arbitrarily small by in-

creasing B without having any effect on the quality of fit of the model. Including the term
ũ ensures that smooth solutions can be found by proportionately scaling up the penalty if
that constant is increased.

5.2.4 Estimation

As is typical for HMMs, Listgarten et al. (2004) use the expectation-maximization (EM)
algorithm to estimate the model parameters, z, uk, and σ2

x (Dempster et al., 1977). For the
CPM, the expectation is taken with respect to the latent states. The expected, penalized
likelihood is:

E[`(z,φ, {u1, . . . , uk}, σ2
x, λ)]π =

−1
2

K∑
k=1

M∑
m=1

Q∑
q=1

Nk∑
i=1
pm,q,k,i

(
Nk log(σ2

x) + (xi,k − z(τm)ukφq)2/σ2
)

− λũ
τ−1∑
j=1

(z(τj+1)− z(τj))2 + constant,

(5.5)

where pm,q,k,i is the probability that observation i is in time state m and scale state q for
time series k. Terms that do not depend on the estimated parameters have been combined
into the constant.

The algorithm iterates between computing the complete state probabilities for each
time step using the Baum-Welch algorithm (Baum et al., 1970) and then maximizing the
parameters over Equation 5.5. Expressions for the maximum penalized likelihood values of
z, uk, and σ2

x are given in Listgarten (2007). In the implementation by Listgarten et al.
(2004), φ are fixed.

5.3 New methodology for Anomaly Detection in Time Series

In our work we are interested in using the hidden Markov model approach to align time
series from control systems to a common latent behavior. The idea behind the proposed
approach can be used to address the varied timing of features in the time series from day-
to-day and to use the HMM structure for efficient filtering with some novel innovation. In
this section, the new methodology is described to make the continuous profile model both
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computationally practical and scientifically appropriate for the application as well as the
on-line data acquisition environment.

5.3.1 Estimating the Value of Scaling States

In Listgarten et al. (2004), the values for φ(1), . . . , φ(Q) were fixed. In the application, there
is rarely prior information that can be used to set these values and it is instead preferable
to estimate these to approximate the appropriate scale to capture small local variation in
the time series. This is important for our detection context to allow the model to learn the
typical scale of local variation and not atypical variation due to anomalous behavior. We
adapt the model to allow these values to be estimated during the maximization step of the
EM algorithm. Allowing the scale states to be estimated creates a confounding between the
values of the scaling states φ and the global scaling u. Multiplying all the scaling states by
a constant B and dividing u by the same constant results in the same penalized likelihood.
To avoid this confounding, the smallest, φ(1), is fixed to be 1 and other values are restricted
to be > 1. An equivalent restriction would be to fix the largest,φ(Q), to be 1 and the
remaining to be less than 1. Under this specification, there is a closed form solution for the
scaling state φ(j):

φ̂(j) =

K∑
k=1

∑
{s:φs=φj}

Nk∑
i=1

ps,k,izsukxi,k

K∑
k=1

∑
{s:φs=φj}

Nk∑
i=1

ps,k,i(zsuk)2
,

with the other parameters fixed at their current value in the EM algorithm. In the above,
ps,k,i is the probability that observation i in series k is in state s and sum over s is over all
states s with scaling state of φ(j). The derivation for this is given in the Appendix for this
chapter.

5.3.2 Periodic Latent Trace

For the application that motivated this work, the time series display diurnal behavior,
therefore the proposed approach specifies periodic boundaries. This allows late latent time
states to transition to early ones. If periodic transitions are not allowed, a new replicate
series could reach the end of the latent trace before the end of the day’s observations, leaving
the model with no time states that have non-zero probability for the remaining observations
collected that day.

This requires two innovations. First, the Markov transition matrix must include
transitions from late time states to early ones by allowing transitions from state τj to
{τ(j+1 mod M), . . . , τ(j+J mod M)}. Second, to impose periodicity and smoothness on the
latent curve, the penalty λ from Equation 5.4 must also include a term with z1 and zM :
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−λũ
(
(zM − z1)2 +

∑τ−1
j=1 (zj+1 − zj)2

)
. This is critical for handling the residuals in an on-

line manner with the particle filter discussed in Section 5.4.

5.3.3 Computation for Large State Spaces

In the specified model, a practical, computational concern is the size of the state space.
Because the latent time and scale states are independent in the HMM, the total number of
states is Q×M . In the application in Section 5.6.5, we set Q = 5 andM = (2+ε) max (Nk)
with ε = 0.1. A typical size for the maximum number, max (Nk), is 1440 (the number of
minutes in a day), so the state space has around 5 × 2.1 × 1440 = 15, 120 states. It turns
out that this is fairly large and some issues must be addressed.

The aforementioned constraints placed on transitions between the scale states and the
time states make the transition matrix quite sparse. Recall that the scale transitions are
constrained to occur only between adjacent scales, so that there are only three possibilities
for a scale transition: move to the next smaller scale, stay at the current scale, or move to
the next larger scale. Similarly the time transitions are constrained to be no more than J
steps away. Because the scaling transition can remain in the same scaling state or move to
one of two potential adjacent states, from a particular state πi,k a transition can only reach
at most 3J time states in the next step.

In Listgarten et al. (2004), the authors use the full transition matrix of size QM ×
QM . We instead take advantage of the imposed sparsity by working with a set of three
vectors of length 3JQM . One vector contains the indices of the beginning state of the
transition, another has the indices of the target state, while the third contains the transition
probabilities used by the Baum-Welch algorithm. (In practice we store the two bookkeeping
vectors of indices in a single matrix of size 3JQM × 2.) Indeed these vectors could be
made even shorter because not all states can transition to a full set of 3J states. The
advantage is likely negligible compared to the savings already achieved over the QM ×QM
implementation. For the application, with J = 3 the transition matrix contains 15, 120∗9�
15, 1202 entries.

