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Abstract

Using regression analysis to make inference using data sets that contain a large number
of potentially correlated covariates can be difficult. This large number of covariates have
become more common in clinical observational studies due to the dramatic improvement in
information capturing technology for clinical databases. For instance, in disease diagnosis
and treatment, obtaining a number of indicators regarding patients’ organ function is much
easier than before and these indicators can be highly correlated. We discuss Bayesian profile
regression, an approach that deals with the large numbers of correlated covariates for the
binary covariates commonly recorded in clinical databases. Clusters of patients with similar
covariate profiles are formed through the application of a Dirichlet process prior and then
associated with outcomes via a regression model. Methods for evaluating the clustering
and making inference are described afterwards. We use simulated data to compare the
performance of Bayesian profile regression to the LASSO, a popular alternative for data
sets with a large number of predictors. To make these comparisons, we apply the recently
developed R package PReMiuM, to fit the Bayesian profile regression.

Keywords: Bayesian mixture model; Clustering; Dirichlet Process; Profile regression

iii



Acknowledgements

I would first like to thank my supervisor Dr. Jinko Graham for helping me and for being
patient with me. I feel lucky to receive professional guidance from a knowledgeable supervi-
sor, who has rich experience and sophisticated knowledge. Her enlightening and numerous
support help me in all the time of research and writing of this project. I would never have
been able to finish my project without her tremendous help, and I really appreciate her
unlimited patience and kindness to me. At the same time, I would like to thank my com-
mittee chair, Dr. Tim Swartz, and committee members, Dr. Brad McNeney and Dr. Joan
Hu, for their insightful comments and reviews on this project.

I thank my fellow office mates for the stimulating discussions along the way, for all the
hard-working time that we worked together, and for all the fun we have had. I have been
blessed with such a friendly and cheerful group of colleagues and friends, and feel lucky for
getting the opportunity to continue to Ph.D. study at Simon Fraser University for another
several years.

Finally, I wish to thank my boyfriend, Yabin, for being good-tempered all the time and
making me laugh every time when I get stressful. Also, I would like to express my special
thanks to my parents. I am eternally grateful for how much you support and love me.

iv



Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Methodology 3
2.1 Dirichlet Process Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Dirichlet Process Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Assignment Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Disease Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Evaluating Clustering Output 10
3.1 Characterizing the Best Partition . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Evaluating Uncertainty of Best Partition . . . . . . . . . . . . . . . . . . . . 11

4 Data 13
4.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Exploratory Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Application 20
5.1 Bayesian Profile Regression Analysis . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Comparison with LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Discussion 33

Bibliography 36

v



Appendix A Table of Cluster-specific Parameter Estimates 38

Appendix B Code for Bayesian Profile Regression 44

vi



List of Tables

Table 5.1 Bayesian profile clustering based on the covariates only . . . . . . . . 21
Table 5.2 Bayesian profile clustering based on the covariates and outcome . . . 21
Table 5.3 An excerpt of estimates of cluster-specific parameters. The cluster-

specific profile parameters, φc, are defined in equation (3.1). . . . . . 22
Table 5.4 Observed and predicted outcome by different methods. . . . . . . . . 27
Table 5.5 MSE and MSPE by different methods. . . . . . . . . . . . . . . . . . 27

vii



List of Figures

Figure 2.1 Draws of distribution G from the Dirichlet processDP (α,Beta(1, 1))
using increasing values of the concentration parameter α (top to
bottom: 1, 10, 100 and 1000). Each row consists of 3 repetitions of
the same experiment. The vertical axis represents the probability
masses and the horizontal axis represents the support points. . . . . 4

Figure 4.1 Schematic of the groups underlying the simulated data. The points
at (1,1), (1,3), (3,1) and (3,3) are the centers of group 1, 2, 3, and 4,
respectively. The numbers in parentheses beside the points are the
outcome probabilities for the group. . . . . . . . . . . . . . . . . . . 14

Figure 4.2 Heatmap of 70 covariates (columns) for 48 patients (rows) with den-
dograms added to the left and to the top; covariate absent=red,
present=blue, missing/unknown=white. . . . . . . . . . . . . . . . 17

Figure 4.3 Multiple correspondence analysis factor map of the first two principal
coordinates showing the latent structure in the data . . . . . . . . . 18

Figure 4.4 Estimated associations between outcome and covariates and their
approximate 95% confidence intervals. Associations are estimated
from 2*2 contingency tables cross-classifying the covariate and the
outcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 4.5 Estimated associations between outcome and groups and their ap-
proximate 95% confidence intervals. The odds-ratios for all groups
are calculated with group 1 as the baseline; hence, the confidence
interval for group 1 is not defined. . . . . . . . . . . . . . . . . . . . 19

Figure 5.1 Posterior distributions of the parameters for the representative clus-
tering. The red-coloured boxes indicate that the 90% credible inter-
vals for the cluster-specific profile parameter are above the average
over clusters, the green-coloured boxes indicate that the intervals
include the average, and the blue-coloured boxes indicate that the
intervals are below the average. . . . . . . . . . . . . . . . . . . . . 28

Figure 5.2 Heatmap of the covariates’ dissimilarity matrix . . . . . . . . . . . 29
Figure 5.3 Heatmap of the patients’ dissimilarity matrix . . . . . . . . . . . . 30

viii



Figure 5.4 The trace of the number of clusters and parameters α through the
iterations of the MCMC sampler. . . . . . . . . . . . . . . . . . . . 30

Figure 5.5 Autocorrelation plot of α obtained from coda. . . . . . . . . . . . . 31
Figure 5.6 The posterior distribution of α with different initial numbers of clusters. 32

ix



Chapter 1

Introduction

In biomedical studies, hundreds or even thousands of factors measuring the patients’ lifestyle,
health indicators and even genetics may be reported and then taken into consideration in
data analysis. It has become routine to collect massive amounts of data for each study sub-
ject. Traditional regression analysis was developed for smaller scale data and, as a result, is
less helpful when the data set contains a large number of covariates that are potentially cor-
related. In these data sets, the association between a particular covariate and the response
can be statistically significant by itself but not when many other correlated covariates are
also included in the model. Traditional regression analysis is no longer effective to find the
true pattern when there is collinearity in the covariates.

To deal with the above problems, one possible approach makes nonparametrically based
inference on clusters reflecting covariate profiles. The approach takes a more global point of
view that settles the problems caused by collinearity in the data set. Previously introduced
methods to profile data using clustering include the k-means algorithm (see, e.g. Hartigan
and Wong, 1979) and latent class analysis (see Patterson et al., 2002). However, Bayesian
profile regression, which we describe in this report, offers a number of advantages over these
methods. First, unlike the k-means algorithm, the method is able to take into account
the uncertainty associated with clustering by using Markov chain Monte Carlo (MCMC)
methods to sample from the posterior distribution of the latent cluster memberships. Given
these cluster memberships, a Bayesian mixture model is fitted at each iteration. In this
way, a number of different clusterings are obtained across sampling iterations. Second,
unlike latent class analysis, the number of clusters does not have to be fixed in advance of
analyzing the data. Third, unlike the k-means algorithm, the method links the clustering to
the response variable so that they can inform each other. Fourth, like latent class analysis,
the method is able to compute the uncertainty associated with the cluster membership but,
unlike latent class analysis, it does so via a model-averaging approach that allows us to
evaluate the “best” partition obtained from the Bayesian mixture model.
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In the following chapters, we will describe the methods of Bayesian profile regression
and discuss some ways to evaluate the clustering output. Then we will use a simulation
study to demonstrate the utility of the method and compare the results with a regression
method, LASSO. Finally, we will briefly show the usage of the R package PReMiuM, which
has been recently developed for Bayesian profile regression, and provide some explanations
of the functions.
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Chapter 2

Methodology

In this chapter, we first review the idea of a Dirichlet process, and how it is used as the prior
in Bayesian mixture models. Then we review two submodels based on a Dirichlet process.
The “assignment submodel” is a Bayesian mixture model clustering the covariate profiles
into groups. The “disease submodel” links the groups to an outcome of interest using a
logistic regression model. MCMC methods are used to fit both submodels, as is common
with Bayesian approaches.

2.1 Dirichlet Process Introduction

The Dirichlet distribution, denoted by Dirichlet(α1, α2, . . . , αC), is a family of continuous
multivariate probability distributions with a parameter vector (α1, α2, . . . , αC) of positive
reals. We let Ψ = {ψ1, ψ2, . . . , ψC} represent the random variates, and write

Ψ ∼ Dirichlet(α1, α2, . . . , αC),

if they have a probability density function given by

f(ψ1, ψ2, . . . , ψC) = Γ(
∑
c αc)∏

c Γ(αc)

C∏
c=1

ψαc−1
c ,

where α1, . . . , αC > 0 and Γ(αc) =
∫∞

0 xαc−1e−xdx. Samples from the distribution lie in
the (C − 1)-dimensional simplex defined by:

ψ1, . . . , ψC−1 > 0

ψ1 + . . .+ ψC−1 < 1

ψC = 1− ψ1 − . . .− ψC−1.
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It is easy to see that the Beta distribution is a special case of the Dirichlet distribution with
C = 2.

A Dirichlet process is a distribution over distributions, often denoted by DP (α,G0),
where G0 is a base distribution and α is a positive “concentration” parameter. Let G be a
random probability measure drawn from a Dirichlet process, written G ∼ DP (α,G0). Then
G has a support set contained within the support of G0. For example, consider a uniform
distribution on the interval (0,1), given by G0 = Beta(1, 1), and draw samples from the
Dirichlet process using different α (see Figure 1). We can see thatG is a discrete distribution,
made up of a countable number of point masses. Blackwell and MacQueen (1973) showed
that the distributions sampled from a Dirichlet process are discrete almost surely. The
sampledG becomes more like the base distribution as the concentration parameter increases.

