
IBNR Claims Reserving Using INAR
Processes

by

Yang Bai

B.Sc., Zhejiang University, 2013

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Statistics and Actuarial Science

Faculty of Science

c© Yang Bai 2016
SIMON FRASER UNIVERSITY

Fall 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.



Approval

Name: Yang Bai

Degree: Master of Science (Actuarial Science)

Title: IBNR Claims Reserving Using INAR Processes

Examining Committee: Chair: Dr. Tim Swartz
Professor

Dr. Yi Lu
Senior Supervisor
Associate Professor

Dr. X. Joan Hu
Supervisor
Professor

Dr. Cary Chi-Liang Tsai
External Examiner
Associate Professor

Date Defended: 15 December 2016

ii



Abstract

This project studies the reserving problem for incurred but not reported (IBNR) claims in
non-life insurance. Based on an idea presented in Kremer (1995), we propose a new Poisson
INAR (integer-valued autoregressive) model for the unclosed claim counts, which are the
number of reported but not enough reported claims. The properties and the prediction
of the proposed Poisson INAR model are discussed. We modify the estimation methods
proposed in Silva et al. (2005) for the replicated INAR(1) processes to be applied to our
model and introduce new algorithms for estimating the model parameters. The performance
of three different estimation methods used in this project is compared, and the impact of
the sample size to the accuracy of the estimates is examined in the simulation study. To
illustrate, we also present the prediction results of our proposed model using a generated
sample.

Keywords: IBNR; INAR; Frequency-severity techniques; MSEP; Yuller-Walker estima-
tion; Least squares estimations

iii



Dedication

To my beloved parents, for their love and support

iv



Acknowledgements

First and foremost I would like to thank my senior supervisor Dr. Yi Lu, for her continuous
support and patience with me. There were hard times I almost want to give up this topic,
but she encouraged me every time I felt disappointed and figured out a way to nicely present
what we have done. I thank her deeply for the time she dedicated to me to investigate the
problems and difficult issues we met. I have also learned a lot of conventions on academic
writing during the process of revising my project report. I would never think I could
graduate without her kind consideration and tremendous help.

I would also want to express my sincere gratitude to my committee members Dr. X.
Joan Hu and Dr. Cary Chi-Liang Tsai. Thanks for the time they spent to look at my
project report and the constructive suggestions they gave on polishing it. I also want to
thank Joan for her great ideas on the further research of this project.

Special thanks go to my parents who have come to visit me during the hardest time
of writing my project report. Their endless support and unconditional understanding have
given me the energy and confidence to finally finish this project.

Lastly, I want to thank my friends and fellow students here for the memorable times
we spent together. It is an unforgettable experience to have my graduate study at Simon
Fraser University. We worked together through difficult courses, encouraged each other and
shared our opinions greatly. Your accompany has made my life in Vancouver enjoyable
and fruitful. Thanks all the faculties and staffs at our department who together provide a
friendly and effective working environment. I also want to thank my room-mate because
they always have the ears to listen to the difficulties and troubles I went through. It is them
that make me feel like at home though far away from my parents.

v



Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Literature Review 5
2.1 The Claim Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Claim Development Triangle . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Classical Non-parametric Models . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Parametric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 IBNR and INAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Frequency-Severity Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The Model for Claim Reserving with INAR Processes 14
3.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Prediction Based on Known Model Parameters . . . . . . . . . . . . 20
3.3.2 Prediction Based on Unknown Model Parameters . . . . . . . . . . . 21
3.3.3 Mean Square Error of Prediction . . . . . . . . . . . . . . . . . . . . 22

3.4 Estimation of the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Yuller-Walker Estimation . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Conditional Least Squares Estimation . . . . . . . . . . . . . . . . . 28

vi



3.4.3 Iterative Weighted Conditional Least Squares Estimation . . . . . . 32

4 Numerical Illustration 36
4.1 Estimation of the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Bias and Mean Square Error . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Distribution of ρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Distribution of µ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Prediction of Loss Reserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusion and Further Discussion 53

Bibliography 55

Appendix A The Auto-correlation of the Poisson INAR Model 57

Appendix B Model Unclosed Claims with Bayesian Method 58

vii



List of Tables

Table 2.1 A simple claim development triangle . . . . . . . . . . . . . . . . . . . 7
Table 2.2 Categories of the claim development triangles . . . . . . . . . . . . . . 8
Table 2.3 Summary of some parametric models for incremental claims . . . . . 11

Table 4.1 The number of parameters that need to be estimated under different I
and different cases compared to the observed data size . . . . . . . . . 37

Table 4.2 Summary of relative bias and square root of mean square error of the
estimators under I = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 4.3 Summary of relative bias and square root of mean square error of the
estimators under I = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 4.4 Summary of relative bias and square root of mean square error of the
estimators under I = 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 4.5 The estimated unclosed claims, outstanding claims and the ultimate
claim numbers under the Poisson INAR model . . . . . . . . . . . . . 49

Table 4.6 The estimated MSEP of the estimated unclosed claims . . . . . . . . 50
Table 4.7 The estimated MSEP of the outstanding and ultimate claim numbers 51

viii



List of Figures

Figure 4.1 Box plots of ρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 4.2 Histograms of ρ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 4.3 Box plots of µ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 4.4 Histograms of µ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



Chapter 1

Introduction

The techniques for loss reserving of property and casualty insurance has been discussed
widely by both academia and industry. As a major uncertainty (risk) carried by the non-
life insurers, finding more sophisticated methods or superior models which fit to various
different conditions of insurance companies is of crucial importance.

Generally, loss reserves or claim reserves refer to the unpaid amount that the insurance
company owes to the insured due to an incurred but not yet settled claims situation. For
example, in the car insurance case, when a multi-vehicle accident happens and is reported
to the insurers, the payments may not be paid at one time because of the complex admin-
istration process or even law suits involved. If explained in actuarial terms, according to
Friedland (2010), loss reserves are often divided into five components:

(1) case outstanding or unpaid case, which refers to "the estimates of unpaid claims
established by the claims department, third-party adjusters, or independent adjusters
for known and reported claims only", and does not include future development on
reported claims;

(2) provision for future development on known claims;

(3) estimates for reopened claims;

(4) provision for claims incurred but not reported;

(5) provision for claims in transit, reported but not yet recorded.

Usually, insurance companies would estimate the total amount of the loss reserve di-
rectly. However, the estimation could be done by each component for more accurate results
or diagnostic purposes. A most commonly used category is the separation of IBNyR (in-
curred but not yet reported) claims and IBNeR (incurred but not enough reported) claims.
By this categorization, for the five above-mentioned components, IBNyR includes (4) and
(5) and IBNeR includes (1)-(3). In general, IBNyR is also known as pure IBNR or a narrow
definition of IBNR.
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To estimate the loss reserve, the claim data is usually organized into a so-called claim
development triangle, also called a run-off triangle. A most typical claim development
triangle is to organize the claim data by the occurrence dates, usually in one year unit by
each row and the cumulative amount paid after the events have occurred for each following
development year (including the current year) by each column. The loss reserve is just
the total ultimate claim amount that should be paid minus the current cumulative claim
payments. There are two commonly used claim development triangles in industry. One
is the paid loss triangle and the other is the incurred loss triangle. The paid loss triangle
records the cumulative paid amount in each cell while the incurred loss triangle records the
cumulative paid amount plus the case outstanding reserve suggested by the claim adjusters.
As for which claim development triangle to use, it usually depends on the situation of the
insurance company, the administrative legislation and the economic environment. Except
for the development triangles which record the claim amount, there are also triangles for
claim counts, for example, cumulative number of reported claims, number of closed claims
and number of unclosed (open) claims. There are various ways to organize the claim data
into a development triangle; for more information and details, see Friedland (2010).

The most popular method to estimate the IBNR claims reserve is the classical chain-
ladder (CL) method or algorithm, due to its simplicity and its non-parametric distribution-
free nature (see, Mack, 1993). A major disadvantage is that the CL method does not
consider a priori information for the ultimate claim amount. To combine the observed
information with a priori estimate, the Bornhuetter-Freguson (BF) method is considered
(see, Bornhuetter, 1972). Borrowing the idea from the credibility theory, the CL method
and the BF method are further combined into the Benktander-Hovinen (BH) method (see,
Benktander, 1976 and Hovinen, 1981). In addition, there is a method called Cape-Cod
method (see, Bühlmann, 1983) which is developed to provide a BF-type yet more robust
estimation. However, these popularly used methods are all non-parametric models which do
not assume proper underlying claim distributions, nor are they studied under a stochastic
framework. It is not possible to use them to test the uncertainty of the estimators. As a
result, there are parametric models built up for modelling the claim development pattern.
Most parametric models satisfy the general assumptions of the non-parametric models.
That is, these parametric models can be treated as specific stochastic realizations of the
non-parametric models (see, for example, Wüthrich and Merz, 2008). Within the parametric
models, there are models for claims counts as well as claim amount (or severities). Although
estimating the ultimate claim amount directly is simpler and more straightforward, it is
more reasonable sometimes to estimate the claim counts and claim severities separately.
The kind of idea is also referred to as frequency-severity techniques. For details on general
stochastic claims reserving methods in insurance, see Wüthrich and Merz (2008).

