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Abstract

In efforts to improve Canadian performance in the men’s Elite UCI Mountain Bike World
Cup, researchers from the Canadian Sport Institute Ontario (CSIO) presented to us a spe-
cific problem. They had a wealth of race data but were unsure how to best extract insights
from the dataset. We responded to their request by building an interactive user interface
with R Shiny to obtain rider rankings. Estimation was carried out via maximum likeli-
hood using the Bradley-Terry model. We improved on the existing literature, proposed an
exponentially weighted version of the model, and determined an optimal weighting parame-
ter through cross-validation involving performance of future races. Therefore, the proposed
methods provide forecasting capability. The tuned Bradley-Terry estimation performed bet-
ter than the UCI point-based ranking in terms of predictive error. This implementation of
the Bradley-Terry model with a user-friendly graphical interface provides broader scientific
audiences easy access to Bradley-Terry ranking for prediction in racing sports.

Keywords: cycling; ranking; prediction; Bradley-Terry; pairwise-comparisons
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Chapter 1

Introduction

Researchers from Canadian Sport Institute Ontario (CSIO) approached us to discuss how
we might be able to contribute to their statistical analysis efforts. CSIO is a national sports
centre dedicated to putting more Canadian athletes on the international podium by ap-
plying sport science, sport medicine, athlete/coach and staff development. The institute
is heavily invested in Canadian performance at Olympic, Paralympic Games and World
Championships. For example, CSIO is a vital partner of the renowned Own the Podium
organization.

1.1 Motivation

For the last few years, CSIO scientists have been involved with Cycling Canada, a national
sport organization for the promotion of cycling in Canada. CSIO has been providing perfor-
mance analysis support at various international competitions, such as the Mountain Bike
World Cup held by Union Cycliste Internationale (UCI). This series is composed of a com-
bination of cross-country and downhill disciplines, each with an Elite Men and Elite Women
category. Athletes compete in several rounds during each season, with points awarded ac-
cording to their placing in each event.

Much of Cycling Canada’s recent focus has been on Canadian performance in the Elite
cross-country events. While Canadian women routinely win or reach the podium, the men’s
podium has been dominated by the Swiss rider Nino Schurter and Frenchman Julien Absalon
for the past 15 years. They share a combined 12 series winner titles from 2003 to 2017. The
last Canadian man to win the cross-country series was Roland Green in 2001.

To assist in their cycling analytics endeavours, CSIO presented to us a specific problem.
Their researchers and coaches received race data in a particular format not conducive to
manipulation and inference. They were also unsure how to best utilize the available data to
obtain insights. We were tasked to design a clean, intuitive user interface to perform rider
ranking and predictive analyses “under the hood” for the men’s cross-country events.
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CSIO researchers did not believe that individual race times were noteworthy, and sug-
gested that they should not form part of the analysis. Thus, the baseline model is a multi-
nomial distribution on n! permutations of race order, where n is the number of racers.
However, the observations are sparse because races are few compared to the number of
permutations of race order. For example, in a set of 10 races with 80 racers each, we only
observe a maximum of 10 of the possible 80! orderings. There would be no observations for
the other 80! − 10 possible orderings, therefore we would have no idea of their probabili-
ties. Furthermore, not every cyclist competes in every race. Therefore, some alternative is
needed, such as a reduced model or data reduction.

1.2 Literature review

In recent years, many approaches have been implemented to perform ranking and prediction
on data across a variety of sports [1, 4, 6, 7, 9]. The Bradley-Terry model [2] is one of the
most commonly applied models, especially in match-based team sports such as basketball,
where one team competes with only one other team at the same time [4]. In each paired-
comparison, there is a clear winner and loser. The Bradley-Terry model treats the outcome
of each comparison as an independent Bernoulli random variable.

While paired-comparison methods such as the Bradley-Terry model have been widely
applied to produce rankings in team sports, their use has been limited in racing sports. This
scarcity may perhaps be because paired-comparisons are not as obvious in racing sports as
in team sports. Anderson [1] constructed a Bradley-Terry model to produce a ranking for
Formula One racers, the highest class of single-seat auto racing, where he compared

(n
2
)

pairs per race. This may have been in error, as it is obvious that the outcomes of such(n
2
)
paired-comparisons are not independent, which is a fundamental assumption of the

Bradley-Terry model. This may explain why Anderson’s findings expressed some unusual
probabilistic results.

Due to the shortage of quality publications on Bradley-Terry implementation in racing
sports, especially bicycling, the UCI Mountain Bike World Cup dataset presented a unique
challenge. Most racing sports including Formula One and the Mountain Bike World Cup
employ a point-based ranking system. That is, competitors accumulate points throughout
a season based on their performances in individual races. Competitors and fans alike often
misleadingly interpret these rankings as measures of ability.

In many racing sports, points are not awarded to the bottom half of the finishers. For
example, in Formula One, points are only awarded to the top ten finishers in decreasing
increments. The drivers out of the top ten do not receive any points, and would thus be
ranked equally, which would not be representative of their true abilities. Further, not all
competitors compete in all the races throughout a season. A point-based ranking system
would favour mediocre but reliable performance over a few spectacular race outcomes. These
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are just a few of the many issues that may exist with interpreting point-based rankings as
measures of ability.

1.3 Approach

The Bradley-Terry model remedies these issues by ranking competitors based on their es-
timated true abilities. In this project, we aimed to provide a reliable implementation for
producing rankings in racing sports accessible to broader scientific audiences, with the in-
tention of using the rankings for prediction in future races. We achieved this by creating
a Shiny application that analyses a variety of inputs, allows user specification of certain
parameters, and generates a Bradley-Terry ranking. The algorithms implemented include a
basic Bradley-Terry model and an exponentially weighted version which allows for a user-
defined weighting constant.

Consider a race with cyclists i1, i2, . . . , in where we are interested in the probability
P (i1 > i2 > . . . > in). The probabilistic notation specifies the finishing order of the
cyclists where ij > ij+1 denotes that cyclist j defeated cyclist j + 1. In our Bradley-
Terry implementation, we have n − 1 comparisons that correspond to the probabilities
P (i1 > i2), P (i2 > i3), . . . , P (in−1 > in). Therefore, there is an implicit assumption that
P (i1 > i2 > . . . > in) = P (i1 > i2) × · · · × P (in−1 > in). Similar to the assumption made
by Anderson [1], our assumption is incorrect, but “not as incorrect” as Anderson [1]. The
difficulty in our assumption can be seen by expressing

P (i1 > i2 > . . . > in) = P (i1 > i2 | i2 > i3 > . . . > in)P (i2 > i3 > . . . > in).

It seems to us that P (i1 > i2 | i2 > i3 > . . . > in) 6= P (i1 > i2), which is the underlying
premise of the Bradley-Terry model as paired outcomes are assumed independent.

We believe that P (i1 > i2 | i2 > i3 > . . . > in) 6= P (i1 > i2) since the condition
i2 > i3 > . . . > in indicates that i2 has performed very well in the race. We therefore expect
P (i1 > i2 | i2 > i3 > . . . > in) < P (i1 > i2). The expected consequence of this assumption
is that the resulting probabilities obtained by the Bradley-Terry estimation algorithm may
be more extreme for the top-end racers in the positive sense and more extreme for the
bottom-end racers in the negative sense. We do not plan on using existing Bradley-Terry
inferential capabilities (e.g. the construction of confidence intervals). Rather, we view the
Bradley-Terry algorithm applied to the n − 1 comparisons as a black-box procedure that
produces ranks. Later, we introduce a cross-validation procedure that tests the rankings in
terms of future race prediction. This is done by training on a subset of the data to determine
optimal weighting constants based on mean absolute error (MAE) and root mean squared
error (RMSE).

3



Chapter 2 describes and provides further context for the Mountain Bike World Cup
data. Chapter 3 outlines the statistical models. Chapter 4 presents predictions and results.
Chapter 5 offers a brief discussion on findings and a discussion of future research.
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Chapter 2

Data

CSIO researchers presented us with a dataset containing four years of UCI Mountain Bike
World Cup races. The data spanned from 2011-2014 and covered 32 races. The data included
race results for all the races held in the Elite, Junior, and U23 leagues in the cross-country
discipline, totalling 7,625 rows. Other descriptors included race level, race date, race loca-
tion, rider name, rider nationality, and UCI unique identifier code. As previously mentioned,
CSIO did not believe that race times were important and excluded such information from
the dataset.

After the end of every season, a special World Championship race is held. This race
differs from World Cup season races in many aspects. For example, the competitors in
the World Championships represent national teams rather than commercial teams. This
leads to coaching, training, and strategical differences compared to World Cup races. In
the Championship race, a wider range of riders are invited. This leads to the phenomenon
where at least 10% of the riders in the Championship race have only participated in past
championship races, and have never raced in any of the season races. Furthermore, the
results of the Championship race do not count toward a racer’s season point-based ranking.
CSIO researchers were interested in World Cup ranking and prediction. Therefore, of the
32 races included in the dataset, only the 28 World Cup races were of analytical focus.