Figure 2.1: Draws of distribution G from the Dirichlet process DP (α,Beta(1, 1)) using
increasing values of the concentration parameter α (top to bottom: 1, 10, 100 and 1000).
Each row consists of 3 repetitions of the same experiment. The vertical axis represents the
probability masses and the horizontal axis represents the support points.

Assume we draw samples φ∗i , for i = 1, . . . , n, from G where G ∼ DP (α,G0). Then
the φ∗i ’s are i.i.d. given G. To obtain the predictive distribution of φ∗i , the idea is to start
with the joint distribution of the φ∗i ’s. Conceptually, this joint distribution is obtained by
marginalizing out G as P (φ∗1, . . . , φ∗n) =

∫
P (G)

∏n
i=1 P (φ∗i | G)dG, where P demonstrates

either a density or pmf, as appropriate. Assume we view φ∗i ’s in a specific order and
are interested in the behaviour of φ∗i given the previous i − 1 observations, we obtain the
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predictive distribution of φ∗i from the joint distribution as,

φ∗i | φ∗1, . . . , φ∗i−1 =

φ
∗
k with probability 1

i−1+α

new draw from G0 with probability α
i−1+α

where φ∗k can be any one of φ∗1, . . . , φ∗i−1 (Blei and Jordan, 2006). We can rewrite the above
probabilities in the following form:

φ∗i | φ∗1, . . . , φ∗i−1 =

φc with probability numi−1(φc)
i−1+α

new draw from G0 with probability α
i−1+α

(2.1)

where φc for c ∈ 1, . . . , C are the unique values of φ∗i for i ∈ 1, . . . , n, and numi−1(φc)
denotes the number of observations that equal to φc before the ith observation. Thus a
new observation tends to take on a value that has already been observed in the sample,
in proportion to the number of times it has been observed. We also notice that the order
of the samples, φ∗1, . . . , φ∗i , does not have an impact on their distribution, but the unique
values of these samples and how many of them take each unique value really matters. That
is, the Dirichlet process realizations are exchangeable.

The above process is also called “Chinese restaurant process”, analogous to seating
customers at tables in a Chinese restaurant. Think of it in this way: the first customer
coming into a Chinese restaurant, where there are an infinite number of circular tables, each
with infinite capacity, is seated at an unoccupied table with probability 1. At time i, a new
customer comes in, and has the options to sit to the left of one of the i− 1 customers that
are already sitting at an occupied table, or at a new unoccupied table. Each occupied table
corresponds to a component in the mixing model. From the above predictive distribution,
we can see that a customer is more likely to sit at a table if there are already many people
sitting there. However, with a probability proportional to α, the customer will sit at a new
table.

2.2 Dirichlet Process Mixture Model

The idea of Dirichlet process mixture models goes back to Antoniak (1974). In this report,
we will describe a standard discrete mixture model (see Shahbaba and Neal, 2009 and Neal,
2000). Suppose that we have covariate vectorsX1, . . . ,Xn on n individuals and assume that
the covariate vectors are exchangeable random variables drawn independently from some
unknown distribution. We can model their distribution as a mixture of simple distributions,
with probability or density function

P (x) =
C∑
c=1

ψcF (x | φc),

5



where ψc refer to the mixing proportions, and F (x | φ) refers to the probability or density
of x under a distribution, F (φ), in some simple class with parameters φ. For example, F (φ)
could be the density function of a normal distribution, where φ refers to the parameters for
the population mean, µ, and standard deviation, σ; that is, φ = (µ, σ). For each cluster c,
φc determines the distribution of observations within that cluster.

We start by assuming that the number of mixing components, C, is finite. In this case,
a common prior distribution for ψc is a symmetric Dirichlet distribution whose density
function is defined as

f(ψ1, . . . , ψC) = Γ(α)
Γ(α/C)C

C∏
c=1

ψ(α/C)−1
c ,

where ψc ≥ 0 and
∑
ψc = 1. An allocation variable, Zi = c, indicates the cluster to which

individual i is assigned. Let φ = (φ1, . . . , φC), then the model can be written as follows:

Xi | Zi,φ ∼ F (φZi)

Zi | ψ1, . . . , ψC ∼Multinomial(ψ1, . . . , ψC)

ψ1, . . . , ψC ∼ Dirichlet(α/C, . . . , α/C)

φZ ∼ G0

(2.2)

We can eliminate the mixing proportions, ψc, and obtain the predictive distribution for Zi by
integrating the joint distribution of (Zi, ψ1, . . . , ψC) over the Dirichlet prior for ψ1, . . . , ψC

to get the joint distribution of Z1, . . . Zn and then applying Bayes theorem:

Pr(Zi = c | Z1, . . . , Zi−1) = numi−1(c) + α/C

i− 1 + α
,

where numi−1(c) denotes the number of observations before the ith observation assigned to
component c and is a function of Z1, . . . , Zi−1.

When we let C go to infinity, we obtain:

Pr(Zi = c | Z1 . . . , Zi−1)→ numi−1(c)
i− 1 + α

Pr(Zi 6= Zj for all j < i | Z1 . . . , Zi−1)→ α

i− 1 + α

As a result, the conditional distribution for φZi , becomes

φZi | φZ1 , . . . , φZi−1 ∼
1

i− 1 + α

∑
j<i

δφZj + α

i− 1 + α
G0,

where δφZj denotes the point mass distribution at φZj . Note that the observations are
assumed to be exchangeable, and so we can view any observation, i, as the last observation,
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and thus obtain the conditional distribution in the following form:

φZi | φZ−i ∼
1

n− 1 + α

∑
j 6=i

δφZj + α

n− 1 + α
G0,

where φZ−i denotes all the φZj for j 6= i. This is the same conclusion reached in equation
(2.1) above, taking φ∗i in the equation to be φZi here.

An equivalent form of the above Dirichlet process is the “stick-breaking” process. Sethu-
raman (1994) introduced stick-breaking as a constructive way of forming G, which is ex-
pected to be distributed according to a Dirichlet process. If G ∼ DP (G0, α), a simplified
constructive definition of the Dirichlet process is

G =
∞∑
c=1

ψcδφc

φc ∼ G0 i.i.d for c ∈ Z+

ψc = Vc ·
∏
l<c

(1− Vl) i.i.d for c ∈ Z+ \ {1}

ψ1 = V1

Vc ∼ Beta(1, α) i.i.d for c ∈ Z+,

(2.3)

where φc is independent of Vc for c ∈ Z+ and Z+ denotes the positive integers. This
formulation for V and ψ is the so-called “stick-breaking” distribution. Imagine that we
start with a unit-length stick and in the lth step we break off a piece of the remaining stick
according to Vl and then assign this broken-off portion to ψl. It is important to note that
the distribution, G, is discrete, because draws of φ’s from G0 can only take the values in
the set

{
φc : c ∈ Z+}.

2.3 Assignment Submodel

One of the most common applications of the Dirichlet process is in clustering data, where the
Dirichlet distribution serves as the prior distribution for the mixing-proportion parameters,
Ψc = (ψ1, . . . , ψC), in the mixture model, given the number of clusters C. We now describe
an allocation submodel of the probability that an individual is assigned to a particular
cluster (see Molitor et al., 2010). This assignment submodel is based on a stick-breaking
formulation of the Dirichlet process.

We denote a vector xi = (xi1, xi2, . . . , xip) as the observed covariate profile for individ-
ual i. ψc denotes the probability of assignment to the cth cluster and φjc(x) denotes the
probability of the jth covariate in cluster c being x for a discrete covariate. The parameters,
φ1
c , φ

2
c , . . . , φ

p
c are the prototypical profile for cluster c. The covariates are assumed to be

independent conditional on the cluster assignment. The basic mixture model for allocation
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of individual i to a group based on his or her observed covariate vector xi has the following
probability

Pr(xi) =
C∑
c=1

Pr(Zi = c) · f(xi | Zi = c)

where the mixture weights, Pr(Zi = c) = ψc are modeled according to the “stick-breaking”
prior in equation (2.3). The probability of observed covariate vector xi can be rewritten
with parameters φ1

c , . . . , φ
p
c , so that

Pr(xi) =
C∑
c=1

Pr(Zi = c)
p∏
j=1

Pr(xij | Zi = c)

=
C∑
c=1

ψc

p∏
j=1

φjc(xij).

An individual’s covariate values are assumed to be conditionally independent given their
cluster membership. The mixture model for Pr(xi) incorporates a Dirichlet process (DP)
prior through the covariate profiles’ distribution F (xi | φc) =

∏p
j=1 φ

j
c(xij) and through the

mixing proportions ψc for the clusters.
Larger values of the parameter α imply less clustering. To avoid computational difficul-

ties from α values that are too small, Ohlsson et al. (2007) suggest a lower bound of 0.3.
Since there is little a priori information about α, Molitor et al. (2010) assign it a uniform
prior distribution on the interval (0.3, 10). The infinite cluster model in the Dirichlet pro-
cess is approximated by considering a maximum number of clusters, C. Molitor et al. (2010)
note that the value of C needs to be large enough to give a good approximation but small
enough to avoid having to estimate a large number of unnecessary cluster parameters and
allocation probabilities for very small clusters. The R package PReMiuM does not require
specification of C in its profile regression function. However, the function does have an
argument that requires the initial number of clusters. For our simulated data, we find that
neither specifying the value of the initial number of clusters being as small as 2, nor as high
as 20 will impact the Bayesian profile regression output, as long as the MCMC iterations are
enough (for example, 20000 sweeps). In this report, we only analyze data sets with binary
covariates and binary outcomes (i.e., an individual is either diseased or non-diseased).