To model the insurance claim counts, the traditional time series models are not theoreti-
cally suitable since they do not model integer valued processes. Alosh and Alzaid (1987) has
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extended the AR(1) process (autoregressive process of order one) to the INAR(1) process,
first order integer-values autoregressive process. Gourieroux and Jasiak (2004) proposed
a heterogeneous INAR(1) model for the claim frequency of the policyholders in car insur-
ance and the future insurance premiums could be determined by the past claim frequencies.
Zhang (2009) further extended the idea of using INAR process to model claim counts and
considered the time dependent heterogeneity for individual policyholders.

Kremer (1995) proposed an idea of modelling IBNR claims using INAR processes; how-
ever, there are little literature on this topic after Kremer’s idea has been brought up. Be-
cause the INAR process successfully mimics the process of the arriving of the newly reported
claims with the degeneration of the already reported claims, a further investigation of these
kinds of models would be insightful. Kremer’s model can be seen as an underlying stochastic
framework of the CL method; however, the dynamics underlying the stochastic assumptions
and the model parameters are difficult to interpret in practice. By incorporating the idea of
using the INAR processes to model the claim numbers, we propose a Poisson INAR model
for the unclosed claim numbers, which are the number of reported but not enough reported
claims. Although there are some restrictions to the application of the proposed model, it
is a simple and reasonable model. The Poisson INAR model has desired properties and we
can also write down the non-parametric assumptions for the Poisson INAR model with the
introduction of the unclosed claims development pattern. The prediction formulas and the
mean square error of prediction under the proposed model are then obtained and discussed.
Because of the similarity between the Poisson INAR model and the replicated INAR(1)
processes (Silva et al., 2005), we consider the estimation methods studied by Silva et al.
(2005) to obtain the estimation of the model parameters. Noting that the relative size of
the number of unknown model parameters compared to the number of the observed data
points may affect the accuracy of the estimates, we consider different cases with different
number of model parameters and different sizes of the development triangle when calcu-
lating the estimation results. The numerical results from a simulation study are presented
and discussed, which confirms the influence of the number of model parameters and the
size of the observed data to the estimation. A random sample is generated to conduct the
prediction of the number of the outstanding claims and the prediction error is calculated
to measure the accuracy of the prediction results.

The project is organized as following. Chapter 2 provides a more detailed background
of the loss reserving problem. Some typical non-parametric and parametric models for
loss reserving are presented and compared in details. Kremer’s model is also presented for
further comparison. Chapter 3 gives a thorough introduction of our Poisson INAR model,
including the model assumption, properties, predictions and the estimation methods. Three
estimation methods are proposed and estimation formulas of the model parameters and the
corresponding algorithms are derived. Because of the high dimension of the parameters
that need to be estimated, simplified models are considered under each method in order
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to evaluate the effectiveness of the parameter estimations. Chapter 4 presents the major
discoveries from a simulation study in the aspect of comparing the effectiveness of different
estimation methods and the influence of the number of unknown model parameters. A
practical prediction analysis is considered for a random sample that is generated from the
Poisson INAR model. Chapter 5 concludes the project with some suggestions on further
research regarding to the use of INAR processes for the IBNR claims reserving problem.
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Chapter 2

Literature Review

As mentioned in the previous chapter, the loss reserve contains five components, but the
most commonly used category is the IBNR claims, including IBNyR and IBNeR claims. The
claim data is organized into various claim development triangles for the purpose of estimat-
ing the loss reserve, the components of the loss reserve and even the claim counts. In order
to better understand how the claim development triangle is formed, a brief introduction of
the basic concepts of the claim process is presented in Section 2.1. In Section 2.2, we intro-
duce the notations and several examples of the claim development triangles. Sections 2.3
and 2.4 give a review of the classical non-parametric and parametric models, respectively,
for the claim reserving problem. Section 2.5 reviews the modelling of IBNR claims with an
INAR process involved. The chapter ends with an introduction to the frequency-severity
techniques to add on the reasonableness of estimating the claim counts.

2.1 The Claim Process

In general, the loss reserve is the total outstanding payments of all incurred claims, whether
reported or not. In other words, it is an aggregation of the outstanding payments for every
single claim. The claim process reflects the dynamics of the development of a single claim
and is discussed in Wüthrich and Merz (2008). With the definition of the claim process, the
loss reserve can be presented accordingly. We briefly summarize the idea in the following.

Suppose that there are N claims in total with an ordered reporting dates T1,0, T2,0, . . . ,

TN,0. For the nth claim, there exists a payment process defined as (Tn,m, Xn,m)m≥0, where
Tn,m is the mth payment time of claim n and Xn,m is the amount paid at time Tn,m.
Specifically, we denote that Tn,Mn is the final settlement date of this claim. Consequently,
we have for any k ≥ 1, Tn,Mn+k =∞, and Xn,Mn+k = 0.

5



Now let Cn(t) be the cumulative payments for claim n at time t, and Rn(t) be the
outstanding claim payments for this claim at time t. Then we can write

Cn(t) =
∑
m∈{k:Tn,k≤t}Xn,m,

Cn(∞) = Cn(Tn,Mn) =
∑∞
m=0Xn,m,

Rn(t) = Cn(∞)− Cn(t) =
∑
m∈{k:Tn,k>t}Xn,m.

Furthermore, denote CN (t) as the aggregate claim payments up to time t and RN (t) as
the total outstanding payments for all the claims at time t. If N includes only the claims
already known (reported) at time t, RN (t) is just the IBNeR reserve. If N includes all the
incurred claims whether known or not, RN (t) is the total loss reserve. Clearly,

CN (t) =
∑N
n=1Cn(t)

CN (∞) =
∑N
n=1Cn(∞)

RN (t) =
∑N
n=1Rn(t) = CN (∞)− CN (t).

Generally, we are interested in knowing Zt = E[CN (∞)|Ft], where Ft = σ({(Tn,m, Xn,m);
1 ≤ n ≤ N,m ≥ 0, Tn,m ≤ t}) represents the information of the payment process up to time
t. However, the true value of Zt may not be available. Therefore, people usually focus on
getting an estimate of Zt and then discussing the accuracy of the estimate.

2.2 The Claim Development Triangle

The claim development triangle is a commonly used and smart way to organize the claim
data so that it can provide more information to better estimate the loss reserve.

Suppose that the current calendar year is denoted as L. We group the claims by the year
happened (accident year in automobile insurance case) and the cumulative payments for the
claims incurred in a particular accident year are recorded for each development year after
the accident year (inclusive). The most recent accident year is denoted as I and the last
development year is denoted as J . Usually, L = I, however, L can be bigger than I when
a business line (an insurance coverage) is no longer operated by the insurance company
but still owes some outstanding payments. For simplicity, we only consider L = I in this
project. Further assume that there are Ni claims happened in accident year i, including not
reported claims. Let Ci,j be the cumulative payments for the claims happened in accident
year i and developed to development year j. Then

Ci,j = CNi(j), 0 ≤ i ≤ I, 0 ≤ j ≤ J, i+ j ≤ I. (2.1)
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LetXi,j be the payments made in development year j for all the claims happened in accident
year i (incremental payments). Clearly, Xi,0 = Ci,0, 0 ≤ i ≤ I and

Xi,j = Ci,j − Ci,j−1, 0 ≤ i ≤ I, 0 < j ≤ J, i+ j ≤ I.

See Table 2.1 for a clear presentation of a simple claim development triangle.

Development year j
Accident
year i 0 1 2 3 4 . . . J
0
1
2 Observations of Ci,j or Xi,j

3 (i+ j ≤ I)
4
...

Predicted Ci,j or Xi,j

(i+ j > I)
I

Table 2.1: A simple claim development triangle

From Table 2.1, we can see that the claim development triangle is split into two parts:
the upper and lower triangle. The upper triangle contains the observed data while the
lower triangle is the outstanding claims to be estimated. Denote that the observed data set
DI = {Xi,j ; i+ j ≤ I, 0 ≤ i ≤ I, 0 ≤ j ≤ J} and the outstanding claims DcI = {Xi,j ; i+ j >

I, 0 ≤ i ≤ I, 0 ≤ j ≤ J}; one has to find the estimates of the elements of DcI based on the
information available in DI .