To make the computational gains more concrete, in the application with time series of
length 1440 in Section 5.6.6, fitting the model using the full transition 15, 120 × 15, 120
transition matrix was not feasible due to memory constraints. Downsampling the data
by one-tenth, so that each series contained 144 observations allowed the model to be fit
in approximately 280,000 seconds on 12 cores. Using the sparse matrix approach from the
previous paragraph on the full 1440 observations, each run of the model takes approximately
25,000 seconds on 12 cores and used approximately 18 GB of RAM. These substantial
improvements made fitting the model to the full data feasible, though still computationally
expensive. However, the cost of aligning new replicate series to an estimated model is much
lower as discussed in Section 5.4.
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5.3.4 Choice of Fixed Transition Probabilities

Listgarten et al. (2004) suggested uniform transition probabilities over reachable states
for the HMM. We found for both estimating the parameters of the CPM and, as will be
discussed, for filtering, using non-uniform probability improved performance. We note that
choosing M = (2 + ε) maxNk, that is choosing to have roughly twice as many latent time
states as observations in a series, implies a preferred time jump of about 2 time steps:
the latent curve is estimating the daily behavior, so modulo the time warping, a single
replicate time series should reach from approximately state m = 1 to state m = M in the
Nk observations. To do so, each observation needs to transition across approximately 2
time states on average. We found benefit for J = 3 in setting P{τi = j + 2|τi−1 = j} = 0.5
and P{τi = j + 1|τi−1 = j} = P{τi = j + 3|τi−1 = j} = 0.25, which favors a time jump of
size 2 as desired but still allows time to move slightly faster and slower if needed. When
filtering as in Section 5.4, this implementation alleviates the problem of getting stuck in a
state that is too far ahead or behind.

5.3.5 Initialization of Latent Trace for the Parameter Estimation

Parameter estimation for the HMM using the EM algorithm requires a set of parameters
used to initialize the algorithm (Dempster et al., 1977).

Empirically, we found the solution obtained was sensitive to the initialization of the
values of z(τm), indicating there exist many local maxima of the penalized likelihood. Al-
though Listgarten et al. (2004) suggest using one of the replicates to initialize the latent
trace, empirically we found better recovery of the temporal alignment when using the values
averaged over the replicate series as follows:

1. For i = 1, . . . ,max(Nk) calculate x̄i, as the average QoI for observed time series at
time index i in the K series.

2. For any i that has no observed values at its index, set the x̄i = x̄i−1, starting with
the smallest i.

3. Upsample from the max(Nk) values of x̄i to the M values z(τm) by equally spacing
the values of x̄i in time and filling adjacent states

For step 2, if for some reason no series has an observation at i = 1, then use larger adjacent
indices first. For synthetic data in Section 5.6.2, improved recovery of the known latent
curve was found.
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5.4 Particle Filtering for State Estimation With On-line
Data

To use the proposed CPM to detect intrusions a new time series, the model is estimated to
characterize typical daily behavior for a collection of (we hope) intrusion-free replicates as
demonstrated above. We can then apply the estimated model, including the estimated latent
trace z(τ), error variance of the data σ2

x, and scaling states φ(1), . . . , φ(Q), to measurements
as they arrive in real-time. In particular, the model can be used for filtering, estimating
the current latent state πt,k given all data up to the latest observation. This will allow for
examination of filtered residuals to detect intrusions as discussed in Section 5.5.

The estimated HMM is a probabilistic generative model for the unobserved states. We
can use Bayesian inference to estimate the latent states for the sequential observations as
they arrive, given the fixed, estimated CPM. This approach can be seen as a form of modu-
larization (Liu et al., 2009), in which a Bayesian model has a submodel with parameters that
are estimated by optimization, while sampling methods are used to estimate the remaining
parameters. For the CPM, the maximum penalized likelihood estimates using Equation 5.4
can be viewed as a maximum a posteriori (MAP) estimate with improper uniform prior
distributions on the global scaling, local scaling, and residual variance parameters and the
conditional prior described in Section 5.2.3 for, z(τ (1,1)), . . . , z(τ (M,Q)), the values of the
latent trace. Because of the computational expense of fitting the CPM, modularization is
necessary; however, by fixing model parameters at their MAP estimates, the modularized
model does not account for uncertainty in the latent trace. Using the particle filter to
sample latent states during on-line alignment of new time series allows uncertainty in the
latent state to be accounted for in intrusion detection.

For a new series indexed by g, the prior distribution for the latent state of the initial
observation is p(π1,g). When observing the first value in a time series, the prior distribution
can be updated to obtain a posterior distribution for the initial state p(π1,g | x1,g). The
distribution for sequence of hidden Markov states up to the second observation after the
first observation is then:

p(π1:2,g | x1,g) = p(π1,g | x1,g)Tπ1,g ,π2,g .

This distribution can be updated by conditioning on the second observation and the se-
quence transitioned forward another step. The posterior distribution can continue to be
updated as each new observation arrives in the on-line fashion.

We propose a particle filter approach, outlined in Algorithm 3, to estimate the posterior
distribution of the current hidden state as observations arrive. The particle filter is a natural
method for performing Bayesian inference with sequential models. Liu and Chen (1998)
proposed particle filtering for dynamical systems and showed application to an econometrics
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model and to target tracking in clutter. Fearnhead and Clifford (2003) show an application
of particle filtering to on-line data for an oil drilling application. We will closely follow these
approaches to the particle filter.

Instead of a single estimate of the current state, the particle filter gives us np estimates,
one for each particle. Each particle, j = 1, . . . , np, is weighted by the probability that
the observation came from that state, wj = P (xi | uj , πi,j). The weights indicate the
relative probability of different potential paths through the hidden Markov state space.
The diversity of the particles captures the uncertainty in paths that are consistent with the
observed data. As more observations are collected, the weight can become concentrated on
a few particles.