2.4 Disease Submodel

The assignment submodel clusters individuals into groups and the allocation variables,
Zi = c, c = 1, . . . , C indicating the cluster to which individual i is assigned, can be used as
categorical variables for predicting the outcome via a regression model. We let θZi measure
the influence of Zi on the outcome (on the logistic scale) and wi = (wi1, . . . , wip) denote
the confounding variables for individual i; i = 1, . . . , n. The disease submodel, associating
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group membership and the confounding variables with the outcome, is

logit(pi) = θZi + βwi, (2.4)

where pi is the conditional probability of the binary disease outcome Yi being 1 given Zi

and wi, and β = (β1, . . . , βp) denotes the regression parameter coefficients corresponding
to the confounding covariates wi. When all the confounders are set to the “reference”
values of zero, the left side only includes the intercept term θZi , which can be interpreted
as the baseline log odds, pZi , of developing disease for an individual in group Zi; that is,
pZi = exp(θZi)/[1 + exp(θZi)].

In MCMC simulation, at each iteration, individual covariate profiles are first assigned
to clusters, and then each individual is assigned the risk associated with its cluster. The R
package PReMiuM implements these methods.

9



Chapter 3

Evaluating Clustering Output

The data-fitting process gives us a large amount of posterior output. In this chapter, we
first describe an effective way to use the posterior output to identify the optimal clustering.
Next, we describe a way to use the output to evaluate the uncertainty associated with the
chosen partition, via model averaging.

3.1 Characterizing the Best Partition

Since the number of clusters and the cluster labels are changing from iteration to iteration,
there is no easy way to find an assignment that maximizes the average posterior probability
across the iterations. To find a “best”, we start by constructing a score matrix at each
iteration of the MCMC sampler in the following way: set the element in row i, column
j equal to 1 if individuals i and j are assigned to the same cluster, and 0 otherwise. A
posterior probability matrix, also known as similarity matrix, S, is estimated by taking
the average of the score matrix over the MCMC iterations. Each element of the similarity
matrix, Sij , measures the proportion of times individuals i and j are assigned to the same
group. The best partition is then chosen from all the partitions generated by the MCMC
sampler as the one that minimizes the least-squared distance to the similarity matrix S.
This method was introduced by Dahl (2006), but is susceptible to Monte Carlo error since
it assumes that one of the observed partitions is the best.

An alternative approach is to apply deterministic clustering methods, such as parti-
tioning around medoids (PAM: Kaufman and Rousseeuw, 2005), to the similarity matrix.
The best PAM partition is determined for each fixed number of clusters up to a specified
maximum number of clusters. Among the resulting set of clusterings, an optimal partition
is chosen by maximizing an associated clustering score such as the silhouette width (see
Rousseeuw, 1987).

In practice, these two methods often provide very similar results and both are available
in the package PReMiuM. However, the PAM approach requires a specification of at least
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two clusters when calculating the optimal clustering score, so that Dahl’s approach may be
preferable when the data have a weak structure (i.e. just one cluster).

3.2 Evaluating Uncertainty of Best Partition

Since MCMC samplers provide varying cluster assignments over iterations, it is important
to examine whether or not the model clusters the individuals consistently with the opti-
mal partition that we choose. An optimal partition should be accompanied by consistent
clustering at each iteration and thus have narrow credible intervals in terms of the baseline
risks and profile parameters defined below. The consistency is to a large degree based on
the structure of the data. If the data have strong clustering structure, we will get good cer-
tainty regarding the clustering parameter estimates. Otherwise, when the data are “noisy”
and individuals do not tend to group consistently into the same clusters, the chosen parti-
tion will be accompanied by great uncertainty, meaning that the “best partition” is highly
haphazard.

We denote by zbest the optimal partition. Given the optimal partition, we define the
average baseline risks, pc, over all the individuals within a particular cluster, c, of zbest by

pc = 1
nc

∑
i:zbesti =c

pzi ,

where zi is the observed cluster allocation for the ith individual, pzi is the probability of
the outcome in cluster zi, and nc denotes the number of individuals assigned to cluster c of
the optimal partition, zbest. We estimate the posterior mean of the average baseline risks
by taking their average over the MCMC iterations. If the posterior distribution of average
baseline risks is skewed, we may instead estimate their posterior median by taking their
median over the MCMC iterations. Credible intervals can be used to make inference. A
consistent partition leads to narrower credible intervals for the average baseline risks. The
average of cluster parameters from the assignment submodel, φjzi , can also be computed as

φ
j
c = 1

nc

∑
i:zbesti =c

φjzi . (3.1)

We can estimate the posterior median or mean as well as the credible intervals for the profile
parameters from the MCMC output. For example, to estimate the posterior median of φjc
we may take the median of φjc over the MCMC iterations.

Given the estimated cluster-specific parameters, we may investigate the associations
among covariates by drawing a heatmap of the dissimilarity matrix among covariate profiles.
We take the vector of cluster specific parameters (φj1, . . . , φ

j
C) as the coordinates for the jth

covariate and the covariates’ dissimilarity is obtained by computing the Euclidean distance
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between pairs of covariate profiles. Similarly, the associations among individuals may be
investigated by plotting the heatmap of the individuals’ dissimilarity matrix. As described
in section 3.1, a similarity matrix has been constructed at each MCMC iteration, and thus
can be used to investigate whether individuals tend to cluster. The R package PReMiuM

implements a function to produce the heatmap of the individual dissimilarity matrix.
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Chapter 4

Data

4.1 Data Generation

We generate a data set of 48 subjects and 70 binary covariates. Among the 70 covariates,
X1, . . . , X28 are based on latent variable Z1; X29, . . . , X56 are based on latent variable Z2;
X57. . . . , X66 are based on Z1 + Z2; and X67, . . . , X70 are binary noise. The probability of
covariates being a success conditional on the corresponding latent variable is given by

Pr(X = 1 | Z) = exp(t+ βZ)
1 + exp(t+ βZ) ,

where Z is one of Z1, Z2 and Z1 + Z2, as appropriate, and t is the intercept term that
ensures

∫
z Pr(X = 1 | z)Pr(Z = z)dz = 0.5. We set β = 1.2 for both latent variables and

Z1 + Z2.
In this simulation study, we assign the 48 individuals to 4 groups, with each group

corresponding to a combination of (Z1, Z2):

• individuals 1-12 are in group 1 with (Z1, Z2) = (1, 1);

• individuals 13-24 are in group 2 with (Z1, Z2) = (1, 3);

• individuals 25-36 are in group 3 with (Z1, Z2) = (3, 1); and

• individuals 37-48 are in group 4 with (Z1, Z2) = (3, 3).

The four combinations of latent variables corresponding to the assigned groups are shown
in Figure 4.1. We assign the binary outcome yi such that all individuals in

• group 1 have probability 0.5 of being 1;

• group 2 have probability 0.1 of being 1;

• group 3 have probability 0.3 of being 1; and
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Figure 4.1: Schematic of the groups underlying the simulated data. The points at (1,1),
(1,3), (3,1) and (3,3) are the centers of group 1, 2, 3, and 4, respectively. The numbers in
parentheses beside the points are the outcome probabilities for the group.

• group 4 have probability 0.9 of being 1.

We generate missing values in the following way:

1. Among the 70 covariates, randomly select 35 covariates denoted by Xi1 , . . . , Xi35 , and
denote the other 35 covariates by Xi36 , . . . , Xi70 .

2. For each Xik ; k = 1, . . . , 35; generate a random variable uik from a uniform distribu-
tion on (0, 1), and reassign a value to that covariate:

Xik =

NA uik < 0.3

Xik otherwise

3. For each Xik ; k = 36, . . . , 70, similarly, randomly generate a random variable uik from
a uniform distribution on (0, 1) and then assign

Xik =

NA uik < 0.1

Xik otherwise

In the resulting simulated data set, the percentage of missing values for each covariate is
below 0.45 and the percentage of missing values for each individual is below 0.35, which
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are reasonable proportions in the real data sets motivating this report. Missing values are
such that a conventional “complete case” analysis would lead to no patients to analyze. For
further information regarding the simulated data set, we take a look at the sample mean
for each covariate. Before missing values are generated, the average over all individuals for
each covariate is around 0.5 (mean 0.51, range 0.35-0.67), as expected. After the missing
values are generated, the average remains around 0.5 (mean 0.52, range 0.36-0.68).

4.2 Exploratory Summaries

To get a global view of the covariate patterns, Figure 4.2 shows a grid of colored rectangles
with different colors corresponding to the values of covariates, where red corresponds to
covariate absent, blue to covariate present and white to missing values. The dendograms
added to the left side and to the top demonstrate the cluster membership of patients and
covariates, respectively, as determined by agglomerative hierarchical clustering based on
Euclidean distance. The dendogram of covariates clusters X1, . . . , X28, which reflect Z1.
The dendogram also clusters the noise and covariates reflecting Z1 + Z2 with covariates
reflecting Z2. Individuals cluster together as expected given how the data were simulated.
Referring to Figure 4.2, the first 12 individuals tend to have all covariates (except the
noise) absent; the second 12 individuals tend to have the Z1-determined covariates absent,
Z1 +Z2-determined covariates present about half the time and the Z2-determined covariates
present; the third 12 individuals tend to have the Z2-determined covariates absent, Z1 +Z2-
determined covariates present about half the time and Z1-determined covariates present;
and the last 12 individuals tend to have all covariates present.