A most typical case to do the estimation is when I = J because in this case both DcI
and DI are triangles instead of trapezoids. Within other cases, J > I happens when the
business has not been operated for a long time or the settlement process for the business
(such as bodily injures and third party liabilities) takes quite a long time, or sometimes
only because of missing data for early accident years, while J < I is the case when there
are enough data provided to do the estimation so that the prediction only needs to be done
for the small bottom-right corner of the rectangular. But in this latter case, people usually
cut away the first few accident years to make I equal to J to get a smaller development
triangle. Although generally there is a rule to use as more observed data as we can, the
reason to get rid of the early claim history is because it may no longer be relevant to current
year situation or even contradicts the recent development pattern. For simplicity and better
understanding of this project, we assume I = J in all the following context.

According to the definition of Ni and Equation (2.1), Ci,j is the cumulative payments
for all incurred claims, whether reported or not. Alternatively, Ci,j could be different types
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of variable and then the meaning of Xi,j would be changed correspondingly. Table 2.2 gives
several examples of the claim development triangles and Ci,I is the variable that we are
interested in estimating in each case.

Ci,j Xi,j Ci,I
cumulative payments incremental payments ultimate claim amount/load

IBNeR claims change of
reported claim amount ultimate incurred claims

cumulative reported claims number of
reported claims with delay j ultimate claim counts

Table 2.2: Categories of the claim development triangles

2.3 Classical Non-parametric Models

The most straightforward idea to use the claim development triangle to do the estimation of
the loss reserve is to assume an underlying model for the development triangle, and then the
outstanding payments can be estimated with the expectation conditioning on the observed
data DI . There are two types of models for the claim reserving problem, non-parametric
and parametric models. The non-parametric models are often more simpler; therefore,
they play an important role in the industry. In this section, we go over the most famous
non-parametric models (see Wüthrich and Merz, 2008, for details).

Non-parametric models are the models that do not make particular assumptions for the
distribution of Xi,j ’s or Ci,j ’s, also known as distribution free models. The most common
assumption is that the cumulative claims Ci,j of different accident years i are independent.

Based on the above assumption, the chain-ladder method (CL method) further assumes
that there exist development factors {fj}I−1

j=0 such that for all 0 ≤ i ≤ I and all 0 < j ≤ I,

E[Ci,j |Ci,0, . . . , Ci,j−1] = E[Ci,j |Ci,j−1] = fj−1Ci,j−1. (2.2)

That is, the expected next year’s cumulative claims are proportional only to the current
year’s cumulative claims. The development factors are usually estimated by

f̂j =
∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

, 0 ≤ j ≤ I − 1.

Denote ĈCLi,j as the estimator of Ci,j under the CL method and then

ĈCLi,j = Ê[Ci,j |DI ] = Ci,I−i · f̂I−i · · · · · f̂j−1, 0 < i ≤ I, I − i < j ≤ I. (2.3)

The CL method is an empirical estimate that does not depend on any prior information
available for the ultimate claims. Alternatively, the Bornhuetter-Freguson (BF) method

8



assumes that there exist parameters {µi}Ii=0 which can be seen as a set of prior estimates
for the ultimate claims. Further assume that there is a development pattern {βj}Ij=0 with
βI = 1 for the cumulative claims such that for 0 ≤ i ≤ I, 0 ≤ j ≤ I − 1 and 1 ≤ k ≤ I − j,

E[Ci,0] = β0µi,

E[Ci,j+k|Ci,0, . . . , Ci,j ] = Ci,j + (βj+k − βj)µi.
(2.4)

The estimator of the development pattern of the BF method could be obtained from the
estimator of the development factors of the CL method by the relationship

βj =
I−1∏
k=j

f−1
k , 0 ≤ j < I. (2.5)

Denote ĈBFi,j as the estimator of Ci,j under the BF method and then

ĈBFi,j = Ê[Ci,j |DI ] = Ci,I−i + (β̂j − β̂I−i)µi, 0 < i ≤ I, I − i < j ≤ I,

where β̂j =
∏I−1
k=j f̂

−1
k . According to Equations (2.3) and (2.5), it can be concluded that

β̂I−iĈ
CL
i,I = Ci,I−i, 0 < i ≤ I. Therefore,

ĈBFi,I = β̂I−iĈ
CL
i,I + (1− β̂I−i)µi, 0 < i ≤ I.

From the above equation, we know that the BF estimator is a linear combination of the
empirical estimate and the prior estimate.

Despite the information of the most recent cumulative claims Ci,I−i, the CL method
depends only on the observations while the BF method uses only the prior information
when estimating the outstanding claims. It is natural to combine the two methods and
obtain another credibility type of estimator. This idea is considered by the Benktander-
Hovinen (BH) method.

Assume that there exists a new estimator µi(c) for the ultimate claims of accident year i
which is a linear combination of the CL estimates and the prior estimates µi, that is, there
exists a parameter c ∈ [0, 1] so that

µi(c) = c ĈCLi,I + (1− c)µi, 0 < i ≤ I. (2.6)

In (2.6), c should be increased with the increase of the number of development years (cor-
responding to early accident years) because the more the observed data the more credit
should be put on the empirical estimates. An natural choice would be c = β̂I−i. Hence,
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µi(c) = ĈBFi,I . The estimator of Ci,j under the BH method can be written as:

ĈBHi,j = Ci,I−i + (β̂j − β̂I−i)µi(c)

= Ci,I−i + (β̂j − β̂I−i)ĈBFi,I , 0 < i ≤ I, I − i < j ≤ I.
(2.7)

Particularly, we point out that, ĈBHi,I = β̂I−iĈ
CL
i,I + (1− β̂I−i)ĈBFi,I .

Similar to the idea of BF method, there is a more robust estimator provided by Cape-
Cod (CC) method. Instead of assuming {µi}Ii=0 as the prior estimates for the ultimate
claims for each accident year, a general overall loss ratio κ is defined, noting that the loss
ratio is the total loss incurred divided by the total premium earned. Assume that there
exists a premium pattern {Πi}Ii=0 such that E[Ci,j ] = κΠiβj , 0 ≤ i, j ≤ I.

To estimate the ultimate claims, one has to first estimate the overall loss ratio. A general
estimation formula is proposed as

κ̂CC =
∑I
i=0Ci,I−i∑I
i=0 β̂I−iΠi

.

Noting that βI = 1, we have

ĈCCi,I = Ci,I−i + (1− β̂I−i)κ̂CCΠi, 0 < i ≤ I.

To summarize, non-parametric models are easy to understand and widely used in prac-
tice. However, most of the models do not support further diagnosis of the estimators.

2.4 Parametric Models

As mentioned in the previous section, although non-parametric models for claim reserving
is widely accepted and appreciated in practice, there is still a need to consider parametric
models. The advantages of the parametric models are: firstly, it is easier to estimate the
uncertainty (such as variance) of the estimators under a parametric framework; secondly, the
definition of Ci,j ’s or Xi,j ’s can be more specific, either claim counts or claim amount under
each model. There are parametric models designed to satisfy the general assumptions of the
non-parametric models, and can be treated as the underlying stochastic frameworks of the
non-parametric models. Some models for incremental claims are summarized in Table 2.3.
There is a general assumption that the incremental claims Xi,j in each cell (i, j) are either
independent or conditionally independent. In Table 2.3, the Poisson-Gamma model and the
Negative-Binomial model also belong to the class of the over dispersed Poisson models. For
the Poisson-Gamma model, the ultimate claims could be estimated by the posterior mean
E[Θi|DI ] which is also a Bayesian model similar to the BH method. The Poisson model and
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the over dispersed Poisson models are normally used for estimating claim counts while the
Gamma model and the Log-normal model are the models for estimating claim amount.

Poisson Model Xi,j ∼ Poisson(µiγj),
the development pattern {γj}Ij=0 satisfy

∑I
j=0 γj = 1.

Poisson-Gamma Model Xi,j |Θ ∼ Poisson(Θiγj) where Θi ∼ Gamma(ai, bi),
the development pattern {γj}Ij=0 satisfy

∑I
j=0 γj = 1.

Negative-Binomial Model

Xi,j has a conditional Negative-Binomial distribution
and there exists a development pattern {fj}I−1

j=0
such that for all 0 ≤ i ≤ I and 1 ≤ j ≤ I,
E[Xi,j |Ci,0, . . . , Ci,j−1] = Ci,j−1(fj−1 − 1), and
Var[Xi,j |Ci,0, . . . , Ci,j−1] = Ci,j−1(fj−1 − 1)fj−1.

