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Abstract

Likelihood-based inference of odds ratios in logistic regression models is problematic for
small samples. For example, maximum-likelihood estimators may be seriously biased or
even non-existent due to separation. Firth proposed a penalized likelihood approach which
avoids these problems. However, his approach is based on a prospective sampling design
and its application to case-control data has not yet been fully justified.

To address the shortcomings of standard likelihood-based inference, we describe: i) naive
application of Firth logistic regression, which ignores the case-control sampling design, and
ii) an extension of Firth’s method to case-control data proposed by Zhang. We present a
simulation study evaluating the empirical performance of the two approaches in small to
moderate case-control samples. Our simulation results suggest that even though there is no
formal justification for applying Firth logistic regression to case-control data, it performs
as well as Zhang logistic regression which is justified for case-control data.

Keywords: Logistic regression; case-control data; small samples; separation; profile likeli-
hood
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Chapter 1

Introduction

1.1 Background

A case-control study is an observational epidemiological study that is designed to help
examine the association between a risk factor and disease. Generally, a case-control study
compares subjects with the disease of interest (cases) to a suitable control group of subjects
without the disease (controls), and looks back retrospectively to learn which subjects in
each group had the exposure to the risk factor, comparing the frequency of the exposure in
the case group to the control group.

The major difference between cohort and case-control study designs is in the selection
of the study subjects. In a cohort study, we start by selecting a fixed number of subjects
who are initially free of disease and classify them according to their exposure to the risk
factors of interest, then follow up to see how many develop the disease. In a case-control
study, we identify subjects on the basis of presence or absence of the disease of interest,
then trace back to investigate their past exposure to putative risk factors.

The ratio of controls to cases is an important design decision to consider in conducting
a case-control study. In unmatched case-control studies, the optimal control-to-case ratio
would be roughly 1:1, i.e. one case to one control, if the number of available cases and
controls is large and the cost of obtaining information from both groups is comparable (dos
Santos Silva, 1999). However, sometimes the number of cases available for the study is small
and cannot be increased - e.g., 8 cases of vaginal adenocarcinoma among young woman in
Boston area in the 1971 case-control study of Herbst and colleagues. In this situation,
an equally small number of controls would provide little ability to find associations. The
control-to-case ratio can be increased to ensure that the study will have the necessary
statistical power to be able to detect an effect. For a given number of cases, the more
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controls per case, the greater the statistical power of the study. However, when the control-
to-case ratio is beyond 4:1, the marginal increase in statistical power with each additional
control is negligible (dos Santos Silva, 1999).

Herbst et al. (1971) used a 4:1 case-control study design to examine the effect of in-utero
exposure of dietheylstibestrol (DES) on the subsequent development of vaginal adenocarci-
noma, a very rare disease, among young women. The study included eight cases of vaginal
cancer in women aging from 15 to 22 years, and each case was matched with four controls
that were born within 5 days at the same hospital in the same type of room (either public
or private) as the case. They compared the use of DES by their mothers during pregnancy
to see if the treatment with DES was more common among mothers of the cases. Among
the mothers of the eight cases, seven had received DES during pregnancy, while none of the
mothers of the controls had taken DES (see Table 4.1 in the Application section).

For a rare disease such as vaginal adenocarcinoma, a case-control study is the only
reasonable approach to identify the causative agent. The researchers could have performed
a prospective cohort study to get a group of women whose mothers used DES while pregnant
and another group of women whose mothers did not, and observed these groups for a period
of time for the disease development. However, given how uncommon the disease outcome is,
even a large prospective study would have been unlikely to have more than one or two cases,
even after 15-20 years of follow-up. Therefore, such prospective studies are impractical for
rare diseases, expensive, and perhaps even unethical. In contrast, a case-control study starts
with people known to have the outcome of interest, rather than starting with a population
free of disease and waiting to see who develops it. Therefore, case-control studies are
particularly suitable for the study of risk factors related to low incidence (i.e. rare) diseases
with long induction periods.

The standard method for analysis of case-control studies is logistic regression corre-
sponding to the prospective model for the probability of disease given covariates, which
ignores the retrospective design. The parameters are usually estimated using maximum
likelihood estimation (MLE) via numerical methods such as the Newton-Raphson algo-
rithm. The desirable properties of MLE such as consistency, efficiency and normality, are
based on the assumption that the sample size approaches infinity. However, in many real life
case-control studies, the sample size is relatively small and so the large sample assumption
is not satisfied. As a result, the usual MLEs of the log odds ratio parameters in logistic re-
gression are biased. Moreover, in small-sample, case-control studies of a rare disease, there
is a non-negligible probability of encountering the problem of separation, in which a single
covariate, or a linear combination of several risk factors, can “separate” the binary outcome
(Albert and Anderson, 1984) as described in the next paragraph. This type of data has
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been shown to have the property of monotone likelihood. In this situation, the likelihood
function has no maximum and the MLE does not exist.

Separation occurs in the DES example described above. Let the binary covariate DES

denote the prenatal DES exposure status of the subjects, with DES = 1 for exposed and
DES = 0 for non-exposed. Let D be the binary outcome variable for disease status. Based
on the data, we have DES ≤ 0 (in fact DES = 0) for all controls and DES ≥ 0 for all
cases. In this sense, the DES covariate separates the cases and controls. As there is no
observation for which DES = 1 and D = 0, so-called “quasicomplete” separation occurs,
leading to an infinite ML estimate of the effect of DES.

One of the possible remedies for separation is a penalized likelihood approach known as
Firth logistic regression. For prospective data, Firth (1993) proposed a general method to
reduce the small-sample bias in the MLE by introducing a small bias in the score function,
and noted that solving the modified score equations is equivalent to maximizing a penalized
likelihood. His approach leads to an estimator for β that is equivalent to the Bayesian
posterior mode under the Jeffreys prior distribution (Jeffreys, 1946). The Firth logistic
regression estimator always exists, even under separation, and is unique. However, this
penalized likelihood method was built on prospective rather than retrospective likelihoods.
As the problem of separation is so common in small-sample case-control studies, it is very
tempting to apply Firth logistic regression to case-control data. However, to the best of our
knowledge, Firth logistic regression for case-control data has not yet been fully justified.

1.2 Overview of the Project

I begin with a basic overview of the logistic regression model and how it can be applied
to the case-control data. I then describe the principle of Firth logistic regression, a penal-
ized likelihood method that researchers might use to handle separation in the case-control
studies. Next, I summarize a profile-likelihood approach that incorporates a Firth-like cor-
rection proposed by Zhang (2006) for case-control data. I use a simulation study to evaluate
the empirical performance of corresponding estimators derived from the aforementioned two
methods, followed by application of these approaches to the DES data introduced in Section
1.1. To end the project, I provide some concluding remarks.
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Chapter 2

Methods

2.1 Logistic Regression and Case-Control Data

2.1.1 The Logistic Regression Model

Logistic regression is a commonly used tool to describe the relationship between a binary
outcome variable and a set of explanatory variables. The popularity of logistic regression
stems mainly from its mathematical convenience and the relative ease of interpretation in
terms of odds ratios.

For the ith subject, assume that the outcome variable yi is Bernoulli distributed and
takes on the value 1 with probability πi = P (yi = 1|xi), where xi = (x1, . . . , xp) is the
subject’s covariate vector, and value 0 with probability 1−πi. The logistic regression model
can be written as:

πi = exp(α + xT
i β)

1 + exp (α + xT
i β)

, (2.1)

where α is an intercept term, and β = (β1, . . . , βp)T is a p×1 vector of odds ratio parameters.

Equation (2.1) gives a generalized linear model. Let θ = (α, β)T , then the likelihood
function and the corresponding log-likelihood function are given by the following equations:

L(θ) =
n∏

i=1
πyi

i (1 − πi)1−yi , and

ℓ(θ) = log L(θ) =
n∑

i=1
{yi log(πi) + (1 − yi) log(1 − πi)}.

