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Abstract

Discrimination is a supervised problem in statistics and machine learning that begins with
data from a finite number of groups. The goal is to partition the data-space into some
number of regions, and assign a group to each region so that observations there are most
likely to belong to the assigned group. The most popular tool for discrimination is called
discriminant analysis. Unsupervised discrimination, commonly known as clustering, also
begins with data from groups, but now we do not necessarily know how many groups, nor
do we get to know which group each observation belongs to. Our goal when doing clustering
is still to partition the data-space into regions and assign groups to those regions, however
we do not have any a priori information with which to assign these groups. Common tools
for clustering include the k-means algorithm and model-based clustering using either the ex-
pectation maximization (EM) or classification expectation maximization (CEM) algorithms
(of which k-means is a special case).

Tools designed for clustering can also be used to do discrimination. We investigate this
possibility, along with a method proposed by Yang (2013) for smoothing the transition
between these problems. We use two simulations to investigate the performance of discrim-
inant analysis and both versions of model-based clustering with various parameter settings
across various datasets. These settings include using Yang’s method for modifying clus-
tering tools to handle discrimination. Results are presented along with recommendations
for data analysis when doing discrimination or clustering. Specifically, we investigate what
assumptions to make about the groups’ sizes and shapes, as well as which method to use
(discriminant analysis or the EM or CEM algorithms) and whether or not to apply Yang’s
pre-processing procedure.

Keywords: Clustering; Classification; Supervised learning
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Chapter 1

Introduction

1.1 Introduce Problems

1.1.1 What is Clustering?

Clustering is a well-known unsupervised learning problem where we have n observations in
Rd, and we want to assign them to groups, or “clusters”, based on which observations are
similar. We assume that each observation comes from one of a small number of groups, where
the population within each group is different in some way (Hastie et al., 2011). Typically,
the groups have different means, but their variances or some other features may differ as
well. We must then create clusters based on our data with the hope that these clusters
accurately reflect the population groups. Clusters are usually chosen in practice so that an
observation is more similar to its own cluster than to other clusters. A challenging aspect of
this problem however, is that we have no a priori information about the groups, so we must
simultaneously construct clusters and assign observations to them. For example, suppose
that we have n cancer patients, each with values on d different clinical measurements. We
may then want to cluster patients together so that we can tell whether a particular person
has a common form of cancer or a rare one, according to the relative sizes of the clusters.
Different clustering algorithms are chosen both for how they measure similarity, and how
they use this measure to construct clusters. An assignment of observations to clusters is
called a “solution” to the clustering problem, or a “clustering solution”.

1.1.2 What is Discrimination?

Discrimination or discriminant analysis (DA) is a similar problem, where we have the same
n observations in Rd as for clustering, but we now have labels that tell us which group each
observation comes from. In the cancer example, suppose that we want to determine the
characteristics of patients who experience different treatment outcomes. Here we not only
have information about the patients, but we also know what outcome they experience. The

1



goal is then to partition d-dimensional space into disjoint regions such that points in the
same region tend to come from the same group (Hand, 1981). These regions are similar
to the clusters constructed by clustering algorithms. Note that DA is related to another
problem called classification, where the same data structure is used to predict the group
label of a new observation (Hand, 1981).

By far the most common methods for doing discrimination assume that data are nor-
mally distributed with some or all of the parameters allowed to differ across groups (Hastie
et al., 2011). After estimating the parameters in each group, discrimination is done by
assigning each point in Rd to the group for which it has the highest probability of mem-
bership. Recall that the multivariate normal distribution is parameterized by a mean and
a covariance matrix (Wasserman, 2004). If we make no assumptions about the groups’ co-
variance matrices, the resulting process is called quadratic discriminant analysis, or QDA,
since its decision boundaries (i.e., the boundaries between any two adjacent groups) are
quadratic curves. Another, simpler version of DA is called linear discriminant analysis, or
LDA. This method assumes that the groups have identical covariance matrices, and is there-
fore a more parsimonious model than QDA. The decision boundaries in LDA are, perhaps
unsurprisingly, linear.

1.2 Motivation and Outline

It is apparent that clustering and discrimination are very similar problems. They both
work with similar data structures, and solutions to both problems are of the same form (a
partition of d-space into disjoint clusters or regions). The only difference is whether or not
we know which groups the observed individuals belong to. For the rest of this thesis, we
use “groups” to refer to the population categories, and “clusters” to refer to their sample
analogues.

It is natural to wonder if an algorithm developed for clustering might be able to over-
come its lack of a priori information about groups and adequately solve the discrimination
problem. The supervised clustering algorithm proposed by Yang (2013) is of particular
interest, as it is a supervised learning method that involves using information about the
group labels to modify a common clustering algorithm to solve discrimination problems.
Some work has been done by O’Neill (1978) to address the relationship between clustering
and discrimination, but his paper deals with abstract and asymptotic results. We address
more concrete problems related to performance metrics that are empirically measurable.

The goal of this thesis is to investigate in detail the possibility of using clustering to do
discrimination. In Chapter 2 we introduce several clustering methods, including the one
by Yang, and discuss both their algorithmic and statistical properties. We also introduce
standard methods for doing discrimination in this chapter so that we have some benchmark
procedures for evaluating clustering algorithms. In Chapter 3, we present two simulation
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studies comparing the performance of several clustering and discrimination methods, with
respect to their ability to accurately partition Rd into regions where each population group
is predominant.. Finally, in Chapter 4, we discuss the results of these simulations, their
implications for using clustering to solve discrimination problems and some future work to
be done in this area.

3



Chapter 2

Details and Properties of Methods

2.1 Clustering

Recall that the problem of clustering is to take a sample of n observations in Rd, and
use them to partition d-space into disjoint clusters. All clustering methods are based on
putting “similar” points in the same cluster. To do this, most methods consist of a metric
for similarity and an algorithm for partitioning the sample space based on this metric.
It is often convenient to measure the “dissimilarity” between two observations, and we
sometimes construct a dissimilarity matrix (Hastie et al., 2011) that functions as a lookup
table for the dissimilarity between two observations. That is, element i, j is the dissimilarity
between the ith and jth observations. Note that such a matrix is necessarily symmetric.
A more common approach, and the one used by the methods we consider, is to define a
function for computing the dissimilarity between any two points. For example, the popular
k-means algorithm measures the dissimilarity between any two points in Rd by the d-
dimensional Euclidean distance between them (MacQueen, 1967). In general however, the
partitioning algorithm can be applied with other dissimilarity metrics (Loohach and Garg,
2012; Melnykov and Melnykov, 2014). If desired, the Euclidean distances between all pairs
of observations can be calculated and used to populate a dissimilarity matrix, but this
computation is rarely carried out in practice.

There are many algorithms that solve the clustering problem, but they can be broadly
classified into two categories, hierarchical and non-hierarchical (Hastie et al., 2011). When
constructing multiple clustering solutions with different numbers of clusters (for example,
to choose an appropriate number of clusters), hierarchical algorithms require that a solution
with k clusters be obtained either by splitting one of the clusters in the k−1 cluster solution
or by combining two clusters in a k+1 cluster solution. Alternatively, non-hierarchical
clustering algorithms have no such requirements and construct new clustering solutions
with no reliance on previous ones.
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The most popular clustering algorithm is a non-hierarchical one called k-means. We
discuss this algorithm in detail in the next section, and all of the more complicated clustering
methods we discuss are generalizations of k-means.

2.1.1 Methods

k-Means

The k-means algorithm is very popular for solving clustering problems due to its intuitive
appeal and ease of computation (Jain, 2010). Given the number of clusters to be found, k,
the algorithm alternates between finding the center of each cluster, called a centroid, and
assigning each observation to the cluster with the nearest centroid. The centroid of each
cluster is computed as the arithmetic mean of the points in that cluster. The algorithm is
initialized either by forming initial clusters or by choosing k locations in d-space as the initial
centroids. Both forms of initialization are usually performed randomly. The algorithm then
iterates between assignment and computation steps until a suitable convergence criterion
is met. Convergence of this type is guaranteed (Celeux and Govaert, 1992), but need not
be to a globally optimal solution. The solution obtained is known to be sensitive to initial
conditions, so it is common to re-run the algorithm some number of times with random
assignments of points to clusters or random initial centroids, and select the solution with
smallest within-cluster dissimilarity, an analogue of the sum of squares for error in regression
(in k-means this is the sum of squared distances between each point and its respective
centroid).

Numerous small variations of this algorithm give different clustering solutions. For
example, the “soft k-means” algorithm arises from allowing points to have soft (i.e., propor-
tional) membership in each cluster rather than hard (0-1) membership. The soft k-means
algorithm turns out to be related to the EM algorithm, and setting up the framework to
make this connection allows us to formulate many more generalizations of the k-means al-
gorithm (Celeux and Govaert, 1995). We discuss the relationship between k-means and the
EM algorithm in more detail later.

It is common to standardize each variable to have mean 0 and standard deviation of 1
before running the k-means algorithm. This ensures that each variable contributes equally
to the Euclidean distance metric. If this standardization is not performed, then a vari-
able measured in nanograms (10−9 grams) might dominate the dissimilarity measure, and
therefore the clustering; particularly when the variable ought to be measured in kilograms
(1 kilogram = 1012 nanograms). Note that standardizing the data implicitly makes the
assumption that all variables are equally important.

5



Yang’s Supervised Clustering

In a 2013 masters thesis, Yang (2013) proposes a modification of the k-means algorithm
to make it perform better when solving discrimination problems. This modification is
quite straightforward, and has strong intuitive appeal but he presents little in the way
of theoretical justification. To motivate the approach he proposes, consider the bivariate
dataset with two groups shown in Figure 2.1a, where observations from group 1 are colored
black and observations from group 2 are colored red. These data were generated from two
bivariate normal populations with equal covariance matrices and whose means differ only in
the X1 direction. A k-means clustering fit to these data, which ignores information about
the groups, gives the cluster assignments and estimated centroids in Figure 2.1b. This is not
a particularly good fit to the two groups, since the irrelevant X2 component has a strong
influence on the clustering solution. Yang proposes that before running k-means, we re-scale
each predictor variable by an amount proportional to some measure of its univariate ability
to discriminate between the groups. Applying this here gives the data shown in Figure
2.1c. Fitting a k-means clustering on this transformed data and back-transforming gives
the much better discriminator and cluster centroids in Figure 2.1d.