Multiple correspondence analysis (MCA) is a data analysis technique for categorical
variables, used to detect latent structures in a data set. MCA can be viewed as the counter-
part of principle component analysis for categorical data (see, e.g. Le Roux and Rouanet,
2004). The R package FactoMineR (Lê et al., 2008) provides the mca() function for analysis
as well as plots that visually depict the data structure. Figure 4.3 shows the MCA factor
map of the simulated data for the first two principal coordinates. The first two principle
coordinates can be approximately obtained by appropriately rotating and mirroring the
Z1 and Z2 coordinates from Figure 4.1. We see that MCA manages to capture the latent
data structure and clusters the individuals as expected based on the first two principal
coordinates of variation in the covariate data.

Next, we explore how the outcome relates to the covariates using the estimated log
odds ratios and approximate 95% confidence intervals. The results are shown in Figure 4.4,
where we can see that most of the covariates have confidence intervals centered at zero,
though several covariates seem to be shifted away from the dashed line. We also explore
the relationship between outcome and groups using the corresponding log odds ratios and
approximate 95% confidence intervals, taking the first group as the baseline against which
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to compare the others. If the true groups were known, their estimated association with
outcome (as summarized by the logarithm of the ratio of the odds of outcome in a group
relative to the odds in group 1) would be shown in Figure 4.5.
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Figure 4.2: Heatmap of 70 covariates (columns) for 48 patients (rows) with dendo-
grams added to the left and to the top; covariate absent=red, present=blue, missing/un-
known=white.
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Figure 4.3: Multiple correspondence analysis factor map of the first two principal coordi-
nates showing the latent structure in the data

Figure 4.4: Estimated associations between outcome and covariates and their approximate
95% confidence intervals. Associations are estimated from 2*2 contingency tables cross-
classifying the covariate and the outcome.
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Figure 4.5: Estimated associations between outcome and groups and their approximate
95% confidence intervals. The odds-ratios for all groups are calculated with group 1 as the
baseline; hence, the confidence interval for group 1 is not defined.
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Chapter 5

Application

5.1 Bayesian Profile Regression Analysis

We use the default values for all hyperparameters suggested by Hastie et al. (2015): in the
assignment submodel, we specify a uniform distribution on the interval (0, 1) as the base
distribution, G0, for φjc, the probability that binary covariate Xj is one in cluster c. The
uniform distribution is equivalent to a symmetric Dirichlet(1, 1) distribution, as described
in equation (2.2), and to a Beta(1, 1) base distribution, as shown in Figure 2.1. We specify
a Gamma(2, 1) prior for α in the stick-breaking process described in equation (2.3), where
a Gamma(a, b) random variable has density function ba

Γ(a)x
a−1e−bx for x > 0. In the disease

submodel referred to equation (2.4), we specify a t7(0, 2.5) prior for the cluster-specific effect

θzi , where a tγ(µ, σ) random variable has density function Γ( γ+1
2 )

Γ( γ2 )√πγσ

[
1 + 1

γ (x−µσ )2
]− γ+1

2 . In
fitting the model, we initialized all chains allocating subjects randomly to 10 groups, and
ran the chain for 20,000 iterations after a burn-in sample of 300 iterations. Setting the
argument seed gives the same set of random numbers at each run. We can include the
outcome variable when modeling by setting the argument excludeY=FALSE or only model
the covariates by setting excludeY=TRUE in the call to the profRegr() function. Including
outcome helps provide more information when fitting the assignment submodel, which will
be discussed later, and enables the function to provide estimates of cluster-specific disease
risks. Bayesian profile mixture models can be fitted as follows.

R>library("PReMiuM")

R> runInfoObj <- profRegr(yModel = "Bernoulli", xModel = "Discrete",

+ nSweeps =20000, nBurn = 300, data = DATA[,1:71],

+ output = "output_DATA", covNames = colnames(DATA)[1:70],

+ nClusInit = 10, run = TRUE, seed = 3459, excludeY = FALSE)

R> dissimObj<-calcDissimilarityMatrix(runInfoObj)

R> clusObj<-calcOptimalClustering(dissimObj)

R> riskProfileObj<-calcAvgRiskAndProfile(clusObj)
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Table 5.1 and Table 5.2 show the confusion matrices with outcome excluded and in-
cluded, respectively. We can see that, when the outcomes are excluded, 2 individuals from
group 3 are extracted to form a small group, whereas including the outcome gives us perfect
clustering. These results demonstrate that including outcome can significantly improve the
clustering.

true cluster
membership

1 2 3 4
1 12 0 0 0
2 0 12 0 0
3 0 0 10 0
4 0 0 2 0

Bayesian
profile
regression
clustering 5 0 0 0 12

Table 5.1: Bayesian profile clustering based on the covariates only

true cluster
membership

1 2 3 4
1 12 0 0 0
2 0 12 0 0
3 0 0 12 0

Bayesian
profile
regression
clustering 4 0 0 0 12

Table 5.2: Bayesian profile clustering based on the covariates and outcome

The object riskProfileObj is a list including the empirical mean of the outcome for
each cluster, the cluster sizes, the cluster-specific covariate profile and so forth. Table 5.3
shows an excerpt of the estimates of cluster parameters; a full report of the estimated
cluster parameters can be found in the Appendix, in Table A.1. For the jth covariate in the
cth cluster, the MCMC sampler returns dependent realizations of the profile parameter φjc
described in equation (3.1), which are sampled from the posterior distribution. The posterior
mean of φjc can be estimated by taking the mean over all “sweeps” or MCMC iterations.
Likewise, credible intervals can be estimated by taking the appropriate quantiles of the
φ
j
c’s over all the sweeps. Since the posterior distribution of the cluster specific parameters

over the MCMC samplers is symmetric (results not shown), the point estimates using the
mean and the median are almost identical. Most of the true values of cluster specific
parameters are contained in the corresponding credible intervals, though several credible
intervals fail to cover the true value, which is assumed to be the result of high percentages
of missing values or randomness. We also assume that some credible intervals are wide due
to much missing information. In our data simulation, the strength of association between
covariates and latent variables, which is denoted by β, determines to what degree the
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simulated values are consistent with the latent variable values. That is, given the same
proportion of missing covariate data, we expect the credible intervals to be less variable
with a higher value of β. Generally, the estimates capture the data structure, and are
effective for describing the clusters. The empirical mean of the cluster-specific risks (risk)
the cluster size (clustersize) and cluster-specific covariate profile parameters (phi) can
be obtained as follows:

R> risk <- riskProfileObj$empiricals

R> clustersize <- riskProfileObj$riskProfClusObj$clusterSizes

R> phi <- riskProfileObj$profile

Group 1 Group 2 Group 3 Group 4
pc (true) 0.50 0.10 0.30 0.90
point estimate 0.50 0.17 0.33 0.92
95% C.I. (0.25,0.75) (0.04,0.43) (0.12,0.61) (0.68,0.99)
φ

1
c (true) 0.23 0.23 0.77 0.77

point estimate 0.50 0.33 0.83 0.54
95% C.I. (0.23,0.77) (0.11,0.61) (0.58,0.98) (0.27,0.79)
...
φ

28
c (true) 0.23 0.23 0.77 0.77

point estimate 0.46 0.20 0.77 0.82
95% C.I. (0.19,0.74) (0.03,0.49) (0.47,0.97) (0.55,0.97)
φ

29
c (true) 0.23 0.77 0.23 0.77

point estimate 0.34 0.62 0.17 0.78
95% C.I. (0.09,0.65) (0.29,0.90) (0.02,0.42) (0.47,0.97)
...
φ

56
c (true) 0.23 0.77 0.23 0.77

point estimate 0.08 0.61 0.66 0.92
95% C.I. (0.21,0.79) (0.55,0.97) (0.07,0.55) (0.39,0.89)
φ

57
c (true) 0.08 0.5 0.5 0.92

point estimate 0.15 0.46 0.50 0.83
95% C.I. (0.00,0.26) (0.35,0.85) (0.39,0.89) (0.73,1.00)
...
φ

70
c (true) 0.5 0.5 0.5 0.5

point estimate 0.42 0.56 0.40 0.50
95% C.I. (0.21,0.72) (0.24,0.85) (0.14,0.70) (0.23,0.77)

Table 5.3: An excerpt of estimates of cluster-specific parameters. The cluster-specific profile
parameters, φc, are defined in equation (3.1).

The function plotRiskProfile() offers a helpful and intuitive way to investigate the
posterior distribution of the covariates and probabilities of the response by showing their
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box-plots for each cluster. It would be impractical to draw box-plots for as many as 70 co-
variates, and so we choose a subset of the covariates and use the function plotRiskProfile()

to show the box-plots in Figure 5.1. The covariates X1, X28 (related to latent variable Z1),
X29, X56 (related to Z2), X57 (related to Z1+Z2) and X67 (binary noise) are chosen to rep-
resent different latent variables, and the estimates of their cluster-specific profile parameters
are reported in Table 5.3. From Figure 5.1, we can see that the risks for each cluster agree
closely with the probabilities of outcome set in the simulation. The function plots estimated
cluster-specific profile parameters, φjc, for j ∈ {1, 28, 29, 56, 57, 67}, with the average value
over clusters drawn as a horizontal line. The red-coloured boxes indicate that the 90% cred-
ible intervals for the cluster-specific profile parameter are above the average over clusters,
the green-coloured boxes indicate that the 90% credible intervals include the average, and
the blue-coloured boxes indicate that the 90% credible intervals are below the average. We
expect X1 and X28 to have the same trends in their estimated profile parameters across
clusters, and also, X29 and X56. As expected, X1 and X28 tend to have small values of the
cluster-specific profile parameter in cluster 1 and 2 but relatively large values in cluster 3
and 4, since the latent variable Z1 equals 1 in the first two clusters and equals 3 in the last
two clusters. Though the estimated profile parameter for X1 falls below the mean in cluster
4, we assume it to be the result of randomness involved in such a small data set. Similarly,
X29 and X56 have small profile parameter estimates in cluster 1 and 3 where Z2 equals 1,
and large values in cluster 2 and 4, where Z2 equals 3. X57 has the lowest estimated profile
parameter in cluster 1 where Z1 + Z2 equals 2, an estimated value around the average in
clusters 2 and 3 where Z1 + Z2 equals 4, and a higher value in cluster 4 where Z1 + Z2

equals 6. The noise covariate, X67, has an estimated profile parameter around 0.5 for all
the clusters, as expected.