One of the most popular methods to estimate the unknown coefficients θ is maximum
likelihood (ML) estimation. In order to find the value that maximizes log L(θ), partial
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derivatives of the log-likelihood function with respect to θ are calculated as follows:

∂ log L(θ)
∂θ

= U(θ) =
n∑

i=1
(yi − πi)xi. (2.2)

The second derivative with respect to θ of the log likelihood function, or the Hessian matrix,
can be expressed as

H(θ) = ∂2ℓ(θ)
∂θ∂θ′ = −

n∑
i=1

xT
i xiπi(1 − πi).

The solution to the score equation U(θ) = 0 gives the ML estimate of θ, θ̂. There is
no analytical solution to the score equations; therefore, numerical methods (e.g. Newton-
Raphson or Fisher Scoring) are used to find θ̂. With the starting value θ(1), θ̂ is obtained
iteratively until the convergence of parameter estimates. The iterative Newton-Raphson
algorithm is defined as:

θ(r+1) = θ(r) + I−1(θ(r))U(θ(r)), (2.3)

where the superscript (r) denotes the number of the iteration, and I(θ) denotes the Fisher
information matrix, i.e., the expected value of minus the second derivative of the log likeli-
hood, evaluated at θ. In the context of logistic regression,

I(θ) = −∂2ℓ(θ)
∂θ∂θ′ = XT WX,

where X is an n × (p + 1) design matrix with elements in the first column being 1, and W
is an n × n diagonal matrix with general element πi(1 − πi).

Asymptotically, the MLEs θ̂ are normally distributed around the true parameter θ,
and the estimated variance-covariance matrix, Var(θ̂), is obtained by evaluating the in-
verse of the Fisher information matrix I−1 at the MLEs, with the standard errors of single
parameters corresponding to the diagonal elements of the matrix.

2.1.2 Likelihood for Case-Control Data

Under a cohort design, in which we assume that the values of the covariates are fixed and
the outcome is then measured conditionally on the observed values of the covariates, the
logistic regression model is simply equation (2.1), where the exposure x is treated as a fixed
quantity, and the response variable y is random.

In a case-control study, we have selected cases and controls from the population; there-
fore, the binary outcome variable is fixed by stratification, and the exposure variables are
then measured for each subject selected. The following development of the likelihood func-
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tion for case-control data is based on the arguments of Hosmer and Lemeshow (2000). As
the likelihood function for case-control data is based on subjects selected, it is necessary
to define a variable that records the selection status for each subject in the population.
Let the variable s denote the selection (s = 1) or non-selection (s = 0) of a subject. Let
p1 = P (s = 1|y = 1) denote the probability of sampling a case, p0 = P (s = 1|y = 0) denote
the probability of sampling a control. For a sample of n1 cases (y = 1) and n0 controls
(y = 0), by Bayes rule, we can rewrite the expression of p1 and p0 as

p1 = P (s = 1|y = 1) = P (y = 1|s = 1)P (s = 1)
P (y = 1)

= n1
n1 + n0

· P (s = 1)
P (y = 1)

, and

p0 = P (s = 1|y = 0) = n0
n1 + n0

· P (s = 1)
P (y = 0)

(2.4)

respectively.

The full likelihood for the sample of n1 cases and n0 controls is

n1∏
i=1

P (xi|yi = 1, si = 1)
n0∏
i=1

P (xi|yi = 0, si = 1). (2.5)

For an individual term in the likelihood function shown in equation (2.5), by Bayes
theorem, we have

P (x|y, s = 1) = P (y|x, s = 1) · P (x|s = 1)
P (y|s = 1)

. (2.6)

By conditional probability, the first term in the numerator of equation (2.6), we get equation
(2.7) when y = 1,

P (y = 1|x, s = 1) = P (s = 1|x, y = 1) · P (y = 1|x)
P (s = 1|x, y = 1) · P (y = 1|x) + P (s = 1|x, y = 0) · P (y = 0|x)

.

(2.7)
Further assume that the selection of cases and controls is independent of the covariates with
respective probabilities p1 and p0, we obtain

p1 = P (s = 1|y = 1, x) = P (s = 1|y = 1), and

p0 = P (s = 1|y = 0, x) = P (s = 1|y = 0).
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Inserting p0, p1 and the standard logistic regression model, equation (2.1), into equation
(2.7) produces

P (y = 1|x, s = 1) = p1 · P (y = 1|x)
p1 · P (y = 1|x) + p0 · P (y = 0|x)

=
p1 · exp (α+xT β)

1+exp (α+xT β)

p1 · exp (α+xT β)
1+exp (α+xT β) + p0 · 1

1+exp (α+xT β)

= p1 · exp (α + xT β)
p0 + p1 · exp (α + xT β)

=
p1
p0

· exp (α + xT β)
1 + p1

p0
· exp (α + xT β)

=
exp (log (p1

p0
) + α + xT β)

1 + exp (log (p1
p0

) + α + xT β)

= exp (α∗ + xT β)
1 + exp (α∗ + xT β)

,

where α∗ = α + log
(

p1
p0

)
. Substituting the expression of p0 and p1 defined in (2.4), we have

α∗ = α + log
(

n1
n0

)
− log

(
ϕ

1 − ϕ

)
, (2.8)

where ϕ = P (y = 1) is the population probability of having the disease.

Further, let π∗(x) = P (y = 1|x, s = 1) = exp (α∗+xT β)
1+exp (α∗+xT β) . Assuming the sampling is

carried out independently of covariate values, we have

P (x|y = 1, s = 1) = π∗(x) · P (x|s = 1)
P (y = 1|s = 1)

= π∗(x) · P (x)
P (y = 1|s = 1)

.

By a similar argument, the corresponding result for P (x|y = 0, s = 1) is given by

P (x|y = 0, s = 1) = [1 − π∗(x)] · P (x)
P (y = 0|s = 1)

.

Letting L∗(β) =
∏n

i=1 π∗(xi)yi · [1 − π∗(xi)]1−yi , the case-control likelihood function
shown in equation (2.5) becomes

L∗(β) ·
n∏

i=1

[
P (xi)

P (yi|si = 1)

]
,
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where the probability P (yi|si = 1) in the denominator is the study sampling fraction for
either cases (yi = 1) or controls (yi = 0), which is fixed by the case-control design, and L∗(β)
is the likelihood obtained when we pretend that the case-control data were collected in a
prospective cohort study. Therefore, under the assumption that the marginal distribution
of covariates x, P (x), does not contain information about the parameters in the logistic
regression model, maximization of the full likelihood with respect to the parameters in
π∗(x) only needs to consider the portion of the likelihood which looks like a cohort study,
implying that the MLE of the odds-ratio estimators from case-control data can be obtained
with logistic regression in the same way as prospective data. Prentice and Pyke (1979)
derived the large-sample distribution of this MLE and showed that its variance is also the
same.

2.2 Firth Logistic Regression

Maximum likelihood estimates of θ are biased away from 0, as the expectation of the
estimate is always larger in absolute value than the true parameter (Nemes et al., 2009).
The bias of the ML estimates of θ can be expanded asymptotically as

Bias(θ) = E(θ̂) − θ = B1(θ)
n

+ B2(θ)
n2 + · · · .

Most bias-corrective methods remove the first asymptotic order bias from θ̂ by using
θ̂BC = θ̂ − B1(θ̂)/n. This kind of method relies on obtaining the MLE and then correcting
it by subtracting the first-order bias B1(θ)/n. As it requires the existence of the MLE for
the sample, it is not feasible for situations in which there is complete or quasi-complete
separation and the MLEs do not exist. To address this problem, Firth (1993) derived a
bias-preventive approach in that the parameter is not corrected after it is estimated, but a
systematic corrective procedure is applied to the score function from which the parameter
estimate is calculated. Firth’s method guarantees consistent estimates of logistic regression
parameters in the presence of separation (Heinze and Schemper, 2002).