The way to measure a predictor’s ability to discriminate between groups, and the way
to use this to scale the corresponding axis, are left somewhat open by Yang. While he does
give some recommendations based on desirable properties of the chosen method, there is no
discussion of what is “optimal”, or even how to characterize optimality. Yang’s approach
uses a univariate logistic regression fit of Y on each predictor variable individually. We
then get out the p-value for the slope coefficient and take its negative logarithm. This is
used as a scaling constant for the variable under which it was generated. The negative
logarithm transformation is used here because it is a decreasing function of the p-value
(therefore an increasing transformation of the level of significance), it compresses the full
domain of traditionally “non-significant” p-values into a fairly narrow range, and its growth
is moderate as p-values approach 0.

Yang (2013) gives results from a limited number of simulations and data analyses. Specif-
ically, he focuses on predictors from a real-world dataset with actual or simulated class
labels, and compares his method primarily to classification trees, random forests (Hastie
et al., 2011) and another supervised clustering algorithm called Single Representative Inser-
tion/Deletion Steepest Descent Hill Climbing with Randomized Restart (Eick et al., 2004).
Yang’s simulations suggest that his method performs well compared to these models. We
investigate his procedure relative to other clustering methods, and on a different class of
datasets.

There is a known problem with the fitting procedure for logistic regression models,
called complete separation. This occurs when the two groups can be perfectly distinguished
using the predictor variables. Although this is actually a desirable phenomenon, it can lead

6



(a) Sample data for supervised clustering
with each axis standardized to have mean 0
and unit variance.

(b) Fit from the k-means algorithm to the
sample data.

(c) Sample data after axis scaling. (d) Fit from the k-means algorithm to the
scaled sample data and back-transformed to
the original sample data.

Figure 2.1: Data and k-means fits before and after axis scaling.
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to problems with fitting logistic regression models. Specifically, the maximum likelihood
estimates of our slope coefficients may be unbounded (Bilder and Loughin, 2015). Further,
the standard errors of these slope parameters can also be unbounded, leading to meaningless
hypothesis tests. Heinze and Schemper (2002) propose several ways to address this problem,
the most effective of which is based on the penalized likelihood method described in Firth
(1993). This Firth likelihood (FL) method involves introducing some bias to the maximum
likelihood procedure, but is shown by Heinze and Schemper (2002) to always yield finite
parameter values. The standard errors obtained by FL are also much more sensible, so
we can obtain reasonable p-values from Wald tests (Wasserman, 2004). We therefore use
the p-value from a Wald test of the estimate obtained using the FL fitting procedure in
place of the p-value obtained from a simple logistic regression when using Yang’s supervised
clustering method.

The EM and CEM Algorithms

Recall that the clustering problem consists of assigning observations to clusters without
any a priori knowledge about the underlying groups. If we assume that the group labels
are fixed but unknown then this can be seen as an incomplete, or missing data problem.
Specifically, the unobserved group labels are the missing data.

The EM algorithm (Dempster et al., 1977; Wu, 1983) is a well known method for solving
incomplete data problems. While its general properties are well understood (McLachlan and
Krishnan, 2008), we are particularly interested here in its application to studying mixture
distributions (McLachlan and Peel, 2000). In particular, the soft k-means algorithm dis-
cussed above can be seen as a particular version of the EM algorithm applied to solving this
mixture problem. Before discussing this connection, we introduce how the EM algorithm
operates in the context of mixture distributions.

To begin, assume that we have data from a finite mixture of G groups. That is,

F (x) =
G∑

g=1
pgFg(x), (2.1)

where Fg, g = 1, ..., G, is the CDF of data from the gth group and p1,...,pG are the unknown
mixture proportions. We often assume that the Fg come from some parametric family of
distributions; the normal family is most common (McLachlan and Peel, 2000). If we assume
that each group follows a normal distribution then (2.1) can be re-written as

F (x) =
G∑

g=1
pgΦ(x;µg,Σg), (2.2)

where Φ is the normal CDF and µg, Σg are the mean vector and covariance matrix of the
gth group, g = 1, ..., G.

8



Suppose now that we have a sample, x1, ..., xn, of iid observations from this distribution
F , and we want to construct a rule for assigning observations to clusters. One way to
do this is to start with prior probabilities1 for the mixture proportions, then estimate the
parameters of the G normal distributions. We then apply Bayes theorem and assign each
observation to the group to which it has the highest posterior probability of belonging. The
EM algorithm gives us an efficient way to estimate these parameters and thereby estimate
group memberships.

As with other applications of the EM algorithm, we begin by assuming that our data
are missing an important component. In this case, we define a latent variable Zi, i =
1, ..., n, a vector in {0, 1}G, such that the gth component of Zi is 1 if observation i comes
from group g, and 0 otherwise. This allows us to treat each observation as having been
drawn independently from the joint distribution (Xi, Zi) with Zi being unobserved in all
cases. We can now completely characterize the joint distribution of X and Z. First, the
distribution of Zi is simply multinomial with a single trial and probabilities equal to the
mixture proportions p1, ..., pG. Further, the conditional distribution of Xi given Zi = g is
Φ(x;µg,Σg). Note that conditioning on Zi makes the distribution of Xi much easier to
work with. This simplification is key to applying the EM algorithm. The joint distribution
of (Xi, Zi) can be written as,

F (x, z) =
G∏

g=1
(pgΦ(x;µg,Σg))z(g)

(2.3)

where z(g), the gth component of z, is 1 if x belongs to group g and 0 otherwise. This slightly
unintuitive formulation of the likelihood is to ensure that its corresponding log-likelihood
function is easy to work with. The log-likelihood function corresponding to an observed
sample can be written in the following ways with and without Zi respectively:

Lc(θ;X,Z) =
n∑

i=1

G∑
g=1

z
(g)
i [log(pg) + log (φ(xi;µg,Σg))] (2.4)

L(θ;X) =
n∑

i=1
log

 G∑
g=1

pgφ(xi;µg,Σg)

 , (2.5)

where Lc is referred to as the “complete” log-likelihood, while L is the “incomplete” log-
likelihood, φ is the normal pdf and θ is the vector of parameters µ1, ..., µG,Σ1, ...,ΣG, p1, ..., pG.

The EM algorithm tries to maximize the log-likelihood function of the data by iterat-
ing between an expectation (E)-step, and a minimization (M)-step. The E-step consists
of taking the expectation of the complete log-likelihood with respect to the group label
variable, Z, for the current values of θ. At the first step, θ is randomly initialized to some

1This probability is often estimated in practice, and is therefore not a prior. It is, however, otherwise
treated like a prior, and often referred to as one.
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value θ[0] (usually by assigning group membership probabilities to each observation), but
in general the expectation at step k is obtained using the value from step k − 1, θ[k−1].
Mathematically, taking this expectation is equivalent to replacing z(g)

i with the estimated
posterior probability of point i belonging to group g; call this τ (g)

i (θ). Note that τ (g)
i (θ) can

be written as
τ

(g)
i (θ) = pgφ(xi;µg,Σg)

F ′(xi; θ)
, (2.6)

where F ′ is the derivative of the CDF with respect to θ. As mentioned above, in practice θ
is set to the parameter values from the previous step of the algorithm. We can now obtain
the following closed-form expression for the incomplete likelihood after the kth E-step.

L∗c(θ;X, θ[k−1]) =
n∑

i=1

G∑
g=1

τ
(g)
i (θ[k−1]) · [log(pg) + log (φ(xi;µg,Σg))] (2.7)

Note that this expression, L∗c , is a function of θ = µ1, ..., µG,Σ1, ...,ΣG, p1, ..., pG, and that
θ[k−1] is treated as fixed. This is because we still need to optimize over θ, whereas θ[k−1]

consists of information we already know from the previous iteration.
The M-step proceeds by maximizing L∗c for θ. We first obtain θ̃[k] by updating the pg as

p̂[k]
g =

n∑
i=1

τ
(g)
i (θ[k−1])

n
(2.8)

This is the average posterior probability across all observations. We now replace θ in L∗c

with θ̃[k] = µ1, ..., µG,Σ1, ...,ΣG, p̂
[k]
1 , ..., p̂

[k]
G to get

L̃ = L(θ̃[k];X, θ[k−1]) =
n∑

i=1

G∑
g=1

τ
(g)
i (θ[k−1]) · [log(p̂[k]

g ) + log (φ(xi;µg,Σg))] (2.9)

Finally, we obtain an updated estimate of θ by maximizing L̃ over the remaining unspec-
ified parameters in θ̃[k]: µ1, ..., µG,Σ1, ...,ΣG. In general, this maximization can be done
either numerically or analytically. For the unconstrained normal model, we get closed form
expressions for the µ̂[k]

g and Σ̂[k]
g ,

µ̂[k]
g =

∑n
i=1 τ

(g)
i (θ[k−1]) · xi∑n

i=1 τ
(g)
i (θ[k−1])

(2.10)

Σ̂[k]
g =

∑n
i=1 τ

(g)
i (θ[k−1]) · (xi − µ̂g)T (xi − µ̂g)∑n

i=1 τ
(g)
i (θ[k−1])

(2.11)

Note that these averages and covariance matrices are weighted using the τ (g)
i (θ[k−1]), not

the p̂[k]
g . We now update θ to θ[k] = µ̂

[k]
1 , ..., µ̂

[k]
G , ..., Σ̂[k]

1 , ..., Σ̂[k]
G , p̂

[k]
1 , ..., p̂

[k]
G .
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The algorithm now proceeds by iterating between the E- and M-steps until a suitable
stopping criterion is reached (McLachlan and Peel, 2000). The most common criteria are
lack of sufficient change in the likelihood and lack of sufficient change in the parameter
estimates. Upon convergence, we call the groups “clusters”, thus obtaining a clustering
solution.

One natural extension to the EM algorithm is called the classification EM, or CEM algo-
rithm (Celeux and Govaert, 1992). This method directly maximizes the complete likelihood,
Lc, given in (2.4). That is, when using the CEM algorithm, we treat the Zi as parameters
of interest. We hereafter also refer to this quantity as the “classification likelihood”, or
C-likelihood, without any change of notation (and take the c subscript to mean complete
or classification where appropriate). The CEM algorithm for maximizing this C-likelihood
very closely resembles the EM algorithm, and differs from it only by the addition of a C-step
between the E- and M-steps. In this C-step, each observation is assigned full membership
in the group to which it has the highest probability of belonging. That is, we replace the
largest element of τ (g)

i (θ[k−1]) with 1, and its other elements with 0. Iteration then proceeds
as in the EM algorithm, alternating between E-, C- and M-steps until a stopping criterion
is met. As with the EM algorithm, these final groups are called clusters.