In order to ensure that the population of particles is still capturing the uncertainty
in later states, the current particles can be resampled with replacement according to the
weights wj . To determine when resampling is appropriate, we follow the standard procedure
in particle filtering literature (Djuric et al., 2003; Doucet et al., 2000). At each step the
effective sample size of the weighted collection of particles is ESS = 1∑

w2
j

. If ESS < nthresh,
we then resample particles with replacement. We use nthresh = np/2. Tracking multiple
particles ensures that potential paths through the latent space that are of similar quality
continue to be followed until the data rules them out and resampling avoids tracking particles
whose weight is very small. This increases robustness in filtering for the on-line environment.

To visualize, the particle filtering procedure is illustrated through one of the examples
that is discussed in Section 5.6.2. Figure 5.7 shows the latent curve and the latent curve
shifted by the values for the scaling states as solid gray lines. In Figure 5.7a, the initial
states are shown as red circles, with the opacity indicating the fraction of particle filtering
samples in that state. The more opaque red points indicate states with a higher posterior
probability for the current observation.

In Figure 5.7b, one observation from the time series has been observed. The particles,
following the transition probabilities, enter new potential states and are then weighted
by their relative fit to the first observation. The weight after the single observation is
concentrated on a smaller number of particles than previously. This indicates more posterior
certainty about the path the time series is taking through the latent trace.

Figure 5.7c, 5.7d and 5.7e show later steps after the 8, 20, and 40 observations respec-
tively. We can see how the alignment uncertainty tracks through as data is added in a
sequential, on-line fashion. Note that the observation in Figure 5.7c is warped forward in
time for most particles, while for 5.7d temporal alignment of observation to latent times
requires less time warping. By 5.7e, the latent time and observed time are roughly equal.
Figure 5.7f shows the last observation of the day, the 48th. The uncertainty in state passes
through the end boundary and back to the beginning of the latent trace.

One mentioned benefit of the HMM and the particle filtering approach, is that it can
naturally handle missing observations in the on-line stream of data. To illustrate this, in
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: On-line alignment of particles to the latent trace at (a) the initialization, (b)
the first observation, (c) the 8th, (d) the 20th, (e) the 40th, and (f) the 48th. In each
image the solid gray lines indicate the latent trace scaled by each scaling state value. The
observed data is shown in blue and the estimated current state of the last observation is
shown in red. The opacity of the red points indicates the estimated posterior probability
of each state, with more opaque indicating higher probability.

Figure 5.8, we show the the alignment using the first four observations, but then dropping
the others except those at times 10, 20, 30, and 40. In 5.8a, we see the filtered alignment
of the observation at a time of 20. Because of the missing intermediate observations, there
is substantially more uncertainty in the latent state of this observation than there was in
5.7d. The observation at time 30 in Figure 5.8b, the particle filtering approach indicates
uncertainty over which of the two peaks the observation may be aligned. Using the particle
filtering approach to continue the alignment in face of that uncertainty is particularly useful
here, as future observations may be informative as to which of the two peaks this series
passed through. Choosing an optimal state with the forward model would force a choice of
a particular state and be unable to adapt to future information. Lastly, we again see that
the 40th observation in 5.8d has significant uncertainty in latent state due to the lack of
information about intermediate steps and the fact that late values of the latent trace have
similar values.

Because the number of latent states reachable from a particular state is small, 3J , sam-
pling the particles is relatively fast, even when the full state space is large. For the example
in Section 5.6.7 with 15,120 total hidden Markov states with J = 3, where there are 3×3 = 9
states reachable from any other, updating np = 500 particles took approximately 0.14 sec-
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(a) (b)

(c)

Figure 5.8: On-line alignment of particles to the latent trace missing gaps in the observed
series. Observations are at (a) 20, (b) 30, and (c) 40. The plots indicate how the missing
observations affect the uncertainty in alignment to the model.

onds on a 2.56 GHz Intel Xeon X5660 and scales linearly with the number of particles.
Because each particle is independent, parallelization can further reduce the computation
time or allow for more particles to be used.

5.5 Intrusion detection

The core motivation in this work is to use the estimated latent trace z to characterize the
normal behavior in an engineering control system for the purposes of intrusion detection.
After estimating the parameters of the CPM model and obtaining residuals via particle fil-
tering, a method for determining evidence of anomalous behavior, indicative of an intrusion,
is used with the filtered residuals.
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Algorithm 3 Online Particle Filter with Trained Model
Initialization: Draw np particles {τ0,j , φ0,j} ∼ P (uk, π0,k) for replicate k. Set all weights,
wj = 1/np
Input: Data xi,k, Particles {τ1:(i−1),j , φ1:(i−1),j}, Residuals e1:(i−1),j , j ∈ {1, . . . , np}
for j = 1 to np do

Sample πi,j | πi−1,j from the transition distribution Tπi−1,πi in Equation 5.2
Calculate residual ei,j = xi − z(τi,j)ujφi,j
Set weight wj = wj ∗ P (xi | uj , πi,j)
Normalize weights wj = wj/

∑
j
wj

if 1∑
w2
j

< np/2 then
Resample np particles with replacement with weights w1:np
Reset all weights to w1:np = 1/np

Output: Particles {τ1:i,j , φ1:i,j , uj}, Residuals e1:i,j , j ∈ {1, ..., np}

5.5.1 Background

Techniques for identifying intrusions have been widely developed (Lee and Stolfo, 1998;
Marchette, 2001). Intrusion detection also has strong connections to anomaly and fraud
detection (Bolton and Hand, 2002; Chandola et al., 2009). The approach to identify intru-
sions depends on the available data for the system and the likely threats. One approach
is to identify deviations from the typical operation of the system, typically via clustering
(Marchette, 2001) or by identification of local neighborhoods of typical data and identifying
observations outside these regions (Breunig et al., 2000). These methods do not assume any
structure to the impact of an intrusion on the network, allowing them to be more robust to
new types of threats; however, the cost of this flexibility is decreased power of detection.

Another approach is to assume that threats have a known signature and develop methods
for identifying these patterns in the systems of interest. The attack signature may be known
from previous, labeled data collected on the same or similar systems. This data can be used
with classification algorithms to identify data characteristic of an intruder (Bolton and
Hand, 2002; Marchette, 2001).