Gamma Model

Individual payment Xk
i,j ∼ Gamma(ν, ν

mi,j
),

and Xi,j =
∑ri,j
k=0X

k
i,j ,

ri,j denotes the deterministic number of payments,
mi,j is the average amount of each payment.

Log-normal Model log(Xi,j) ∼ N (mi,j , σ
2).

Table 2.3: Summary of some parametric models for incremental claims

Among the parametric models, there is a compound model that is also worth mentioning.
It is extended from the Gamma model. While keeping all the assumptions of the Gamma
model unchanged, further assumes that the number of payments ri,j is now a random
variable. Let Ri,j be the number of payments which are Poisson distributed with mean
ri,j , independent of individual claim payments. Now Xi,j follows a compound Poisson
distribution. This model is often referred to as the Tweedie’s compound Poisson model,
(Wüthrich, 2003 and Peters et al., 2009).

Wüthrich and Merz (2008) has more detailed discussions on various parametric models
in addition to the ones mentioned here.

2.5 IBNR and INAR

As the techniques for loss reserving become more sophisticated and well-developed, the
models incorporating time series have drawn some attention as well, but the models may
not be theoretically suitable for modelling claim counts because they do not model integer
valued random variables.

Kremer (1995) has proposed an idea of modelling the development of claim counts based
on the integer-valued autoregressive (INAR) process. We introduce briefly in this section the
modelling idea, formulas derived, and the estimation method presented in Kremer (1995).

Let Ci,j be the cumulative number of reported claims. Suppose that for each j = 1, . . . , I,

Ci,j = βj−1 ◦ Ci,j−1 + ei,j , i = 0, . . . , I,

11



in which

1. βj , j = 0, . . . , I − 1, are non-negative;

2. β◦C = bβcC+(β−bβc)◦C with bβc denotes the integer part of β and (β−bβc)◦C =∑C
k=1 Yk, where Yk’s are i.i.d. and follow the Bernoulli distribution with parameter

β − bβc, which means that P(Yk = 1) = 1− P(Yk = 0) = β − bβc;

3. ei,j ’s are integer-valued random variable for any 0 ≤ i ≤ I, 1 ≤ j ≤ I, and i+ j ≤ I.
Each ei,j is independent of Ci,j−1 with E[ei,j |Ci,j−1] = 0 and Var[ei,j |Ci,j−1] = σ2

j ·
f(Ci,j−1), where σ2

j is a non-negative finite number and f is a non-negative given
function on the non-negative real numbers.

Denote that αj = βj − bβjc, we can easily get

E[Ci,j |Ci,j−1] = βj−1 · Ci,j−1,

Var[Ci,j |Ci,j−1] = αj−1 · (1− αj−1) · Ci,j−1 + σ2
j · f(Ci,j−1).

(2.8)

According to the conditional expectation of Ci,j , for any i and j such as i+ j > I, Ci,j can
be estimated by

Ĉi,j = βj · Ĉi,j−1.

Noting that the prediction could give non integer-valued results, one can round them to
their nearst integer values afterwards. The prediction formula is similar to the Chain-ladder
method as seen in Equation (2.3).

The estimation of the model parameters βj , j = 0, . . . , I−1, and σj ’s can be obtained by
the iterative weighted conditional least squares (IWCLS) estimation method which minimize
the sum of squares of the error between the observation and its conditional mean with
the reciprocal of the conditional variance being the weight. The estimates are updated
iteratively until it converges. Theoretically, one has to minimize:

I−j∑
i=0

(Ci,j − βj−1 · Ci,j−1)2

Di,j(αj−1, σ2
j )

, 1 ≤ j ≤ I, (2.9)

where
Di,j(αj−1, σ

2
j ) = αj−1 · (1− αj−1) · Ci,j−1 + σ2

j · f(Ci,j−1).

The iterative process of the estimation can be described as follows. Because both αj−1 and
σ2
j are unknown, the minimization of (2.9) can not be directly obtained. First one can find

a preliminary estimator β̂j−1 for βj−1 with Di,j(αj−1, σ
2
j ) replaced simply by 1, and then

α̂j−1 = β̂j−1 − bβ̂j−1c. The next step is to find the estimates for σ2
j ’s by minimize:

I−j∑
i=0

(
(Ci,j − β̂j−1 · Ci,j−1)2 −Di,j(α̂j−1, σ

2
j )
)
, 1 ≤ j ≤ I.
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After getting the estimates for σ2
j ’s, insert α̂j−1 and σ̂2

j into (2.9) and get the updated
estimates for βj−1, j = 1, 2, . . . , I. Repeat the above steps until the estimation converges
to the desired estimates of βj−1’s.

One interesting finding of Kremer (1995) is that when assuming f(Ci,j−1) = Ci,j−1,
the estimator of βj is simplified to the one obtained by the classical Chain-ladder method
as discussed in Section 2.3. In this sense, this model can be seen as an extension of the
traditional models.

2.6 Frequency-Severity Techniques

Among all the models mentioned above, non-parametric models do not specify a clear
interpretation of Ci,j ’s or Xi,j ’s, and work for both estimating claim counts and claim
amount. As for parametric models, some are more suitable for modelling claim counts,
while the others are more reasonable for modelling claim amount. Especially, the Poisson
model is usually refer to as a claim counts model because it assumes that the data are all
integer values and Poisson distribution is a commonly used distribution to model the claim
frequency. The Gamma model and the Tweedie’s compound Poisson model can only be
used for modelling claim amount because it requires the information of number of payments
during each development period. The INAR model described in Section 2.5 is clearly only
suitable for claim counts based on its own set up.

In practice, it is also valuable to look at both the claim counts data and the claim
amount data. Sometimes the patten of claim counts development and the average claim
payments can be used as a diagnosis tool to examine whether an organization is undergoing
change in operations, philosophy, or management (Friedland, 2010).

The Frequency-Severity techniques, in short, refer to the methods that estimate the
ultimate claim loads by the product of the estimated ultimate claim counts (frequency times
exposure) and the ultimate severities (Friedland, 2010). Hence, we can use our models for
claim counts to first estimate the ultimate claim counts and multiply the estimated claim
severity to get the ultimate claim loads. However, the estimation of claim severity under a
specific claim counts model will not be discussed in this project.
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Chapter 3

The Model for Claim Reserving
with INAR Processes

In Section 2.5, we have presented the idea of using the integer-valued autoregressive (INAR)
process to study the reserving problem for IBNR claims, introduced in Kremer (1995).
Based on this idea and the rationale of the frequency-severity techniques, we propose a new
parametric model for the unclosed claims (the total number of reported but not yet settled
claims, or not enough reported claims), which we refer to as the Poisson INAR model in
the rest of the context. This chapter is organized as follows. Section 3.1 lists the model
assumptions with some comments. Sections 3.2 and 3.3 present the major characteristics of
the model such as moments, conditional mean and variance, and also predictions. Section
3.4 suggests some methods of estimating the model parameters.

3.1 Model Assumptions

Although the modelling idea comes from Kremer (1995), but the Poisson INAR model
we discuss here is quite different from the model proposed by Kremer (1995). The general
assumption of Kremer’s model is that the cumulative number of reported claims Ci,j satisfies

Ci,j = bβj−1cCi,j−1 + (βj−1 − bβj−1c) ◦ Ci,j−1 + ei,j , i = 0, . . . , I, j = 1, . . . , I, (3.1)

(see Section 2.5 in details). It can be seen from (3.1) that the cumulative claims Ci,j is the
summation of three terms: 1) the integer part of the development factor times the previous
year’s cumulative claims Ci,j−1, 2) the decimal part of the development factor being the
probability of having newly reported claims with the previous year’s cumulative claims as a
base unit and 3) an error term. The second part is kind of an INAR process. In addition, as
proved by Equation (2.8), Kremer’s model satisfies the classical CL assumptions presented
by (2.2). Although Kremer’s model satisfies the classical CL assumptions, the assumption
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(3.1) itself is quite difficult to be interpreted in practice. Instead of using an INAR process
to model part of the incremental claims, we introduce the idea of constant close rate and
use the INAR process to model the unclosed claims. As we have mentioned earlier, the
unclosed claims (open claims, i.e., the reported but not yet settled claims) triangle is also a
commonly used way of organizing the claim data. We present first the assumptions of the
Poisson INAR model proposed.