The data arrived from CSIO as an Excel spreadsheet (.xlsx) in a highly vertical format
where each row only contained one race result for one racer (Table 2.1). Our algorithm
converted the data from this redundant format into one that was more concise and conducive
to analysis where each row contained all the race results for one racer (Table 2.2). If a racer
did not compete in or finish a race, the entry was coded with a 0. The graphical user
interface for the algorithm also provided users the ability to choose the specific league and
races to be included in the data conversion. Four of the original columns were unnecessary
for our analyses and were not included in the data format conversion.

The Mountain Bike World Cup season typically runs from April through August, with
the number of races each season ranging from six to eight. The aforementioned World
Championship race is held after each season, typically in September. The Mountain Bike
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Figure 2.1: A histogram of the number of Elite competitor race finishes for the 2014 Moun-
tain Bike World Cup season.

World Cup series is an international event with races being held in cities around the world.
For example, the 2014 season featured races held in South Africa, Australia, Czech Republic,
Germany, Canada, United States, France, and Norway. The wide variety of race factors
including event elevation, climate, and surroundings that racers experience can have an
impact on race performance.

Furthermore, not all riders compete and finish in every event of the season. Many do
not participate in races due to injury, some are substitute riders racing in a single race, and
others may not finish a race due to mechanical failures and punctures. Therefore, not all
racers face each other for an equal number of races. For example, of the 233 Elite racers who
competed in the 2014 season, 70 riders finished only one out of the seven races. Meanwhile,
only 16 racers completed all seven races of the season, including the season champion Julien
Absalon. The result is a heavily right-skewed distribution of race finishes (Figure 2.1). For
comparison, 13 Canadian men competed in the 2014 season. The competitor with the most
finishes was Raphael Gagne with six, while the majority of Canadian riders finished only
two races (Figure 2.2).
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Figure 2.2: A histogram of the number of Canadian Elite competitor race finishes for the
2014 Mountain Bike World Cup season.
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Chapter 3

Models

The estimation of competitors’ true abilities was carried out via maximum likelihood esti-
mation using the Bradley-Terry model.

3.1 Formulation

Suppose that competitor j possesses a latent ability score αj representing their inherent
“strength”, which is assumed to be constant across the analysed races. The performance of
rider j in race r is subject to a variety of stochastic factors εrj including but not limited to
those mentioned in Chapter 2. The Bradley-Terry model assumes that the εrj ’s are iden-
tically and independently distributed standard Gumbel random variables with cumulative
distribution function

F (εrj) = exp [−exp (−εrj)] −∞ < εrj <∞. (3.1)

The standard Gumbel is a special case of the two parameter Gumbel distribution (also
known as the log-Weibull distribution and the double exponential distribution). The Gumbel
distribution has cumulative distribution function

F (x) = exp [−exp (− (x− µ) /β)] −∞ < x <∞,

where −∞ < µ <∞ and β > 0. Properties of the Gumbel distribution include the mode µ,
the mean µ+γβ where γ ≈ 0.5772 is the Euler-Mascheroni constant, and standard deviation
βπ/
√

6. The standard Gumbel distribution corresponds to the case where µ = 0 and β = 1.
Figure 3.1 shows the density functions of various Gumbel distributions.

The resulting performance for rider j in race r can then be expressed as

mrj = αj + εrj . (3.2)

9
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Figure 3.1: Probability density function of the Gumbel distribution with different parame-
ters.

The continuous performance variable mrj is latent (i.e. unobserved) and in the context
of cycling could be interpreted as the time to complete the race or some transformation of
time. Combining Equations (3.1) and (3.2), the distribution ofmrj is also a Gumbel random
variable with distribution function

F (mrj) = exp [−exp (− (mrj − αj))] .

The difference in performance between riders j and k is given by mrj −mrk which is
simply a difference between two Gumbel random variables. The difference follows a logistic
distribution with distribution function

F (mrj −mrk) = 1
1 + exp [− ((mrj −mrk)− (αj − αk))]

.

Thus, the probability that rider j beats k is

P (mrj −mrk > 0) = 1− 1
1 + exp [− ((mrj −mrk)− (αj − αk))]

= exp(αj − αk)
1 + exp(αj − αk)

= exp(αj)
exp(αj) + exp(αk)

.

The latent ability score could then be interpreted as a measure of the competitor’s relative
tendency of beating another competitor, averaged over a set of races. It can be observed
here that the αj ’s are not identifiable. That is,

α′j = αj + c ∀j

10



gives the same likelihood, where c is a constant. Therefore, the likelihood function for the
Bradley-Terry model is

L(α) =
∏
(j,k)

exp(αj)
exp(αj) + exp(αk)

(3.3)

where the product is taken over a set of paired-comparisons in race r. As previously discussed
in Section 1.3, the set was chosen as the n− 1 sequential race order comparisons.

3.2 Ability estimation

Estimation of the α’s is then a maximum likelihood problem, where the values of α are
sought that maximize the probability of the observed race outcomes

(i1 > i2), (i2 > i3), . . . , (in−1 > in).

Recall again that the sequential ordering of pairwise-comparisons implies an independence
that may not be true. Many iterative optimization techniques may be employed to estimate
these parameters [4, 6].

Here, we consider a simple approach. Let the probability that rider j beats k in race r
be simplified as

prjk = P (mrj −mrk > 0) = exp(αj)
exp(αj) + exp(αk)

.

The Bradley-Terry likelihood (3.3) can then be expressed as

L(α) =
∏
(j,k)

prjk

=
n−1∏
i=1

(prjk)yi(1− prjk)1−yi , (3.4)

where y = (y1, . . . , yn−1)T is a vector of 1’s corresponding to the sequential paired com-
parisons. Notice that (3.4) is now identical to the likelihood function for logistic regression.
This renders a convenient way to implement the algorithm in R with glm [1, 8, 9].

Specifically, estimation is achieved with glm(Y~X-1, family=binomial(logit)). Note
that X-1 denotes regression without the intercept term. Here, Y is a vector of ones y, and
X is a data matrix X. This X matrix is defined such that each column corresponds to
a racer 1, . . . , n and each row corresponds to a paired-comparison. Each row records the
outcome of one paired-comparison, assigning 1 to the winner and −1 to the loser, with
zeroes everywhere else. The resulting matrix contains only two non-zero values in each row.
Riders who failed to finish a race were assigned zeroes for all of their column values in that
race. Finally, one competitor should be removed from the regression to act as a baseline.
This is done by setting that racer’s column values all to zeroes. The estimated ability α of

11



this competitor would be zero, with all the other racers’ abilities relative to the baseline
rider. The difference of the estimated α’s between riders are unaffected by the rider chosen
as baseline.

To illustrate, consider a set of three races and n = 5 competitors A, B, C, D, and E in
each race. Let the finishing order in the first race be A, B, C, D, E, the finishing order in
the second race E, D, C, B, A, and in the third race A, C, E, B, with rider D failing to
finish. Thus, the corresponding X would resemble

X =


Xr=1

Xr=2

Xr=3

 =

A B C D E


1 −1 0 0 0
0 1 −1 0 0 race
0 0 1 −1 0 1
0 0 0 1 0


0 0 0 −1 0
0 0 −1 1 0 race
0 −1 1 0 0 2
−1 1 0 0 0

1 0 −1 0 0
0 0 1 0 0 race
0 −1 0 0 0 3

.

Note that baseline rider E is removed from the analysis by setting its column values to zero.
Also note that Xr=3 has three rows because only four riders finished the race.

The resulting estimated coefficients correspond to estimates of the α’s and can be ex-
tracted with model$coefficients.

3.3 Weighted Bradley-Terry

In order to explore the time series effects on rider ability estimates, we developed an expo-
nentially weighted version of the classical Bradley-Terry model. We believe that we are the
first to do this in the context of Bradley-Terry models in racing sports. Let

wt = exp(−θt) (3.5)

be the weighting factor, where θ ≥ 0 is a tuning parameter and

t = rmax − r

is the number of races prior to the most recent one. Thus, the most recent race would
correspond to t = 0 and have a weighting factor of wt = 1. The weights wt for t > 0 are
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decreasing in t. Note that although we have used the variable t to suggest time, the races
are not necessarily evenly spaced and therefore t is not a true time variable.

This is analogous to the well-known technique of exponential smoothing for time series
data, first introduced by Brown [3]. Exponential smoothing is often presented in time series
applications as a geometric progression 1, (1 − a), (1 − a)2, . . . , (1 − a)tmax , where 0 < a <

1 is the smoothing factor. This geometric series is practically a discrete version of the
exponential decay function (3.5). The rationale behind exponential weights is the belief
that older observations may be less relevant for prediction than more current ones.