2.2.1 The Approach

The idea behind Firth’s approach is to implement a small bias in the score function, which
counteracts the first order bias O(n−1) of the maximum likelihood estimator. This is usually
referred to as a bias-preventive method, and a suitable modification to U(θ) is given by

U∗(θ) = U(θ) − I(θ)B1(θ)/n,
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where I(θ) denotes Fisher’s information of the sample, defined as the negative expected
value of the first derivative of U(θ). The modified score function U∗(θ) originates from the
simple triangle geometry shown in Figure 2.1 adapted from Firth (1993). If the MLE θ̂

has a positive first-order bias of B1(θ)/n, it can be removed by shifting the score function
downward by I(θ)B1(θ)/n, where the gradient of U(θ) is given by ∂U(θ)/∂θ = −I(θ). The
corresponding estimate θ∗ can then be calculated by setting the modified score function to
0, i.e. U∗(θ) = 0.

θ∗ θ̂

U∗(θ) U(θ)

θ

∼= B1(θ)/n

I(θ)B1(θ)/n

0

Figure 2.1: Modification of the score function

Firth’s approach can also be described as a penalized likelihood method. The usual
likelihood function L(θ) is penalized by a factor equal to the square root of the determinant
of the information matrix |I(θ)|

1
2 . Firth (1993) also showed that if the target parameter

is the canonical parameter of an exponential family, his correction scheme is equivalent to
penalizing the likelihood by the Jeffery’s invariant prior, which is essentially the square root
of the log determinant of the Fisher information matrix of the parameters. The penalized
likelihood function for Firth’s model is thus

L∗(θ) = L(θ) · |I(θ)|
1
2 . (2.9)

Taking the natural logarithm of equation (2.9) yields the corresponding penalized log like-
lihood function:

ℓ∗(θ) = ℓ(θ) + 1
2

log |I(θ)|.

If Firth’s method is applied to the binary logistic regression model defined in equation
(2.1), where θ = (α, β)T , it is generally known as Firth logistic regression. The resulting
penalized log likelihood function is

ℓ∗(θ) =
n∑

i=1
{yi log(πi) + (1 − yi) log(1 − πi)} + 1

2
log |I(θ)|, (2.10)

9



in which the information matrix is I(θ) = XTWX, with W = diag[πi(1 − πi)] and πi =
P (y = 1|xi, θ). The second term on the right-hand side of equation (2.10) is maximized at
πi = 0.5 for i = 1, . . . , n, which occurs when θ = 0. Therefore, the parameters are shrunken
towards zero; the penalized-likelihood estimates will typically be smaller in absolute value
than standard MLEs.

Heinze and Schemper (2002) applied Firth logistic regression to data sets with sepa-
ration. Their simulation results showed that Firth’s penalized likelihood estimator is an
ideal solution to the separation problem in logistic regression, as the resultant estimator
does not depend on the existence of the classical maximum likelihood estimator. They have
extensively compared the estimators from Firth’s method to the ordinary MLE in small
samples, and have found the Firth method to be consistently superior: point estimates
are more precise (i.e. have lower variability), and confidence intervals are more reliable in
terms of coverage probabilities. Separately, Bull et al. (2002) extended Firth’s method to
multinomial logistic regression and found the extension to be superior to other methods in
simulation studies involving small samples. They confirmed that Firth’s estimator becomes
equivalent to the maximum likelihood estimator as sample size increases.

2.2.2 Point and Interval Estimates

Taking the derivative of equation 2.10 with respect to θ, the modified score function has
the following form:

∂ℓ∗(θ)
∂θ

= U∗(θ) =
n∑

i=1

[
yi − πi + hi(

1
2

− πi)
]

xi,

where hi is the ith diagonal element of the penalized version of hat matrix:

H = W
1
2 (XTWX)−1XTW

1
2 .

Penalized maximum likelihood estimates can be obtained through application of the
standard numerical routine described in equation (2.3) with the U(θ(r)) term replaced by
U∗(θ(r)). By imposing the penalty term at each step in the iteration process, this modified
score function prevents the estimates from going off to infinity and failing to converge and
ensures finite ML estimates when there is separation in the data. Similarly, the standard
error can be estimated based on the roots of the diagonal elements of I−1(θ̂), the standard
information matrix from the unpenalized log likelihood evaluated at θ̂.

The (1−α)×100% Wald confidence interval for θ is calculated as (θ̂−z1−α/2

√
I(θ̂); θ̂+

z1−α/2

√
I(θ̂)), which assumes the normal sample distribution of parameter estimates. How-
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ever, this assumption is often violated when Firth’s approach is used to fit logistic models
in datasets where separation exists, as the resulting estimates are typically approaching a
boundary of the parameter space and the likelihood profile is asymmetric.

Unlike Wald’s method, the profile likelihood based method of constructing confidence
intervals allows for asymmetric distributions. Let βk denote the kth element of θ. The end
points, βk,lower and βk,upper, for a two-sided (1 − α) × 100% profile likelihood based interval
for βk, are given by the solution to:

2[ℓ∗
p(β̂k) − ℓ∗

p(βk,upper)] = 2[ℓ∗
p(β̂k) − ℓ∗

p(βk,lower)] ∼ χ2
1,1−α (2.11)

where ℓ∗
p(βk) is the penalized profile log likelihood obtained by fixing βk and maximizing the

penalized likelihood in equation (2.10) over all parameters in θ other than βk. A value of
the profile log-likelihood is computed by first specifying a value for the coefficient of interest,
βk, and then finding the value of the other coefficients that maximizes the log-likelihood.
This process is repeated over a grid of values of the specified coefficients, until the solutions
to equation (2.11) are found. A (1 − α) × 100% profile likelihood confidence interval for
βk is the continuous set of values βk for which twice the difference of the maximized log
likelihood and the profile likelihood at βk does not exceed the (1 − α) × 100 percentile of
the χ2

1 -distribution.

It is widely known that, in small samples, likelihood-based confidence intervals tend
to provide more accurate coverage than Wald confidence intervals. Heinze and Schemper
(2002) have shown that the Firth penalized profile likelihoods for the coefficients are often
asymmetrical and thus the inference based on Wald statistics can be misleading. They have
shown that the profile-likelihood based confidence interval has better coverage properties
than the symmetric Wald confidence interval, and have recommended the former interval
estimator for Firth logistic regression.

2.3 Zhang Logistic Regression

Based on Firth’s approach, Zhang (2006) proposed a Firth-like preventive approach to
reduce the first order bias of ML estimates under the logistic model based on case-control
data. In analogy to Firth’s method, where a small bias term is introduced to modify the
standard score function, Zhang’s method modifies the score function arising from a profile
likelihood that is derived under a two-sample semiparametric model for case-control data.
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2.3.1 A Two-sample Semiparametric Model

As we have discussed in section 2.1, the standard logistic regression model is typically used
in prospective studies; i.e., we observe the covariate value of each individual first and then
measure the binary response. Case-control data arises from retrospective sampling, in which
we have the binary response first and then observe their covariates. In other words, we have
one sample from the control population, and another sample from the case population.

Let X1, . . . , Xn0 be an independent and identically distributed (i.i.d.) sample from
the control population (y = 0), and Xn0+1, . . . , Xn be another i.i.d sample from the case
population (y = 1). Let n = n0 + n1 be the combined sample size, ϕ = P (y = 1) =
1 − P (y = 0), and P (x) be the marginal distribution of x. Then, applying conditional
probability calculations, we can write

P (x|y = 1) = P (y = 1|x) · P (x)
P (y = 1)

= πi

ϕ
· P (x), and similarly,

P (x|y = 0) = P (y = 0|x) · P (x)
P (y = 0)

= 1 − πi

1 − ϕ
· P (x),

where πi stands for the standard logistic regression model defined in equation (2.1). Taking
the ratio of the two equations, we have

P (x|y = 1)
P (x|y = 0)

= πi

1 − πi
· 1 − ϕ

ϕ
.