Define that the unclosed claims Ci,j in cell (i, j) is the total number of claims that occur
in accident year i and have been reported up to development period j but have not yet been
settled at the end of development year j.

Assumption 1.

• Unclosed claims Ci,j of different accident years i are independent, i.e., Ci,j and Cl,k
are independent for any j and k when i 6= l.

• There exist parameters µ0, . . . , µI and γ0, . . . , γI such that the newly reported claims
Xi,j incurred in accident year i but reported with j years of delay are independently
Poisson distributed with E[Xi,j ] = µiγj , for all 0 ≤ i, j ≤ I, and

∑I
j=0 γj = 1.

• The unclosed claims Ci,j of different accident years i follow an INAR process such
that

Ci,j = ρ ◦ Ci,j−1 +Xi,j , 0 ≤ i, j ≤ I, (3.2)

with ρ ◦ Ci,j−1 =
∑Ci,j−1
k=1 Yk, where Yk ∼ Bermoulli(ρ) and 0 ≤ ρ ≤ 1, noting that

Ci,−1 = 0.

Remark 1.

• Note that in our Poisson INAR model, 1− ρ can be interpreted as the constant close
rate for each cell. Parameter µi is the total expected number of claims in accident
year i, while parameter γj is the proportion of the reported number of claims in
development year j. In general, γj should be in a decreasing trend in j.

• In practice, it may not be proper to assume a constant close rate because 1) usually
there is a large number of claims closed during the first several years and leave along
the complicated cases that can not be settled until to the end of the development years
and 2) the close rate may be different for different accident years or calendar years as
a result of the change of various environment factors. It may be more reasonable to
assume a constant close rate at the tail, but for simplicity, we keep the constant close
rate as a major assumption in this project.

• Another constraint of this model is that it assumes the newly reported claims can not
be closed (settled) within the same year as they are reported, but it is not always
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true for short-tail business like property damage. By ignoring the cases which can be
settled within a year, the ultimate claim numbers may be underestimated because we
do not include these cases in the development triangle.

• In addition, there may be reopened claims in the claim system, but the models treat
them as the newly reported claims. As a result, the same claim may be counted twice.
However, the number of reopened claims are relatively small in general, so ignoring
them should not affect the estimation and prediction much.

3.2 Properties

The proposed Poisson INAR model has the following properties.

Proposition 1. The unclosed claims Ci,j can be written as a summation of the not yet
settled claims from all the past and current development years j − k, 0 ≤ k ≤ j, that is,

Ci,j =
j∑

k=0
ρk ◦Xi,j−k, 0 ≤ i, j ≤ I. (3.3)

Proof. According to (3.2), we have

Ci,j = ρ ◦ Ci,j−1 +Xi,j

= ρ ◦ (ρ ◦ Ci,j−2 +Xi,j−1) +Xi,j

= ρ ◦ ρ ◦ Ci,j−2 + ρ ◦Xi,j−1 +Xi,j

= ρ2 ◦ Ci,j−2 + ρ ◦Xi,j−1 +Xi,j

...

=
j∑

k=0
ρk ◦Xi,j−k.

According to (3.3), the unclosed claims Ci,j is the summation of the unclosed (not yet
settled) claims from all the reported number of claims Xi,j−k with reporting delay j − k
years, k = 0, 1, . . . , j. The probability of the reported number of claims Xi,j−k being still
unclosed is ρk, which means that, the earlier the reporting date, the smaller the probability
of being unsettled. On the condition that the total number of past unclosed claims Ci,j−h
is known, we can rewrite Ci,j as

Ci,j =
h−1∑
k=0

ρk ◦Xi,j−k + ρh ◦ Ci,j−h, 0 ≤ i ≤ I, 1 ≤ j ≤ I, 1 ≤ h ≤ j. (3.4)
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In (3.4), the unclosed claims Ci,j can be interpreted as the summation of the unclosed
claims from all the reported number of claims Xi,j−k with reporting delay j − k years,
k = 0, 1, . . . , h − 1 and the total number of past unclosed claims Ci,j−h. The probability
of being unclosed for each claim within Ci,j−h is ρh. Now consider the unclosed number
of claims in the lower right of the development triangle. Based on the observed data DI ,
Ci,I−i’s are known for i = 0, 1, . . . , I. Let h = i+ j − I in (3.4), we have

Ci,j =
i+j−I−1∑
k=0

ρk ◦Xi,j−k + ρi+j−I ◦ Ci,I−i, 1 ≤ i ≤ I, j > I − i. (3.5)

The outstanding claim numbersRi,j at the end of the development year j, j = 0, 1, . . . , I−
1, for a particular accident year i, is the summation of the not yet reported claims plus the
unclosed claims left from this development period (the summation of IBNyR and IBNeR
claims), which is defined by

Ri,j =
I∑

k=j+1
Xi,k + Ci,j . (3.6)

When j = I, Ri,I = Ci,I , which is the unclosed claims at the end of the development period.

Proposition 2. The mean, variance and the auto-correlation of Ci,j can be obtained as

E[Ci,j ] =
(

j∑
k=0

ρkγj−k

)
µi,

Var[Ci,j ] =
(

j∑
k=0

ρkγj−k

)
µi = E[Ci,j ],

Cov[Ci,j , Ci,j−h] = ρhVar[Ci,j−h] = ρh
(
j−h∑
k=0

ρkγj−h−k

)
µi =

(
j∑

k=h
ρkγj−k

)
µi.

(3.7)

Proof. Because ρk ◦Xi,j−k follows a Bernoulli distribution when Xi,j−k is given,

E[ρk ◦Xi,j−k|Xi,j−k] = ρk ·Xi,j−k,

Var[ρk ◦Xi,j−k|Xi,j−k] = ρk · (1− ρk) ·Xi,j−k.

Taking the expectation of both sides of (3.3) gives

E[Ci,j ] = E
[ j∑
k=0

ρk ◦Xi,j−k

]

=
j∑

k=0
E
[
ρk ◦Xi,j−k

]

=
j∑

k=0
E[E[ρk ◦Xi,j−k|Xi,j−k]]

17



=
j∑

k=0
E[ρk ·Xi,j−k]

=
( j∑
k=0

ρkγj−k

)
µi.

According to Assumption 1, Xi,j are independently Poisson distributed, for any 0 ≤
i, j ≤ I, and therefore, ρk ◦Xi,j−k, 0 ≤ k ≤ j, are also independent from each other. Hence,
the variance of Ci,j is

Var[Ci,j ] = Var
[ j∑
k=0

ρk ◦Xi,j−k

]

=
j∑

k=0
Var[ρk ◦Xi,j−k]

=
j∑

k=0

(
Var[E[ρk ◦Xi,j−k|Xi,j−k]] + E[Var[ρk ◦Xi,j−k|Xi,j−k]]

)
=

j∑
k=0

(
Var[ρk ·Xi,j−k] + E[ρk · (1− ρk) ·Xi,j−k]

)
=
( j∑
k=0

ρkγj−k

)
µi.

As for the covariance of Ci,j and Ci,j−h, when h ≥ 1, according to (3.4), Ci,j can be
written as a summation of ρk ◦Xi,j−k, 0 ≤ k ≤ h−1, and Ci,j−h, respectively. Furthermore,
according to (3.3), Ci,j−h can be written as a summation of ρk ◦Xi,j−h−k, 0 ≤ k ≤ j−h, and
if let k = k + h, Ci,j−h can be written as a summation of ρk−h ◦Xi,j−k, h ≤ k ≤ j. Noting
that Xi,j ’s are independently Poisson distributed for any 0 ≤ i, j ≤ I, we can conclude that
Ci,j−h is independent of Xi,j−k, 0 ≤ k ≤ h− 1. Hence,

Cov[Ci,j , Ci,j−h] = Cov
[
h−1∑
k=0

ρk ◦Xi,j−k + ρh ◦ Ci,j−h, Ci,j−h

]
= Cov[ρh ◦ Ci,j−h, Ci,j−h]

= Cov
[
E[ρh ◦ Ci,j−h|Ci,j−h],E[Ci,j−h|Ci,j−h]

]
+ E[Cov

[
ρh ◦ Ci,j−h, Ci,j−h|Ci,j−h]

]
= Cov[ρh · Ci,j−h, Ci,j−h]

= ρhVar[Ci,j−h]

= ρh
( j−h∑
k=0

ρkγj−h−k

)
µi
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=

 j∑
k=h

ρkγj−k

µi.
Note that Appendix A present an alternative proof of the auto-correlation formula.

From Proposition 2, it is concluded that the Poisson INAR model is a non-dispersed
model (variance equals to mean), which is not a desired property for claim counts. One
possible solution would be to add a prior distribution for µi; see Appendix B for more
details.