Instead of assigning 1 and −1 respectively for the winner and loser of each paired-
comparison at time t, the winner is assigned wt and the loser −wt. This regime assigns
decrementing weights to races further back in time. If θ = 0, wt = 1 and the model
returns to that of the classical Bradley-Terry model, weighting all races equally. Sup-
pose θ = 0.1. Then in a season with eight races, the weights would be w0, . . . , w7 =
1.00, 0.90, 0.82, 0.74, 0.67, 0.61, 0.55, 0.50. That is, a win accumulated in the first race of the
season would be worth half that of a win in the eighth race. Likewise, a loss would only have
half the impact on the Bradley-Terry ranking compared to a loss in the eighth race. Now
suppose θ = 1, then w0, . . . , w7 = 1.000, 0.368, 0.135, 0.050, 0.018, 0.007, 0.002, 0.001 which
quickly leads to vanishing weights. Naturally, the next step is to determine an optimal value
of θ.

To illustrate, consider again a set of three races and n = 5 competitors A, B, C, D, and
E in each race. Let the finishing order in the first race be A, B, C, D, E, the finishing order
in the second race E, D, C, B, A, and in the third race A, C, E, B, with rider D failing to
finish. For weighting, let θ = 0.1. Thus, the corresponding X would resemble

X =


Xr=1

Xr=2

Xr=3

 =


Xt=2

Xt=1

Xt=0

 =

A B C D E


0.82 −0.82 0 0 0
0 0.82 −0.82 0 0 race
0 0 0.82 −0.82 0 1
0 0 0 0.82 0


0 0 0 −0.90 0
0 0 −0.90 0.90 0 race
0 −0.90 0.90 0 0 2

−0.90 0.90 0 0 0
1 0 −1 0 0

0 0 1 0 0 race
0 −1 0 0 0 3

Again, note that baseline rider E is removed from the analysis by setting its column values
to zero. Also note that Xr=3 has three rows because only four riders finished the race.
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While the Bradley-Terry model assumes that competitor strengths are constant, our
weighted approach addresses this constraint and recognizes that strengths may vary through
time. We are also aware of other methods allowing for time-varying abilities such as the
dynamic Bradley-Terry or Bayesian models where αj ’s update after every race.

3.4 Cross-validation

An optimal value of θ can be determined through cross-validation. The two-step process
involved estimating an optimal θ̂, then using θ̂ to validate performance.

Over the four years and 28 World Cup races worth of results, we determined an optimal
θ̂ based on using races 1, . . . , 26 to predict race 27. Our analysis considered only racers who
participated in the 27th race and also at least one of the first 26, i.e.

{analysed riders} = {riders in first 26 races} ∩ {riders in 27th race}.

From the subset of intersecting riders, an X matrix was constructed based on the sequen-
tially ordered paired-comparison outcomes from the first 26 races. Considering testing θ at
0.01 intervals from 0 to 1,

θ1, . . . , θ101 = 0.00, 0.01, . . . , 0.99, 1.00.

We created 101 X matrices each with the corresponding weighting factors wt as described
in (3.5). Rankings were obtained by performing Bradley-Terry estimation on each of the
X’s. Then, riders were ranked according to their estimated strength parameters α̂j .

For each θ, every rider was assigned a predicted ranking based on the Bradley-Terry
ability estimation results. For each θ, rider j’s predicted ranking îj for the 27th race was
compared with their actual ranking ij in the 27th race. Model accuracy was assessed with
the mean absolute error

MAE = 1
n

n∑
j=1
|ij − îj |

and the root mean squared error

RMSE =

√√√√ 1
n

n∑
j=1

(ij − îj)2.

An optimal θ̂ was chosen that minimized both MAE and RMSE.
With the optimal θ̂, we validated the tuned model by using races 1, . . . , 27 to predict

race 28. This time, our analysis considered only racers who participated in the 28th race and
racers for whom rankings were predicted. Our procedure to exclude race 28 from estimation
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of θ̂ was based on the principle that data should not be used both for estimation and
validation. Finally, model performance was measured with MAE and RMSE for validation.

15



Chapter 4

Predictions and results

Our approach provides a reliable implementation of Bradley-Terry ranking for Cycling
Canada based on two stages. First, we determined an optimal value of θ through cross-
validation, as described in Section 3.4. Then, we designed a Shiny application which pro-
vided a graphical user interface for producing predictions using cross-validation.

4.1 Cross-validation and predictions

Using races 1, . . . , 26 to predict race 27, the data matrix X had 997 rows and 89 columns.
That is, our analysis considered the 89 racers who participated in the 27th race and also at
least one of the first 26. Then, 997 sequential paired-comparisons were constructed based
on the race results of the 89 racers. Testing θ at 0.01 intervals from 0 to 1, we constructed
101 X matrices with different θ’s.

Performing Bradley-Terry estimation on each of the X’s produced “weighted” rankings
for each θ. Comparing the weighted rankings with the actual ranking in the 27th race, the
MAE and RMSE were calculated for each θ. Figure 4.1 shows the relationship between θ
and MAE and RMSE. There is some variation in the plots, but they are not representative
of real trends. Therefore, a lowess curve with a bandwidth of 1/3 is applied as a smoother
for visualization.

A priori, we did not know the range of θ leading to good predictions (i.e. small MAE
and RMSE). It is apparent from Figure 4.1 that the interesting portion of the plots lies
in the interval [0.0, 0.1]. We therefore repeated the cross-validation exercise testing 101 θ
values equally spaced in the range [0.0, 0.1]. The resulting plots are given in Figure 4.2.

Based on the lowess curve, θ = 0.075 produced the lowest MAE of 10.1 while θ = 0.073
produced the lowest RMSE of 14.5 in predicting race 27. Therefore, the midpoint θ̂ =
0.074 was determined to be the optimal value. This corresponds to weights w0, . . . , w25 =
1.00, . . . , 0.16, as illustrated in Figure 4.3. The actual race results and predicted ranking at
θ̂ = 0.074 for the top 20 finishers in race 27 are shown in Table 4.1.
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Figure 4.1: Scatterplot of weighting parameter 0 < θ < 1 and MAE and RMSE. The black
line is a corresponding lowess curve.
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Figure 4.2: Scatterplot of weighting parameter 0.0 < θ < 0.1 and MAE and RMSE. The
black line is a corresponding lowess curve.
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Figure 4.3: Scatterplot of weighting factor wt and the number of races t prior to the most
recent race when θ̂ = 0.074.
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Rider Actual Ranking Difference
θ̂ = 0.074

Schurter Nino 1 1 0
Absalon Julien 2 2 0
Flückiger Lukas 3 12 -9
McConnell Daniel 4 6 -2
Flückiger Mathias 5 9 -4
Fumic Manuel 6 8 -2
Mantecon Gutierrez Sergio 7 13 -6
Tempier Stéphane 8 5 3
Vogel Florian 9 11 -2
Näf Ralph 10 17 -7
Giger Fabian 11 14 -3
Kabush Geoff 12 18 -6
Zandstra Derek 13 52 -39
Van Houts Rudi 14 20 -6
Fontana Marco Aurelio 15 16 -1
Hermida Ramos José Antonio 16 4 12
Cink Ondrej 17 7 10
Marotte Maxime 18 15 3
Lindgren Emil 19 19 0
Tiberi Andrea 20 23 -3

Table 4.1: Actual results and ranking (θ̂ = 0.074) for the top 20 finishers of race 27.

With the optimal θ̂ = 0.074, we continued the analysis by using races 1, . . . , 27 to predict
race 28. The data matrix X had 1051 rows and 88 columns. That is, our analysis considered
the 88 racers who participated in the 28th race and also in at least one of the first 27. Then,
1051 sequential paired-comparisons were constructed based on the race results of the 88
racers.

For validation, Bradley-Terry estimation was performed on the X with θ̂ = 0.074. The
predicted rankings (Table 4.2) produced MAE and RMSE of 12.4 and 18.0, respectively.
These two values are higher than what was obtained in Figure 4.2, which emphasizes the
importance of separating estimation from validation. The MAE of 12.4 corresponds to
predictive ranking errors on average of around 12 positions. However, the MAE of the
top 20 racers is only 6.6, which is considerably smaller than that of all 88 riders. The
MAE further reduces to 4.3 when considering the top 10 racers. This is likely due to the
stratification in true rider abilities. That is, the top riders’ performances are much more
consistent and superior than the rest of the field.