To gain insight into the latent structure underlying the covariates, we draw a heatmap
of the dissimilarity matrix among covariate profiles. We take the vector of cluster specific
parameters (φj1, φ

j
2, φ

j
3, φ

j
4) as the coordinates for the jth covariate and compute the Eu-

clidean distance between pairs of covariate profiles to obtain the elements of the covariate
dissimilarity matrix. Figure 5.2 shows the resulting heatmap. The covariates are generally
grouped into three clusters: the first 28 covariates reflecting latent variable Z1 are grouped
into one cluster on the bottom right, the second 28 covariates reflecting latent variable Z2

are grouped into one cluster at the top left, and the smaller cluster in the center contains
most Z1 +Z2-determined covariates, which tend to be more correlated with Z1-determined
covariates in these data. We can also take a look at the heatmap of the patients’ dissimi-
larity matrix to get a sense of individual clustering certainty. The package offers a function
heatDissMat() to draw a heat map of the patients using the object dissimObj returned
by function calcDissimilarityMatrix(), which is used for calculating the optimal parti-
tion. The shade corresponds to the degree of individuals’ similarity to each other based on
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Bayesian profile regression. Figure 5.3 demonstrates that the simulated individuals have a
strong signal of clustering.

The function globalParsTrace() is implemented in the package to provide a basic
diagnostic plot of the trace of some global parameters such as the number of clusters and
the concentration parameter α in the stick-breaking. For more convergence diagnostics, the
R package coda (Plummer et al., 2006) is helpful. Although there are no parameters that
can be used to definitively demonstrate convergence of the algorithm, there are methods
to investigate whether there is evidence against convergence. The following code can be
used to reproduce the trace plot and autocorrelation plot for both the number of clusters
and the parameter α in Figure 5.4 and Figure 5.5. Referring to Figure 5.4, we see that our
chains do not seem to get stuck in certain areas for α and the number of clusters, when
the initial number of clusters is set to 10. Referring to Figure 5.5, the autocorrelations for
both global parameters are relatively low for our chain, which indicate no evidence against
convergence. Another way to investigate convergence is to monitor the distribution of α
across multiple runs initialised with different numbers of clusters (see Hastie et al., 2014).
We obtain the posterior distribution of α for different numbers of initial clusters with three
repetitions per initialisation and 20,000 sweeps after a burn-in of 300 samples. Figure 5.6
shows the boxplot of the posterior distribution of α as a function of the initial numbers of
clusters. We see that the posterior distribution of α stabilises for all these initial number of
clusters, which suggests convergence. The cluster specific parameters cannot be plotted as
easily due to label switching across the iterations of the MCMC sampler and so assessing
their convergence is difficult. Hastie et al. (2014) introduce the marginal model posterior,
defined as pr(Z | X), where Z represents the cluster membership and X the covariate
vector, as a tool to assess convergence for Dirichlet process mixtures. However, in the
PReMiuM R package, no missing value handling technique has been implemented for the
marginal model posterior which prevents its use if missing values are present. The following
R code was used to generate the trace plot of the number of clusters and parameters shown
in Figure 5.4 and Figure 5.5.

R> par(mfrow=c(1,2))

R> runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",

+ nSweeps=20000, nBurn=300, data=DATA[,1:71],

+ covNames=colnames(DATA)[1:70], output="convergence_DATA",

+ nClusInit=10, run=TRUE, seed=3459, excludeY=FALSE, reportBurnIn=TRUE)

R> globalParsTrace(runInfoObj, parameters="nClusters", plotBurnIn=TRUE)

R> globalParsTrace(runInfoObj, parameters="alpha", plotBurnIn=TRUE)

R> library("coda")

R> nclusterchain<-mcmc(read.table("convergence_DATA_nClusters.txt"))

R> autocorr.plot(nclusterchain)
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R> alphachain<-mcmc(read.table("convergence_DATA_alpha.txt"))

R> autocorr.plot(alphachain)

5.2 Comparison with LASSO

To compare the performance of Bayesian profile regression to LASSO on the simulated data,
we replace the missing values in the LASSO analysis with their true values before they
are taken away. The LASSO thus has the benefit of perfectly imputed data, in contrast
to Bayesian profile regression which must deal with the missing values. Using perfectly
imputed data for LASSO but not for Bayesian profile regression gives maximum advantage
to LASSO in the comparison. If Bayesian profile regression beats LASSO under these
circumstances, we are confident to say that Bayesian profile regression can perform better
than LASSO in real life situations, where there is no way to obtain the true values. We
choose two commonly used values of the LASSO regularization parameter λ: one gives the
most regularized model such that the cross-validated error is within one standard error
of the minimum (denoted by LASSO/1se for short) and the other gives minimum mean
cross-validated error (LASSO/min for short). LASSO/1SE selects none of these covariates
as important factors, and thus makes uniform predictions to all individuals. LASSO/min
selects only X20 as important, which is related to Z1. However, according to our data
generation scheme, the two latent variables, Z1 and Z2, have an interaction effect and thus
should both have an impact on the outcome. Clearly, LASSO is not adequately capturing
the structure in the data.

We are able to obtain the information about risks as well as the cluster membership from
Bayesian profile regression. Bayesian profile regression makes risk predictions that agree
closely to the probabilities of outcome assigned to each group: individuals 1-12 (group
1) all have predicted probabilities around 0.50; individuals 13-24 (group 2) are mostly
predicted to be around 0.20; individuals 25-36 (group 3) are predicted to be in the range
of 0.30 to 0.40; and individuals 37-48 (group 4) are all predicted to be 0.90. We see that
individuals in group 2 and group 3 have slightly higher predicted probabilities of outcome
than the expected values of 0.1 and 0.3, respectively, and we assume it to be the result
of higher observed probability of outcome than expected when randomness comes into the
simulated data. The observed and predicted outcome are shown in Table 5.4. Bayesian
profile regression appears to do a better job of capturing the structure of the outcome and
makes more precise predictions. To compute the mean squared prediction error (MSPE),
we generate a test set, which has 8 individuals within each of the four groups and 70 binary
covariates using the same scheme as the training set. Bayesian profile regression and both
LASSO solutions are applied to the test set to make predictions. The training set’s mean
squared error (MSE) as well as the MSPE for each method is shown in Table 5.5. Both
the MSE and MSPE are computed on the probabilities of outcome instead of the observed
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outcome. Bayesian profile regression gives the smallest MSE and MSPE on both training
set and test set. In addition, Bayesian profile regression even gives slightly smaller error on
the test set than on the training set, which demonstrates that it prevents the problem of
overfitting. In summary, Bayesian profile regression seems to be better suited than LASSO
for our simulated data set.

ID observed true predicted outcome
outcome probability Bayesian profile LASSO/min LASSO/1SE

1 1 0.50 0.49 0.52 0.48
2 1 0.50 0.49 0.44 0.48
3 0 0.50 0.49 0.44 0.48
4 1 0.50 0.49 0.44 0.48
5 1 0.50 0.49 0.52 0.48
6 1 0.50 0.49 0.44 0.48
7 0 0.50 0.49 0.44 0.48
8 0 0.50 0.49 0.44 0.48
9 0 0.50 0.49 0.44 0.48
10 0 0.50 0.49 0.44 0.48
11 0 0.50 0.49 0.44 0.48
12 1 0.50 0.52 0.52 0.48
13 0 0.10 0.20 0.44 0.48
14 0 0.10 0.14 0.44 0.48
15 0 0.10 0.15 0.44 0.48
16 0 0.10 0.20 0.44 0.48
17 0 0.10 0.20 0.44 0.48
18 0 0.10 0.20 0.44 0.48
19 0 0.10 0.20 0.44 0.48
20 1 0.10 0.20 0.44 0.48
21 0 0.10 0.14 0.52 0.48
22 0 0.10 0.20 0.44 0.48
23 0 0.10 0.20 0.52 0.48
24 1 0.10 0.21 0.44 0.48
25 0 0.30 0.32 0.44 0.48
26 1 0.30 0.37 0.52 0.48
27 0 0.30 0.37 0.52 0.48
28 0 0.30 0.36 0.44 0.48
29 0 0.30 0.37 0.52 0.48
30 0 0.30 0.37 0.52 0.48

Continued on next page
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Table 5.4 – continued from Table 5.4
ID observed true predicted outcome

outcome probability Bayesian profile LASSO/min LASSO/1SE
31 1 0.30 0.37 0.52 0.48
32 0 0.30 0.37 0.52 0.48
33 1 0.30 0.37 0.52 0.48
34 1 0.30 0.37 0.52 0.48
35 0 0.30 0.31 0.44 0.48
36 0 0.30 0.37 0.52 0.48
37 1 0.90 0.90 0.52 0.48
38 0 0.90 0.90 0.52 0.48
39 1 0.90 0.90 0.52 0.48
40 1 0.90 0.90 0.52 0.48
41 1 0.90 0.90 0.52 0.48
42 1 0.90 0.90 0.52 0.48
43 1 0.90 0.90 0.52 0.48
44 1 0.90 0.90 0.52 0.48
45 1 0.90 0.90 0.52 0.48
46 1 0.90 0.90 0.52 0.48
47 0 0.90 0.90 0.52 0.48
48 1 0.90 0.90 0.52 0.48

Table 5.4: Observed and predicted outcome by different methods.