Moreover, the conditional expectation and variance of Ci,j is given by

E[Ci,j |Ci,j−h] =
(
h−1∑
k=0

ρkγj−k

)
µi + ρh · Ci,j−h,

Var[Ci,j |Ci,j−h] =
(
h−1∑
k=0

ρkγj−k

)
µi + ρh · (1− ρh) · Ci,j−h,

0 ≤ i ≤ I, 1 ≤ j ≤ I, 1 ≤ h ≤ j.

(3.8)

Based on the observed data DI and using (3.8), the expected number of unclosed claims in
the lower right development triangle can be rewritten as

E[Ci,j |DI ] = E[Ci,j |Ci,I−i] =
(
i+j−I−1∑
k=0

ρkγj−k

)
µi + ρi+j−I · Ci,I−i,

Var[Ci,j |DI ] = Var[Ci,j |Ci,I−i] =
(
i+j−I−1∑
k=0

ρkγj−k

)
µi + ρi+j−I · (1− ρi+j−I) · Ci,I−i,

1 ≤ i ≤ I, j > I − i.
(3.9)

As suggested by Section 2.4, the parametric models are usually stochastic realizations of
the traditional non-parametric models, however, the Poisson INAR model does not satisfy
the traditional CL assumption (2.2) nor the BF assumption (2.4). The reason is that the
CL and BF assumptions are typically for modelling cumulative claims while the Poisson
INAR model works for the unclosed claims.

We introduce a claim development pattern {βj}Ij=0 with

βj =
j∑

k=0
ρkγj−k. (3.10)

According to Proposition 2 and Equation (3.8), for 0 ≤ i ≤ I, 0 ≤ j ≤ I − 1,

E[Ci,0] = β0µi,

E[Ci,j+h|Ci,0, . . . , Ci,j ] = ρh · Ci,j +
(∑h−1

k=0 ρ
kγj+h−k

)
µi

= ρh · Ci,j +
(∑j+h

k=0 ρ
kγj+h−k −

∑j+h
k=h ρ

kγj+h−k
)
µi

= ρh · Ci,j + (βj+h − ρh · βj) · µi, 1 ≤ h ≤ I − j.

(3.11)
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By (3.10), βj is in decreasing order as the unclosed claims are getting less and less as to the
end of the development year, and βI should converge to 0 theoretically. Although (3.11)
is very similar to the BF assumptions (2.4), the mechanism underlying is totally different.
Equation (3.11) can be seen as the general non-parametric assumption for models regarding
to the unclosed claims and can be used as a criteria to decide the appropriation of the models
similar to our Poisson INAR model.

3.3 Prediction

To predict the outstanding liabilities (loss reserves) with our Poisson INAR model, the
frequency-severity techniques could be applied. There are usually two commonly used
methods which are described below.

• The first method has already been mentioned in Section 2.6, i.e., predicting the ulti-
mate claim numbers first and then multiplying by the average claim severity to get
the ultimate claim loads. Hence then, the outstanding liabilities are just the ultimate
claim loads minus the cumulative claim payments.

• The second method is to get the outstanding liabilities directly by the product of
the outstanding claim numbers (including both IBNyR and IBNeR claims) and the
outstanding average claim severity.

In this project, we focus only on the estimation of the ultimate claim numbers and the
outstanding claim numbers of our Poisson INAR model. We do not consider estimating the
average claim severity to get the estimation of the outstanding liabilities.

3.3.1 Prediction Based on Known Model Parameters

Now first consider the estimation of the unclosed claims Ci,j . Based on (3.9), the estimator
of Ci,j for any j > I − i, i = 1, 2, . . . , I, under the Poisson INAR model is given by

ĈPoi_INARi,j = E[Ci,j |DI ] =
( i+j−I−1∑

k=0
ρkγj−k

)
µi + ρi+j−I · Ci,I−i. (3.12)

If we write the prediction using the development pattern for the unclosed claims introduced
in (3.11),

ĈPoi_INARi,j = ρi+j−I · Ci,I−i + (βj − ρi+j−I · βI−i) · µi

= ρi+j−I · βI−i ·
Ci,I−i
βI−i

+ (βj − ρi+j−I · βI−i) · µi.
(3.13)

According to Proposition 2, E[Ci,j ] = βjµi for any 0 ≤ i, j ≤ I, and hence, Ci,I−i/βI−i can
be seen as an empirical estimate for the ultimate claim numbers. Therefore, the prediction
formula of Ci,j has a linear credibility form that combines the prior and the observed
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information. In fact, the credibility formula holds for ĈPoi_INARi,j with weight ρi+j−I · βI−i
on the empirical estimate for the ultimate claim numbers and weight βj − ρi+j−I · βI−i on
the prior information.

According to (3.6), the outstanding claim numbers Ri,j can be estimated by

R̂Poi_INARi,j = µi ·
(

I∑
k=j+1

γk

)
+ ĈPoi_INARi,j , I − i ≤ j < I, 1 ≤ i ≤ I. (3.14)

Particularly, the outstanding claims of the current calendar year for the accidents happened
in year i is given by

R̂Poi_INARi,I−i =


µi ·

(
I∑

k=I−i+1
γk

)
+ Ci,I−i, 1 ≤ i ≤ I,

Ci,I−i, i = 0.
(3.15)

There exists a credibility type estimator for the ultimate claim numbers and we denote
as µ̂Poi_INARi . For any j ≥ I − i, i = 1, 2, . . . , I,

µ̂Poi_INARi =
ĈPoi_INARi,j

βj

= ρi+j−I · βI−i
βj

· Ci,I−i
βI−i

+
(

1− ρi+j−I · βI−i
βj

)
· µi.

Choose j = I for any 1 ≤ i ≤ I in the above equation, and then

µ̂Poi_INARi = ρi · βI−i
βI

· Ci,I−i
βI−i

+
(

1− ρi · βI−i
βI

)
· µi. (3.16)

The above equation also holds when i = 0, and then µ̂Poi_INAR0 depends entirely on the
observed information. As shown in (3.16), the ultimate claim numbers can be estimated by
the linear combination of Ci,I−i/βI−i and µi.

3.3.2 Prediction Based on Unknown Model Parameters

Section 3.3.1 presents the prediction for various figures when the model parameters are
known. However in practice, all of the parameters are normally unknown and need to be
estimated first before the prediction can be done. Denote the estimators of the models
parameters as ρ̂, µ̂i and γ̂j , respectively, 0 ≤ i, j ≤ I. According to (3.12) and (3.13), the
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unclosed claims Ci,j can be estimated by

ĈPoi_INARi,j = Ê[Ci,j |DI ]

= ρ̂i+j−I · β̂I−i ·
Ci,I−i

β̂I−i
+ (β̂j − ρ̂i+j−I · β̂I−i) · µ̂i.

(3.17)

It can be seen that the predicted unclosed claims ĈPoi_INARi,j is again a linear combination of
the empirical estimates for the ultimate claim numbers and the estimated prior information
µ̂i.

Similar to (3.15), the outstanding claims of the current year for the accidents happened
in year i is given by

R̂Poi_INARi,I−i =


µ̂i ·

(
I∑

k=I−i+1
γ̂k

)
+ Ci,I−i, 1 ≤ i ≤ I,

Ci,I−i, i = 0.
(3.18)

The ultimate claim numbers can be estimated simply by µ̂i, 0 ≤ i ≤ I. A credibility
type estimator could also been obtained by

µ̂Poi_INARi = ρ̂i · β̂I−i
β̂I

· Ci,I−i
β̂I−i

+
(

1− ρ̂i · β̂I−i
β̂I

)
· µ̂i, 0 ≤ i ≤ I. (3.19)

Noting that when i = 0, µ̂Poi_INAR0 depends entirely on the observed information. Moreover
if µi’s are known, the ultimate claim numbers can be estimated by the linear combination
of Ci,I−i/β̂I−i and µi.

3.3.3 Mean Square Error of Prediction

The accuracy of the prediction can be measured by the mean square error of prediction
(MSEP). The MSEP is defined as the expected square error between the true and the pre-
dicted values, for example, Ci,j and ĈPoi_INARi,j respectively, in our Poisson INAR model.
In addition, the conditional MSEP (MSEP conditioning on the observed data) is also an ef-
fective way of measuring prediction accuracy. The following lemma presents the conditional
MSEP and the unconditional MSEP of the estimator of the unclosed claims Ci,j under the
Poisson INAR model.