For example, it can be observed that Luca Braidot finished race 28 with a result (16)
much higher than predicted (59). This may seem surprising at first, but taking a look at
his race history provides some explanation. Braidot raced in the U23 league prior to the
2014 season, and performed well in the 2013 season with three top five finishes. Recently
having been upgraded to the Elite league, his best finish was in 17th, but his consistency
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Rider Actual Ranking Difference
θ̂ = 0.074

Schurter Nino 1 1 0
Absalon Julien 2 2 0
Fumic Manuel 3 8 -5
Flückiger Lukas 4 5 -1
Kerschbaumer Gerhard 5 20 -15
McConnell Daniel 6 6 0
Näf Ralph 7 17 -10
Flückiger Mathias 8 4 4
Vogel Florian 9 10 -1
Hermida Ramos José Antonio 10 3 7
Lindgren Emil 11 21 -10
Milatz Moritz 12 15 -3
Giger Fabian 13 14 -1
Mantecon Gutierrez Sergio 14 11 3
Marotte Maxime 15 12 3
Braidot Luca 16 59 -43
Fanger Martin 17 24 -7
Fontana Marco Aurelio 18 13 5
Van Houts Rudi 19 18 1
Ettinger Stephen 20 32 -12

Table 4.2: Actual results and ranking (θ̂ = 0.074) for the top 20 finishers of race 28.

suffered. In race 26 and 27 he finished in 105th and 50th, respectively. It is apparent that
Braidot had the ability to finish in the top 20, but his recent races were disappointing.
Due to the weighting of the Bradley-Terry estimation, his earlier good performances were
downweighted compared to the recent poor outcomes.

4.2 Point-based ranking comparison

Further insight on field stratification may be gained by studying the UCI point-based rank-
ing. As mentioned in Section 1.1, the series has long been dominated by the riders Nino
Schurter and Julien Absalon. Their performances have been so commanding that according
to the point-based system (Table 4.3), other racers in the top ten fail to even accumulate
half of their points in a season (Table 4.4). For example, series winner Julien Absalon and
runner-up Nino Schurter respectively accrued 1490 and 1330 points in the 2014 season. How-
ever, fifth place Stéphane Tempier came away with only 785 points. Rider points quickly
dropped off from there.

However, as discussed in Section 1.2, many issues exist with interpreting the rankings as
measures of athlete ability in point-based rankings of racing sports. Thus, predicting future
performance based on point-based rankings may produce misleading results. The Bradley-
Terry model remedies these concerns by ranking competitors based on their estimated true
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Pos Pts Pos Pts Pos Pts Pos Pts Pos Pts Pos Pts

1 250 11 90 21 64 31 44 41 27 51 17
2 200 12 85 22 62 32 42 42 26 52 16
3 160 13 80 23 60 33 40 43 25 53 15
4 150 14 78 24 58 34 38 44 24 54 14
5 140 15 76 25 56 35 36 45 23 55 13
6 130 16 74 26 54 36 34 46 22 56 12
7 120 17 72 27 52 37 32 47 21 57 11
8 110 18 70 28 50 38 30 48 20 58 10
9 100 19 68 29 48 39 29 49 19 59 9
10 95 20 66 30 46 40 28 50 18 60 8

Table 4.3: UCI Mountain Bike World Cup cross-country points system.

Pos Athlete Points

1 Julien Absalon 1490
2 Nino Schurter 1330
3 Daniel McConnell 970
4 Manuel Fumic 856
5 Stéphane Tempier 785
6 Mathias Fluckiger 785
7 José Antonio Hermida 767
8 Lukas Fluckiger 709
9 Sergio Mantecon Gutierrez 683
10 Maxime Marotte 668

Table 4.4: Top ten riders at the end of the 2014 season according to the UCI point-based
ranking.
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Figure 4.4: Relationship between the number of top racers considered and the MAEs of the
Bradley-Terry and point-based rankings.

abilities. To demonstrate, we took the same 88 racers from the validation step and ranked
them according to their UCI point-based ranking prior to race 28.

Prediction of the 28th race based on these rankings produced MAE of 13.1. The MAE
was 8.0 for the top 20 racers and 5.5 for the top 10. Comparing with the results in Section
4.1, Bradley-Terry prediction of the same race produced MAE of 12.4. The Bradley-Terry
prediction MAE was 6.6 for the top 20 racers and 4.3 for the top 10. Evidently, the Bradley-
Terry model performed better in terms of lower MAE than the point-based rankings in
predicting race 28 results, especially for the top racers. Figure 4.4 shows the relationship
between the number of top racers considered and the MAEs of the Bradley-Terry and
point-based rankings.

4.3 App for Cycling Canada

Shiny is an R package for building interactive apps for data analysis. It allows statistical
computing to be performed behind the scenes in R, while interacting with broader scientific
audiences through a graphical user interface. Therefore, the user need not understand the
code nor model intricacies in order to use the app and benefit from the results.

The code for our app was written in a single .R script file with both the user interface
and server components. The user interface allows users to specify a host of input parameters.
To begin, the user would choose a CSV file from their computer (Figure 4.5). In the case of
the Cycling Canada Excel spreadsheets, they had to be converted to CSV prior to selection,
a very simple procedure.

As presented in Chapter 2, the dataset contained four years of race results for all the
races held in the Elite, Junior, and U23 leagues in the cross-country discipline, totalling
7,625 rows. This includes both World Cup and World Championship races. If the file is
successfully uploaded in the correct format, the selection screen expands to show further
options as shown in Figure 4.6. The user could filter the dataset by league, race type, and
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Figure 4.5: Shiny user interface for selecting CSV input file.

race date. The application automatically scans the dataset for league, race type, and race
date values and presents them in drop-down menus.

If valid filters are applied, the interface (below the selection inputs) would show the
number of riders and races in the selected data subset (Figure 4.7). These values could be
used for user information or data verification. A preview of the subset is also presented to
the right of the options bar. The data preview allows the user to further sort and search
the subset for data verification.

For example, Figure 4.7 shows the user interface after selecting the 2014 World Cup
season of the Elite league. It can be seen that the data summary shows 233 riders and
seven races, matching that of the example in Chapter 2. This assures the user that the data
was read correctly. Furthermore, the right side of the user interface shows a preview of the
selected data for this subset.

Upon verifying the selected data, the user has the option of specifying a weighting
parameter θ in the numeric entry field at the bottom of the options bar. The default value
is set to 0, corresponding to the classical Bradley-Terry model, weighting all races equally.
Of course, our cross-validation procedure recommends θ = 0.074. Once satisfied with the
chosen options, the user could press on the “Run Bradley-Terry Ranking” button and the
application would perform the requested analysis in the background.

Depending on the size of the dataset to be analysed, analysis typically takes several
seconds to a few minutes to complete. Throughout the process, a progress bar at the bottom
right of the window provides details on the task being carried out (Figure 4.8). If for any
reason the analysis needed to be stopped prior to completion, the user could simply press
on the “X” in the progress bar to abort the process. Upon successful completion of the
Bradley-Terry estimation, a table of predicted rankings is presented to the right of the
options bar, replacing the data preview table (Figure 4.9). Similarly, this table is sortable
and searchable. Note that some rider names have accented letters rendered incorrectly. This
is an artefact originating from the Cycling Canada Excel file.
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Figure 4.6: Drop-down menus for choosing data filtering options.
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Figure 4.7: Shiny user interface with data subset preview of the 2014 Elite World Cup
season.

Figure 4.8: Progress bar informing the user of algorithm details.
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Figure 4.9: Example of a Bradley-Terry prediction based on all seven Elite World Cup races
of the 2014 season with weighting parameter θ = 0.074.
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Chapter 5

Discussion

In our application of Bradley-Terry ranking for the Elite men’s UCI Mountain Bike World
Cup race data, we improved on the flawed implementation by Anderson [1] and we proposed
a weighted version of the classical Bradley-Terry model. Combining these statistical tech-
niques with a graphical user interface, we created a successful example of a user-friendly
yet computationally versatile interface with Shiny.

Through cross-validation, we estimated an optimal weighting parameter of θ̂ = 0.074.
Our predicted rankings performed better in terms of predictive error than the UCI point-
based ranking. Furthermore, the MAE of the Bradley-Terry estimation decreased as we
considered the top racers. To coaches and sports scientists, the performance of these top
racers is often of higher importance than the rest of the field.

As shown in this project, the Bradley-Terry model merits further research in the con-
text of prediction in racing sports. Discussed in Section 1.3, our probabilistic assumption
is incorrect, but “not as incorrect” as previous literature. Work may be done to further
refine the probabilistic assumption, while not sacrificing computational ease. It may also
be beneficial to develop alternative weighting schemes and compare their performance with
the exponentially weighted Bradley-Terry.

For cross-validation, we split our data based on 28 races and measured accuracy with
MAE and RMSE. The cross-validation process may benefit from using data from more races
or implementing some other model evaluation metrics. It would also be possible to perform
validation on more races, perhaps the final three races. The R code for cross-validation is
included in Appendix A and can serve as a starting point for future development.