Letting g(x) denote the conditional density function P (x|y = 0), and h(x) be the
conditional density function P (x|y = 1), we can rewrite the previous formula as

h(x) = P (x|y = 1) = πi

1 − πi
· 1 − ϕ

ϕ
· g(x)

= exp(α + xT β) · 1 − ϕ

ϕ
· g(x)

= exp
[
α + log

(1 − ϕ

ϕ

)
+ xT β

]
· g(x)

= c(β, g) exp(xT β) · g(x),

(2.12)

where c(β, g) = exp
[
α + log

(
1−ϕ

ϕ

)]
. Note that h(x) is a density function and so it has

to integrate to 1 over the values of x. Thus, c(β, g) = exp
[
α + log

(
1−ϕ

ϕ

)]
is equal to the

inverse of the integral of exp(xT β)g(x) with respect to x. Therefore, c(β, g) is a function
of (β, g).
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As a result, we have a two-sample semiparametric model in which there are two inde-
pendent samples from

P (x|y = 0) = g(x), and

P (x|y = 1) = h(x) = c(β, g) exp(xT β) · g(x).
(2.13)

Qin and Zhang (1997) show that the prospective logistic regression model (2.1) and
the retrospective two-sample semiparametric model (2.13) are equivalent with parameters
related by

log c(β, g) = α + log
(1 − ϕ

ϕ

)
. (2.14)

Model (2.13) is a semiparametric model because it has both finite dimensional unknown
parameter of interest β, and an infinite dimensional unknown distribution function g. Both
of the parameters β and the density g of the covariates in the control group are to be
estimated.

2.3.2 Profile Likelihood Function

Based on the model defined in (2.13), the full likelihood function for a sample with n0

controls and n1 = n − n0 cases can be written as

L(β, g) =
n0∏
i=1

P (xi|y = 0) ·
n∏

i=n0+1
P (xi|y = 1)

=
n0∏
i=1

g(xi) ·
n∏

i=n0+1
c(β, g) exp(xT

i β)g(xi)

=
n∏

i=1
g(xi) ·

n∏
i=n0+1

exp[log(c(β, g)) + xT
i β].

(2.15)

Combining equation (2.8) and (2.14), we can rewrite the expression of log c(β, g) as
log c(β, g) = α∗ − log(n1/n0). By doing this, we can overparametrize the case-control
likelihood (2.15) by including α∗ as a parameter. As a result, equation (2.15) becomes

L(α∗, β, g) =
n∏

i=1
g(xi) ·

n∏
i=n0+1

exp[α∗ − log(n1/n0) + xT
i β]

=
n∏

i=1
g(xi) ·

n∏
i=n0+1

w(xi),
(2.16)

where w(xi) = exp[α∗ − log(n1/n0) + xT
i β].
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Qin and Zhang (1997) showed that a profile likelihood function can be obtained by
maximizing (2.16) over the nonparametric nuisance parameter g for fixed (α∗, β), subject
to

g(xi) ≥ 0,
∑

g(xi) = 1,
∑

g(xi)[w(xi) − 1] = 0.

The first and second constraints ensure that the g(xi)’s comprise a probability distribution
function for the controls, i.e. nonnegative everywhere and sum to one. The third con-
straint reflects the fact that the set of h(xi) = w(xi)g(xi) values (i = 1, . . . , n) comprise a
distribution function for the cases.

Using the approach of Qin and Lawless (1994), with fixed (α∗, β), the maximum value
of the two sample case control likelihood function (2.16) is obtained at

g̃(xi) = 1
n0[1 + n1

n0
exp (α∗ − log(n1/n0) + xiβ)]

= 1
n0[1 + exp (α∗ + xiβ)]

.

Inserting g̃(xi) back into equation (2.16), we obtain the semiparametric profile log likelihood
function as a function of (α∗, β) only, ignoring a constant:

l(α∗, β) =
n∑

j=n0+1
(α∗ + xjβ) −

n∑
i=1

log(1 + exp(α∗ + xiβ)). (2.17)

2.3.3 Zhang Method

Zhang’s approach is an extension of Firth’s method to case-control data by introducing
a small bias term into the score function obtained from the semiparametric profile log
likelihood in equation (2.17). Let θ∗ = (α∗, β)T . Denote Up(θ∗) as the corresponding semi-
parametric profile score function, which is obtained by taking the derivative of equation
(2.17). Zhang (2006) employs a Firth-like preventive approach to bias reduction by impos-
ing a penalty term on Up(θ∗), producing a modified semiparametric profile score function
U∗

p (θ∗),
U∗

p (θ∗) = Up(θ∗) − Ĩ(θ∗)B̃1/n,

where Ĩ(θ∗) and B̃1 are the empirical information matrix and bias terms based on the
profile log likelihood function (2.17), respectively. Zhang (2006) gives the explicit formulae
for Ĩ(θ∗) and B̃1.

The estimator is the root of U∗
p (θ∗) = 0, and can be obtained using the iterative method

described in the previous section. Both the Wald and profile likelihood based confidence
intervals can be obtained the same way as described in the section 2.2.2. We refer to this
method as Zhang logistic regression.
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Chapter 3

Simulation Study

Firth logistic regression has been widely applied to data from case-control studies of rare
disease, as it allows for convergence to finite estimates in conditions of separation. Also, the
implementation of Firth logistic regression is fairly easy as it is available in many standard
statistical software environments including R, SAS, and Stata. However, researchers often
neglect the fact that Firth logistic regression has been developed under a prospective sam-
pling design, and its application in retrospective case-control data has not yet been formally
justified. A simulation study with large samples (Ma et al., 2013) gave promising results
showing that Firth logistic regression analysis controls Type I error for both balanced and
unbalanced case-control data.

Unlike Firth’s approach which is developed for prospective data, Zhang’s method is
derived directly from the case-control likelihood, and has been demonstrated to remove the
first order bias. Zhang (2006) has shown that, under equal numbers of cases and controls,
the point estimators from Firth logistic regression are the same as those from his profile-
likelihood approach for case-control data. Therefore, the purpose of the simulation study is
two-fold: (1) to confirm that the point estimators from Firth and Zhang logistic regression
are the same when the number of cases and controls is balanced in the study design; and
(2) to assess the performance of the point and interval estimators from the two approaches
when the case-control study design is not balanced.

3.1 Design of Study

The case-control data were simulated from the two-sample semiparametric model (2.13).
For simplicity, we incorporated a single continuous covariate x. The main parameter of
interest, β, is the log odds ratio associated with x. In the simulation study, we assume
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that the covariate distribution in the control group follows a standard normal distribution,
g(x) ∼ N(0, 1). From equation (2.12), the covariate distribution of the case group h(x) is
then

h(x) ∝ exp(xβ) · g(x) = exp(xβ) · exp
(

−x2

2

)
= exp

[
−1

2
(x − β)2

]
· exp

(
β2

2

)
,

and so the density function for cases is a N(β, 1) distribution.

Heinze and Schemper (2002) showed that the probability of separation depends on the
magnitude of the odds ratios, sample size, and the degree of balance between cases and
controls. In the simulation studies, we consider different scenarios by varying these three
settings. The true β was set to 0, 1, 2, 3, 4, or 5, corresponding to odds ratio of 1,
2.72, 7.39, 20.09, 54.60, and 148.41 respectively. We consider a small sample n = 50 and
a moderate sample n = 100. For each sample size, we consider both the balanced design
(n0 = n1) and the most commonly used unbalanced study (n0/n1 = 4 : 1). Therefore, for
each pair of (n0, n1, β), we generated 1000 independent data sets of combined random
samples from the N(0, 1) and N(β, 1) populations with

x1, . . . , xn0 ∼ N(0, 1); xn0+1, . . . , xn0+n1 ∼ N(β, 1).