It is sometimes desirable to assume that the mixture proportions are equal when using
the EM or CEM algorithms. While this can be done purely mathematically, a different
model exists to motivate imposing this restriction on the C-likelihood function (and there-
fore on the CEM algorithm). First, note that the C-likelihood function as given in (2.4)
arises from sampling observations independently from the mixture distribution, F (Symons,
1981) (i.e., the observations’ group memberships follow a multinomial distribution). If we
instead sample a fixed number of observations from each component, Fg, then the pg drop
out of our C-likelihood function (Scott and Symons, 1971). This is mathematically equiv-
alent to simply assuming equal mixture proportions (i.e., the pg no longer have any effect
on the optimization problem because they are all equal). Whether the assumption of equal
proportions is imposed directly or because of the sampling scheme, we refer to the like-
lihood and C-likelihood under this assumption as the restricted likelihood and restricted
C-likelihood respectively. These functions can be written as follows.

L(R)
c (θ;X,Z) =

n∑
i=1

G∑
g=1

z
(g)
i [log (φ(xi;µg,Σg))] (2.12)

L(R)(θ;X) =
n∑

i=1
log

 G∑
g=1

φ(xi;µg,Σg)

 (2.13)
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Model-Based Clustering and CEM

The methods outlined in the previous section solve the clustering problem. Despite as-
suming that data come from groups, we do not treat those groups as known. Since we
assume a specific model when using the EM and CEM, any clustering method that can be
formulated using these frameworks is called a “model-based” clustering algorithm. Celeux
and Govaert (1995) identify 14 different model-based clustering algorithms using the CEM
algorithm applied to mixture normal data. These different algorithms arise from making
various assumptions about the groups’ covariance matrices, Σ1, ...,ΣG. We use the spectral
decomposition of each covariance matrix, Σg = λgDgAgD

T
g to characterize these 14 models

(Banfield and Raftery, 1993). Here Dg is an orthonormal matrix of eigenvectors of Σg, Ag

is a diagonal matrix of the eigenvalues of Σg divided by the largest eigenvalue (so that all
entries of Ag are between 0 and 1), and λg is a scalar equal to the largest eigenvalue of Σg.
Note that this decomposition is guaranteed to exist by the Spectral Theorem (Friedberg
et al., 1989).

The spectral decomposition of Σg is useful for thinking about the geometry of the data
in group g. We know that these data come from a multivariate normal distribution, so we
can expect their density to form an ellipsoidal shape (Banfield and Raftery, 1993). The
components λg, Dg and Ag control different aspects of this ellipsoid. First, λg controls the
size of the ellipsoid. The orientation of the ellipsoid, by which we mean the orientation
of its principal axes, is determined by Dg. Finally, Ag determines the relative sizes of the
ellipsoid’s principal axes, which we call the shape of the ellipsoid. We now use this notation
to characterize the 14 different models discussed by Celeux and Govaert (1995).

These 14 models are listed in Table 2.1 using the notation of Celeux and Govaert. Under
this scheme the decomposition of Σg is written with either g or nothing as a subscript to
indicate whether that component is different or the same across groups respectively. Table
2.1 also includes the number of parameters that must be estimated between all the groups’
covariance matrices, where d is the dimension of the data (Celeux and Govaert, 1995). In
this table, β = d(d + 1)/2 is the number of free parameters in a single, unconstrained, d-
dimensional covariance matrix. The last column of Table 2.1 lists the data transformations
to which that model is invariant (Celeux and Govaert, 1995). That is, which data trans-
formations have essentially no effect on the fitting procedure (or that the effect is highly
predictable, as with translations simply shifting the same problem some number of units
in a particular direction). Knowing the invariance properties of these models helps us later
to understand a limitation of Yang’s algorithm (Yang, 2013). The first eight models are
invariant to any affine transformation (e.g., rotations, translations or re-scaling)2. The next

2Celeux and Govaert (1995) state that these models are invariant to linear transformations. To see that
they are also translation invariant, note that estimation of the Σg is translation invariant, and that estimation
of the µg responds to translations exactly as we would expect. Finally, the assignment of observations to
groups is based on the Mahalanobis distance between an observation and the centroid of each group, and
Mahalanobis distances are translation invariant (Haasdonk and Pękalska, 2009).
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four models that assume diagonal covariance matrices are invariant to axis rescaling; that
is, linear transformations that correspond to a diagonal matrix. Finally, the last two models
that assume spherical covariance matrices are invariant to isometric transformations (i.e.,
transformations that preserve distances between points), such as rotations and translations.
See the lecture notes by Conrad (2016) for more details on isometric transformations. Of
particular interest for our simulations (see Section 3) is Conrad’s Theorem 4.1, which shows
that rotations about the origin in Rn are linear transformations. Therefore, we can con-
clude that the first eight models we have discussed are isotropic, in addition to the last two.
The middle four models are not isotropic however, because rotations cannot be expressed
a special case of axis re-scaling.

The first eight models in our list can be constructed by requiring that various components
of the spectral decomposition of Σg be the same or different between groups. As discussed
above, this changes the geometry of our data. For example, requiring that all Dg are equal
to one common matrix, D, gives us groups whose ellipses have the same orientation. There
are three components to the spectral decomposition, so allowing each to be either the same
or different across groups gives us 23 = 8 different models ranging from the most general,
with no common parameters, to the most specific, where each group has the same covariance
matrix. Our second group of models constrains Dg to be the identity matrix, which results
in Σg being diagonal. This gives us an ellipsoid whose principal axes are oriented with the
coordinate axes. We now have two components that can be either the same or different
across groups (A and λ), which gives us four more models. Finally, we can further constrain
our model so that the Ag are all equal to the identity matrix. This gives us ellipsoids that
are actually hyperspheres. In this setting, we are left with a single parameter to either
vary or hold constant across groups (λ), which gives us our final two models. Note that we
do not include Dg in our model after constraining Ag to be the identity matrix, because
orientation is meaningless when contours of the distribution form a hypersphere.

Using the 14 covariance structures we just identified, together with the two algorithms
(EM or CEM) discussed in the previous section and the two likelihood forms (restricted or
unrestricted), we are now able to express many non-hierarchical clustering algorithms within
our framework. For example, k-means is the CEM algorithm with restricted C-likelihood
and the [λI] covariance structure (Celeux and Govaert, 1992). Similarly, the soft k-means
algorithm mentioned briefly in Section 2.1 is identical to regular k-means, but uses the EM
algorithm. Another common approach to characterize clustering algorithms is to express
them as optimization algorithms with a particular objective function (Windham, 1987). In
their list of 14 models, Celeux and Govaert (1995) also include the objective functions that
they correspond to when viewed as optimization algorithms (provided that an objective
function exists).
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Table 2.1: The 14 normal clustering models, total number of parameters in their covariance
matrices and their invariance properties.

Model Name Number of Parameters Invariant Under
[λDADT ] β Affine Transformations
[λgDAD

T ] β +G− 1 Affine Transformations
[λDAgD

T ] β + (G− 1)(d− 1) Affine Transformations
[λgDAgD

T ] β + (G− 1)d Affine Transformations
[λDgAD

T
g ] Gβ − (G− 1)d Affine Transformations

[λDgAgD
T
g ] Gβ − (G− 1) Affine Transformations

[λgDgAD
T
g ] Gβ − (G− 1)(d− 1) Affine Transformations

[λgDgAgD
T
g ] Gβ Affine Transformations

[λA] d+ 1 Axis Scaling
[λgA] G+ d Axis Scaling
[λAg] Gd+ 1 Axis Scaling
[λgAg] G(d+ 1) Axis Scaling

[λI] 1 Isometric Transformations
[λgI] G Isometric Transformations

2.1.2 Convergence and Asymptotic Properties

The first question we must address here is whether or not the EM and CEM algorithms
terminate. Once this has been established, we can investigate what properties this termi-
nal value has, both in terms of the value of the likelihood function and of the parameter
estimates.

The EM algorithm turns out to be easier to discuss. Given regularity conditions, it
can be shown that the likelihood function converges monotonically to a stationary value
under the EM algorithm (Wu, 1983; McLachlan and Krishnan, 2008). Further, depending
on the strength of regularity conditions we are willing to assume, it can be shown that the
parameter estimates from the EM algorithm converge to local or even global maximizers of
the likelihood function. See Wu (1983) for details. Unfortunately, the condition required
for guaranteed convergence to a global maximum is rarely met in practice, so it is often
recommended to re-run the EM algorithm several times with different initial conditions and
choose the solution with the highest likelihood (Wu, 1983; McLachlan and Krishnan, 2008).
While not a guarantee of global optimality, this does help reduce the chance of choosing a
local optimum.

Provided that sufficiently strong assumptions on the form of the likelihood are met, we
are also able to guarantee that parameter estimates from the EM algorithm converge to the
MLEs for their respective parameters. They therefore inherit all the properties of MLEs
such as consistency, equivariance and asymptotic efficiency (see, for example, Wasserman,
2004).
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The CEM algorithm is similarly guaranteed to terminate at a fixed point in terms of
the C-likelihood (Celeux and Govaert, 1992). This requires only very mild assumptions on
the form of the likelihood function because there are only finitely many partitions of the
observed data into clusters.

Unfortunately, parameter estimates obtained from the CEM algorithm are not as well
behaved as those from the EM algorithm. Given some regularity conditions, parameter
estimates from the CEM algorithm converge to maximizers of the C-likelihood (Celeux and
Govaert, 1992), which are not necessarily MLEs. In fact, maximizing the C-likelihood leads
to estimators that are not necessarily consistent for the parameters they are estimating
(Marriott, 1975; Bryant and Williamson, 1978). Another limitation of the CEM algorithm
is that, as with the EM algorithm, reasonable assumptions only allow us to guarantee
convergence to a local maximum. The recommended solution to this is, as above, to re-run
the algorithm several times with different initializations and choose the solution with the
highest likelihood.

2.2 Discrimination

2.2.1 Methods

The problem of discrimination begins with a sample of n observations in Rd, x1,...,xn,
that are a priori divided into G labeled groups (Hastie et al., 2011). The goal is then to
partition d-space into G disjoint regions and assign each region a group such that a new
observation in each region is most likely to belong to that region’s group (Hand, 1981).
In general, these groups can have any distribution, but the most common methods, LDA
(Linear Discriminant Analysis) and QDA (Quadratic Discriminant Analysis), assume that
the groups are normally distributed with different means. Further, LDA assumes that the
groups have the same covariance matrix, while QDA imposes no such constraint. Note
that the covariance structures assumed for LDA and QDA correspond to rows one and
eight respectively in Table 2.1. More generally, we can perform a DA with any of the 14
covariance assumptions listed in this table. This possibility is investigated by Bensmail and
Celeux (1996). All discrimination methods we discuss assume one of these 14 models.