Mentioned in Section 3.3, we used the variable t to suggest time. The races are not
necessarily evenly spaced and therefore t is not a true time variable. Further work can
be done to implement t as a true time variable such as the number of days prior to the
most recent race. Its performance can then be compared with that of the current weighting
scheme. It might be reasonable to instead consider a time subscript αjt on the ability
score, but this greatly increases the parameter space and would make it difficult to obtain
estimates.
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Further, while CSIO researchers did not believe that individual race times were notewor-
thy for analysis, we believe that some form of race time analysis may produce interesting
results. That is, racers who finish within a certain time difference δ of another may be
treated as having tied. The Bradley-Terry model can be extended to accommodate such
ties [5], and further cross-validation can be performed to determine an optimal δ.

Regarding the Shiny app, work can be done to increase its robustness in reading different
data inputs. It would also be interesting if the user could choose a certain subset of riders
they would like to be analysed. This would allow for predictions based on custom start lists
and hypothetical scenarios. The R code for the Shiny app is included in Appendix B and
can serve as a starting point for future development.
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Appendix A

Cross-validation code

1 options ( useFancyQuotes = FALSE )
2 library ( stringr )
3 library ( hellno )
4 library ( plotrix )
5
6 # Data directory
7 bike <- read.csv("C:/ Users / Richard / Dropbox / Documents /SFU/ Project /bike.csv",
8 header =TRUE , stringsAsFactors = FALSE )
9 # [1] "race_ level " "RACE_DATE" "RACE_ LOCATION " " RIDER _ CLASS " " GENDER " " RIDER "

10 # [7] " FINAL _RANK" " COUNTRY " "UCI_CODE"
11
12 # #############################################################################################
13 # 1. DATA CLASSIFICATION #####################################################################
14 # #############################################################################################
15
16 ### Append RACE_YEAR onto dataset
17 data <- cbind (as. numeric ( paste ("20",str_sub(bike$RACE_DATE , -2) ,sep="")),bike)
18 colnames (data)[1] <- "RACE_YEAR"
19 years <- as. numeric ( paste ("20",unique (str_sub(data$RACE_DATE , -2)),sep=""))
20
21 ### Split data by RIDER _ CLASS
22 elite <- data[data$ RIDER _ CLASS ==" Elite " ,]; rownames ( elite ) <- NULL
23 junior <- data[data$ RIDER _ CLASS ==" Junior " ,]; rownames ( junior ) <- NULL
24 U23 <- data[data$ RIDER _ CLASS =="U23" ,]; rownames (U23) <- NULL
25
26 ### Unique riders in each class
27 elite . riders <- unique ( elite $ RIDER )
28 junior . riders <- unique ( junior $ RIDER )
29 U23. riders <- unique (U23$ RIDER )
30
31 ### Split each class by RACE_YEAR ( automatic year detection )
32 for (i in years [1]: years [ length ( years )]){
33 elite .temp <- paste (" elite .",i,sep="")
34 assign ( elite .temp , data. frame ( elite [ elite $RACE_YEAR ==i,], row. names =NULL))
35 junior .temp <- paste (" junior .",i,sep="")
36 assign ( junior .temp , data. frame ( junior [ junior $RACE_YEAR ==i,], row. names =NULL))
37 U23.temp <- paste ("U23.",i,sep="")
38 assign (U23.temp , data. frame (U23[U23$RACE_YEAR ==i,], row. names =NULL))
39 print (c( elite .temp , junior .temp ,U23.temp))
40 }
41
42 # Data by class and year
43 # [1] " elite .2011" " junior .2011" "U23 .2011"
44 # [1] " elite .2012" " junior .2012" "U23 .2012"
45 # [1] " elite .2013" " junior .2013" "U23 .2013"
46 # [1] " elite .2014" " junior .2014" "U23 .2014"
47
48 ### Race dates by class and year
49 for (i in years [1]: years [ length ( years )]){
50 elite .temp <- paste (" elite .",i,". races ",sep="")
51 assign ( elite .temp , unique ( elite [ elite $RACE_YEAR ==i ,]$RACE_DATE))
52 elite . races <- unique ( elite $RACE_DATE)
53 junior .temp <- paste (" junior .",i,". races ",sep="")
54 assign ( junior .temp , unique ( junior [ junior $RACE_YEAR ==i ,]$RACE_DATE))
55 junior . races <- unique ( junior $RACE_DATE)
56 U23.temp <- paste ("U23.",i,". races ",sep="")
57 assign (U23.temp , unique (U23[U23$RACE_YEAR ==i ,]$RACE_DATE))
58 U23. races <- unique (U23$RACE_DATE)
59 print (c( elite .temp , junior .temp ,U23.temp))
60 }
61
62 # [1] " elite .2011. races " " junior .2011. races " "U23 .2011. races "
63 # [1] " elite .2012. races " " junior .2012. races " "U23 .2012. races "
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64 # [1] " elite .2013. races " " junior .2013. races " "U23 .2013. races "
65 # [1] " elite .2014. races " " junior .2014. races " "U23 .2014. races "
66
67 ### Unique riders in each class and year
68 for (i in years [1]: years [ length ( years )]){
69 elite .temp <- paste (" elite .",i,". riders ",sep="")
70 assign ( elite .temp , unique (as.data. frame ( lapply ( paste (" elite .",i,sep=""),get))$ RIDER ))
71 junior .temp <- paste (" junior .",i,". riders ",sep="")
72 assign ( junior .temp , unique (as.data. frame ( lapply ( paste (" junior .",i,sep=""),get))$ RIDER ))
73 U23.temp <- paste ("U23.",i,". riders ",sep="")
74 assign (U23.temp , unique (as.data. frame ( lapply ( paste ("U23.",i,sep=""),get))$ RIDER ))
75 print (c( elite .temp , junior .temp ,U23.temp))
76 }
77
78 # Unique riders by class and year
79 # [1] " elite .2011. riders " " junior .2011. riders " "U23 .2011. riders "
80 # [1] " elite .2012. riders " " junior .2012. riders " "U23 .2012. riders "
81 # [1] " elite .2013. riders " " junior .2013. riders " "U23 .2013. riders "
82 # [1] " elite .2014. riders " " junior .2014. riders " "U23 .2014. riders "
83
84 # #############################################################################################
85 # 2. DATA FORMATTING #########################################################################
86 # #############################################################################################
87
88 ### Format all Elite races and riders into horizontal format
89 df. elite <- matrix (nrow= length ( elite . riders ),ncol= length ( elite . races )+1)
90 df. elite [ ,1] <- elite . riders
91 df. elite <- as.data. frame (df.elite , stringsAsFactors = FALSE )
92
93 for (i in 1: length ( elite . riders )){
94 for (j in 1: length ( elite . races )){
95 if ( length ( elite [ elite $RACE_DATE == elite . races [j]
96 & elite $ RIDER == elite . riders [i],]$ FINAL _RANK) > 0){
97 df. elite [i,j+1] <- elite [ elite $RACE_DATE == elite . races [j]
98 & elite $ RIDER == elite . riders [i],]$ FINAL _RANK
99 }