Often, training data for classifiers on intrusions in a system may be difficult to come
by. In that case another method is to generate synthetic data expected to be similar to the
signature of an attack and use this as training data for a classifier (Abe et al., 2006). The
synthetic data does not need to exactly match the structure of an intrusion, it only needs to
more closely resemble a true attack than normal data from the classifier’s view. Synthetic
data would incorporate expert knowledge on the types of vulnerabilities in the system.

Unfortunately, because both of these methods rely on new attacks resembling the data
used to train the classifier, they would not be robust to new forms of attack. Hybrid ap-
proaches utilizing both clustering and classification potentially provide a balanced approach
to achieve benefits of both methods while mitigating their risks (Tsai et al., 2009).
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The examples will consider a simple form of known attack signature: a level change in
the characteristic behavior, i.e., a consistent increase or decrease in the overall scale of the
data for some duration. Section 5.6.1 describes the method for injecting such level changes
into the two data sets. Any intrusion detection method that works with model residuals will
be compatible with the filtered residuals computed as described in Section 5.4. In Section
5.5.2 outlines a standard method from the changepoint literature which is a form of the
cumulative sum (CUSUM) technique (Qiu, 2013). Then we demonstrate the use of this
CUSUM technique on the model’s filtered residuals for the synthetic data and NSSB data
in Section 5.6.4 and Section 5.6.7.

5.5.2 CUSUM Method for Detection

The final step to the proposed methodology for intrusion detection is the application of a
process control procedure to the filtered residuals to identify when the system behavior is
atypical (Qiu, 2013). We use a standard intrusion detection method called CUSUM (for
cumulative sum) to demonstrate the utility of the filtered residuals in this context (Page,
1954). Using the filtered residuals computed as in Section 5.4 as input, we apply a form
of CUSUM test statistic as described in Qiu (2013). It can be implemented in many ways.
We compute a test statistic Ci for residual ei at time i:

Ci = max(C+
i , |C

−
i |) where,

C+
i = max(0, C+

i−1 + ei), and

C−i = min(0, C−i−1 + ei).

(5.6)

In the particle filter framework, we could either compute this statistic for each particle
j and report Ci averaged over all np particles, or calculate Ci on the residuals averaged
over all np particles. Little empirical difference was found between these approaches, so,
for the reported examples, Ci is calculated on the averaged residuals for computational
convenience.

Large Ci occur when residuals show a strong change. The average run length until a
false detection is a common metric for the quality of a process control algorithm. Because
the replicate series are split by day, we instead control for the number of detections per
day on data with no intrusions. For both the synthetic data set and the NSSB data, we
choose a threshold on Ci so that the false detections per day are 1 per 4 days using the
filtered residuals from the training data. When Ci exceeds this threshold, we declare that
an intrusion has occurred.
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5.6 Model Performance

In this section, the performance of the proposed methodology for intrusion detection is
investigated. The approach is applied to a synthetic data example and an HVAC application.
For both examples, the proposed modified CPM approach is applied to a set of intrusion
free time series to estimate the latent trace. Next, we apply the particle filter to on-line data
and obtaining filtered residuals. We introduce a level change as the signature of an intrusion
for this set of data. We then explore the performance of the CUSUM detection statistic
for identifying the level change. Because we do not have data with known intrusions in the
application, a strategy for inserting a type of intrusion is described in Section 5.6.1. The
performance of the methodology is investigated on these intrusions.

5.6.1 Injecting level changes

To simulate a simple attack signature, we add a constant level change to the series to
represent an intrusion and consider level changes with different magnitudes and different
durations. The time of the intrusion is randomly chosen at the equivalent of either 1 AM or 1
PM. These times are chosen so that the performance to detect intrusions can be separated
between intrusions at times when the latent trace is more smoothly varying (night) and
times where the variation in the latent trace is much greater (day). We draw the magnitude
and duration of the intrusion with a 2D maximin Latin Hypercube design using the lhs

package in R with the time rounded to the nearest minute (Carnell, 2012). The distribution
for the magnitude of the level change is N(0, 10σx) while the duration of the intrusion was
sampled uniformly on the interval [1,16] observations in the synthetic example and [1,360]
minutes for the NSSB example.

For the two data sets, the proposed alignment model is first estimated using a set of
intrusion-free training data. The test set is then constructed as follows. For the synthetic
example, a test set of 1000 replicate time series is generated from the proposed CPM as
described in Section 5.6.2, and level changes are injected into 500 of the series. For the
measured NSSB data set, we generate 200 level change parameter settings and then make
the intrusion cases by injecting level changes into one of the 14 series from March 2016
mentioned in Section 5.6.6 chosen at random. In both cases the estimated latent trace is
used to calculate residuals ei in the test sets.

5.6.2 Synthetic data

We first consider an example where the data are generated from a known distribution,
with know intrusions. For computational convenience we suppose that we acquire only two
measurements per hour (48 per day) instead of one per minute as in the NSSB data. We
use the following function to generate data exhibiting approximately periodic behavior and
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containing signal variability that changes over time t ∈ [0, 48]:

x(t) = 4 + sin
(2πt

24

)
+ e−

1
100 (t−30)2 sin

(2πt
4 + 3

)
. (5.7)

This function is shown in black in Figure 5.9 and serves as the latent trace. Figure 5.9
also shows 60 replicate time series generated from this latent trace using the continuous
profile model that we define in Section 5.2. First, a scale factor for the first day’s time
series, u1, is drawn from a uniform distribution (i.e., Uniform(0.97, 1.03)). Next, the
initial latent time for the first observed series, τ1,1, is sampled from τ (1), . . . , τ (6) with
uniform probability, as well as the first scaling state φ1,1 with uniform probability from all
the potential scaling states. The first observation, x1,1 is emitted by drawing a residual
e1,1 ∼ N(0, 0.32) and adding it to the latent value z(τ1,1φ1,1u1). The model then transitions
to the next pair of time and scale states, τ2,1, φ2,1 according to the transition probabilities.
Another observation is generated and the process repeats until all Nk = 48 observations
have been generated for the first time series. This process is then repeated 59 more times
to generate the full 60 replicate series.
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Figure 5.9: Sixty replicate time series of synthetic data generated from the underlying
latent trace (in black) using the continuous profile model described in Section 5.2. We
used the following parameter settings (defined in Section 5.2) for each observation i in
replicate series k: error standard deviation of the data σx = 0.3, global scaling parameter
uk ∼ Unif(0.97, 1.03), local scaling parameters φi,k ∈ {1.0, 1.1, 1.2}, M = 100, and τi,k is in
the length 100 sequence of evenly spaced values between 1 and 48.
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5.6.3 Estimation of Characteristic Behavior With Synthetic Data