Separation in these generated data sets was determined by fitting a standard binary
logistic regression model with glm() in R and checking whether the maximum likelihood es-
timation of parameters converged. The number of data sets with separation (i.e., when max-
imum likelihood estimation with glm() gave the warning message “fitted probabilities
numerically 0 or 1 occurred.”) was recorded.

For data sets without separation, we obtained the uncorrected MLE of the log odds
ratio, β̂MLE, and the penalized MLEs, β̂Firth and β̂Zhang, from Firth logistic regression
and Zhang logistic regression, respectively. For data sets with separation, only the Firth
estimates and the Zhang estimates were obtained, as MLEs do not exist. MLEs were
obtained from applying the glm() function in R with binomial link. Firth logistic regression
estimates were obtained from applying the logistf() function in the logistf package
(Heinze et al., 2013), whereas Zhang logistic regression estimates were obtained from R
functions we implemented ourselves (see Appendix for code).

Based on the B = 1000 estimates from Monte Carlo simulation, we evaluated the biases,
variances, and mean square error (MSE) of the point estimators. Let β be the true value
of a regression parameter. Let β̂ be the estimator of β and β̂(r) be its realization in the rth
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simulation replicate. The estimated bias of β̂ is:

̂bias(β̂) = ¯̂
β − β = 1

B

B∑
r=1

(β̂(r) − β).

A positive bias suggests overestimation of the covariate effect, and a negative bias indicates
underestimation. The empirical variance of β̂ is:

V̂ar(β̂) = 1
B

B∑
r=1

(β̂(r) − ¯̂
β)2.

The MSE can then be expressed as MSE = bias(β̂)2 + Var(β̂), which provides an overall
measurement of precision and accuracy. The calculation of bias and variance of the MLE
were only based on unseparated data sets.

We also considered two sets of interval estimators, (1 − α) × 100% Wald confidence
intervals and profile likelihood based confidence intervals, and compared their coverage
probability and length. The coverage probability (CP) measures the percentage of times
the confidence interval catches the true point estimate in the 1000 simulated data sets:

ĈP = 1
B

B∑
r=1

I{β̂(r) ∈ [CIlower, CIupper]},

where I is an indicator function, and CIlower and CIupper denote the lower and upper bounds
of the corresponding confidence interval, respectively.

3.2 Results

Table 3.1: The frequency of separation in the 1000 simulated data sets.

n n0 n1 β = 0 β = 1 β = 2 β = 3 β = 4 β = 5

50 25 25 0 0 4 139 654 942
40 10 0 0 15 247 729 960

100 50 50 0 0 0 21 361 826
80 20 0 0 1 49 470 878

Table 3.1 presents the frequency of separation in the simulated data sets. Each entry is
based on 1000 samples. In agreement with Heinze and Schemper (2002), separation is more
likely in the small, unbalanced samples, with extreme log odds ratios. As shown in Table
3.1, when β = 0 or β = 1, separation occurs in none of the generated data sets. When the
log odds ratio increases to β = 5, even with a moderate sample size (n = 100) and balanced
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design (n0 = n1), 82.6% of the data sets are generated with separation and so the MLE
does not exist.

The Firth and Zhang estimates of the log-odds ratio are obtained for all the data sets,
but MLEs are obtained only for the data sets without separation. Generally, the biases of
the point estimators vary depending on the values of (n0, n1, β). For the settings where
the log odds ratio β = 0, 1, 2, 3 and 4, we present full results on bias, variance, and MSE
of the point estimators in Table 3.2, and detailed coverage comparison of the corresponding
interval estimators in Table 3.3. As when β = 5, separation exists in more than 80% of the
generated data sets, we only evaluate penalized estimators, and the results are summarized
in Table 3.4.

3.2.1 Evaluation of Point Estimators

Figures 3.1 and 3.2 present the distribution of the Firth estimates and the corresponding
bias for the simulation scenarios with 10 cases and 40 controls, and 50 cases and 50 controls,
respectively. By inspection of the figures and Table 3.2, we observe that:

(1) Overall, the MLEs have finite sample bias that is proportional to the true parameter
value and increases in magnitude as the sample size decreases. In most settings (β ≤ 3),
both Firth estimates and Zhang estimates are closer to the true parameter than the
MLEs, and could be obtained in all samples, even when there are infinite MLEs. Also,
both Zhang and Firth logistic regression give very similar point estimates and variance
across replications for all the simulation scenarios, even for unbalanced case-control data
sets with 4:1 control to case ratio, as the two sets of density distributions in Figure 3.3
are indistinguishable.

(2) As expected, the point estimators are all unbiased when the true β is zero. As β in-
creases, the Firth and Zhang estimators tend to be smaller than the MLEs, as expected
from the bias reducing property of these penalized likelihood methods, but are com-
parable to each other. For β = 1, 2, 3, the bias of the Firth and Zhang estimators is
close to zero, and finite sample bias is effectively eliminated. When β increases to 4
and 5, both the Firth and Zhang estimators overcorrect, as the bias of these estimators
is shifted downwards, away from 0. As the bias increases, the variance of the Firth and
Zhang estimators decreases. From Figure 3.3, the distribution of the estimator becomes
increasingly skewed to the right as β increases.

(3) It is also worth noting that, when β gets large (β = 4 or 5), there is a substantial
proportion of the data sets with separation; therefore the calculation of bias, variance
and MSE for MLEs is only based on a small fraction of the 1000 generated data sets. In
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all the simulation runs, the variance of the Firth and Zhang estimators is consistently
less than that of MLEs; this suggests that MLEs are not stable when β is large.

(4) As the sample size increases from small to moderate, or the design changes from un-
balanced to balanced, the magnitude of the bias of the Firth and Zhang estimators is
smaller and the variability in the estimators is less.

Since MLEs are not available in data sets with separation, we are also curious about
whether the Firth estimator behaves differently in data sets with or without separation.
Figure 3.4 shows the distribution of the Firth estimators in the scenario where n0 = 25, n1 =
25, β = 4. In this scenario, separation occurs in 64.5% of the data sets. Comparison of the
distributions of the Firth estimator in data sets with or without separation indicates that
data sets with separation tend to yield estimates with larger values. Separation is common
with large values of beta and so datasets without separation tend to be more consistent
with values of beta that are smaller. The fact that the datasets without separation tend
to be more compatible with smaller values of beta than the values under which they were
generated implies that the Firth estimators tends to overcorrect the bias for these data sets.

3.2.2 Evaluation of Interval Estimators

As shown in Table 3.3, when β = 0 or 1, the median lengths of the Firth and Zhang interval
estimators are comparable to those of the likelihood-based interval estimators. When β ≥ 2,
the median lengths of both penalized interval estimators are shorter than those of the MLEs,
for both Wald and profile confidence intervals, although the median interval lengths for all
methods increase when there are data sets with separation. It is also worth noting that,
when β gets large (β = 4), there is a substantial proportion of the data sets although not
meeting the criteria for separation, have infinity upper limit for profile based confidence
intervals for MLEs, resulting in infinity interval length and higher than nominal coverage
probability.

The coverage probabilities of the Wald and profile likelihood based confidence intervals
for the Firth and Zhang estimators are virtually identical. For low odds ratios (β = 0, 1, 2)
where separation is not likely to occur, the empirical coverage of both the profile-penalized-
likelihood- and Wald-based confidence intervals is equally satisfactory. The performance of
Wald confidence intervals is particularly sensitive to the phenomenon of separation, whereas
the profile intervals are somewhat less so. This can be explained by the symmetric construc-
tion of Wald confidence intervals. For data sets with separation, the profile of the penalized
likelihood function is highly asymmetric. The inappropriate symmetry of the Wald confi-
dence intervals reflected in the coverage probabilities substantially departing from 95% in
situations with a high probability of separation (high odds ratio, small sample, unbalanced
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design). In these cases coverage by penalized profile likelihood confidence intervals is much
more satisfactory, achieving close to nominal coverage for log odds ratios as large as 4, even
in small, unbalanced data sets (10 cases, 40 controls). However, for extreme log odds ratios
such as β = 5, the coverage probability of profile likelihood based confidence intervals is
below nominal as well (see Table 3.4) .