100 }
101 }
102
103 df. elite <- data. frame ( cbind (data. frame (df. elite [ ,1]) ,
104 data. frame ( lapply (df. elite [ ,2: dim(df. elite )[2]] , as. numeric ))))
105 colnames (df. elite ) <- c(" Riders ",elite . races )
106
107 ### Format all junior races and riders into horizontal format
108 df. junior <- matrix (nrow= length ( junior . riders ),ncol= length ( junior . races )+1)
109 df. junior [ ,1] <- junior . riders
110 df. junior <- as.data. frame (df.junior , stringsAsFactors = FALSE )
111
112 for (i in 1: length ( junior . riders )){
113 for (j in 1: length ( junior . races )){
114 if ( length ( junior [ junior $RACE_DATE == junior . races [j]
115 & junior $ RIDER == junior . riders [i],]$ FINAL _RANK) > 0){
116 df. junior [i,j+1] <- junior [ junior $RACE_DATE == junior . races [j]
117 & junior $ RIDER == junior . riders [i],]$ FINAL _RANK
118 }
119 }
120 }
121
122 df. junior <- data. frame ( cbind (data. frame (df. junior [ ,1]) ,
123 data. frame ( lapply (df. junior [ ,2: dim(df. junior )[2]] , as. numeric ))))
124 colnames (df. junior ) <- c(" Riders ",junior . races )
125
126 ### Format all U23 races and riders into horizontal format
127 df.U23 <- matrix (nrow= length (U23. riders ),ncol= length (U23. races )+1)
128 df.U23 [ ,1] <- U23. riders
129 df.U23 <- as.data. frame (df.U23 , stringsAsFactors = FALSE )
130
131 for (i in 1: length (U23. riders )){
132 for (j in 1: length (U23. races )){
133 if ( length (U23[U23$RACE_DATE == U23. races [j]
134 & U23$ RIDER == U23. riders [i],]$ FINAL _RANK) > 0){
135 df.U23[i,j+1] <- U23[U23$RACE_DATE == U23. races [j]
136 & U23$ RIDER == U23. riders [i],]$ FINAL _RANK
137 }
138 }
139 }
140
141 df.U23 <- data. frame ( cbind (data. frame (df.U23 [ ,1]) ,
142 data. frame ( lapply (df.U23 [ ,2: dim(df.U23)[2]] , as. numeric ))))
143 colnames (df.U23) <- c(" Riders ",U23. races )
144
145 ### Checksums
146 sum(df. elite [ ,2:( length ( elite . races )+1)],na.rm=T) == sum( elite $ FINAL _RANK ,na.rm=T)
147 sum(df. junior [ ,2:( length ( junior . races )+1)],na.rm=T) == sum( junior $ FINAL _RANK ,na.rm=T)
148 sum(df.U23 [ ,2:( length (U23. races )+1)],na.rm=T) == sum(U23$ FINAL _RANK ,na.rm=T)
149
150 # #############################################################################################
151 # 3. CROSS - VALIDATION ########################################################################
152 # #############################################################################################
153
154 # 0. DATA FORMATTING #########################################################################
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155
156 # options (warn =1)
157
158 raw <- rbind ( elite )
159
160 data <- raw
161 riders <- unique (data$ RIDER )
162 races <- unique (data$RACE_DATE)
163 data <- matrix (nrow= length ( riders ),ncol= length ( races )+1)
164 data [ ,1] <- riders
165 data <- as.data. frame (data , stringsAsFactors = FALSE )
166
167 # Format race data horizontally
168 for (i in 1: length ( riders )){
169 for (j in 1: length ( races )){
170 if ( length (raw[raw$RACE_DATE == races [j]
171 & raw$ RIDER == riders [i],]$ FINAL _RANK) > 0){
172 data[i,j+1] <- raw[raw$RACE_DATE == races [j]
173 & raw$ RIDER == riders [i],]$ FINAL _RANK
174 }
175 }
176 }
177
178 data <- data. frame ( cbind (data. frame (data [ ,1]) ,
179 data. frame ( lapply (data [ ,2: dim(data)[2]] ,
180 as. numeric ))))
181 colnames (data) <- c(" Riders ",races )
182 data[is.na(data)] <- 0 # Set all NAs as 0
183
184 ### ’data ’ is all races
185
186 # Checksum
187 sum(data [ ,2:( length ( races )+1)],na.rm=T) == sum( elite [ elite $RACE_YEAR <= 2014 ,]$ FINAL _RANK ,na.rm=T)
188
189 # Remove all world champsionship races
190 data <- cbind (data [ ,1:8] , data [ ,10:17] , data [ ,19:24] , data [26:32])
191
192 # Subset test and validate sets
193
194 # race 27
195 Y_test <- data. frame ( cbind (data [,1], as. numeric (data [,( dim(data)[2] -1) ])),stringsAsFactors =F)
196 colnames (Y_test) <- c(" Rider ", " Actual ")
197 order .Y_test <- order (as. numeric (Y_test$ Actual ), decreasing =F)
198 Y_test <- Y_test[ order .Y_test ,]
199 Y_test <- Y_test[Y_test$ Actual !=0,]
200 rownames (Y_test) <- c()
201
202 # race 28
203 Y_val <- data. frame ( cbind (data [,1], as. numeric (data[,dim(data) [2]]) ),stringsAsFactors =F)
204 colnames (Y_val) <- c(" Rider ", " Actual ")
205 order .Y_val <- order (as. numeric (Y_val$ Actual ), decreasing =F)
206 Y_val <- Y_val[ order .Y_val ,]
207 Y_val <- Y_val[Y_val$ Actual !=0,]
208 rownames (Y_val) <- c()
209
210 # race 1 -26
211 X_test <- data
212 X_test <- X_test [ ,1:( dim(X_test)[2] -2)]
213
214 # Subset intersecting riders 1 -26 and 27
215 X_test <- X_test[X_test$ Riders %in% Y_test$Rider ,]
216 rownames (X_test) <- c()
217 X_test <- X_test[ which ( rowSums (X_test [ ,2: dim(X_test) [2]]) >0) ,]
218 rownames (X_test) <- c()
219
220 Y_test <- Y_test[Y_test$ Rider %in% X_test$Riders ,]
221 Y_test$ Actual <- seq (1, dim(Y_test)[1])
222 rownames (Y_test) <- c()
223
224 test_ riders <- length ( unique (X_test$ Riders ))
225 test_ pairs <- 0
226 test_ races <- dim(X_test)[2] -1
227
228 # Calculate number of paired - comparisons 1 -26
229 for (i in 1: test_ races ){
230 test_ pairs <- test_ pairs + sum(as. numeric (X_test [,(i+1) ])!=0) - 1
231 }
232
233 # race 1 -27
234 X_val <- data
235 X_val <- X_val [ ,1:( dim(X_val)[2] -1)]
236
237 # Subset intersecting riders 1 -27 and 28
238 X_val <- X_val[X_val$ Riders %in% Y_val$Rider ,]
239 rownames (X_val) <- c()
240 X_val <- X_val[ which ( rowSums (X_val [ ,2: dim(X_val) [2]]) >0) ,]
241 rownames (X_val) <- c()
242
243 Y_val <- Y_val[Y_val$ Rider %in% X_val$Riders ,]
244 Y_val$ Actual <- seq (1, dim(Y_val)[1])
245 rownames (Y_val) <- c()
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246
247 val_ riders <- length ( unique (X_val$ Riders ))
248 val_ pairs <- 0
249 val_ races <- dim(X_val)[2] -1
250
251 # Calculate number of paired - comparisons 1 -27
252 for (i in 1: val_ races ){
253 val_ pairs <- val_ pairs + sum(as. numeric (X_val [,(i+1) ])!=0) - 1
254 }
255
256 # 1. ESTIMATION ##############################################################################
257
258 # Predicted ranking 1 -30
259 pred <- c()
260 for (w in seq (0 ,0.1 ,0.001)){
261 # Calculate paired wins
262 X <- matrix (0, nrow=test_pairs , ncol=test_ riders )
263 colnames (X) <- unique (X_test$ Riders )
264 X_row <- 1
265
266 for (r in 1: test_ races ){