The left panel of Figure 5.10 shows the same 60 replicate time series originally shown in
Figure 5.9 with the true latent trace used to generate them in black. The right side shows
the true latent trace again in black along with the estimated latent trace found using the
proposed method in green. The points in the right panel of Figure 5.10 show the scatter
of each of the 60 replicate time series around the estimated latent trace after aligning
them to the trace. We fit the CPM with a smoothing parameter λ = 1.67, which we set
by minimizing the mean squared error over different values of λ on a validation set of 60
independently generated series.

In the figure we see that the estimated latent trace in green has recovered the main
structure in the true latent curve in black, including the change in signal variance and the
magnitude of the large-scale oscillations in the signal. Short-scale structure in the estimated
latent trace at early times indicates that the value of smoothing parameter found by cross
validation may have been smaller than optimal for reconstructing the early smoothness.
The model also captures the correct time alignment, though the estimated latent trace is
slightly shifted to the right of the true latent trace at early times.
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Figure 5.10: Left: Sixty replicate series of synthetic data generated from the underlying
latent trace (in black) using the model described in Section 5.2. Right: The estimated
latent trace in green along with the replicate time series shown as points after aligning them
to the estimated latent trace. The true latent trace is included in black for comparison.

The left panel of Figure 5.11 is a plot of the corresponding residuals for each series. En-
couragingly, the residuals are centered around zero and have little discernible pattern. The
Q-Q plot suggests that the residuals can be reasonably described as normally distributed,
while the autocorrelation plot confirms that they are uncorrelated as desired.

5.6.4 Intrusion Detection With Synthetic Data

With the estimated model, we now perform on-line filtering for new series. Figure 5.12
shows four stages of the filtering where the observed data includes a level change simulating
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Figure 5.11: Left: Observed residuals from the esimated latent trace for the synthetic data.
The resulting residuals are centered on zero and show little residual pattern. Center: The
Q-Q plot suggests that the residuals are normally distributed. Right: The autocorrelation
function (ACF) plot shows little autocorrelation in the residuals.

an intrusion into the network. In the 24th observation in Figure 5.12a, the alignment looks
similar to Figure 5.7d, with significant uncertainty over the current value of the latent state,
though one state has distinctly more posterior probability than the nearby states. The level
change is inserted at 28th observation, which is shown in Figure 5.12b. Because the data
point appears somewhat atypical, the posterior probability is concentrated almost entirely
on a single state. However, the residual is not large because the point is plausibly emitted
from that state. However, the subsequent observations are not able to align to the latent
trace. Figure 5.12c and Figure 5.12d show the results of the particle filter at the 31st
and 40th observations. With the level change, the resulting residuals are quite large and
indicative of anomalous behavior.

Applying the particle filtering method results in the filtered residuals shown in Fig-
ure 5.13. The left panel shows the resulting residuals from 500 intrusion-free replicate series
while the right panel shows the filtered residuals from the 500 test series with an added
level change as described in 5.6.1. The intrusion-free residuals appear homoscedactic and
have few outliers. Large residuals are visibly more frequent in the intrusion data on the
right image.

The residuals from intrusion-free series can be used to choose the threshold for identi-
fication of an intrusion. Figure Figure 5.14 shows how the false detection rate decays as
the threshold increases for the intrusion-free residuals in this example. To meet the stated
threshold of one false intrusion every four days, the threshold for the CUSUM test statistic
was set to 4.0.

For the 500 series with an injected level change, the CUSUM method above correctly
identified 64.6% of the intrusions. Figure 5.15 shows the distribution of true positives
(black) and false negatives (red) across different intrusion durations and magnitudes. The
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(a) (b)

(c) (d)

Figure 5.12: On-line alignment of particles to the latent trace with a synthetic intrusion at
(a) the 24th observation, (b) the 28th, (c) the 31st, and (d) the 40th. This example shows
the filtering approach on data with an injected level change and the large residuals that
result.

way the false negatives are clustered around a magnitude of zero shows, not surprisingly, that
“quieter” intrusions are harder to detect. This effect is mitigated as intrusions get longer
as shown by the narrowing band of red points around zero as duration increases. That is,
the ability to detect smaller magnitude intrusions improves as durations get longer. In the
500 series in the test set that did not have injected level changes, an average of 0.232 false
detections per day were identified, which is slightly less than a rate of one false intrusion
every four days used to set the detection threshold.

Analyzing the delay in detecting intrusions is another important metric for security. The
histogram in Figure 5.16 shows the number of intrusions detected at different delays after
onset. We can see that detections happen quickly after the beginning of the intrusion, with
the majority of detections happening within the first 4 observations after the beginning of
the anomaly. Particularly large values for the detection delay may actually be false positives
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Figure 5.13: Left: Filtered residuals from 500 replicate series in the synthetic example
without injected level change simulating an intrusion. Right: Filtered residuals for 500
replicate series with injected level changes at either 1 AM or 1 PM.

on the post-intrusion residuals, though they may instead result from the end of an intrusion
being detected as a level change.