Once a model has been chosen, the typical next step is to estimate the mean, covariance
matrix and “prior probability” for each group using maximum likelihood (we still call it a
prior even though it is estimated from data). The parameters in a group are estimated using
only the points belonging to that group. Estimators of the mean, µg, and prior probability,
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pg, for each group do not depend on our covariance assumption, and are as follows,

µ̂g =
∑
G(xi)=g

xi

ng
(2.14)

p̂g = ng

n
(2.15)

where G(xi) = g when xi belongs to group g, and ng is the number of observations in group
g.

Estimating the covariance matrix can be more challenging, as some of the models in
Table 2.1 do not have closed form covariance MLEs. Bensmail and Celeux (1996) list which
models have closed form estimators and which do not. If no closed form exists, an iterative
numerical method can be used to obtain an estimate of the covariance matrix. Fortunately,
both LDA and QDA have closed form covariance estimates. We begin with the estimator
of the covariance matrix for each group, Σg, in QDA.

Σ̂g =
∑

i:G(xi)=g

(xi − µ̂g)T (xi − µ̂g)
ng − 1 (2.16)

The estimate of the common covariance matrix in LDA, Σ, is as follows.

Σ̂ =
G∑

g=1

ng − 1
n−G

Σ̂g (2.17)

Once we have estimated the parameters of the distribution in each group, we put these
together to form our decision rule. The idea is to assign a point, x0, to group g if the
“posterior probability” (i.e., likelihood times “prior”) of x0 belonging to group g is larger
than it is for any other group. Mathematically, we formulate this as follows,

Ĝ(x0) = arg max
g

p̂gΦ(x0; µ̂g, Σ̂g) (2.18)

where for LDA, we replace Σ̂g with Σ̂.

2.2.2 Asymptotic Properties

The goal of any discrimination method is to emulate the so called “Bayes rule”. This rule
is defined as a method that assigns every point in the sample space to the group to which
it has the highest true probability of belonging (Hastie et al., 2011). Therefore the Bayes
rule is, by construction, the best possible discrimination function. If this discriminator
is then used for classification, the probability that it misclassifies a new observation, its
“misclassification rate”, is called the “Bayes rate”, and this is the best misclassification rate
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achievable by a classifier. Our goal with any discrimination method is therefore to emulate
the Bayes rule as closely as possible.

The types of DA that we present above are based on likelihood estimation. Therefore,
the parameter estimates inherit the properties associated with MLEs. In particular, since
p̂g, µ̂g and Σ̂g are all MLEs, our discriminator, Ĝ, is also an MLE for the label of the group
with the largest posterior probability. This result follows from the equivariance property of
MLEs (Casella and Berger, 2002). We can therefore conclude that, provided the model is
correctly specified, the discriminator obtained from this method is a consistent estimator
of the Bayes rule (Wasserman, 2004).

The above argument suggests that a less restrictive class of models may be preferable
to a more restrictive one, because fewer restrictions means that the model is less likely to
be misspecified. While this is true asymptotically, in finite samples parameter estimation
adds variability to the predicted values (Hastie et al., 2011). Choosing a model becomes
a classic example of the bias-variance trade-off (Hastie et al., 2011). While QDA uses the
most general model possible and thus gives a discriminator that asymptotically unbiased for
the Bayes rule for the largest class of populations, it may require an extremely large dataset
to estimate with any precision. The discriminator obtained from LDA can be estimated
with more precision (it reduces the number of covariance parameters to estimate by a factor
of G), so it is in general less variable than QDA, but it may not be asymptotically unbiased.
Determining which method performs better in a particular situation requires empirically
evaluating both methods.

2.3 Comparing Methods

All methods discussed in this chapter are designed to solve very similar problems: given
a dataset where observations are known to belong to different groups, construct a rule for
partitioning the sample space into clusters (or regions) that are as similar as possible to
the population groups. It is therefore natural to wonder which method is best able to solve
this problem. A common way to frame this question is in terms of the related problem
of classification (Celeux and Govaert, 1993, 1995; Flury et al., 1994). Although clustering
algorithms are not explicitly intended to perform classification, this is a natural extension
of their intended use, and a way in which they are often compared.

In order to evaluate the methods we have described in this chapter, we study their
misclassification rates. That is, for each method, we investigate the probability that it
assigns a new observation to the wrong group. If a method constructs a reasonable partition
of the sample space then its error rate should be close to the Bayes rate and, inversely, a
poor partition should lead to a much higher misclassification rate.

There are three factors by which we can characterize the methods discussed above. The
first is which approach is used to estimate the parameters of the model: EM, CEM, or DA.
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Note that the first two of these do not require that group labels are available, while the
third does. The second is what assumptions we make about the covariance structure of the
population distribution when we perform our analysis. The third is whether we use the re-
stricted or unrestricted likelihood. That is, whether we assume that the mixture proportions
in the population are equal. Many authors have investigated these factors in various ways.
Castelli and Cover (1995, 1996) investigate some difficulties that arise when working with
data where group labels are only available for some observations (a.k.a. “semi-supervised”
learning). Celeux and Govaert (1993) compare the EM and CEM algorithms under several
different model specifications (including restricted and un-restricted likelihood) and provide
some insights into when one approach can be expected to outperform the others. In a later
paper, Celeux and Govaert (1995) investigate all 14 covariance structures when used with
the CEM algorithm and the restricted likelihood. Flury et al. (1994) perform a similar
investigation on DA, but with a more limited scope. Finally, Bensmail and Celeux (1996)
extend this investigation of DA to include all 14 covariance structures.

One common theme between these investigations is their empirical nature. It is difficult
to obtain analytic results about the performance of these methods. We therefore use a
simulation study to compare the performance of EM, CEM and DA under various model
specifications. We also include Yang’s supervised clustering as an alternative model.
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Chapter 3

Simulation Studies

We carry out two simulation studies to analyze the methods discussed in Chapter 2. Both
involve comparing analysis procedures on many different datasets. The first simulation
compares DA to the EM algorithm. The CEM algorithm is excluded from this simulation
due to computational constraints (See Section 4.2). Our second simulation compares the
k-means algorithm to its EM and DA counterparts. That is, we compare DA and the EM
and CEM algorithms only when assuming that the groups’ covariance matrices are equal
and proportional to the identity matrix and that the mixture proportions are equal. We
refer to our two simulation studies as “EM vs DA”, and “k-means comparison”, respectively.

3.1 EM vs DA

3.1.1 Overview

The goal of this simulation is to investigate the analysis of data from mixture normal distri-
butions using the four different techniques discussed in the previous chapter (EM, CEM, DA
and Yang’s). Specifically, we want to evaluate how well these methods work as classifiers.
That is, our goal is to identify what factors affect the expected misclassification rate (i.e.,
probability of misclassification) of these three methods, and when we can expect one to
outperform the others. Note that both DA and Yang’s pre-processing procedure are forms
of supervised learning, so we are particularly interested in comparing their performance to
that of the other methods.

The form of our simulation follows a split-plot design (Milliken and Johnson, 1992). Data
are generated with a number of settings; these are the whole-plot factors. For each whole-
plot (combination of settings for generating data), we can generate a number of individual
datasets; these are the sub-plots. Each dataset is analyzed using methods outlined in the
previous chapter with various settings; these settings are the sub-plot factors. Each dataset
in our simulation consists of n observations from a mixture of two multivariate normal
distributions in Rd. The settings we vary on the datasets are the difference between the
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means, the mixture proportions and the structure of the groups’ covariance matrices. We
also consider different dimensions, d, and different values of the sample size, n. Note that,
each time we generate a new dataset, we also generate new covariance matrices for its
groups, subject to the constraint being applied. This allows us to generalize our inference
over the space of covariance matrices satisfying the specified properties.

We compare the various analysis procedures discussed in the previous chapter by running
them all on each dataset and estimating their error rates. The different procedures that we
are interested in make up the sub-plot factors of our split-plot design. The specific factors
we are interested in are (1) which method we use (EM or DA); (2) whether we assume
equal mixture proportions; (3) what restrictions we place on the covariance matrices of
the groups and; (4) if we assume equal spherical covariance matrices, whether we apply
Yang’s pre-processing method. For convenience, we treat Yang’s pre-processing as a fourth
covariance structure. Any model that uses Yang’s pre-processing procedure or that is fit
using DA is considered “supervised”, and any that do not are considered “unsupervised”.
We discuss all these settings in more detail in Section 3.1.2.

Once a combination of whole-plot treatments has been selected and a dataset has been
generated, we fit all the models (i.e., all level combinations of the analysis factors). Once
all models have been fit, we generate 1000 new observations from the data distribution and
use our models to assign them to groups. We then compute the number of new observations
that are assigned to the wrong group by each model, which is an estimate of that model’s
misclassification rate1. This is the response variable in our experiment. We then generate
4 more training and test datasets and repeat this procedure on each of them, giving us
misclassification rate estimates for each model on 5 different datasets. That is, we generate
5 replications for each combination of whole-plot factors, and split each of these into a
separate sub-plot for each combination of the sub-plot factors. More formally, the whole-
plot experimental units are datasets, and the sub-plot experimental units are individual
analyses.

This simulation is carried out in R (R Core Team, 2016) and analyzed using SAS R© soft-
ware (SAS Institute Inc., 2013). All versions of DA and the EM algorithm are implemented
using the MclustDA and Mclust functions in the mclust package (Biernacki et al., 2006).
The logistic regression method developed by Heinze and Schemper (2002) is implemented
using the logistf function in the eponymous package (Heinze et al., 2013). The simulation
itself is carried out in parallel using the plyr and doParallel packages (Wickham, 2011;
Revolution Analytics and Weston, 2015). Analysis of the misclassification rates is performed
using the MIXED procedure, and all plots are constructed using the GPLOT procedure in SAS.