267 places <- max(as. numeric (X_test [,(r+1) ]))
268 for (i in 1:( places -1)){
269 win <- which (X_test[,r +1]== i)
270 lose <- which (X_test[,r +1]== min(X_test[,r+1][X_test[,r+1] >i])) # next largest
271 if ( length (win) >0 & length (lose) >0){
272 X[X_row , win] <- exp(-w*(test_races -r))
273 X[X_row , lose] <- -exp(-w*(test_races -r))
274 X_row <- X_row + 1
275 }
276 }
277 }
278
279 X[,dim(X)[2]] <- 0
280
281 Y <- rep (1, test_ pairs )
282 model <- glm(Y~X-1, family = binomial ( logit ), control =glm. control ( maxit =500) )
283
284 rank <- data. frame ( summary ( model )$ coefficients [ ,1])
285 rank <- data. frame ( cbind ( substr ( rownames (rank) ,2 ,100) , format ( round ( unname (rank) ,2),nsmall =2)))
286 rownames (rank) <- c()
287 colnames (rank) <- c(" Rider ", " Estimate ")
288 order .rank <- order (rank$Estimate , decreasing =TRUE)
289 rank <- rank[ order .rank ,]
290 #rank <- rank[rank$ Rider %in% actual $Rider ,] # remove riders from predicted not in actual
291 rownames (rank) <- c()
292
293 pred <- cbind (pred ,as. character (rank [ ,1]))
294 print (w)
295 }
296
297 pred <- cbind (seq (1, dim(pred)[1]) ,pred)
298 pred <- data. frame (pred)
299 colnames (pred) <- c(" Place ", seq (0 ,0.1 ,0.001))
300
301 # Comparison of actual with predicted rankings
302 comp <- Y_test
303 for (i in 1: length (seq (0 ,0.1 ,0.001))){
304 pred.vec <- c()
305 for (j in 1: length (Y_test$ Rider )){
306 if ( length (pred [ ,1][ pred [,(i+1) ]==Y_test$ Rider [j]]) ==0){
307 pred.rank <- NA
308 pred.vec <- c(pred.vec , pred.rank)
309 } else {
310 pred.rank <- pred [ ,1][ pred [,(i+1) ]==Y_test$ Rider [j]]
311 pred.vec <- c(pred.vec , pred.rank)}
312 }
313 comp <- cbind (comp , pred.vec)
314 }
315 colnames (comp) <- c(" Rider ", " Actual ", seq (0 ,0.1 ,0.001))
316 comp <- comp[ complete . cases (comp) ,]
317 rownames (comp) <- c()
318 comp_test <- comp#[1:45 ,]
319
320 # Calculate MAEs
321 mae <- c()
322 rmse <- c()
323 for (i in 1: length (seq (0 ,0.1 ,0.001))){
324 err <- 1/dim(Y_test)[1] * sum(abs(as. numeric (as. character (comp_test [ ,2]))
325 -as. numeric (as. character (comp_test [,(i+2) ]))))
326 mae <- c(mae , err)
327 err2 <- sqrt (1/dim(Y_test)[1] * sum (( as. numeric (as. character (comp_test [ ,2]))
328 -as. numeric (as. character (comp_test [,(i+2) ])))^2))
329 rmse <- c(rmse , err2)
330 }
331
332 par( mfrow =c(1 ,2) ,mar=c(4 ,4 ,2 ,1))
333 plot(seq (0 ,0.1 ,0.001) ,mae ,col="red",ylab="MAE",xlab= expression ( theta ),cex =0.5 , pch =20)
334 mae_ lowess <- lowess (seq (0 ,0.1 ,0.001) ,mae ,f=1/3)
335 lines (mae_ lowess )
336 plot(seq (0 ,0.1 ,0.001) ,rmse ,col="blue",ylab="RMSE",xlab= expression ( theta ),cex =0.5 , pch =20)
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337 rmse_ lowess <- lowess (seq (0 ,0.1 ,0.001) ,rmse ,f=1/3)
338 lines (rmse_ lowess )
339
340 seq (0 ,0.1 ,0.001)[ which (min(mae_ lowess $y)== mae_ lowess $y)]
341 seq (0 ,0.1 ,0.001)[ which (min(rmse_ lowess $y)== rmse_ lowess $y)]
342 min(mae_ lowess $y)
343 min(rmse_ lowess $y)
344
345 # 2. VALIDATION ##############################################################################
346
347 # Predicted ranking 1 -27
348 pred <- c()
349 for (w in seq (0 ,0.1 ,0.001)){
350 # Calculate paired wins
351 X <- matrix (0, nrow=val_pairs , ncol=val_ riders )
352 colnames (X) <- unique (X_val$ Riders )
353 X_row <- 1
354
355 for (r in 1: val_ races ){
356 places <- max(as. numeric (X_val [,(r+1) ]))
357 for (i in 1:( places -1)){
358 win <- which (X_val[,r +1]== i)
359 lose <- which (X_val[,r +1]== min(X_val[,r+1][X_val[,r+1] >i])) # next largest
360 if ( length (win) >0 & length (lose) >0){
361 X[X_row , win] <- exp(-w*(val_races -r))
362 X[X_row , lose] <- -exp(-w*(val_races -r))
363 X_row <- X_row + 1
364 }
365 }
366 }
367
368 X[,dim(X)[2]] <- 0
369
370 Y <- rep (1, val_ pairs )
371 model <- glm(Y~X-1, family = binomial ( logit ), control =glm. control ( maxit =500) )
372
373 rank <- data. frame ( summary ( model )$ coefficients [ ,1])
374 rank <- data. frame ( cbind ( substr ( rownames (rank) ,2 ,100) , format ( round ( unname (rank) ,2),nsmall =2)))
375 rownames (rank) <- c()
376 colnames (rank) <- c(" Rider ", " Estimate ")
377 order .rank <- order (rank$Estimate , decreasing =TRUE)
378 rank <- rank[ order .rank ,]
379 #rank <- rank[rank$ Rider %in% actual $Rider ,] # remove riders from predicted not in actual
380 rownames (rank) <- c()
381
382 pred <- cbind (pred ,as. character (rank [ ,1]))
383 print (w)
384 }
385
386 pred <- cbind (seq (1, dim(pred)[1]) ,pred)
387 pred <- data. frame (pred)
388 colnames (pred) <- c(" Place ", seq (0 ,0.1 ,0.001))
389
390 # Comparison of actual with predicted rankings
391 comp <- Y_val
392 for (i in 1: length (seq (0 ,0.1 ,0.001))){
393 pred.vec <- c()
394 for (j in 1: length (Y_val$ Rider )){
395 if ( length (pred [ ,1][ pred [,(i+1) ]==Y_val$ Rider [j]]) ==0){
396 pred.rank <- NA
397 pred.vec <- c(pred.vec , pred.rank)
398 } else {
399 pred.rank <- pred [ ,1][ pred [,(i+1) ]==Y_val$ Rider [j]]
400 pred.vec <- c(pred.vec , pred.rank)}
401 }
402 comp <- cbind (comp , pred.vec)
403 }
404 colnames (comp) <- c(" Rider ", " Actual ", seq (0 ,0.1 ,0.001))
405 comp <- comp[ complete . cases (comp) ,]
406 rownames (comp) <- c()
407 comp_val <- comp#[1:10 ,]
408
409 # Calculate MAEs
410 mae <- c()
411 rmse <- c()
412 for (i in 1: length (seq (0 ,0.1 ,0.001))){
413 err <- 1/dim(comp_val)[1] * sum(abs(as. numeric (as. character (comp_val [ ,2]))
414 -as. numeric (as. character (comp_val [,(i+2) ]))))
415 mae <- c(mae , err)
416 err2 <- sqrt (1/dim(comp_val)[1] * sum (( as. numeric (as. character (comp_val [ ,2]))
417 -as. numeric (as. character (comp_val [,(i+2) ])))^2))
418 rmse <- c(rmse , err2)
419 }
420
421 par( mfrow =c(2 ,1) ,mar=c(4 ,4 ,2 ,1))
422 plot(seq (0 ,0.1 ,0.001) ,mae ,col="red",ylab="MAE",xlab= expression ( theta ),cex =0.5 , pch =20)
423 lines ( lowess (seq (0 ,0.1 ,0.001) ,mae ,f=1/3))
424 plot(seq (0 ,0.1 ,0.001) ,rmse ,col="blue",ylab="RMSE",xlab= expression ( theta ),cex =0.5 , pch =20)
425 lines ( lowess (seq (0 ,0.1 ,0.001) ,rmse ,f=1/3))
426
427 seq (0 ,0.1 ,0.001)[ which (min(mae)== mae)]
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428 seq (0 ,0.1 ,0.001)[ which (min(rmse)== rmse)]
429 min(mae)
430 min(rmse)
431
432 mae[ length (seq (0 ,0.074 ,0.001) )]
433 rmse[ length (seq (0 ,0.074 ,0.001) )]
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Appendix B