5.6.5 Real World Example

Modern HVAC systems report time series data from a large number of diverse sensors
throughout a building. Available data for this application includes temperature, air flow,
and air valve positions. Figure 5.17 shows daily replicate time series from these three sensor
types at two different locations in the building. We can see that from day-to-day the overall
behavior for the time series in each panel of the figure is quite similar, but different days
show variation in overall scale and the location of consistent features, as well as measurement
error. Monitoring these for anomalies can provide early indications of failure, or even of a
cyber-attack on the HVAC system.

We developed the approach to analyze time series from the heating, ventilation, and
air conditioning (HVAC) system of the National Security Sciences Building at Los Alamos
National Laboratory. We collected 894 time series from sensors throughout this 275,000
square foot building. Measurements for each series are recorded approximately once per
minute.

Broadly speaking, each of the six series in Figure 5.17 shows higher variability in the
behavior of the series during plausible “working hours” of 0600-1830 and smoother changes
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Figure 5.14: False detections per day when applying the CUSUM method to the filtered
residuals for the synthetic data in Section 5.6.1. A threshold of 4 is the smallest with a
detection rate of at most 1 per 4 days on the filtered residuals using the training data.

during the overnight periods. This work focuses on the middle of the week - Tuesdays,
Wednesdays, and Thursdays - where human behavior will be most consistent.

Figure 5.17 shows time series from Tuesdays and Thursdays in February 2016. The
panels show the temperature, air flow rate through the HVAC system, and what percentage
open the air flow value was for two rooms in the NSSB. The replicates for each time series
have similar shapes over the course of each day, however the timing of features in each
curve vary between observed series. In this chapter the alignment and detection model are
applied to the interior location temperature data from the above series.

5.6.6 Demonstration with Application Data

The left side of Figure 5.18 shows 12 replicate time series for the temperature of the interior
location in the NSSB on Tuesdays, Wednesdays, and Thursdays in February 2016. These
come from an arbitrarily chosen temperature sensor. We fit the alignment model using the
E-M algorithm as described in Section 5.3. We used leave-one-out cross-validation (Stone,
1974) to find an optimal smoothing parameter λ = 1096.6 by minimizing the mean-squared
prediction error.

Fourteen additional replicate series are withheld from March 2016 as a test set for
intrusion detection in Section 5.6.7. The right side of Figure 5.18 shows the estimated latent
trace in green along with the scatter of each replicate around the latent trace after alignment.
We can see that the structure in the latent trace corresponds to behavior somewhat visible
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Figure 5.15: True positives (black) and false negatives (red) when using the CUSUMmethod
against the 500 synthetic test cases with injected intrusions as the magnitude and duration
of the intrusion are varied. The method correctly identified 64.6% of the intrusions. We see
an interaction between duration and magnitude in that longer intrusions are more reliably
identified at smaller magnitudes than short. Intrusion detection methods that are more
sophisticated than CUSUM may be able to improve on these results.

on the replicate series. The temperature steeply drops at the beginning of the day, slowly
rises until lunch, drops toward the late afternoon, and finally spikes again at the end of the
day before slowly and smoothly rising overnight.

Figure 5.19 displays the residuals from fitting the the proposed CPM to the NSSB data.
The residuals are approximately normal but show heteroscedasticity between the daytime
and nighttime portions of the day.Tsay (1988) proposed a method for variance adjustment
to residuals in a time series to identify and remove heteroscedasticity from residuals, which
we give in detail in Appendix 3 and summarize here. The method first finds a split point
which maximizes the variance ratio between the partitions. If the ratio exceeds a specified
threshold, the residuals in the second split are scaled by the square root of the variance
ratio to equalize the sample variances in the splits. This algorithm iterates until the largest
difference in variance between splits is smaller than the threshold. We apply this method to
adjust the variance of the model residuals to mitigate the heteroscedasticity. Assuming that
the future filtered residuals display similar heteroscedasticity, the split points and scaling
values will be applied to the filtered residuals before the calculation of the CUSUM detection
statistic.

The adjusted residuals also show autocorrelation, indicating some structure in the resid-
uals that is not captured in the model. This may be a result of using a constant smoothing
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Figure 5.16: The number of observations delay between the onset of a synthetic intrusion
and its identification in the on-line residuals. Most synthetic intrusions are identified quickly
by the model.

penalty λ across the entire latent space, which restricts the flexibility of the latent trace in
regions that vary quickly in order to avoid overfitting in more slowly varying regions.

5.6.7 Intrusion Detection With NSSB Data

Figure 5.20 shows the filtered residuals for the March 2016 NSSB data. The left image
shows the fourteen intrusion-free replicate series, while the 200 replicate series with injected
level changes are shown on the right. The residuals show some heteroscedasticity between
the day and night behavior and shows some large residuals at the transition between these
states. The largest intrusions are clearly visible in the right image at 1 AM and 1 PM.

The CUSUM method detected 42% of these intrusions, which is consistent with the
performance on the synthetic data. Figure 5.21 shows the ability to discriminate intrusions
in this application example as a function of the size and duration of the intrusion. We can
see that the ability to detect level changes is strongly dependent on the magnitude of the
change, as in Section 5.6.4. A more complex model for detecting intrusions in the residuals
may provide more power, but this shows value in using the residuals from the CPM for
detecting intrusions in practical time series.

Calculating filtered residuals and the detection test statistics from the fourteen series in
from March 2016 without injected level changes, an average of 0.214 false detections per day
were identified, which, as in Section 5.6.4 is slightly better than rate of one false intrusion
every four days used to set the detection threshold.
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Figure 5.17: Time series for temperature, air flow, and valve positions from a position near
the exterior and position in the center of the National Security Sciences Building (NSSB)
at Los Alamos National Laboratory. Different colors represent measurements from different
Tuesdays and Thursdays in February 2016. The series are typical in the sense they display
strong diurnal patterns.
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Figure 5.18: Left: Daily replicate series of raw temperatures from one sensor in the NSSB
for Tuesdays, Wednesdays, and Thursdays in February 2016. We see similar but shifted and
warped behavior across the different replicate series. Right: The estimated latent trace
in green along with the results of aligning the replicate series to the estimated latent trace
shown as points. The latent trace appears to reproduce the approximate characteristics we
see visually in the raw replicate observations.