Bayesian profile regression LASSO/min LASSO/1SE
MSE 0.003 0.078 0.088
MSPE 0.002 0.073 0.088

Table 5.5: MSE and MSPE by different methods.
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Figure 5.1: Posterior distributions of the parameters for the representative clustering. The
red-coloured boxes indicate that the 90% credible intervals for the cluster-specific profile
parameter are above the average over clusters, the green-coloured boxes indicate that the
intervals include the average, and the blue-coloured boxes indicate that the intervals are
below the average.
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Figure 5.2: Heatmap of the covariates’ dissimilarity matrix
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Figure 5.3: Heatmap of the patients’ dissimilarity matrix

Figure 5.4: The trace of the number of clusters and parameters α through the iterations of
the MCMC sampler.
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Figure 5.5: Autocorrelation plot of α obtained from coda.
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Figure 5.6: The posterior distribution of α with different initial numbers of clusters.
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Chapter 6

Discussion

The database that motivates this report collects clinical questionnaire data on pediatric
vasculitis patients across the world with the aim of developing better tools for disease clas-
sification, and assessment of disease activity and damage. There are two vasculitis subtypes
that are of particular interest for classification. Debate among vasculitis researchers includes
whether these two subtypes are really separate or one type along a continuum. A major
challenge in any pediatric vasculitis research is the disease rarity. Disease incidence is esti-
mated to be 23 in 100,000 in children and vasculitis is estimated to contribute only 2-10%
of all conditions evaluated in pediatric rheumatology clinics (Weiss, 2012). In addition, vas-
culitis is not a single disease but a group of complex conditions which can affect any organ.
Thus, the incidence of any one of these subtypes is even lower and for some it is extremely
low. The investigators are trying to increase the number of patients by global recruitment
of incident patients and inclusion of retrospective patients with some information available
in archives. However, this data collection strategy leads to challenges with missing data
because different centers (countries) have different diagnostic procedures and the types of
tests/evaluations done also change over time. As a result, every covariate and every patient
has missing information. In addition, extracting information on retrospective patients and
merging it with the current questionnaire data, as well as cross-checking and fixing any in-
consistencies in the responses to items in the current questionnaire is labour-intensive and
time-consuming. Another challenge is that since the database is based on comprehensive
questionnaire data about clinical and lab investigation covariates in patients, many of the
variables are correlated. For example, there may be a number of variables that all refer to
different tests done to determine kidney function.

In this report, we have focused on understanding Bayesian profile regression. In addition
to Bayesian profile regression, another method to identify the unobserved cluster member-
ship is latent class analysis or LCA (see, e.g. Lazarsfeld and Henry, 1968 and McCutcheon,
1987). LCA relates a set of observed covariates (discrete and/or continuous) to a set of
latent classes which are discrete. A class is characterized by a “profile”; that is, a pattern of
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conditional probabilities that indicate the chance that variables take on certain values. LCA
attempts to detect the presence of latent classes in the covariates. Thus, LCA can be used
to group subjects in clinical observational studies much like profile regression. However,
one unresolved issue in the application of LCA is that there is not one commonly accepted
statistical indicator for deciding the number of classes in advance. A traditionally used
criterion for determining the number of classes is the Bayesian Information Criteria (BIC).
Nylund et al. (2007) evaluated the ability of likelihood-based tests and various information
criteria (ICs) to correctly identify the number of classes and found that bootstrap likelihood
ratio tests perform the best. A version of LCA suitable for continuous normally distributed
variables is called ‘latent profile analysis’ (Lazarsfeld and Henry, 1968), and is based on
normal mixture modeling. In R, normal mixture models may be fitted using the mclust

package (Fraley, 1999). The implementation of LCA with binary covariates is available in
the R package poLCA (Linzer and Lewis, 2011; R Core Team, 2012), which can also incor-
porate polytomous categorical covariates. The software ‘Mplus’ is a proprietary statistical
package for the analysis of latent variables and can handle a combination of categorical
and continuous variables. Latent class analysis may be extended to incorporate a disease
submodel (see, e.g., Wang, 2015 for a special case). However, to our knowledge, no general
software implementing these extensions is available.

Both Bayesian profile regression and extended versions of latent class analysis find clus-
ters in the covariates and link cluster membership to the outcome. When group structures
underlie the data, these approaches are expected to perform better than standard regres-
sion approaches which do not model the latent groups. In contrast to latent class analysis,
Bayesian profile regression does not require the number of classes to be determined in ad-
vance. The number of latent classes is a parameter of intrinsic interest that we wish to learn
from the data. Therefore, not having to specify this parameter in advance is an advantage
for us. Furthermore, profile regression embraces the presence of far more covariates than pa-
tients, which is a problem for standard regression-based approaches. Additional covariates
enable better resolution of the latent groups in the profile regression model. Missing covari-
ate values are also easily dealt with by the profile regression approach, which automatically
imputes them as part of the fitting process. For our simulated data, this method did a bet-
ter job of making predictions and capturing the data structure than LASSO which is known
as an effective tool for prediction and variable selection. Though Bayesian profile regression
is recently developed, the method as well as the R package is worthy of consideration.

In addition to clustering and risk estimation, we are also interested in which covariates
affect the clustering and risks. As mentioned above, the database has a large number of
covariates that are potentially correlated and may be unrelated to the outcome. We may
waste time by measuring redundant predictors that provide no additional information about
the clustering or outcome. Unnecessary predictors also decrease the efficiency of estima-
tion. In future work, we plan to investigate how variable selection works in Bayesian profile
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regression and use it to exclude unimportant covariates. The aim is to get a reduced and
therefore more cost-effective set of predictors that will improve the prediction performance
of the Bayesian profile regression model. Ultimately, we plan to apply Bayesian profile
regression to data sets extracted from the vasculitis database to understand whether pa-
tients’ clinical characteristics at diagnosis are correlated with treatment outcomes, such as
remission rates one year after diagnosis.
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Appendix A

Table of Cluster-specific Parameter
Estimates

GRP1 GRP2 GRP3 GRP4
size 12 12 12 12
pk (true) 0.50 0.10 0.30 0.90
Mean 0.50 0.17 0.33 0.92
95% C.I. (0.25,0.75) (0.04,0.43) (0.12,0.61) (0.68,0.99)
φ

1
c (true) 0.21 0.21 0.79 0.79

Mean 0.50 0.33 0.83 0.54
95% C.I. (0.23,0.77) (0.11,0.61) (0.58,0.98) (0.27,0.79)
φ

2
c (true) 0.21 0.21 0.79 0.79

Mean 0.17 0.15 0.69 0.67
95% C.I. (0.02,0.42) (0.02,0.38) (0.43,0.90) (0.51,0.95)
φ

3
c (true) 0.21 0.21 0.79 0.79

Mean 0.17 0.33 0.71 0.79
95% C.I. (0.02,0.41) (0.11,0.61) (0.46,0.91) (0.55,0.95)
φ

4
c (true) 0.21 0.21 0.79 0.79

Mean 0.33 0.29 0.67 0.80
95% C.I. (0.09,0.65) (0.09,0.54) (0.39,0.89) (0.52,0.97)
φ

5
c (true) 0.21 0.21 0.79 0.79

Mean 0.16 0.38 0.77 0.58
95% C.I. (0.02,0.39) (0.15,0.65) (0.51,0.94) (0.31,0.83)
φ

6
c (true) 0.21 0.21 0.79 0.79

Mean 0.29 0.18 0.70 0.71
95% C.I. (0.09,0.54) (0.03,0.45) (0.54,0.95) (0.59,0.98)
φ

7
c (true) 0.21 0.21 0.79 0.79

Mean 0.17 0.40 0.64 0.45
95% C.I. (0.02,0.41) (0.14,0.70) (0.35,0.88) (0.18,0.74)
φ

8
c (true) 0.21 0.21 0.79 0.79

Mean 0.13 0.18 0.70 0.71
Continued on next page
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Table A.1 – continued from Table A.1
GRP1 GRP2 GRP3 GRP4

95% C.I. (0.00,0.41) (0.03,0.44) (0.40,0.92) (0.35,0.96)
φ

9
c (true) 0.21 0.21 0.79 0.79

Mean 0.27 0.27 0.87 0.43
95% C.I. (0.07,0.55) (0.07,0.56) (0.59,1.00) (0.12,0.77)
φ

10
c (true) 0.21 0.21 0.79 0.79

Mean 0.14 0.29 0.85 0.69
95% C.I. (0.02,0.36) (0.09,0.53) (0.62,0.98) (0.43,0.90)
φ

11
c (true) 0.21 0.21 0.79 0.79

Mean 0.29 0.22 0.82 0.90
95% C.I. (0.09,0.54) (0.05,0.45) (0.56,0.97) (0.67,1.00)
φ

12
c (true) 0.21 0.21 0.79 0.79

Mean 0.27 0.27 0.63 0.64
95% C.I. (0.07,0.55) (0.07,0.56) (0.34,0.88) (0.35,0.88)
φ

13
c (true) 0.21 0.21 0.79 0.79

Mean 0.54 0.72 0.40 0.78
95% C.I. (0.26,0.81) (0.36,0.96) (0.14,0.70) (0.48,0.97)
φ

14
c (true) 0.21 0.21 0.79 0.79

Mean 0.25 0.43 0.61 0.72
95% C.I. (0.06,0.52) (0.19,0.68) (0.35,0.84) (0.46,0.91)
φ

15
c (true) 0.21 0.21 0.79 0.79

Mean 0.34 0.31 0.80 0.60
95% C.I. (0.11,0.61) (0.10,0.57) (0.52,0.97) (0.30,0.86)
φ