1When an entirely unsupervised method is used, it is not immediately obvious how to assign group labels
to the clusters. This difficulty is investigated in detail in a series of papers by Castelli and Cover (1995, 1996).
We avoid the problem entirely by assigning group labels such that the misclassification rate is minimized.
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An odd phenomenon occurs in a small number of generated datasets that have a sub-
stantial outlier. In rare cases, this outlier is so extreme that it is assigned to its own cluster,
while the rest of the observations form the other cluster. This makes estimating covariance
matrices impossible. In cases where this occurs, we replace the dataset with a new one
and re-fit all models. We then repeat the procedure as necessary until both clusters con-
tain at least two observations. This scenario occurs in less than 0.3% of cases (89 out of
32400 model fits). These replacements occur mostly when we do not assume equal mixture
proportions or when the EM algorithm is used, and almost never when no restrictions are
placed on the covariance matrix.

3.1.2 Parameter Settings

Many of the parameter values we consider are chosen to match those in one of the simulations
used by Celeux and Govaert (1993) to compare results from the EM and CEM algorithms.
Let µg and Σg be the mean and covariance matrix of group g = 1, 2, and let p and q = 1−p
be the mixture proportions. Then X1, ..., Xn

iid∼ FX , where FX(x) = p · Φ(x;µ1,Σ1) + q ·
Φ(x;µ2,Σ2). We vary the µg’s by setting the Mahalanobis distance between them2 to be 1,
2, 3, 4 or 5. We use Mahalanobis distance rather than Euclidean distance because we use
a different covariance matrix each time we generate a new dataset, and the Mahalanobis
distance is invariant to this change. The Mahalanobis distance is also listed as a multivariate
generalization for the coefficient of variation by Aerts et al. (2015), which is a reasonable
measure of the inverse “signal-to-noise ratio”. Using Mahalanobis distance to measure the
signal-to-noise ratio is particularly appropriate here since it is the only measure listed by
Aerts that is invariant to affine transformations of the data (therefore it is not affected
when we standardize the variables or apply Yang’s pre-processing procedure) (Haasdonk and
Pękalska, 2009). It is not clear how to define the Mahalanobis distance between the groups’
means when their covariance matrices are different. We therefore use the Mahalanobis
distance relative to the covariance matrix of group 2.

The first mixture proportion, p, takes the values 0.25, 0.35 and 0.5. The dimension, d,
takes the values 2, 4 and 6. This differs from the values in Celeux and Govaert (1, 2 and 4),
and is chosen so that the simulation does not become too large to compute efficiently. The
sample size, n, takes the values 200, 400 and 600. These also differ from the values used by
Celeux and Govaert (20, 40, 100 and 200), and are chosen to ensure that there is enough
data to fit our models using the R package Mclust (Fraley et al., 2012)3. The covariance
matrices are either equal and proportional to the identity matrix, unconstrained but equal,
or completely unconstrained, and are generated randomly with a determinant of 1. This

2The Mahalanobis distance between two points relative to some covariance matrix, Σ, is dΣ(x, y) =
(x− y)T Σ−1(x− y) (Wasserman, 2004).

3The number of observations required to fit models using Mclust is variable, so a sufficiently large sample
size is required to ensure all models can be fit.
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Table 3.1: Factors for the EM vs DA simulation, with their numbers of levels and whether
they are applied to data generation or data analysis.

Factor Levels Type
Mean Difference 5 Generation

Mixture Proportion 3 Generation
Dimension 3 Generation
Sample Size 3 Generation

Covariance Structure 3 Generation
Assumed Covariance Structure 4 Analysis

Assume Equal Mixture 2 Analysis
Method 2 Analysis

is chosen to ensure that the volume of the groups’ covariance ellipsoids (alternatively, the
volume of the parallelepiped generated by the columns of each group’s covariance matrix)
are all 1, regardless of what constraints are imposed (Peng, 2007). Note that this still
requires that we estimate the λ parameter for each covariance structure (see Section 2.1.1)
because constraining the determinants of two matrices to be the same is not equivalent to
constraining their largest eigenvalues to be the same.

The assumed covariance structures for our analyses are the same as the three structures
used to generate data. Further, if the covariance matrices are assumed to both be pro-
portional to the identity matrix, then Yang’s pre-processing procedure is either applied or
not. This procedure is not considered for other covariance structures because their fitting
methods are invariant to linear transformations of the data (See Table 2.1). The mixture
proportions can either be assumed equal or not. Finally, the fitting method is either EM
or DA. Recall that the EM algorithm is often fit multiple times and the best result selected
(to avoid locally optimal solutions, see Section 2.1.2). We therefore fit the model 20 or
45 times and select the best one (preliminary analyses suggest that 20 is sufficient for the
likelihood to stabilize when the Mahalanobis distance between the means is at least 2, and
45 is required when this distance is 1). All factors that we consider are listed in Table
3.1, along with their number of levels and whether they pertain to data generation or data
analysis.

3.1.3 Analysis

We begin this section by describing our statistical analysis, and identifying which effects have
a significant impact on the misclassification rate. We then list the estimated misclassification
rate for each level of the analysis main effects, and present plots showing the effects for some
interesting two-factor interactions. Finally, we discuss several contrasts that correspond to
interesting questions about the data.

The results of this simulation are analyzed as a split-plot design (Littell et al., 2006;
Milliken and Johnson, 1992). The data generation process corresponds to whole-plots, with
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data variables (i.e., mean difference, mixture proportion, dimension, sample size and covari-
ance structure) being whole-plot factors. The whole-plot experimental units are datasets.
The analysis and error rate estimation process corresponds to sub-plots, with the analysis
variables (i.e., assumed covariance structure, assumed equal mixture and fitting method)
being sub-plot factors. Our response variable is the misclassification rate of a particular
analysis on a single dataset. Note that this is a proportion, so we use the appropriate
variance-stabilizing transformation, arcsin(

√
Y ) (Kuehl, 2000). We are therefore implic-

itly assuming that the transformed error rates follow normal distributions with constant
variance across all levels of the predictor variables.

We fit a mixed-effects linear model to predict the error rate using the whole- and sub-plot
factors, along with two- and three-way interaction terms within and between plot levels.
Higher order interactions are excluded both for ease of computation (large mixed-effects
models take a long time to fit) and because high order interaction terms are difficult to
interpret. This restriction of third-oder interactions ensures that we have a large number
of observations (i.e. degrees of freedom) with which to carry out each test. Specifically,
the estimate for each effect is averaged across the others, which gives a large number of
observations with which to estimate each mean. Further, this large number of observa-
tions allows us to invoke the De Moivre-Laplace Theorem (Durrett, 2013) to justify our
assumption of normality. Assuming normality after the variance stabilizing transformation
is actually more accurate on small samples than simply assuming that the data are normally
distributed (Bromiley and Thacker, 2002).

Of particular interest to us are the variables that pertain to data analysis because our
goal is to provide recommendations for analysis, and these are the only variables that an
analyst has control over. Factors and interactions that are significant at the α = 0.05 level
are listed in Tables 3.2-3.5. A simple Bonferroni correction for the number of tests being
conducted (Wasserman, 2004) suggests using α = 5.4 · 10−4. We indicate effects that are
also significant at this level by adding an exclamation point. Table 3.2 contains terms that
only pertain to data generation, while Tables 3.3, 3.4 and 3.5 contain respectively terms
that include whether the mixture proportions are assumed equal, the assumed covariance
structure and the fitting method. Note that some effects occur in more than one of these
tables, since there are significant interactions between analysis variables.

Next, we investigate the estimated misclassification rate for different levels of these
significant effects. Evaluating all pairwise differences for each effect requires over 1500 tests,
so we give only interesting highlights here. We focus on the sub-plot factors (i.e., assumed
equal mixture, assumed covariance structure and method) because these are the variables
that an analyst sets, and our goal is to provide recommendations for the procedures under
investigation.

We give estimates of the misclassification rate after back-transforming (this is, on the
error rate scale rather than the transformed-error rate scale) at each level of the analysis
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Table 3.2: Data generation effects in the EM vs DA simulation that are significant at the
α = 0.05 level. Effects that are are also significant at the Bonferroni corrected level are
indicated with an exclamation point (see text).

Source

Mean Difference !
Mixture Proportion !
Mean Difference*Mixture Proportion !
Dimension !
Mean Difference*Dimension !
True Covariance Structure !
Mean Difference*True Covariance Structure !
Mixture Proportion*True Covariance Structure !
Dimension*True Covariance Structure !
Mean Difference*Dimension*True Covariance Structure !
Mixture Proportion*Dimension*True Covariance Structure
Mean Difference*Sample Size !
Mixture Proportion*Sample Size
Dimension*Sample Size

Table 3.3: Effects in the EM vs DA simulation containing “Assumed Equal Mixture”, that
are significant at the α = 0.05 level. Effects that are are also significant at the Bonferroni
corrected level are indicated with an exclamation point (see text).

Source

Assumed Equal Mixture !
Assumed Equal Mixture*Assumed Covariance Structure !
Assumed Equal Mixture*Method !
Assumed Equal Mixture*Assumed Covariance Structure*Method !
Mean Difference*Assumed Equal Mixture !
Mean Difference*Assumed Equal Mixture*Assumed Covariance Structure !
Mean Difference*Assumed Equal Mixture*Method !
Mixture Proportion*Assumed Equal Mixture !
Mixture Proportion*Assumed Equal Mixture*Assumed Covariance Structure !
Mixture Proportion*Assumed Equal Mixture*Method !
Mean Difference*Mixture Proportion*Assumed Equal Mixture !
Dimension*Assumed Equal Mixture !
Dimension*Assumed Equal Mixture*Assumed Covariance Structure !
Dimension*Assumed Equal Mixture*Method !
Mixture Proportion*Dimension*Assumed Equal Mixture
True Covariance Structure*Assumed Equal Mixture*Assumed Covariance Structure !
Mixture Proportion*True Covariance Structure*Assumed Equal Mixture !
Dimension*True Covariance Structure*Assumed Equal Mixture
Sample Size*Assumed Equal Mixture*Assumed Covariance Structure !
Mixture Proportion*Sample Size*Assumed Equal Mixture
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Table 3.4: Effects in the EM vs DA simulation containing “Assumed Covariance Structure”,
that are significant at the α = 0.05 level. Effects that are are also significant at the
Bonferroni corrected level are indicated with an exclamation point (see text).