5.7 Discussion

A method for estimating nominal behavior of a set of time series with shared latent signal
in the presence of time-warping and using particle filtering to align new series in an on-
line environment has been developed in this chapter. The model is flexible to capture
complex shared behavior and can be applied to a wide range of time series models. Using
a particle filtering approach with the hidden Markov model to obtain on-line residuals
handles uncertainty in aligning new replicate time series to the characteristic behavior of
the system, while providing a fast algorithm for on-line updating of the alignment for new
data. Accounting for uncertainty in on-line alignment of time series makes the alignments
more robustness in the residuals.

Our proposed methodology is available in the R package alignts. This package has
been built with R and Fortran 95 with OpenMP support, with the latter available to ease
the computational burden with large state spaces.

There are a number of areas that can be addressed for future research, both with the
alignment model and with the filtering and detection of intrusion. For the alignment model:

• While the computational cost of the model is greatly reduced for large state spaces,
the model is still quite expensive to fit. This, in turn, provides a barrier to extensive
cross validation for choosing aspects of the model such as the number of scaling states
Q.

• The model as presented assumes homoscedasticity in the residuals and required post-
hoc adjustment of the filtered residuals for anomaly detection. In the examples the
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Figure 5.19: Left: Observed residuals from the alignment model shown on the right in
Figure 5.18 for the NSSB data. We see some evidence of heteroscedacticity between the
day and night residuals. Center: The Q-Q plot shows evidence of heavy-tailed residuals.
Right: The ACF plot shows evidence of autocorrelation in the residuals.

method proposed by Tsay (1988) is used. A more holistic way to handle heteroscedas-
ticity is to include hidden Markov states for different variances and allow the model to
transition between states, similar to the time and scaling states in the CPM. However,
these additional states greatly increase the computational cost due to the expanded
HMM.

• If the alignment model is estimated on data that is not representative of future obser-
vations, the natural change in behavior of future observations may look like anomalies.
In the example, the model is estimated on data from February and then used with par-
ticle filtering for on-line alignment on data from March. Because of seasonal changes
in weather, it is possible that training a model on one month would not be appropriate
for anomaly detection in the next. The training data should be reflective of the range
of expected behavior for the system.

• By splitting the days into replicate series, the end of a day represents a vulnerability.
An invader with knowledge of the hand-off time could make changes to the system
that would be adjust for by the global scaling parameter and fit normally within the
model. The prior distribution on the global scaling parameter for the filtering provides
some protection against this as it controls the support for the values of the parameter.
One solution to the vulnerability introduced by the hand-off at edge of the day is to
perform the filtering in two series at the same time, one starting from midnight and
another starting from an offset time, such that the hand-off for one series happens
during filtering for the other. The redundancy allows for coverage of system behavior
during the hand-offs.
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Figure 5.20: Left: Filtered residuals from 14 replicate series in the from the NSSB data in
March 2016 without injected level change simulating an intrusion. Right: Filtered residuals
for the 200 replicate series with injected level changes at either 1 AM or 1 PM.

• The nature of the proposed model, once estimated, only requires on-line data be split
into replicate days because of the global scaling parameter. Over time, constantly
filtered data is likely to drift from the scale of the latent curve if this parameter is
kept fixed. An extension of the filtering to allow smooth variation of the uniform
scaling parameter could remove the need to split the data by day.

• While the intrusion detection examples presented in this chapter used a simple level
change to represent an intrusion, true intrusions could manifest in a wide variety of
ways. The goal of the alignment is to remove the typical behavior and the goal of the
particle filter is to get on-line residuals with uncertainty. These residuals can be used
with many other methods beyond the CUSUM or with other breakpoint detection
models in order to find wider classes of system intrusion.
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Figure 5.21: True positives (black) and false negatives (red) when using the CUSUMmethod
against the 200 test cases as the timing, magnitude, and duration of the intrusion are varied.
The method correctly identified 42% of the intrusions.
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Chapter 6

Conclusions and Future Work

In this thesis, methodologies were developed for model calibration and validation for com-
puter simulators. The new methodology for model calibration with Gaussian process emu-
lators and Poisson measurement error was proposed in Chapter 3. The proposed Bayesian
hierarchical formulation and sampling generalize to other non-Gaussian observation error
and provide for flexibility to handle other constraints on the QoI. The approach was ap-
plied to calibrate a radiation transport model, PDT, developed by collaborators in CERT at
Texas A&M University, as well as to a synthetic data problem closely paralleling a scatter-
ing cross section in nuclear theory. Further applications of this methodology to categorical,
over-dispersed Poisson outcomes, or other constraints are of future interest. Additionally,
development of alternative methods for fitting the Bayesian hierarchical model including po-
tentially using variational Bayesian methods or integrated, nested Laplace approximations
(Rue et al., 2009) is of future interest.

In Chapter 4, a new approach to validation of computer models was proposed using
goodness-of-fit testing within a Bayesian model assessment framework. The goal of the
validation test was to assess evidence that the observed distribution of field data was con-
sistent with the distribution function generated by propagating aleatory inputs through the
emulated simulator. The proposed procedure summarizes the evidence with respect to the
epistemic uncertainty in the problem and provides a formal hypothesis test for evidence of
disagreement between the distributions. The methodology was applied to validation tests
of PDT. Further interest at CERT lies in developing methodology for sequential validation
testing through a hierarchy of experiments. Exploration of the role of the discrepancy as a
tool for understanding model-form error in validation and for directing improvement of the
model is an area of future work. Some of the core ideas have been proposed by Goldstein
and Rougier (2009) with reified Bayesian models and Joseph and Yan (2015) on engineering-
driven statistical adjustment, where the discrepancy is given a purposeful form and treated
as part of the full model.
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In Chapter 5, we proposed innovations to a “hidden Markov model”-based time series
alignment method and the use of particle filtering for on-line intrusion detection in cyber-
physical networks. The proposed procedure is to first estimate the model using replicate
time series and then apply a Bayesian particle filter to obtain on-line residuals accounting
for uncertainty in the estimated path through the latent Markov states. These residuals are
then used with a process control test for identifying changepoints in the residuals that may
be evidence of an intrusion into the system. The model was applied to data from the HVAC
system of the NSSB at Los Alamos National Laboratory. Further work to reduce size of the
hidden Markov state space would greatly improve computational performance. The process
control method used in Chapter 5 tests for only a simple form of anomaly in the time series
- a change in level of the residuals. More complex residual analysis may provide improved
detection statistics that capture a more broad range of signatures of intrusion.
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Appendix A