Shiny app code

1 options ( useFancyQuotes = FALSE )
2 library ( stringr )
3 library ( shiny )
4
5 # Define UI for data upload app ----
6 ui <- fluidPage (
7 # App title ----
8 titlePanel ("Bradley - Terry Ranking v2 .2"),
9 # Sidebar layout with input and output definitions ----

10 sidebarLayout (
11 # Sidebar panel for inputs ----
12 sidebarPanel (
13 # Input : Select a file ----
14 fileInput (" file1 ", " Choose CSV File",
15 accept = c("text/csv",
16 "text/comma - separated -values ,text/ plain ",
17 ".csv")),
18 # Horizontal line ----
19 tags$hr () ,
20 uiOutput (" leaguebox "),
21 uiOutput (" levelbox "),
22 uiOutput (" startrace "),
23 uiOutput (" endrace "),
24 verbatimTextOutput (" dimensions "),
25 tags$hr () ,
26 uiOutput (" theta "),
27 uiOutput (" runbutton "),
28 p() ,
29 verbatimTextOutput ((" process "))
30 ),
31 # Main panel for displaying outputs ----
32 mainPanel (
33 uiOutput (" mainHeader "),
34 # Output : Data file ----
35 dataTableOutput (" contents ")
36 )
37 )
38 )
39
40 # Define server logic to read selected file ----
41 server <- function (input ,output , session ) {
42 df <- reactive ({
43 data <- read.csv( input $ file1 $datapath , header = TRUE , stringsAsFactors = FALSE )
44 bike <- cbind (as. numeric ( paste ("20",str_sub(data$RACE_DATE , -2) ,sep="")),data)
45 colnames (bike)[1] <- "RACE_YEAR"
46 bike
47 })
48
49 output $ mainHeader <- renderUI ({
50 if (( flag$x)!=1){
51 p( strong ("Data preview "))
52 } else {
53 p( strong (" Predicted ranking "))
54 }
55 })
56
57 flag <- reactiveValues (x=0, ranking =NULL)
58
59 output $ contents <- renderDataTable ({
60 if(is.null( input $ file1 )) {
61 return (NULL)
62 } else if (is.null( input $ file1 )== FALSE & flag$x!=1){
63 return ( filtered () [ ,2: dim( filtered ()) [2]])
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64 } else if (flag$x==1){
65 return (flag$ ranking )
66 }
67 })
68
69 output $ leaguebox <- renderUI ({
70 if(is.null( input $ file1 )) return (NULL)
71 selectInput (" league "," Select a league ",unique (df ()$ RIDER _ CLASS ),"pick one")
72 })
73
74 output $ levelbox <- renderUI ({
75 if(is.null( input $ file1 )) return (NULL)
76 selectInput (" level "," Select a race level ",unique (df ()$race_ level ),"pick one")
77 })
78
79 output $ startrace <- renderUI ({
80 if(is.null( input $ file1 )) return (NULL)
81 selectInput (" first "," Select the first race to be included in analysis ",
82 unique (df ()[df ()$ RIDER _ CLASS == input $ league & df ()$race_ level == input $level ,]
83 $RACE_DATE),"pick one")
84 })
85
86 output $ endrace <- renderUI ({
87 if(is.null( input $ file1 )) return (NULL)
88 selectInput ("last"," Select the last race to be included in analysis ",
89 unique (df ()[df ()$ RIDER _ CLASS == input $ league & df ()$race_ level == input $level ,]
90 $RACE_DATE),"pick one")
91 })
92
93 filtered <- reactive ({
94 temp <- data. frame ( matrix (0, ncol=dim(df ())[2]) ,stringsAsFactors = FALSE )
95 colnames (temp) <- colnames (df ())
96 for (i in match ( input $first , unique (df ()[df ()$ RIDER _ CLASS == input $league ,]$RACE_DATE)):
97 match ( input $last , unique (df ()[df ()$ RIDER _ CLASS == input $league ,]$RACE_DATE))){
98 temp <- rbind (temp , df ()[df ()$ RIDER _ CLASS == input $ league
99 & df ()$RACE_DATE == unique (df ()[df ()$ RIDER _ CLASS == input $league ,]

100 $RACE_DATE)[i] ,])
101 }
102 temp <- temp [-1,]
103 temp <- temp[temp$race_ level == input $level ,]
104 })
105
106 riders <- reactive ({
107 unique ( filtered ()$ RIDER )
108 })
109
110 numRiders <- reactive ({
111 length ( riders ())
112 })
113
114 races <- reactive ({
115 unique ( filtered ()$RACE_DATE)
116 })
117
118 numRaces <- reactive ({
119 length ( races ())
120 })
121
122 output $ dimensions <- renderPrint ({
123 if(is.null( input $ file1 )) return (cat(" Please select a .csv file to begin ..."))
124 if( match ( input $first , unique (df ()[df ()$ RIDER _ CLASS == input $league ,]$RACE_DATE)) >
125 match ( input $last , unique (df ()[df ()$ RIDER _ CLASS == input $league ,]$RACE_DATE))){
126 return (cat("You have selected a start date after \nthe end date , please revise to continue ..."))
127 }
128 cat(" Number of riders : ", numRiders () , "\ nNumber of races : ", numRaces ())
129 })
130
131 output $ theta <- renderUI ({
132 if(is.null( input $ file1 )) return (NULL)
133 if( match ( input $first , unique (df ()[df ()$ RIDER _ CLASS == input $league ,]$RACE_DATE)) >
134 match ( input $last , unique (df ()[df ()$ RIDER _ CLASS == input $league ,]$RACE_DATE))){
135 return (NULL)
136 }
137 #if(is.null( input $ runtype )) return (NULL)
138 numericInput (" theta "," Enter weighting parameter (0 means unweighted )",value =0, min =0, step =0.01)
139 })
140
141 output $ runbutton <- renderUI ({
142 if(is.null( input $ file1 )) return (NULL)
143 if( match ( input $first , unique (df ()[df ()$ RIDER _ CLASS == input $league ,]$RACE_DATE)) >
144 match ( input $last , unique (df ()[df ()$ RIDER _ CLASS == input $league ,]$RACE_DATE))){
145 return (NULL)
146 }
147 #if(is.null( input $ runtype )) return (NULL)
148 actionButton (" runbt ","Run Bradley - Terry Ranking ")
149 })
150
151 observeEvent ( input $runbt , {
152 progress <- Progress $new(session , min =0, max =10)
153 on.exit( progress $ close ())
154
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155 progress $set( message = " Initializing ...",value =1)
156
157 df.run <- matrix (nrow= numRiders () ,ncol= numRaces () +1)
158 df.run [ ,1] <- riders ()
159 df.run <- as.data. frame (df.run , stringsAsFactors = FALSE )
160
161 progress $set( message = " Formatting ...",value =2)
162
163 # Converting to horizontal format
164 for (i in 1: numRiders ()){
165 for (j in 1: numRaces ()){
166 if ( length ( filtered ()[ filtered ()$RACE_DATE == races ()[j]
167 & filtered ()$ RIDER == riders ()[i],]$ FINAL _RANK) > 0){
168 df.run[i,j+1] <- filtered ()[ filtered ()$RACE_DATE == races ()[j]
169 & filtered ()$ RIDER == riders ()[i],]$ FINAL _RANK
170 }
171 }
172 }
173 df.run <- data. frame ( cbind (data. frame (df.run [ ,1]) ,
174 data. frame ( lapply (df.run [ ,2: dim(df.run)[2]] , as. numeric ))))
175 colnames (df.run) <- c(" Riders ",races ())
176 df.run[is.na(df.run)] <- 0
177
178 # Conversion checksum
179 checksum <- sum(df.run [ ,2:( numRaces () +1)],na.rm=T) == sum( filtered ()$ FINAL _RANK ,na.rm=T)
180 if ( checksum == TRUE){
181 progress $set( message = " Checksum passed ...",value =3)
182 }
183 try (if ( checksum == FALSE ){
184 output $ process <- renderPrint ({
185 cat(" Starting ...\ nFormatting ...\ nChecksum failed ...\ nreview data file or contact admin .")
186 })
187 stop ()
188 })
189
190 # Subset test and validate sets
191 progress $set( message = " Calculating pairs ...",
192 detail ="This usually takes several seconds ...",
193 value =4)
194
195 X_test <- df.run
196 test_ riders <- length ( unique (X_test$ Riders ))
197 test_ pairs <- 0
198 test_ races <- dim(X_test)[2] -1
199
200 # Calculate number of paired - comparisons
201 for (i in 1: test_ races ){
202 test_ pairs <- test_ pairs + sum(as. numeric (X_test [,(i+1) ])!=0) - 1
203 }
204
205 # Begin B-T estimation
206 X <- matrix (0, nrow=test_pairs , ncol=test_ riders )
207 colnames (X) <- unique (X_test$ Riders )
208 X_row <- 1
209
210
211 # Creating data Matrix X
212 progress $set( message = " Calculating paired - comparison outcomes ...",
213 detail ="This might take a minute ...",
214 value =5)
215
216 for (r in 1: test_ races ){
217 places <- max(as. numeric (X_test [,(r+1) ]))
218 for (i in 1:( places -1)){
219 win <- which (X_test[,r +1]== i)
220 lose <- which (X_test[,r +1]== min(X_test[,r+1][X_test[,r+1] >i])) # next largest
221 if ( length (win) >0 & length (lose) >0){
222 X[X_row , win] <- exp(- input $ theta *(test_races -r))
223 X[X_row , lose] <- -exp(- input $ theta *(test_races -r))
224 X_row <- X_row + 1
225 }
226 }
227 }
228
229 X[,dim(X)[2]] <- 0
230 # Calculate paired wins
231 progress $set( message = " Fitting model ...",
232 detail ="This takes the longest ...",
233 value =6)
234
235 Y <- rep (1, test_ pairs )
236 model <- glm(Y~X-1, family = binomial ( logit ), control =glm. control ( maxit =500) )
237
238 progress $set( message = " Extracting ability estimates ...",
239 value =9)
240
241 rank <- data. frame ( summary ( model )$ coefficients [ ,1])
242 rank <- data. frame ( cbind ( substr ( rownames (rank) ,2 ,100) , format ( round ( unname (rank) ,2),nsmall =2)))
243 rownames (rank) <- c()
244 colnames (rank) <- c(" Rider ", " Estimate ")
245 order .rank <- order (rank$Estimate , decreasing =TRUE)
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246 rank <- rank[ order .rank ,]
247 rownames (rank) <- c()
248 print (head(rank))
249 show <- data. frame (rank$Rider , rownames (rank))
250 colnames (show) <- c(" Rider ", " Predicted rank")
251 flag$ ranking <- show
252 flag$x <- 1
253 })
254 }
255
256 # Create Shiny app ----
257 shinyApp (ui , server )
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