Lemma 1 (MSEP of the Poisson INAR Model). If the model parameters are known, that
is, ĈPoi_INARi,j = E[Ci,j |DI ] given by (3.12), denoting ĈPoi_INARi,j by Ĉi,j for simplicity, we
have

MSEP[Ĉi,j |DI ] = (βj − ρi+j−I · βI−i) · µi + ρi+j−I · (1− ρi+j−I) · Ci,I−i.

The unconditional MSEP is the same as the conditional one.
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Proof. By definition of the conditional MSEP and (3.12), we can easily get

MSEP[Ĉi,j |DI ] = E[(Ci,j − Ĉi,j)2|DI ] = Var[Ci,j |DI ].

According to (3.9), we can further write MSEP[Ĉi,j |DI ] as

MSEP[Ĉi,j |DI ] =

i+j−I−1∑
k=0

ρkγj−k

µi + ρi+j−I · (1− ρi+j−I) · Ci,I−i.

If it is written using the development pattern βj , then

MSEP[Ĉi,j |DI ] = (βj − ρi+j−I · βI−i) · µi + ρi+j−I · (1− ρi+j−I) · Ci,I−i.

The unconditional MSEP is just the expectation of the conditional MSEP, which gives

MSEP[Ĉi,j ] = E[MSEP[Ĉi,j |DI ]] = MSEP[Ĉi,j |DI ].

As for the MSEP of R̂Poi_INARi,I−i , 1 ≤ i ≤ I, when the model parameters are known and
according to (3.15),

MSEP[R̂Poi_INARi,I−i ] = E
[
(Ri,I−i − R̂Poi_INARi,I−i )2

]
= E


 I∑

k=I−i+1
Xi,k + Ci,I−i

−
 I∑
k=I−i+1

γkµi + Ci,I−i

2


= E


 I∑
k=I−i+1

Xi,k −
I∑

k=I−i+1
γkµi

2


= E


 I∑
k=I−i+1

Xi,k −
I∑

k=I−i+1
E[Xi,k]

2


= Var

 I∑
k=I−i+1

Xi,k


=

I∑
k=I−i+1

Var[Xi,k]

=

 I∑
k=I−i+1

γk

µi.
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Finally, we consider the MSEP of µ̂Poi_INARi . When the parameters are all known and
based on (3.16),

MSEP[µ̂Poi_INARi ] = E[(µ̂Poi_INARi − µi)2]

= E

(ρi · βI−i
βI

· Ci,I−i
βI−i

+
(

1− ρi · βI−i
βI

)
· µi − µi

)2


= E

(ρi · βI−i
βI

·
(
Ci,I−i
βI−i

− µi
))2


= E

( ρi
βI
· (Ci,I−i − βI−iµi)

)2


=
(
ρi

βI

)2

E[(Ci,I−i − E[Ci,I−i])2]

=
(
ρi

βI

)2

Var[Ci,I−i]

=
(
ρi

βI

)2

βI−iµi.

If the model parameters are unknown, that is, ĈPoi_INARi,j = Ê[Ci,j |DI ] given by (3.17).
Denote ĈPoi_INARi,j by Ĉi,j for simplicity, in this case,

MSEP[Ĉi,j |DI ] = E[(Ci,j − Ĉi,j)2|DI ]

= E[((Ci,j − E[Ci,j |DI ])− (Ĉi,j − E[Ci,j |DI ]))2|DI ]

= Var[Ci,j |DI ] + E[(Ĉi,j − E[Ci,j |DI ])2|DI ]

where the first term Var[Ci,j |DI ] is the MSEP of the estimator when the model parameters
are known and the second term is the prediction error results from the uncertainty of the
parameter estimations (Buchwalder et al., 2006). The first term can be estimated by

V̂ar[Ci,j |DI ] = (β̂j − ρ̂i+j−I · β̂I−i) · µ̂i + ρ̂i+j−I · (1− ρ̂i+j−I) · Ci,I−i,

but the explicit expression for the second term is difficult to obtain. According to (3.18),
the MSEP of R̂Poi_INARi,i−i is given by

MSEP[R̂Poi_INARi,I−i ]

= E
[
(Ri,I−i − R̂Poi_INARi,I−i )2

]
= E


 I∑

k=I−i+1
Xi,k + Ci,I−i

−
 I∑
k=I−i+1

γ̂kµ̂i + Ci,I−i

2
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= E


 I∑
k=I−i+1

Xi,k −
I∑

k=I−i+1
γ̂kµ̂i

2


= E


 I∑

k=I−i+1
Xi,k −

I∑
k=I−i+1

E[Xi,k]

−
 I∑
k=I−i+1

γ̂kµ̂i −
I∑

k=I−i+1
γkµi

2


= Var

 I∑
k=I−i+1

Xi,k

+ E


 I∑
k=I−i+1

γ̂kµ̂i −
I∑

k=I−i+1
γkµi

2
 .

From above equation, the MSEP of R̂Poi_INARi,I−i is also a summation of prediction error
under known parameters and the parameter estimation error. The MSEP of µ̂Poi_INARi

could be explained similarly as that of R̂Poi_INARi,I−i .
It can be seen from the above expressions that the explicit formula for MSEP is diffi-

cult to obtain under unknown model parameters case, and therefore, we simply ignore the
estimation error of parameters when estimating the MSEP in our project. The formulas for
the estimated MSEPs are hence given by

M̂SEP[Ĉi,j |DI ] = (β̂j − ρ̂i+j−I · β̂I−i) · µ̂i + ρ̂i+j−I · (1− ρ̂i+j−I) · Ci,I−i,

M̂SEP[R̂Poi_INARi,I−i ] =
(∑I

k=I−i+1 γ̂k

)
· µ̂i, 1 ≤ i ≤ I,

M̂SEP[µ̂Poi_INARi ] =
(
ρ̂i

β̂I

)2
β̂I−iµ̂i.

3.4 Estimation of the Parameters

The traditional INAR(1) process has already been discussed by Alosh and Alzaid (1987) and
their results have been extended to the replicated INAR(1) process by Silva et al. (2005).
Since the Poisson INAR model is quite similar to the replicated INAR(1) process, similar
estimation methods can be adopted. Among all the methods, the Yuller-Walker and the
least squares estimations are easier to be understood and computed, and they are discussed
in the following sections.

3.4.1 Yuller-Walker Estimation

The main idea of Yuller-Walker estimation is to estimate ρ by the empirical estimates for
the auto-covariance. Denote that ξi,j(h) = Cov[Ci,j , Ci,j−h]. According to Proposition 2,
the following equation holds:

ξi,j(h) = ρhξi,j−h(0), 0 ≤ i ≤ I, 1 ≤ j ≤ I, 1 ≤ h ≤ j.
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If we can get the estimates for all the ξi,j(1) and ξi,j−1(0) for 0 ≤ i ≤ I−1 and 1 ≤ j ≤ I−i,
the estimator of ρ can be written as

ρ̂ =

I−1∑
i=0

I−i∑
j=1

ξ̂i,j(1)

I−1∑
i=0

I−i∑
j=1

ξ̂i,j−1(0)
.

However, we only have one observation for each cell (i, j), and ξi,j(1) and ξi,j−1(0) depend
on both i and j, and therefore, the empirical estimates for ξi,j(1) and ξi,j−1(0) could not be
obtained.

Now consider a special case of the model when all µi’s are equal, being µ. It follows that
the auto-covariance does not depend on accident year i, which results in ξi,j(1) = ξj(1) and
ξi,j−1(0) = ξj−1(0) for any 0 ≤ i ≤ I. Hence, for any development year j, 1 ≤ j ≤ I − 1,
we have 1 + I − j pairs of observations for the previous and current development year, and
they could be used to get the empirical estimates for ξj(1)’s and ξj−1(0)’s. That is,

ξ̂j(1) =
∑I−j

i=0 (Ci,j−C̄·,j)(Ci,j−1−C̄·,j−1)
(I−j+1) ,

ξ̂j−1(0) =
∑I−j

i=0 (Ci,j−1−C̄·,j−1)2

(I−j+1) ,

where C̄·,j =
∑I−j
i=0 Ci,j/(I−j+1), C̄·,j−1 =

∑I−j
i=0 Ci,j−1/(I−j+1). Therefore, the unclosed

rate ρ can be estimated by the weighted average of ξ̂j(1)/ξ̂j−1(0), which is given by

ρ̂ =

∑I−1
j=1

[∑I−j
i=0 (Ci,j − C̄·,j)(Ci,j−1 − C̄·,j−1)

]
∑I−1
j=1

[∑I−j
i=0 (Ci,j−1 − C̄·,j−1)2

] . (3.20)

Next we consider the estimation of µi’s and γj ’s. Below we first show a proposition
about the sum of E[Ci,j ]’s.