Appendix 1: Generalized
Calibration Sampling Details

This appendix outlines the details of the sampling discussed in Section 3.3.1. The parame-
ters to update are:

• Correlation scale parameters for the emulator and discrepancy: β, γ

• Precision parameters for the emulator and discrepancy: κ, κδ

• Calibration parameters: θ

• Likelihood parameters: ωo

• Link-transformed latent mean values: g(µ(x))

A.1 Sampling β, γ, κ, κδ, θ

We use single-site Metropolis-Hastings to update the correlation scale parameters β and
γ, the precision parameters κ and κδ, and θ. We use a log-normal proposal distribution
for all but θ as they have support on positive reals. For θ, a normal proposal distribution
is used. The scale of the proposal distribution is tuned to have an acceptance rate near
30% using trial runs of the sampler. The normal proposal for θ with bounded support can
lead to a large number of rejections if the posterior distribution for θ is concentrated near
a boundary of the prior support; however, the tuning largely mitigates this problem.

A.2 Sampling g(µ(x))

We sample g(µ(x)) using elliptical slice sampling proposed by (Murray et al., 2010). The
proposed latent mean vector is generated from a mixture of the current value, g(µ(x)), and
a draw from the Gaussian process prior distribution, ν. Possible proposed vectors lie on an
ellipse between the draw from the prior distribution and the current value, with the angle
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φ along the ellipse determining how close the proposed vector is to the current vector. For
φ = 0, the proposal is equal to the current vector while for φ = π, the proposal is equal
to ν. Slice sampling is used to determine the angle parameter by proposing values from an
iteratively shrinking the interval on the ellipse until a vector is accepted. Demonstration
of detailed balance for the method and other details can be found in Murray et al. (2010).
Pseudocode for the sampling is found below. We have found that initializing the sampler
for a value of g(µ(x)) at the sample mean of all replicates at x worked well, after possibly
adding a small constant to ensure the sampler was initialized on the proper support.

1: procedure EllipicalSliceSampler(g = g(µ(x)))
2: Draw ν from the Gaussian process prior distribution N(0,Σ)
3: Draw a random uniform u ∼ Uniform(0, 1)
4: Obtain log-likelihood acceptance threshold: thresh = logL(g) + log(u)
5: Draw an angle φ ∼ Uniform(0, 2π)
6: Set φmin = φ− 2π, φmax = φ
7: repeat
8: Propose g∗ = gcos(φ) + νsin(φ)
9: Calculate log-likelihood for the proposal: ll = logL(g∗)

10: if ll > thresh then
11: Accept g∗

12: else
13: if φ > 0 then
14: Set φmax = φ
15: else
16: Set φmin = φ

17: Draw an angle φ ∼ Uniform(φmin, φmax)
18: until Accept g∗

19: return g∗
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Appendix B

Appendix 2: Closed-form Solution
For the Maximum Penalized
Likelihood Value for CPM Scaling
State Parameter

In this appendix we derive the closed form for the optimal φj in Section 5.3. The expected
log likelihood, isolating terms with φj , is:

K∑
k=1

S∑
s=1

Nk∑
i=1

ps,k,i(xi,k − zsukφs)2/σ2 + C,

with parameters as defined in Section 5.3 and the sum with s is summing over all hidden
Markov states and C is a constant with respect to φj . Taking the derivative with respect
to φj and setting it equal to zero, we obtain:

K∑
k=1

∑
{s:φs=φj}

Nk∑
i=1

ps,k,izsuk(xi,k − zsukφ̂j)/σ2 = 0

K∑
k=1

∑
{s:φs=φj}

Nk∑
i=1

ps,k,izsukxi,k − φ̂j
K∑
k=1

∑
{s:φs=φj}

Nk∑
i=1

ps,k,i(zsuk)2 = 0

φ̂j

K∑
k=1

∑
{s:φs=φj}

Nk∑
i=1

ps,k,i(zsuk)2 =
K∑
k=1

∑
{s:φs=φj}

Nk∑
i=1

ps,k,izsukxi,k

φ̂j =

K∑
k=1

∑
{s:φs=φj}

Nk∑
i=1

ps,k,izsukxi,k

K∑
k=1

∑
{s:φs=φj}

Nk∑
i=1

ps,k,i(zsuk)2
.
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Appendix C

Appendix 3: Residual Adjustment
for Heteroscedasticity

The following is the procedure proposed by Tsay (1988) to adjust the residuals for het-
eroscedasticity. We use this method to on the training residuals in Section 5.6.6.

1. Estimate the parameters of the CPM model with the training data and obtain filtered
residuals, r.

2. For each possible split of the series of residuals, with a minimum number of observa-
tions, h, in each split, calculate the ratio of variances of the two partitions.

3. Let λV be the maximum variance ratio between partitions. Compare λV to a specified
threshold C.

• If λV < C then the algorithm terminates and the resulting residuals are returned.
• If λV ≥ C, let d0 be the index of the split that maximized the variance ratio.

4. Adjust the residuals such that:

• For t < d0, the residuals are unadjusted; rt = rt.
• For t ≥ d0, rt = r̄ + (rt − r̄)/

√
λ∗V , where λ∗V = λV if the second split has the

larger variance and λ∗V = 1/λV if the second split has the smaller variance.

5. Return to Step 2 using the adjusted residuals.

In the application, we used a minimum observations per split of 10 and a critical value
C = 3.
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