16
c (true) 0.21 0.21 0.79 0.79

Mean 0.27 0.18 0.70 0.55
95% C.I. (0.07,0.55) (0.03,0.44) (0.40,0.92) (0.24,0.84)
φ

17
c (true) 0.21 0.21 0.79 0.79

Mean 0.25 0.50 0.69 0.92
95% C.I. (0.06,0.52) (0.21,0.79) (0.43,0.90) (0.72,1.00)
φ

18
c (true) 0.21 0.21 0.79 0.79

Mean 0.28 0.39 0.85 0.58
95% C.I. (0.07,0.56) (0.15,0.65) (0.64,0.98) (0.30,0.83)
φ

19
c (true) 0.21 0.21 0.79 0.79

Mean 0.27 0.13 0.66 0.56
95% C.I. (0.07,0.55) (0.00,0.42) (0.39,0.89) (0.25,0.84)
φ

20
c (true) 0.21 0.21 0.79 0.79

Mean 0.28 0.22 0.69 0.92
95% C.I. (0.09,0.54) (0.05,0.45) (0.43,0.90) (0.72,1.00)
φ

21
c (true) 0.21 0.21 0.79 0.79

Mean 0.36 0.29 0.75 0.82
95% C.I. (0.12,0.65) (0.04,0.64) (0.48,0.94) (0.55,0.97)
φ

22
c (true) 0.21 0.21 0.79 0.79

Mean 0.23 0.31 0.84 0.64
Continued on next page
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Table A.1 – continued from Table A.1
GRP1 GRP2 GRP3 GRP4

95% C.I. (0.05,0.48) (0.10,0.57) (0.61,0.98) (0.39,0.86)
φ

23
c (true) 0.21 0.21 0.79 0.79

Mean 0.67 0.27 0.60 0.92
95% C.I. (0.28,0.95) (0.07,0.56) (0.30,0.86) (0.71,1.00)
φ

24
c (true) 0.21 0.21 0.79 0.79

Mean 0.22 0.75 0.75 0.70
95% C.I. (0.03,0.52) (0.43,0.96) (0.42,0.96) (0.40,0.92)
φ

25
c (true) 0.21 0.21 0.79 0.79

Mean 0.21 0.23 0.69 0.59
95% C.I. (0.05,0.46) (0.06,0.49) (0.43,0.90) (0.43,0.90)
φ

26
c (true) 0.21 0.21 0.79 0.79

Mean 0.27 0.58 0.69 0.86
95% C.I. (0.07,0.55) (0.31,0.83) (0.43,0.90) (0.64,0.98)
φ

27
c (true) 0.21 0.21 0.79 0.79

Mean 0.20 0.23 0.80 0.89
95% C.I. (0.03,0.48) (0.05,0.49) (0.51,0.97) (0.63,1.00)
φ

28
c (true) 0.21 0.21 0.79 0.79

Mean 0.46 0.20 0.77 0.82
95% C.I. (0.19,0.74) (0.03,0.49) (0.47,0.97) (0.55,0.97)
φ

29
c (true) 0.21 0.79 0.21 0.79

Mean 0.34 0.62 0.17 0.78
95% C.I. (0.09,0.65) (0.29,0.90) (0.02,0.42) (0.47,0.97)
φ

30
c (true) 0.21 0.79 0.21 0.79

Mean 0.25 0.43 0.16 0.83
95% C.I. (0.06,0.52) (0.19,0.68) (0.02,0.39) (0.59,0.98)
φ

31
c (true) 0.21 0.79 0.21 0.79

Mean 0.22 0.67 0.46 0.67
95% C.I. (0.05,0.45) (0.39,0.89) (0.21,0.73) (0.39,0.89)
φ

32
c (true) 0.21 0.79 0.21 0.79

Mean 0.18 0.67 0.34 0.69
95% C.I. (0.02,0.45) (0.35,0.91) (0.11,0.62) (0.43,0.90)
φ

33
c (true) 0.21 0.79 0.21 0.79

Mean 0.39 0.69 0.22 0.61
95% C.I. (0.15,0.65) (0.43,0.90) (0.05,0.46) (0.34,0.85)
φ

34
c (true) 0.21 0.79 0.21 0.79

Mean 0.16 0.77 0.31 0.77
95% C.I. (0.02,0.39) (0.52,0.94) (0.10,0.58) (0.51,0.94)
φ

35
c (true) 0.21 0.79 0.21 0.79

Mean 0.22 0.92 0.50 0.71
95% C.I. (0.03,0.53) (0.74,1.00) (0.23,0.77) (0.46,0.91)
φ

36
c (true) 0.21 0.79 0.21 0.79

Mean 0.42 0.50 0.27 0.58
Continued on next page
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Table A.1 – continued from Table A.1
GRP1 GRP2 GRP3 GRP4

95% C.I. (0.17,0.69) (0.19,0.82) (0.07,0.55) (0.31,0.83)
φ

37
c (true) 0.21 0.79 0.21 0.79

Mean 0.28 0.92 0.17 0.82
95% C.I. (0.09,0.53) (0.71,1.00) (0.02,0.42) (0.55,0.97)
φ

38
c (true) 0.21 0.79 0.21 0.79

Mean 0.33 0.92 0.28 0.54
95% C.I. (0.08,0.65) (0.71,1.00) (0.07,0.55) (0.28,0.79)
φ

39
c (true) 0.21 0.79 0.21 0.79

Mean 0.23 0.92 0.29 0.83
95% C.I. (0.03,0.54) (0.72,1.00) (0.04,0.64) (0.59,0.98)
φ

40
c (true) 0.21 0.79 0.21 0.79

Mean 0.57 0.60 0.63 0.71
95% C.I. (0.32,0.81) (0.30,0.86) (0.34,0.88) (0.46,0.91)
φ

41
c (true) 0.21 0.79 0.21 0.79

Mean 0.18 0.62 0.17 0.50
95% C.I. (0.03,0.44) (0.34,0.85) (0.02,0.41) (0.25,0.75)
φ

42
c (true) 0.21 0.79 0.21 0.79

Mean 0.38 0.69 0.46 0.50
95% C.I. (0.15,0.65) (0.42,0.90) (0.21,0.72) (0.23,0.76)
φ

43
c (true) 0.21 0.79 0.21 0.79

Mean 0.14 0.69 0.21 0.77
95% C.I. (0.02,0.36) (0.43,0.90) (0.05,0.45) (0.52,0.95)
φ

44
c (true) 0.21 0.79 0.21 0.79

Mean 0.15 0.86 0.25 0.92
95% C.I. (0.02,0.39) (0.64,0.98) (0.06,0.52) (0.72,1.00)
φ

45
c (true) 0.21 0.79 0.21 0.79

Mean 0.42 0.70 0.30 0.91
95% C.I. (0.12,0.77) (0.40,0.93) (0.08,0.60) (0.69,1.00)
φ

46
c (true) 0.21 0.79 0.21 0.79

Mean 0.20 0.88 0.42 0.91
95% C.I. (0.03,0.48) (0.59,1.00) (0.17,0.69) (0.69,1.00)
φ

47
c (true) 0.21 0.79 0.21 0.79

Mean 0.40 0.60 0.25 0.80
95% C.I. (0.14,0.71) (0.30,0.86) (0.04,0.58) (0.51,0.97)
φ

48
c (true) 0.21 0.79 0.21 0.79

Mean 0.34 0.71 0.22 0.61
95% C.I. (0.11,0.61) (0.46,0.91) (0.05,0.46) (0.35,0.85)
φ

49
c (true) 0.21 0.79 0.21 0.79

Mean 0.44 0.67 0.20 0.73
95% C.I. (0.15,0.76) (0.35,0.91) (0.03,0.49) (0.44,0.93)
φ

50
c (true) 0.21 0.79 0.21 0.79

Mean 0.45 0.72 0.25 0.71
Continued on next page
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Table A.1 – continued from Table A.1
GRP1 GRP2 GRP3 GRP4

95% C.I. (0.19,0.74) (0.46,0.91) (0.06,0.52) (0.46,0.91)
φ

51
c (true) 0.21 0.79 0.21 0.79

Mean 0.22 0.61 0.20 0.60
95% C.I. (0.03,0.52) (0.35,0.85) (0.03,0.49) (0.19,0.94)
φ

52
c (true) 0.21 0.79 0.21 0.79

Mean 0.38 0.89 0.31 0.55
95% C.I. (0.10,0.71) (0.63,1.00) (0.10,0.57) (0.26,0.82)
φ

53
c (true) 0.21 0.79 0.21 0.79

Mean 0.25 0.73 0.36 0.69
95% C.I. (0.06,0.51) (0.44,0.93) (0.12,0.66) (0.43,0.90)
φ

54
c (true) 0.21 0.79 0.21 0.79

Mean 0.21 0.64 0.27 0.85
95% C.I. (0.05,0.46) (0.39,0.86) (0.07,0.55) (0.61,0.98)
φ

55
c (true) 0.21 0.79 0.21 0.79

Mean 0.36 0.92 0.55 0.77
95% C.I. (0.14,0.62) (0.71,1.00) (0.26,0.81) (0.52,0.95)
φ

56
c (true) 0.21 0.79 0.21 0.79

Mean 0.50 0.82 0.28 0.67
95% C.I. (0.21,0.79) (0.55,0.97) (0.07,0.55) (0.39,0.89)
φ

57
c (true) 0.07 0.5 0.5 0.93

Mean 0.08 0.61 0.66 0.92
95% C.I. (0.00,0.26) (0.35,0.85) (0.39,0.89) (0.73,1.00)
φ

58
c (true) 0.07 0.5 0.5 0.93

Mean 0.15 0.46 0.50 0.83
95% C.I. (0.02,0.39) (0.21,0.72) (0.25,0.75) (0.58,0.98)
φ