Source

Assumed Covariance Structure !
Assumed Equal Mixture*Assumed Covariance Structure !
Assumed Covariance Structure*Method !
Assumed Equal Mixture*Assumed Covariance Structure*Method !
Mean Difference*Assumed Covariance Structure !
Mean Difference*Assumed Equal Mixture*Assumed Covariance Structure !
Mean Difference*Assumed Covariance Structure*Method !
Mixture Proportion*Assumed Covariance Structure !
Mixture Proportion*Assumed Equal Mixture*Assumed Covariance Structure !
Mixture Proportion*Assumed Covariance Structure*Method !
Mean Difference*Mixture Proportion*Assumed Covariance Structure !
Dimension*Assumed Covariance Structure !
Dimension*Assumed Equal Mixture*Assumed Covariance Structure !
Dimension*Assumed Covariance Structure*Method !
Mean Difference*Dimension*Assumed Covariance Structure !
Mixture Proportion*Dimension*Assumed Covariance Structure !
True Covariance Structure*Assumed Covariance Structure !
True Covariance Structure*Assumed Equal Mixture*Assumed Covariance Structure !
True Covariance Structure*Assumed Covariance Structure*Method !
Mean Difference*True Covariance Structure*Assumed Covariance Structure !
Mixture Proportion*True Covariance Structure*Assumed Covariance Structure !
Dimension*True Covariance Structure*Assumed Covariance Structure !
Sample Size*Assumed Covariance Structure !
Sample Size*Assumed Equal Mixture*Assumed Covariance Structure !
Sample Size*Assumed Covariance Structure*Method !
Mean Difference*Sample Size*Assumed Covariance Structure !
Mixture Proportion*Sample Size*Assumed Covariance Structure
Dimension*Sample Size*Assumed Covariance Structure !
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Table 3.5: Effects in the EM vs DA simulation containing “Method”, that are significant
at the α = 0.05 level. Effects that are are also significant at the Bonferroni corrected level
are indicated with an exclamation point (see text).

Source

Method !
Assumed Equal Mixture*Method !
Assumed Covariance Structure*Method !
Assumed Equal Mixture*Assumed Covariance Structure*Method !
Mean Difference*Method !
Mean Difference*Assumed Equal Mixture*Method !
Mean Difference*Assumed Covariance Structure*Method !
Mixture Proportion*Method !
Mixture Proportion*Assumed Equal Mixture*Method !
Mixture Proportion*Assumed Covariance Structure*Method !
Mean Difference*Mixture Proportion*Method !
Dimension*Method !
Dimension*Assumed Equal Mixture*Method !
Dimension*Assumed Covariance Structure*Method !
Mean Difference*Dimension*Method !
Mixture Proportion*Dimension*Method
True Covariance Structure*Method !
Mean Difference*True Covariance Structure*Method !
Mixture Proportion*True Covariance Structure*Method !
Dimension*True Covariance Structure*Method !
Sample Size*Method !
Sample Size*Assumed Covariance Structure*Method !
Mean Difference*Sample Size*Method !
Dimension*Sample Size*Method
True Covariance Structure*Sample Size*Method
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Table 3.6: Estimated error rate for whether or not equal mixture proportions are assumed
in the EM vs DA simulation.

Assumed Equal Mixture Estimate

No 0.1381
Yes 0.1432

Table 3.7: Estimated error rate for all assumed covariance structures in the EM vs DA
simulation. The “spherical” structures correspond to all covariance matrices being equal
and proportional to the identity matrix, and “supervised spherical” corresponds to this
structure with Yang’s pre-processing.

Assumed Covariance Estimate

Different 0.1223
Equal 0.1814
Spherical 0.1446
Supervised Spherical 0.1189

variable main effects in Tables 3.6-3.8. All the differences between factor levels are sig-
nificant, even after applying Tukey’s correction for the number of tests being carried out
(Milliken and Johnson, 1992). This is more important here than when testing for an entire
effect, because many more tests are required for all pairwise differences. We then present
plots for some interesting two-way interactions in Figures 3.1-3.5. Note that the covariance
structures “Hetero”, “Homo”, “Sph” and “Sup_Sph” correspond respectively to completely
unconstrained covariance matrices (heteroscedastic), equal but otherwise unconstrained co-
variance matrices (homoscedastic), all covariance matrices equal and proportional to the
identity matrix (i.e., spherical groups) and all covariance matrices equal and proportional
to the identity matrix after Yang’s pre-processing procedure has been applied (i.e., spherical
groups with supervision).

Next, we give some relevant contrasts, along with their estimates, standard errors and
p-values, in Table 3.9. Note that the estimates and standard errors of these contrasts are
on the transformed scale (i.e., arcsin(

√
Y ) scale), and that smaller (i.e., more negative)

values correspond to lower misclassification rates in the direction suggested by the contrast
description. All contrasts are found to be significantly different from zero at the α = 0.05
level. We explain the meaning of each contrast here, and interpret their significance in
Section 4.1. Note that contrasts are divided into two types. One type compares the means
at different combinations of effects. The other type compares the mean of one effect at
different levels of another. The first six contrasts are of the first type, and the last four are
of the second type.

The first contrast, ‘DA vs EM without pre-processing”, evaluates whether DA outper-
forms EM when one of the unsupervised covariance structures is assumed (i.e., not Yang’s
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Table 3.8: Estimated error rate for all methods in the EM vs DA simulation.

Method Estimate

DA 0.0906
EM 0.2035

Figure 3.1: Plot of the interaction effect between true mixture proportion and assuming
equal mixture proportions in the EM vs DA simulation. See text for details.

Figure 3.2: Plot of the interaction effect between assumed covariance structure and assuming
equal mixture proportions in the EM vs DA simulation. See text for details.
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Figure 3.3: Plot of the interaction effect between fitting method and assuming equal mixture
proportions in the EM vs DA simulation. See text for details.

Figure 3.4: Plot of the interaction effect between assumed covariance structure and true
covariance structure in the EM vs DA simulation. See text for details.
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Figure 3.5: Plot of the interaction effect between assumed covariance structure and fitting
method in the EM vs DA simulation. See text for details.

Table 3.9: Interesting contrasts for the EM vs DA simulation. See text for a detailed
description of the meaning of each contrast.

Label Estimate Standard Error P-Value

DA vs EM without pre-processing -0.1746 0.001057 <.0001
Pre-processing vs not for EM -0.1078 0.001495 <.0001
Pre-processing vs spherical for EM -0.08751 0.001831 <.0001
DA and pre-processing vs one without the other -0.00091 0.001495 0.5417
DA vs pre-processing -0.0668 0.001495 <.0001
DA vs both DA and pre-processing -0.03249 0.001495 <.0001
Effect of DA with vs without pre-processing 0.1403 0.002114 <.0001
Effect of DA for unequal vs equal covariances 0.1371 0.00259 <.0001
Effect of DA for equal vs equal and spherical -0.1162 0.00259 <.0001
Effect of pre-processing for DA vs EM 0.1403 0.002114 <.0001
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pre-processing). The second contrast, “Pre-processing vs not for EM”, evaluates whether
using Yang’s pre-processing procedure outperforms the other assumed covariance structures
when the EM algorithm is used (i.e., when the fitting method is unsupervised). The third
contrast, “Pre-processing vs spherical for EM”, evaluates whether Yang’s pre-processing
procedure outperforms the corresponding unsupervised assumed covariance structure (i.e.,
all equal and proportional to the identity matrix) when the EM algorithm is used. The
fourth contrast, “DA and pre-processing vs one without the other”, evaluates whether us-
ing DA and Yang’s pre-processing outperforms the average of Yang’s pre-processing with
the EM algorithm, and DA with the unsupervised covariance structures. The fifth con-
trast, “DA vs pre-processing”, evaluates whether using DA alone gives a lower error rate
than using pre-processing alone. The sixth contrast, “DA vs both DA and pre-processing”,
evaluates whether DA gives a lower error rate when used alone or when used together with
pre-processing.

The seventh contrast, “Effect of DA with vs without pre-processing”, evaluates whether
the effect of DA (i.e., the difference between the level for DA and the level for EM) is
greater when used along with pre-processing than when used with one of the other assumed
covariance structures. Positive values indicate that DA reduces the error rate more when
pre-processing is not applied. The eighth contrast, “Effect of DA for unequal vs equal co-
variances”, evaluates whether the effect of DA is greater when the unconstrained covariance
structure is assumed than when the equal but otherwise unconstrained covariance structure
is assumed. Positive values indicate that DA reduces the error rate more when the groups’
covariance matrices are only assumed to be equal than when no covariance assumptions
are made. The ninth contrast, “Effect of DA for equal vs equal and spherical”, evaluates
whether the effect of DA is greater when the groups’ covariance matrices are assumed equal
but are otherwise unconstrained than when the covariance matrices are assumed to all equal
the identity matrix. Positive values indicate that DA reduces the error rate more when the
groups’ covariance matrices are assumed to be identical and proportional to the identity
matrix than they are only assumed to be identical. Finally, the tenth contrast, “Effect of
pre-processing for DA vs EM”, evaluates whether the effect of pre-processing is greater when
DA is used than when the EM algorithm is used. Positive values indicate that applying
pre-processing improves the error rate more when the EM algorithm is used than when DA
is used.

Our first observation about these results is that DA has a lower misclassification rate
on average than the EM algorithm. This effect is consistent across assumptions about the
mixture proportion and covariance structure, as well as across interactions with many of
the data generation variables. The effect is much smaller however when DA is used with
pre-processing.

Not assuming that the mixture proportions are equal gives a slightly (but significantly)
smaller error rate than when we make this assumption. One particularly interesting in-
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teraction for this factor is with the true mixture proportion, p1 (See Figure 3.1). When
p1 = 0.25 (i.e., proportions are somewhat different), not assuming equal mixture propor-
tions is preferable; when p1 = 0.5 (proportions are the same), assuming equal mixtures
is better; and when p1 = 0.35 (proportions are only somewhat different) it makes little
difference.

The ranking of assumed covariance structures in order from lowest error rate to highest
is as follows: identical and proportional to the identity matrix with pre-processing, un-
constrained, identical and proportional to the identity matrix without pre-processing, and
identical but otherwise unconstrained. If we consider the interaction between assumed co-
variance structure and method, however (see Figure 3.5), we see that the error rate when
using unconstrained covariances is now lower than the one using pre-processing. Further,
when combined with DA, pre-processing gives the highest error rate, followed by identical
and proportional to the identity matrix without pre-processing and identical but otherwise
unconstrained. The ordering of covariance structures remains unchanged when the EM
algorithm is used.

The combinations of decision variables with the lowest average error rate is DA with
completely unconstrained covariances, and with or without assuming that the mixture pro-
portions are equal.

3.2 k-Means Comparison

3.2.1 Overview and Parameter Settings

As in the previous simulation, we begin this section by describing our statistical analysis,
and identifying which effects have a significant influence on the misclassification rate. We
then present some interesting interaction plots and contrasts.