In most cases, the length of the confidence intervals increases as the true value of β

increases. When β ̸= 0, penalized profile likelihood confidence intervals have greater length
than the Wald confidence intervals. Also, it is interesting to note that penalized profile like-
lihood confidence intervals for both Firth and Zhang estimators have comparable lengths
when β ≤ 3 but, when β ≥ 4, the median length of the Zhang interval estimator is longer
than the median length of the Firth estimator. As shown in Table 3.4, when β = 5, both
the Firth and Zhang penalized profile likelihood interval estimators have below-nominal
coverage. However, the coverage of Zhang’s interval is closer to nominal than Firth’s, per-
haps due to its longer interval length. From Figure 3.5, in data sets without separation, the
distributions of the length of the Firth and Zhang penalized profile likelihood intervals are
virtually identical, but, in data sets with separation, the Firth intervals tend to be shorter.
Finally, profile likelihood based confidence intervals for both Firth and Zhang estimators
tend to be longer in data sets with separation than in data sets without separation.
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(a)

(b)

Figure 3.1: Boxplots of the distribution of MLEs, Firth and Zhang estimators under sce-
narios with (a) 10 cases and 40 controls , and (b) 50 cases and 50 controls. Boxplots are
obtained from 1000 simulated data sets as described in the text. For each β value, the
estimates distribution of MLEs, Firth, and Zhang estimators are ordered from left to right.
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(a)

(b)

Figure 3.2: Boxplots of the bias distribution of MLEs, Firth and Zhang estimators under
scenarios with (a) 10 cases and 40 controls , and (b) 50 cases and 50 controls. Boxplots are
obtained from 1000 simulated datasets as explained in the text. For each β value, the bias
distribution of MLEs, Firth, and Zhang estimators are ordered from left to right.
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(a)

(b)

Figure 3.3: Density estimates of the distribution of (a) Firth logistic regression estimator
β̂Firth, and (b) Zhang logistic regression estimator β̂Zhang, from simulations of 1000 data
sets of 10 cases and 40 controls.
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Figure 3.4: Distribution of Firth estimator for data sets with and without separation. The
histogram is obtained from 1000 simulated data sets of n0 = n1 = 25 cases and controls,
with log odds ratio β = 4.

Figure 3.5: Distribution of the length of confidence intervals for data sets with and without
separation. The histogram is obtained from 1000 simulated data sets of n0 = n1 = 25 cases
and controls, with log odds ratio β = 4. The distribution for data sets with separation is
on the right, for both the Firth and Zhang estimators
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Table 3.2: Operating characteristics of the point estimators based on 1000 simulated data
sets at each setting

n n0 n1 β = 0 β = 1 β = 2 β = 3 β = 4

50

25 25

Bias
MLE a -0.0187 0.0814 0.2839 0.4533 -0.1578
Firth -0.0174 -0.0053 0.0095 -0.1098 -1.1736
Zhang -0.0174 -0.0053 0.0095 -0.1097 -1.1730

Variance
MLE 0.0914 0.1436 0.6812 1.4652 1.2306
Firth 0.0786 0.1163 0.4704 1.0599 0.3920
Zhang 0.0786 0.1163 0.4704 1.0611 0.3973

MSE
MLE 0.0918 0.1502 0.7618 1.6708 1.2555
Firth 0.0790 0.1163 0.4705 1.0720 1.7694
Zhang 0.0790 0.1163 0.4705 1.0731 1.7732

40 10

Bias
MLE -0.0143 0.1032 0.3768 0.4388 -0.2036
Firth -0.0131 -0.0101 0.0268 -0.2385 -1.4334
Zhang -0.0131 -0.0092 0.0276 -0.2358 -1.4358

Variance
MLE 0.1652 0.2619 0.9144 1.5685 1.6546
Firth 0.1372 0.1938 0.7060 0.8194 0.3436
Zhang 0.1376 0.1939 0.7094 0.8338 0.3274

MSE
MLE 0.1654 0.2726 1.0563 1.7610 1.6960
Firth 0.1373 0.1939 0.7067 0.8763 2.3982
Zhang 0.1378 0.1940 0.7102 0.8894 2.3889

100

50 50

Bias
MLE -0.0030 0.0482 0.1339 0.3758 0.0690
Firth -0.0029 0.0060 0.0058 0.0116 -0.4506
Zhang -0.0029 0.0060 0.0058 0.0116 -0.4503

Variance
MLE 0.0448 0.0665 0.2472 0.9115 1.1590
Firth 0.0415 0.0603 0.1932 0.7894 0.9636
Zhang 0.0415 0.0603 0.1932 0.7898 0.9664

MSE
MLE 0.0448 0.0688 0.2652 1.0527 1.1638
Firth 0.0414 0.0604 0.1933 0.7895 1.1667
Zhang 0.0414 0.0604 0.1933 0.7899 1.1692

80 20

Bias
MLE -0.0098 -0.0597 0.1642 0.4082 -0.1142
Firth -0.0092 0.0070 0.0030 -0.0278 -0.6842
Zhang -0.0092 0.0072 0.0031 0.0315 -0.6347

Variance
MLE 0.0711 0.0933 0.3068 1.1011 0.9781
Firth 0.0652 0.0815 0.3084 0.8206 0.7410
Zhang 0.0653 0.0815 0.3079 0.8209 0.7482

MSE
MLE 0.0712 0.0969 0.3338 1.2677 0.9911
Firth 0.0653 0.0815 0.3085 0.8214 1.2091
Zhang 0.0653 0.0815 0.3079 0.8216 1.2142

a The bias, variance and MSE calculations for the MLE are based on data sets
without separation only. See Table 3.1 for the numbers of data sets with separation
at each setting of the simulation study.
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Table 3.4: Operating characteristics of point and 95% interval estimators when β = 5

(n0, n1) Method Bias Variance MSE Wald PPLa

Coverage Length Coverage Length

(25, 25) Firth -2.871 0.077 8.321 0.022 2.760 0.640 4.459
Zhang -2.871 0.077 8.321 0.022 2.760 0.760 5.668

(40, 10) Firth -3.075 0.063 9.519 0.003 2.592 0.496 4.027
Zhang -3.075 0.063 9.519 0.005 2.596 0.669 5.004

(50, 50) Firth -2.140 0.176 4.754 0.287 3.487 0.911 6.392
Zhang -2.139 0.178 4.754 0.287 3.487 0.933 7.101

(80, 20) Firth -2.424 0.131 6.008 0.140 3.186 0.841 5.726
Zhang -2.424 0.132 6.008 0.140 3.183 0.889 6.870

a Penalized profile likelihood based interval estimators
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Chapter 4

Application

We return to the DES data (Herbst et al., 1971) described in the Introduction. The data
are shown in Table 4.1. The study involved 8 cases and 32 controls who were classified
according to whether or not they had in utero exposure to DES. The study found that 7
of the 8 cases and none of the 32 controls had DES exposure. As shown in Table 4.1, there
exists one cell with zero frequency; the data thus present a clear example of quasicomplete
separation, with the result that it is impossible to estimate the effect of DES exposure using
conventional ML estimation.