59
c (true) 0.07 0.5 0.5 0.93

Mean 0.11 0.75 0.69 0.86
95% C.I. (0.00,0.38) (0.48,0.94) (0.43,0.90) (0.64,0.98)
φ

60
c (true) 0.07 0.5 0.5 0.93

Mean 0.18 0.58 0.50 0.70
95% C.I. (0.03,0.45) (0.31,0.83) (0.21,0.78) (0.40,0.92)
φ

61
c (true) 0.07 0.5 0.5 0.93

Mean 0.08 0.50 0.54 0.90
95% C.I. (0.00,0.27) (0.21,0.79) (0.28,0.79) (0.66,1.00)
φ

62
c (true) 0.07 0.5 0.5 0.93

Mean 0.22 0.58 0.39 0.92
95% C.I. (0.05,0.45) (0.31,0.84) (0.15,0.65) (0.73,1.00)
φ

63
c (true) 0.07 0.5 0.5 0.93

Mean 0.11 0.42 0.80 0.80
95% C.I. (0.00,0.36) (0.17,0.69) (0.51,0.97) (0.52,0.97)
φ

64
c (true) 0.07 0.5 0.5 0.93

Mean 0.08 0.54 0.50 0.92
Continued on next page
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Table A.1 – continued from Table A.1
GRP1 GRP2 GRP3 GRP4

95% C.I. (0.00,0.29) (0.28,0.79) (0.24,0.76) (0.73,1.00)
φ

65
c (true) 0.07 0.5 0.5 0.93

Mean 0.09 0.45 0.60 0.75
95% C.I. (0.00,0.31) (0.19,0.74) (0.30,0.86) (0.42,0.96)
φ

66
c (true) 0.5 0.5 0.5 0.5

Mean 0.09 0.69 0.54 0.85
95% C.I. (0.00,0.29) (0.43,0.90) (0.27,0.79) (0.62,0.98)
φ

67
c (true) 0.5 0.5 0.5 0.5

Mean 0.42 0.56 0.40 0.50
95% C.I. (0.17,0.69) (0.24,0.85) (0.14,0.70) (0.23,0.77)
φ

68
c (true) 0.5 0.5 0.5 0.5

Mean 0.50 0.80 0.30 0.50
95% C.I. (0.21,0.78) (0.52,0.97) (0.08,0.60) (0.21,0.79)
φ

69
c (true) 0.5 0.5 0.5 0.5

Mean 0.45 0.50 0.55 0.78
95% C.I. (0.16,0.76) (0.21,0.79) (0.27,0.81) (0.47,0.97)
φ

70
c (true) 0.5 0.5 0.5 0.5

Mean 0.66 0.58 0.30 0.58
95% C.I. (0.35,0.91) (0.22,0.88) (0.08,0.61) (0.31,0.83)

Table A.1: Estimates of cluster-specific parameters. The cluster-specific profile parameters,
φc, are defined in equation (3.1).
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Appendix B

Code for Bayesian Profile
Regression

library(PReMiuM)
# Bayesian profile regression with the covariates only
runInfoObj.yes<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[,1:71],
output="output_DATA", covNames=colnames(DATA)[1:70],
nClusInit=20, run=TRUE, seed=3459, excludeY=TRUE)
# Calculate the dissimilarity matrix.
dissimObj.yes<-calcDissimilarityMatrix(runInfoObj.yes)
# Calculate the optimal clustering.
clusObj.yes<-calcOptimalClustering(dissimObj.yes)
# Calculate the estimates ot risks and cluster-specific parameters.
riskProfileObj.yes<-calcAvgRiskAndProfile(clusObj.yes)
cluster.yes<-clusObj.yes$clustering
# Confustion matrix of the clustering results using the Bayesian
# profile regression and the true classes.
table(cluster.yes, DATA$group)

# Bayesian profile regression with the covariates and outcome
runInfoObj.no<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[,1:71],
output="output_DATA", covNames=colnames(DATA)[1:70],
nClusInit=10, run=TRUE, seed=3459, excludeY=FALSE)
dissimObj.no<-calcDissimilarityMatrix(runInfoObj.no)
clusObj.no<-calcOptimalClustering(dissimObj.no)
riskProfileObj.no<-calcAvgRiskAndProfile(clusObj.no)
cluster.no<-clusObj.no$clustering
table<(cluster.no, DATA$group)

# Plot the patients’ heatmap based on the dissimilarity matrix
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# obtained by the function calcDissimilarityMatrix.
heatDissMat(dissimObj.no)

# Plot the posterior distributions of risks and some of the cluster-specific
# parameters: X_1, X_28, X_29, X_56, X_57 and X_67.
clusterOrderObj<-plotRiskProfile(riskProfileObj.no, "summary_DATA.png",
whichCovariates=c(1,28,29,56,57,67), orderBy="ClusterSize")

# Obtain the empirical mean of the cluster-specific risks.
risk<-riskProfileObj.no$empiricals

# Obtain the cluster sizes
clustersize<-riskProfileObj.no$riskProfClusObj$clusterSizes

# Obtain the cluster-specific parameters
phi<-riskProfileObj.no$profile

# Bayesian profile regression predictions
runInfoObj.p<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[,1:71],
output="pred_DATA", covNames=colnames(DATA)[1:70],
predict=DATA_num[,1:71], seed=81290)
dissimObj.p<-calcDissimilarityMatrix(runInfoObj.p)
clusObj.p<-calcOptimalClustering(dissimObj.p)
riskProfileObj.p<-calcAvgRiskAndProfile(clusObj.p)
pred.Bayesian<-calcPredictions(riskProfileObj.p,
fullSweepPredictions=FALSE, fullSweepLogOR=FALSE)
# Calculate the mean squared error using the
# true outcome probabilites.
prob <- c(rep(.5, 12), rep(.1, 12), rep(.3, 12), rep(.9, 12))
mean((pred.Bayesian$predictedY-prob)^2)

# Calculate the predictions for the test set.
runInfoObj.t<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[,1:71],
covNames=colnames(DATA)[1:70], predict=test[,1:71],
seed=81290, excludeY=FALSE)
dissimObj.t<-calcDissimilarityMatrix(runInfoObj.t)
clusObj.t<-calcOptimalClustering(dissimObj.t)
riskProfileObj.t<-calcAvgRiskAndProfile(clusObj.t)
pred.Bayesian.t<-calcPredictions(riskProfileObj.t,
fullSweepPredictions=FALSE, fullSweepLogOR=FALSE)
# Calculate the mean squared prediction error using
# the true outcome probabilities of the test set.
prob.t <- c(rep(.5, 8), rep(.1, 8), rep(.3, 8), rep(.9, 8))
mean((prob.t-pred.Bayesian.t$predictedY)^2)
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# Plot the global trace of the parameters:
# alpha and the number of clusters.
par(mfrow=c(1,2))
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
nClusInit=10, run=TRUE, seed=3459, excludeY=FALSE,
reportBurnIn=TRUE)
globalParsTrace(runInfoObj, parameters="nClusters", plotBurnIn=TRUE)
globalParsTrace(runInfoObj, parameters="alpha", plotBurnIn=TRUE)

# Investigate the parameter convergence using the R package coda.
library("coda")
alphachain<-mcmc(read.table("converge_DATA_alpha.txt"))
autocorr.plot(alphachain, sub="alpha")
nclusterchain<-mcmc(read.table("converge_DATA_nClusters.txt"))
autocorr.plot(nclusterchain, sub="nClusters")

# Plot the posterior distribution of alpha with different initial numbers
# of clusters, and run three repitions for each per initialisation.
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
nClusInit=1, run=TRUE, seed=100, excludeY=FALSE,
reportBurnIn=FALSE)
chain1.1 <- read.table("converge_DATA_alpha.txt")
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
nClusInit=1, run=TRUE, seed=200, excludeY=FALSE,
reportBurnIn=FALSE)

chain1.2 <- read.table("converge_DATA_alpha.txt")
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
nClusInit=1, run=TRUE, seed=300, excludeY=FALSE,
reportBurnIn=FALSE)
chain1.3 <- read.table("converge_DATA_alpha.txt")
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
nClusInit=10, run=TRUE, seed=100, excludeY=FALSE,
reportBurnIn=FALSE)
chain2.1 <- read.table("converge_DATA_alpha.txt")
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
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nClusInit=10, run=TRUE, seed=200, excludeY=FALSE,
reportBurnIn=FALSE)
chain2.2 <- read.table("converge_DATA_alpha.txt")
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
nClusInit=10, run=TRUE, seed=300, excludeY=FALSE,
reportBurnIn=FALSE)
chain2.3 <- read.table("converge_DATA_alpha.txt")
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
nClusInit=30, run=TRUE, seed=100, excludeY=FALSE,
reportBurnIn=FALSE)
chain3.1 <- read.table("converge_DATA_alpha.txt")
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
nClusInit=30, run=TRUE, seed=200, excludeY=FALSE,
reportBurnIn=FALSE)
chain3.2 <- read.table("converge_DATA_alpha.txt")
runInfoObj<-profRegr(yModel="Bernoulli", xModel="Discrete",
nSweeps=20000, nBurn=300, data=DATA[1:71],
output="converge_DATA", covNames=colnames(DATA)[1:70],
nClusInit=30, run=TRUE, seed=300, excludeY=FALSE,
reportBurnIn=FALSE)
chain3.3 <- read.table("converge_DATA_alpha.txt")
boxplot(data.frame(chain1.1, chain1.2, chain1.3, chain2.1, chain2.2,
chain2.3, chain3.1, chain3.2, chain3.3), at=c(1,2,3, 11,12,13, 21,22,23))
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