The purpose of this simulation is to compare DA with the EM and CEM algorithms when
assuming the most simple model structure, equal mixture proportions with all covariance
matrices equal and proportional to the identity matrix. This model structure is chosen
because fitting it using the CEM algorithm is equivalent to the very popular k-means
algorithm (Celeux and Govaert, 1992). We also investigate whether Yang’s pre-processing
step has any effect on the misclassification rate. Note that, as in the previous simulation,
models that use pre-processing or DA (or both) are considered supervised while all others
are considered unsupervised.

The details of this simulation are nearly identical to the one described above. A split-plot
design is employed, where the whole-plot factors are the data generation variables: mean
difference, mixture proportions, dimension, covariance structure and sample size. These
factors all take the same levels as in the EM vs DA simulation except for sample size, which
now takes the values 300, 600, 900 and 1200. These larger sample sizes are used to more
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Table 3.10: Factors for the k-means comparison simulation, with their numbers of levels
and whether they are applied to data generation or data analysis.

Factor Levels Type
Mean Difference 5 Generation

Mixture Proportion 3 Generation
Dimension 3 Generation
Sample Size 3 Generation

Covariance Structure 3 Generation
Pre-Processing 2 Analysis

Method 3 Analysis

closely match those in a different simulation by Celeux and Govaert (1993). The analysis
variables make up the sub-plot factors, but we only vary the method and whether Yang’s
pre-processing procedure is applied. In order to be consistent with the k-means algorithm,
we only consider analyses where the mixture proportions are assumed equal, and the groups’
covariance matrices are all assumed equal and proportional to the identity matrix. Yang’s
pre-processing procedure is either applied or not, and the methods considered are DA, the
EM algorithm and the CEM algorithm. The EM and CEM algorithms both require multiple
re-starts (as described above), so we run each 20 or 45 times (depending on the difference
between the means) and choose the best result. The factors we consider, along with their
position within the split-plot structure, are listed in Table 3.10.

Once a dataset and analysis method are selected, the model is fit and 1000 new ob-
servations are used to estimate the misclassification rate in same way as in the previous
simulation4.

We generate our data using R (R Core Team, 2016) and analyze them using SAS R©

software (SAS Institute Inc., 2013) in the same way as the previous simulation. All the
same functions are used for data generation and analysis, but here we also use the kmeans

function in base R to implement the k-means algorithm.
We observe the phenomenon discussed above here as well, where a cluster consists of

a single observation. This leads to the same computational problem with estimating a
covariance matrix for that cluster, and we address this problem in the same way. That is,
whenever this occurs for a single model, we generate a new dataset (with the same dataset
variables) and re-fit all the models. This phenomenon is even more rare here, and occurs
in less than 0.04% of cases (5 of 16200 total model fits). All these instances occur when
Yang’s method is used with DA, but it is difficult to infer anything from this due to the
limited number of cases.

4And again, the difficulty of assigning group labels to clusters is avoided by labeling clusters in the best
possible way.
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Table 3.11: Data generation effects in the k-means comparison simulation that are signifi-
cant at the α = 0.05 level. Effects that are are also significant at the Bonferroni corrected
level are indicated with an exclamation point (see text).

Source

Mean Difference !
Mixture Proportion !
Mean Difference*Mixture Proportion !
Dimension
Mean Difference*Dimension !
True Covariance Structure !
Mean Difference*True Covariance Structure !
Mixture Proportion*True Covariance Structure !
Mean Difference*Mixture Proportion*True Covariance Structure
Dimension*True Covariance Structure !
Mean Difference*Dimension*True Covariance Structure !
Sample Size

3.2.2 Analysis

The analysis of this simulation parallels that of our EM vs DA simulation. We analyze our
data as a split-plot design, where the data generation variables correspond to the whole-
plots and the analysis variables correspond to sub-plots. Our response variable is the
misclassification rate of a particular analysis on a single dataset. As above, we apply the
appropriate variance stabilizing transformation for this response.

A mixed-effects linear model is again used, and interactions of order higher than 3 are
excluded. Effects that are significant at the α = 0.05 level are listed in Tables 3.11-3.13.
Using the Bonferroni correction here suggests setting α = 7.9 · 10−4. We indicate effects
that are also significant at this level by adding an exclamation point. Table 3.11 contains
effects that pertain only to data analysis, while Tables 3.12 and 3.13 list all effects that
relate to whether pre-processing is used, and which fitting method is used, respectively.
Note that some terms occur in both Tables 3.12 and 3.13 because they contain both of
these variables. As mentioned above, we are particularly interested in studying the analysis
variables so that we can make recommendations for analysts.

We now investigate the estimated misclassification rate for these effects. As above, we
are primarily interested in the pre-processing and method effects, since levels of these are
chosen by the analyst and we would like to make practical recommendations. A complete
analysis would be too much space to include here, so we only present highlights.

Estimates of misclassification rate for each analysis factor are given in Tables 3.14 and
3.15. The differences between these factors’ levels are all significant, even after applying
Tukey’s correction (Milliken and Johnson, 1992). Some two-way interaction plots are given
in Figures 3.6-3.9. Note that the covariance structures “Hetero”, “Homo” and “Sph” cor-
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Table 3.12: Effects in the k-means comparison simulation containing “Pre-Processing”, that
are significant at the α = 0.05 level. Effects that are are also significant at the Bonferroni
corrected level are indicated with an exclamation point (see text).

Source

Pre-Processing !
Pre-Processing*Method !
Mean Difference*Pre-Processing !
Mean Difference*Pre-Processing*Method !
Mixture Proportion*Pre-Processing !
Mixture Proportion*Pre-Processing*Method !
Mean Difference*Mixture Proportion*Pre-Processing !
Dimension*Pre-Processing !
Dimension*Pre-Processing*Method !
Mean Difference*Dimension*Pre-Processing !
True Covariance Structure*Pre-Processing !
True Covariance Structure*Pre-Processing*Method !
Mean Difference*True Covariance Structure*Pre-Processing !
Mixture Proportion*True Covariance Structure*Pre-Processing !
Dimension*True Covariance Structure*Pre-Processing !
Mixture Proportion*Sample Size*Pre-Processing
True Covariance Structure*Sample Size*Pre-Processing !

Table 3.13: Effects in the k-means comparison simulation containing “Method”, that are
significant at the α = 0.05 level. Effects that are are also significant at the Bonferroni
corrected level are indicated with an exclamation point (see text).

Source

Method !
Pre-Processing*Method !
Mean Difference*Method !
Mean Difference*Pre-Processing*Method !
Mixture Proportion*Method !
Mixture Proportion*Pre-Processing*Method !
Mean Difference*Mixture Proportion*Method !
Dimension*Pre-Processing*Method !
Mean Difference*Dimension*Method !
Mixture Proportion*Dimension*Method !
True Covariance Structure*Method !
True Covariance Structure*Pre-Processing*Method !
Mean Difference*True Covariance Structure*Method !
Mixture Proportion*True Covariance Structure*Method
Dimension*True Covariance Structure*Method !
Sample Size*Method
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Table 3.14: Estimated error rate for each level of pre-processing in the k-means comparison
simulation.

Pre-Processing Estimate

No 0.1413
Yes 0.1259

Table 3.15: Estimated error rate for each level of method in the k-means comparison sim-
ulation.

Method Estimate

CEM 0.1348
EM 0.1725
DA 0.0990

respond respectively to completely unconstrained covariance matrices, equal but otherwise
unconstrained covariance matrices and all covariance matrices equal and proportional to
the identity matrix (i.e., spherical groups). Relevant contrasts, along with their estimates,
standard errors and p-values, are given in Table 3.16. As above, the estimates and standard
errors of these contrasts are on the transformed scale and smaller values correspond to lower
misclassification rates in the direction suggested by the contrast’s description. We divide
these contrasts into the same two groups discussed in the previous simulation. The first
group consists of the first three contrasts, while the second group consists of the last two
contrasts. We describe the meaning of these contrasts here, and discuss their significance
in Section 4.1.

The first contrast, “DA without Pre-Processing”, evaluates whether DA is better than
the EM or CEM algorithms when Yang’s pre-processing procedure is not used. The second
contrast, “Pre-Processing with EM and CEM”, evaluates whether Yang’s pre-processing
procedure is preferable when the fitting method is unsupervised (i.e., EM or CEM). The
third contrast, “DA and pre-processing vs one without the other”, evaluates whether using
DA and Yang’s pre-processing outperforms the average of Yang’s pre-processing with the
EM algorithm, and DA with the unsupervised covariance structures.

The fourth contrast, “Effect of pre-proc for EM vs CEM”, evaluates whether the effect
of pre-processing (i.e., the difference between the level for the pre-processed covariance
structure and the average of the other assumed covariance structures) is greater when used
with the EM algorithm than with the CEM algorithm. Positive values here indicate that
pre-processing reduces the error rate more when the EM algorithm is used. Finally, the
fifth contrast, “Effect of pre-proc for DA vs others”, evaluates whether the effect of pre-
processing is greater when used with DA than when used with the EM or CEM algorithms.
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Figure 3.6: Plot of the interaction effect between fitting method and whether pre-processing
is applied in the k-means comparison simulation.

Positive values here indicate that pre-processing reduces the error rate more when DA is
used.

Table 3.16: Interesting contrasts for the EM vs DA simulation. See the text for a detailed
description of the meaning of each contrast.

Label Estimate Standard Error P-Value

DA without Pre-Processing -0.1042 0.0012 <.0001
Pre-Processing with EM and CEM -0.0413 0.0010 <.0001
Both Supervisions vs Single Supervision -0.0080 0.0012 <.0001
Effect of pre-processing for EM vs CEM 0.0904 0.0020 <.0001
Effect of pre-processing for DA vs others -0.0089 0.0009 <.0001

Our first observation here is that, unsurprisingly, analyses with supervision tend to out-
perform those without. That is, DA has lower average misclassification rate than both the
EM and CEM algorithms, and error rates are lower on average when Yang’s pre-processing
step is applied than when it is not. Using DA with pre-processing is redundant however,
and actually increases the error rate slightly compared to DA alone. This is consistent with
the results in the previous simulation.

Among unsupervised methods, the CEM algorithm appears to outperform the EM al-
gorithm, and this trend is consistent across numerous interactions. The difference becomes
smaller in higher dimensions, but remains fairly constant across sample sizes.
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Figure 3.7: Plot of the interaction effect between fitting method and true covariance struc-
ture in the k-means comparison simulation.