Table 4.1: Prenatal exposure to DES among young women with adenocarcinoma of the
vagina and among controls

Case Control
DES:
Yes 7 0
No 1 32
Total 8 32

Potential alternatives to ML inference for small samples or data sets with separation
include the penalized likelihood approach we studied in this project, and exact logistic
regression. Exact logistic regression is based on the conditional distribution of the sufficient
statistics for the regression parameters of interest given the observed values for the remaining
sufficient statistics (Mehta and Patel, 1995). These conditional distributions are also the
basis for exact inference in 2 × 2 contingency tables (Agresti, 1992). The point estimates
can be obtained by maximizing the conditional maximum likelihood (CML). When there
is separation in the data and the CML estimate (CMLE) does not exist, Hirji et al. (1989)
suggest using the median unbiased estimator (MUE), which is defined as the average of the
endpoints of a 50% confidence interval estimator.
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To examine the relationship between vaginal cancer and DES exposure, we fit the logistic
regression model,

logit(πi) = logit{P (yi = 1|xi, β)} = α + xiβ,

where xi is the DES exposure (xi = 1 for DES exposed and 0 for not exposed).

Here we applied Firth’s and Zhang’s penalized likelihood approach to the DES data,
ignoring matching. For Firth and Zhang logistic regression, we implemented the point esti-
mator, standard errors and 95% penalized profile likelihood confidence interval as described
in Section 3.1. The call to the logistf() function for Firth logistic regression follows the
same structure as the standard functions lm() or glm(), requiring a data frame and for-
mula for the model specification. The estimates, standard errors and 95% penalized profile
likelihood confidence intervals can be extracted using summary() function as usual. Below
is the sample code for data construction and model fitting.

x <- c(rep(0, 33), rep(1, 7))
y <- c(rep(0, 32), rep(1, 8))
DESdata <- as.data.frame(cbind(y,x))

# Firth logistic regression
library(logistf)
DESFirth <- logistf(y ~ x, data = DESdata)
summary(DESFirth)

# Zhang logistic regression
source(ZhangFunctions.R) # see appendix
DESZhang <- logistzCC(formula(y ~ x), DESdata)
summary(DESZhang)

For comparison, we also applied exact logistic regression to the data using PROC LOGISTIC
with the EXACT statement in SAS. The sample code is as follows:

data DESdata;
input y DES n;

datalines;
1 0 0
1 1 7
0 1 1
0 0 32
;
run;

proc logistic data = DESdata desc;
freq n;
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model y = DES;
exact DES / estimate = both;

run;

We also used the elrm() function in the elrm package (Zamar et al., 2007) to ap-
proximate exact logistic regression in R. This is based on MCMC sampling. It requires a
collapsed data set with number of successes, covariates combination, and number of trials.
For the DES data, the data frame can be constructed as follows:

DESdata.elrm <- data.frame(ycount = c(1, 7), DES = c(0, 1), n = c(33, 7))

ycount DES n
1 1 0 33
2 7 1 7

The first row indicates that there are n = 33 subjects who were not exposed to DES (DES
= 0) and only one of them (ycount = 1) is case. The second row has similar interpretation.

The logistic model is specified as number of successes out of number of trials, given
the covariates. The parameters of interest should also be specified, with all others being
considered as nuisance parameters. For DES data, we did 2,200,000 iterations with a 200,000
burnin for a final chain of 2,000,000. The model can be built as follows:

library(elrm)
DESexact = elrm(ycount/n ~ DES, interest = ~DES,

iter = 2200000, burnIn = 200000, data = DESdata.elrm, r = 2)
summary(DESexact)

Table 4.2: Estimates, standard errors, p-values and 95% confidence intervals from fitting
Firth and Zhang logistic regression, exact logistic regression, and approximate exact logistic
regression to data in Table 4.1. The Firth and Zhang p-values are obtained assuming that
twice the log-penalized likelihood ratio has a χ2 distribution with one degree of freedom.

Method Est. Std.err. p-value 95% CI
Firth 5.7838 1.7767 1.4852 × 10−7 (3.1623, 10.8443)
Zhang 5.7866 1.7605 1.4852 × 10−7 (3.1657, 10.8472)
exact 4.9364 NA <.0001 (3.0536, ∞)
elrm 4.944 NA 0 (2.6967, ∞)

The results are presented in Table 4.2. The estimates, standard errors and 95% penalized
profile likelihood confidence intervals of the two penalized estimators, Firth and Zhang,
are very similar. The estimates based on 2 million MCMC replicates using elrm() are
close to the estimate obtained from exact logistic regression using SAS. The penalized
estimates of about 5.78 are larger than the MUE of 4.94 obtained by the exact methods.
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This result is consistent with the simulation results of Heinze and Schemper (2002), which
showed that the MUE’s from exact logistic regression are pulled towards zero even more
than the Firth penalized likelihood estimators for large parameter values (i.e. more data
sets with separation). The upper limit of infinity seen in the exact SAS analysis and
approximate exact elrm() analysis suggests a limitation of this approach relative to the
penalized likelihood approaches.
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Chapter 5

Concluding Remarks

Many, if not all, epidemiological researchers have encountered separation or “empty cells”
in the course of their research when dealing with dichotomous dependent variables in rare
diseases. Separation arises most often in situations where small sample sizes and strong
relationships are present. Due to the restriction of rare occurrence of disease, small to
moderate sample sizes are not uncommon in epidemiological studies. Statistical analysis for
small samples is challenging. This is because in small samples, the large-sample approximate
distributions used for inference may be unreliable, and the MLEs are substantially biased
away from zero. When the small sample problem is coupled with separation, standard ML
inference fails as the likelihood does not have a maximum and MLEs do not even exist.

The methods to address this challenge can be classified into two categories, exact logistic
regression and penalized logistic regression. For small samples, exact logistic regression is
computationally feasible, but still has the limitation that the covariates have to be categor-
ical. The penalized-likelihood method proposed by Firth (1993) was introduced to tackle
the separation problem in logistic regression by Heinze and Schemper (2002), as an easy-
to-implement solution. The modification of the logistic regression score function to remove
the first order bias is equivalent to penalizing the likelihood by Jeffrey’s invariant prior.
Firth’s approach is asymptotically equivalent to standard ML methods in large samples,
and superior to them in small samples - the situations in which separation is most likely to
be a concern. Penalized logistic regression is therefore an attractive alternative to standard
ML approaches when dealing with small to moderate-sized samples, and is preferred over
exact logistic regression when there are continuous covariates.

In this project, we have reviewed two penalized likelihood estimators applied in logistic
regression: Firth logistic regression developed under a prospective sampling design, and
Zhang logistic regression developed under a case-control sampling design. Zhang logistic
regression is an extension of Firth’s method to case-control data, by introducing a small bias
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term into the score function obtained from the semiparametric profile log likelihood, which
is derived based on the retrospective case-control sampling design. Based on our simulation
study with a single continuous covariate, and data analysis using the DES data, the point
and interval estimators from Firth and Zhang logistic regression are virtually identical, for
both balanced and unbalanced study designs. Even though there is no formal justification
for applying Firth logistic regression to case-control data, it appears to perform as well as
Zhang logistic regression which is well justified for case-control data.

For sample sizes of 100 or less, the penalized likelihood methods yield finite parameter
estimates that always exist, even in samples in which MLEs do not exist. Thus penalized
likelihood methods have advantages over standard ML methods. In most cases, both of the
penalized likelihood estimators not only reduce bias but also generally have less variance
than the MLEs, and the resulting confidence intervals are generally narrower compared
to those of the MLEs. Confidence intervals based on large-sample approximations to Wald
statistics can perform badly for both Firth and Zhang logistic regression, especially when the
log odds ratio parameter is large. Based on our simulation results, we recommend confidence
intervals based on penalized-likelihood-ratio statistics rather than Wald statistics for Firth
and Zhang logistic regression.

There are several areas for future work. First, in the project we assume that the data
have complete observations; however, missing data are commonly seen in epidemiological
research. The application of penalized likelihood estimators to data sets with missing val-
ues can be a possible area for future work. Second, although the simulation study has
demonstrated that Firth logistic regression performs as well as Zhang logistic regression
in case-control data, it would be nice if the application of Firth logistic regression to case-
control data could be theoretically justified. Third, Zhang logistic regression is theoretically
justified for case-control data, but has not been programmed in major software packages,
and so is inconvenient to apply. When implementing the method, we found it is hard to
include more than one covariate, because of numerical instabilities in calculating the penal-
ized profile likelihood. Specifically, for a covariate effect of interest, evaluating the penalized
profile likelihood at a given point involves maximizing a penalized likelihood over the nui-
sance parameters. We found that this intermediate maximization step could fail to converge
when the nuisance parameters included the effects of other covariates besides an intercept
term. This is also one of the reasons that why we use a single covariate in our simulation
study.
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Appendix A

Code

# We call our implementation of Zhang’s modified score approach logistzCC,
because it is like Heinze’s logistf (Firth logistic regression), but
specifically for case-control data.

## ------------------------------------------------------------------------
logistzCC = function(formula, data, init = NULL,

conf.level = 0.95, verbose.output = FALSE) {
# Input:
# - formula is the model formula
# - data is a data frame that includes the variables named in formula
# - conf.level is the level for confidence intervals
# - init (optional) is the initial regression parameter values to use
# - verbose.output: Should we return the output of the root-finding
# algorithm?

# 1. Set up the data that modscore will need.
mf = model.frame(formula,data)
D = model.response(mf) # response variable
X = model.matrix(formula,data) # includes a column for the intercept
n=length(D); n1 = sum(D==1); n0 = sum(D==0); rho = n1/n0

# 2. Define modscore() within logistzCC().
modscore = function(theta) {

pi = expit(log(rho) + as.numeric(X%*%theta))
uu = U(pi,D,X)
mu.t = mu.tilde(pi,X)
D.t = D.tilde(pi,X,n1)
mod = 0.5*(mu.t + (1-rho)*D.t) # Zhangs’s first modified score function U_{M1}
return(uu-mod)

}

# 3. Call the root finder nleqslv() on modscore(), with initial value init if
passed by the user, or a vector of zeros if not.

require(nleqslv)
if(is.null(init)) {init = rep(0,ncol(X))}
root.info = nleqslv(init,modscore)
estimate = root.info$x; names(estimate) = colnames(X)
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# 4. Covariance, SEs and Wald CI
pi.final = expit(log(rho) + as.numeric(X%*%estimate))
var = logistVar(pi.final, X)
ses = sqrt(diag(var))
Wald.CI = Waldci(estimate, ses, conf.level)

# 5. PPL CI
if(ncol(X)==2) {

PPL.CI = PPLci(logPPL.ZhangH,estimate[2],X,D,conf.level)
} else {

stop("Model has ",ncol(X)-1," covariates. Only 1 allowed for PPL CIs.")
}
colnames(PPL.CI) = colnames(Wald.CI)
rownames(PPL.CI) = rownames(Wald.CI)
# Return the results.
out=list(coefficients=estimate,Wald.CI=Wald.CI,PPL.CI = PPL.CI,var=var)
if(verbose.output) out$root.info = root.info
return(out)

}
## ------------------------------------------------------------------------
# Functions needed by logisfCC
## ------------------------------------------------------------------------
expit = function(t) { return(exp(t)/(1+exp(t)))}
## ------------------------------------------------------------------------
U = function(pi,d,X) {

return(colSums((d-pi)*X))
}
## ------------------------------------------------------------------------
D.tilde = function(pi,X,n1) {

return(colSums(pi*(1-pi)*X)/n1)
}
## ------------------------------------------------------------------------
mu.tilde = function(pi,X) {

pp1 = ncol(X) # p+1
n = nrow(X)
s.inv = solve(S.tilde(pi,X))
out = rep(0,pp1)
for(m in 1:pp1) {

out[m] = tr(Lambda.tilde(pi,X,m)%*%s.inv)
}
return(out)

}
tr = function(mat) { return(sum(diag(mat)))}
## ------------------------------------------------------------------------
Lambda.tilde = function(pi,X,m){

pp1 = ncol(X) # p+1
n = nrow(X)
out = matrix(0,nrow=pp1,ncol=pp1)
for(i in 1:n) {

H.im = X[i,]%*%t(X[i,])*X[i,m]
out = out - pi[i]*(1-2*pi[i])*(1-pi[i])*H.im

}
return(out/n)
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}
## ------------------------------------------------------------------------
S.tilde = function(pi,X) {

pp1 = ncol(X) # p+1
n = nrow(X)
out = matrix(0,nrow=pp1,ncol=pp1)
for(i in 1:n) {

H.i1 = X[i,]%*%t(X[i,])
out = out + pi[i]*(1-pi[i])*H.i1

}
return(out/n)

}

logistVar= function(pi.final,X) {
n = nrow(X)
return(solve(n* S.tilde(pi.final,X)))

}

Waldci = function(estimate, ses, conf.level) {
crit.val = qnorm((1-conf.level)/2, lower.tail = FALSE)
Wald.CI = cbind(estimate-1.96*ses, estimate+1.96*ses)
colnames(Wald.CI) = c("CI.Lower", "CI.Upper")
rownames(Wald.CI) = names(estimate)
Wald.CI = Wald.CI[-1,,drop=FALSE] # CI for intercept not meaningful (?)
return(Wald.CI)

}
## ------------------------------------------------------------------------
# PPL confidence intervals:

PPLci = function(logPPLfunc, betahat, X, D, conf.level, alpha.lim=c(-100, 100)){
# Inputs:
# - logPPLfunc is the logPPL function to use (currently only logPPL.ZhangH)
# - betahat is the maximum PPL estimate of the log OR beta
# - X is the design matrix
# - D is the vector of disease status
# - conf.level is the confidence level for the interval estimator

# Output:
# - the PPL confidence interval

beta.lower = c(-50, betahat); beta.upper = c(betahat, 50)
betaProf.max = betaProf(betahat, X, D, alpha.lim, logPPLfunc)
crit.val = qchisq(conf.level, df=1)
objfunc = function(beta) {

bpdiff = betaProf(beta, X, D, alpha.lim, logPPLfunc) - (betaProf.max -
crit.val/2)

return(bpdiff^2)
}
ci.lower = optimize(f = objfunc, interval = beta.lower)$minimum
ci.upper = optimize(f = objfunc, interval = beta.upper)$minimum
# format CI as a matrix to match formatting of Wald CI
ci = matrix(c(ci.lower, ci.upper), nrow = 1, ncol = 2)
return(ci)
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}

betaProf = function(beta, X, D, alpha.lim = c(-100,100), logPPLfunc) {
# for fixed beta maximize logPPLfunc over alphas in alpha.lim
oo = optimize(f = logPPLfunc, interval = alpha.lim, beta = beta, X = X, D = D,

maximum=TRUE)
return(oo$objective)

}

logPPL.ZhangH = function(alpha, beta, X, D) {
coef = c(alpha,beta)
p = expit(as.numeric(X%*%coef))
n1 = sum(D)
return(logPL(coef, X, D) + log.JeffH(p, X) - sum(p)/(2*n1))

}
# The log profile likelihood is shown by Zhang to have the same form as the log

likelihood for logistic regression based on prospective data.
logPL = function(coef, X, D) {

return(sum(D*(as.numeric(X%*%coef)) - log(1 + exp(as.numeric(X%*%coef)))))
}
log.JeffH = function(p,X) {

# Can show that the Hessian is X^T W X where W is a diagonal matrix of variance
terms p*(1-p).

vv = p*(1-p)
Hess = t(X)%*% diag(vv) %*% X
return(0.5*log(det(-1*Hess)))

}

# Data simulator
simdat = function(n0, n1, beta) {

# Dist’n of covariate x in controls is standard normal.
# Can show it is normal with mean beta and sd 1 in cases.
case = c(rep(1, n1), rep(0, n0))
x = c(rnorm(n1, mean = beta, sd = 1), rnorm(n0, mean=0, sd=1))
return(data.frame(case = case, x = x))

}
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