Figure 3.8: Plot of the interaction effect between whether pre-processing is applied and the
true covariance structure in the k-means comparison simulation.
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Figure 3.9: Plot of the interaction effect between sample size and method in the k-means
comparison simulation.

The combination of decision variables that gives the lowest average error rate is DA
without pre-processing.
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Chapter 4

Discussion

4.1 Evaluation and Recommendations

The primary goal of this study is to investigate whether unsupervised clustering methods are
appropriate to use for solving discrimination problems. Our simulation studies suggest that
the answer to this question is no. In the EM vs DA simulation, incorporating information
about the response through either the fitting method (DA) or assumed covariance structure
(using pre-processing when all groups’ matrices are equal and proportional to the identity
matrix) is preferable, on average, to the other unsupervised options. We see a similar trend
in the k-means comparison simulation where, even after introducing another unsupervised
method for DA to compete against, it still outperforms the unsupervised methods.

A secondary goal of this study is to investigate the merit of Yang’s pre-processing pro-
cedure compared to other model-based clustering and discrimination methods. As we just
discussed, supervision appears to be important for discrimination, and Yang’s procedure
does add supervision to a clustering problem that may be otherwise unsupervised. However,
DA appears to outperform Yang’s procedure when averaged across all datasets. Further,
using DA alone gives a lower error rate than either DA with pre-processing or pre-processing
by itself. We therefore recommend using DA in place of Yang’s pre-processing procedure
when analyzing data.

We would also like to make recommendations about assumed covariance matrices. Recall
that, in the EM vs DA simulation, the making no assumptions about the groups’ covariance
matrices is one of the best choices for both methods. In particular, the lowest error rate
is obtained by using DA with no covariance assumptions. This suggests that the sample
sizes we use are sufficiently large, on average, to estimate multiple unconstrained covariance
matrices. This is comforting, as the average sample size in this simulation is 400, which
is not too large to be conceivably obtained in many settings. Note however, that we only
investigate low-dimensional problems, and that much larger samples may be required as the
dimension increases.
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The last decision variable that we investigate is whether or not to assume equal mixture
proportions. Unsurprisingly, this is tied to the true values of the mixture proportions. If
the proportions are somewhat disparate (e.g., 0.25 and 0.75) then the error rate is higher
when we assume that they are equal. Inversely, if the mixture proportions are equal, the
error rate goes down when we assume that they are equal. If the proportions are only
slightly disparate (e.g., 0.35 and 0.65) then it makes little difference what we assume. It is
therefore important to use any a priori knowledge about a problem to select the appropriate
assumption. Lacking any knowledge whatsoever, an uninformative prior (Strachan and van
Dijk, 2003) on the mixture proportions suggests that they will be disparate more often than
similar, so we should not assume that they are equal.

We conclude with recommendations for data analysts using these models. Considering
both simulations, we recommend using DA with no constraints on the covariance matrices,
and mixture proportions assumed equal. Our simulations do not cover all possible models
(e.g., the CEM algorithm is only applied for one covariance structure, with and without pre-
processing), but DA is the best method in both simulations, and the k-means comparison
simulation does not give any indication that the CEM algorithm can outperform DA in
any of the settings that we do not consider. This supports the popularity of QDA as a
supervised learning method, and suggests that it may be appropriate in low-dimensional
problems with samples as small as 200.

4.2 Limitations and Possible Extensions

Many limitations of this study are computational in nature. The Rmixmod package (Lebret
et al., 2015) in R is an interface to the MIXMOD software package (Biernacki et al., 2006)
that allows for models with any of the 14 covariance structures listed in Table 2.1 to be
fit using DA or the EM or CEM algorithms. This package also allows us to optionally
assume equal mixture proportions. Unfortunately, it provides limited feedback when models
cannot be fit correctly. This makes implementing large-scale simulations using this software
impossible. Other implementations of model-based clustering in R are more user friendly,
but do not have the same scope as the MIXMOD package. This is why our simulations do
not consider all combinations of the data analysis factors. It would be interesting in future
work to investigate how models with other covariance structures fit using the CEM algorithm
compare with DA and the EM algorithm, but this comparison may require writing a new
implementation. Doing so would have been outside the scope of this project.

Another computational limitation arises from our proposed solution for handling the case
where an extreme outlier is assigned to its own cluster by the fitting procedure. Our solution
is to draw a new dataset whenever this phenomenon is observed, and re-fit all models at
that iteration to the new dataset. This creates a new problem however, because the data
analyzed when this solution is employed no longer follow a mixture normal distribution, but
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instead follow a similar distribution from which observations are more likely to be tightly
packed. This is because any sample with an outlier that is sufficiently extreme to cause the
above phenomenon is assigned probability zero, thereby slightly increasing the probabilities
of all other possible samples. It is not clear to the author how to satisfactorily address this
problem. Fortunately, it occurs very rarely across both simulations, but analysts should
be most cautious when using the EM algorithm or allowing the mixture proportions to be
unequal.

A third computational limitation is related to time. In some cases, it would be of
interest to investigate higher-order interaction terms between factors in our simulations.
Unfortunately, fitting a mixed model of this size with even third-order interactions takes
a long time, and the trade-off between learning somewhat more about a small number of
effects versus growing computation time exponentially seems too costly.

A more conceptual limitation is that we only consider two groups and dimensions up to
six. The procedures discussed in Chapter 2 can all be used to fit models with any number
of groups in any dimensions. We focus on the limited case of two groups in order to develop
an understanding of how the methods behave in this simple case. As discussed previously,
we limit the number of dimensions to ensure that all models can be fit using the R package
we employ. Future work may consist of investigating whether our results continue to hold
when the number of groups is larger than two or when the dimension is larger than six.

Another conceptual limitation is that we only consider data from mixture-normal dis-
tributions, and all of our methods assume data of this form. That is, we do not consider
these methods’ robustness to the assumption of normally distributed data. It would be
interesting in future research to include this as another factor in simulation studies. In
particular, the Laplace distribution, which is commonly used to simulate data with more
outliers (i.e., heavier tails) than the normal (Kotz et al., 2001), would be a good place to
start.

In order to ensure uniform sizes across groups, we constrain all covariance matrices in
our simulations to have determinant 1. This is a limitation however, since we are unable
to estimate the influence of different sizes of covariance matrices on the models we con-
sider. Specifically, allowing covariance matrices to have different determinants violates the
constraints imposed in three of our four covariance structures (all but completely uncon-
strained). Future investigation may be able to clarify this topic.

Many clustering algorithms exist that are not model-based (or at least for which no
corresponding model has been found). Examples of these include the hierarchical clustering
algorithms known as single-linkage and complete-linkage (Fraley and Raftery, 1998; Hastie
et al., 2011). It would be interesting to identify under which circumstances we can expect
these algorithms to outperform the model-based methods we study, and whether supervision
changes the performance of these non-model-based methods.
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A strange phenomenon occurs in Figure 3.4, specifically when the true covariance struc-
ture is “homoscedastic” or “spherical”. We see here that, although the correct assumption is
that the groups’ covariance matrices are all equal, or all equal and proportional to the iden-
tity matrix respectively, the assumed covariance structure with the lowest misclassification
rate is unconstrained (a weaker assumption than either homoscedastic or spherical). This
is surprising because, due to the bias-variance trade-off (Hastie et al., 2011), we actually
expect a more flexible assumed covariance structure to have a higher misclassification rate
than a more restrictive but correctly specified structure. This is because assuming a more
general structure means that more parameters must be estimated than are necessary to de-
scribe the true structure, and estimating extra parameters adds variability to the resulting
predictions. Having a sufficiently large sample would effectively negate this bias-variance
trade-off by reducing the variance to negligible levels, but this does not explain reducing
the error rate below the level obtained by assuming the correct structure. Further study
is required to determine whether this is in fact a new phenomenon, or an error in our
simulations.

Another curiosity is that there are several instances where the EM algorithm gives an
unexpectedly high error rate (see e.g., Figures 3.5, 3.6 and 3.7). A similar phenomenon
occurs when the true covariance structure is identical and equal to the identity matrix (see
e.g., Figures 3.4 and 3.7). Figure 3.4 is particularly concerning, since the highest error rate
for data with this covariance structure is obtained by making the correct assumption when
fitting models. This is quite strange, and, as above, further study is required to identify
whether this is a new phenomenon or an error in our simulations.

It is also interesting that in Table 3.15, the CEM algorithm outperforms the EM algo-
rithm on average. This effect holds regardless of the sample size (See Figure 3.9). These
findings contradicts the results in Celeux and Govaert (1993), who found that the CEM
algorithm has a smaller error rate than the EM algorithm for small samples, and the reverse
is true for large samples. This discrepancy may be due to the different parameter settings
we consider, as Celeux and Govaert only consider data from groups with covariance matri-
ces that are identical but otherwise unconstrained. However, we only investigate the CEM
algorithm on data from groups with covariance matrices proportional to the identity matrix.

The Mahalanobis distance that we use in simulations is not exactly appropriate. Specif-
ically, when groups’ covariance matrices are completely unconstrained, we set the value of
the Mahalanobis distance between the groups’ means, relative to the covariance matrix of
the second group. This does not take into account the distinct covariance matrix of the first
group. It is not clear what the appropriate way to resolve this issue is. One possible solution
is to set the Mahalanobis distance relative to the mean of the two covariance matrices (i.e.,
use Σ̃ = (Σ1 + Σ2)/2), but there is no formal justification for this.

As discussed in Section 2.1.1, Yang proposes the − log(p-value) transformation for his
method with little justification. Specifically, he cites that this is a decreasing function of the
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p-value (therefore an increasing function of the evidence against the null hypothesis of no
relationship between the predictor and response) and that it takes moderate values on the
range that non-significant p-values usually take. It is possible therefore, that some other
decreasing transformation may outperform the one he proposes. Examples include 1 − p,
1/p and 1/√p. A simulation similar to the one we perform could be used to investigate
other transformations for pre-processing.

We study Yang’s pre-processing procedure (Yang, 2013) as a variable weighting tool,
but he also proposes a slight modification that allows it to be used for variable selection.
By applying a threshold, and removing any variables with a Wald test p-value above this
threshold, we can remove any variables that do not appear relevant for discrimination.
Because it then functions as a screening procedure rather than a linear transformation,
it could be applied to models that are invariant to such transformations. It would be
interesting to see how this and other, more established variable selection techniques affect
our clustering and discrimination methods.
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