Proposition 3. The sum of E[Ci,j ]’s of the observed data of each row and each column
has the following relationships:∑I−i

j=0 E[Ci,j ]∑I−i
j=0 E[Ci−1,j ]

= µi
µi−1

, 1 ≤ i ≤ I,
I−j∑
i=0

E[Ci,j ]− ρ
I−j∑
i=0

E[Ci,j−1] = γj
I−j∑
i=0

µi, 0 ≤ j ≤ I.
(3.21)

Proof. We begin with proving the relationship between adjacent rows. First, if summing
both sides of the first equation of (3.7) for the ith row over j (from 0 to I − i, all the
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observed data in this row),

I−i∑
j=0

E[Ci,j ] =
I−i∑
j=0

( j∑
k=0

ρkγj−k

)
µi.

For the previous row,
I−i∑
j=0

E[Ci−1,j ] =
I−i∑
j=0

( j∑
k=0

ρkγj−k

)
µi−1.

Clearly, based on the above two equations, the first part of (3.21) holds.
For the adjacent columns, letting h=1 in (3.8) gives E[Ci,j |Ci,j−1] = γjµi + ρCi,j−1 for

any 0 ≤ i ≤ I and 1 ≤ j ≤ I, and thus,

E[Ci,j ] = γjµi + ρE[Ci,j−1].

By summing both sides of the equation above over the observed data for column j, we get

( I−j∑
i=0

E[Ci,j ]
)

= γj

( I−j∑
i=0

µi

)
+ ρ

( I−j∑
i=0

E[Ci,j−1]
)
, 1 ≤ j ≤ I.

When j = 0, E[Ci,0] = γ0 · µi, so that
(∑I

i=0 E[Ci,0]
)

= γ0
(∑I

i=0 µi
)
. Because Ci,−1 = 0

for all 0 ≤ i ≤ I by definition, the above equation also holds when j = 0. Now the proof
completes.

Using the estimator of ρ given by (3.20) and the observation Ci,j as an approximation
of E[Ci,j ] and noting µi = µ, and by Proposition 3, we get

( I−j∑
i=0

Ci,j

)
− ρ̂

( I−j∑
i=0

Ci,j−1

)
= γj · (I − j + 1) · µ, 0 ≤ j ≤ I. (3.22)

Because of the constraint that
∑I
j=0 γj = 1, the estimator µ̂ can be obtained as

µ̂ =
I∑
j=0

(∑I−j
i=0 Ci,j − ρ̂

∑I−j
i=0 Ci,j−1

I − j + 1

)
. (3.23)

Plug in the estimator of µ to (3.22), the estimator of γj is obtained as

γ̂j =
∑I−j
i=0 Ci,j − ρ̂

∑I−j
i=0 Ci,j−1

(I − j + 1) · µ̂ , j = 0, 1, . . . , I. (3.24)
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Remark 2. If µi’s are not all equal, according to Proposition 3, we could introduce a
transformation to the observed data DI . Let

Πi =
i∏

k=1

( ∑I−k
j=0 E[Ck,j ]∑I−k
j=0 E[Ck−1,j ]

)
, 1 ≤ i ≤ I,

and C∗i,j = Ci,j/Πi. The transformed dataset has the same mean, variance and covariance
formulae as the Poisson INAR model when all µi’s are equal. However, the model dynamic
is influenced by the transformation, i.e., C∗i,j 6= ρ ◦ C∗i,j−1 + X∗i,j , because X∗i,j = Xi,j/Πi

does not follow a Poisson distribution. To conclude, Yuller-Walk estimation can only be
applied to the case when all µi’s are equal in our Poisson INAR model. .

Consider an even more simpler case when all µi’s are equal and γj ’s, j = 0, 1, . . . , I, are
known. If all γj ’s are known, we are only left with two parameters to estimate. Not only
the estimation is simplified, but also we could examine whether less unknown parameters
could improve the estimation accuracy. In this case, the estimator of ρ is still given by
(3.20), and (3.23) for µ̂ reduces to

µ̂ =
∑I
i=0

∑I−i
j=0

(
Ci,j − ρ̂Ci,j−1

)∑I
j=0(I − j + 1)γj

. (3.25)

The above equation can be obtained by taking a summation of both sides of (3.22) from
j = 0 to j = I.

3.4.2 Conditional Least Squares Estimation

The main idea of the conditional least squares (CLS) estimation is to get the estimated
parameters by minimizing the sum of the squared errors between the observed values and
its conditional expectation.

According to (3.8), E[Ci,j |Ci,j−1] = γjµi + ρCi,j−1 for 0 ≤ i ≤ I and 1 ≤ j ≤ I. This
equation also holds for j = 0. To get the estimation of ρ, µi’s and γj ’s, one has to minimize
the objective function

Q(θ) =
I∑
i=0

I−i∑
j=0

(Ci,j − ρCi,j−1 − γjµi)2

under the constraint
∑I
j=0 γj = 1. Parameter θ here denotes the parameters that needed to

be estimated in the objective function. Because there is a constraint to the parameters, the
Lagrange multiplier method is applied to solve the problem. The new objective function
now becomes

Q∗(θ) =
I∑
i=0

I−i∑
j=0

(Ci,j − ρCi,j−1 − γjµi)2 + λ

1−
I∑
j=0

γj

 .
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Taking derivatives with respect to ρ, µi’s and γj ’s, respectively, we get

∂Q∗(θ)
∂ρ =

∑I
i=0

∑I−i
j=0−2(Ci,j − ρCi,j−1 − γjµi)Ci,j−1,

∂Q∗(θ)
∂µi

=
∑I−i
j=0−2(Ci,j − ρCi,j−1 − γjµi)γj ,

∂Q∗(θ)
∂γj

=
(∑I−j

i=0 −2(Ci,j − ρCi,j−1 − γjµi)µi
)
− λ.

By setting the three equations above to zero, the estimators of ρ, µi’s and γj ’s can be
obtained as

ρ̂ =
∑I
i=0

∑I−i
j=0(Ci,j − γ̂jµ̂i)Ci,j−1∑I
i=0

∑I−i
j=0C

2
i,j−1

,

µ̂i =
∑I−i
j=0(Ci,j − ρ̂Ci,j−1)γ̂j∑I−i

j=0 γ̂
2
j

, i = 0, 1, . . . , I,

γ̂j =
∑I−j
i=0 (Ci,j − ρ̂Ci,j−1)µ̂i + λ̂

2∑I−j
i=0 µ̂

2
i

, j = 0, 1, . . . , I.

(3.26)

Summing over the expression of γ̂j for j yields

I∑
j=0

(∑I−j
i=0 (Ci,j − ρ̂Ci,j−1)µ̂i + λ̂

2∑I−j
i=0 µ̂

2
i

)
= 1.

After regrouping the terms, we get

λ̂ =

(∑I
j=0

(∑I−j
i=0 (Ci,j − ρ̂Ci,j−1)µ̂i∑I−j

i=0 µ̂
2
i

)
− 1

)
× 2

−
(∑I

j=0
1∑I−j

i=0 µ̂
2
i

) .

Based on the derivations above, we have the following algorithm for estimating the
unknown parameters.

Algorithm 1.

• First randomly select a starting value ρ̂0 between 0 and 1.

• Based on this known ρ̂0, denote X̂i,j = Ci,j − ρ̂0 · Ci,j−1, 0 ≤ i ≤ I, 0 ≤ j ≤ I − i.
The starting values of µ̂i’s and γ̂j ’s can be estimated by assuming X̂i,j ’s approxi-
mately follow the Poisson model; see Section 2.4 for the definition of Poisson model.
Therefore,

µ̂0,0 =
∑I
j=0(X̂i,j),

µ̂i,0 =
∑I−i

j=0 X̂i,j(
1−
∑I

j=I−i+1 γ̂j,0
) , i = 1, 2, . . . , I,

γ̂j,0 =
∑I−j

i=0 X̂i,j(∑I−j
i=0 µ̂i,0

) , j = 0, 1, . . . , I.
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• After obtaining the starting values, the estimates of the parameters can be updated
iteratively using the equations given by (3.26). During each iteration, update ρ̂ first,
then update µ̂i’s with the new ρ̂ and the previous γ̂j ’s, calculate the Lagrange mul-
tiplier λ̂ for this iteration, and finally update γ̂j ’s with the updated ρ̂, µ̂i’s and the
calculated λ̂.

• Repeat the iteration until the estimates coverages. The convergence criteria is to check
whether the distance between the old and updated estimates is within a particular
tolerance level. For example, choose the tolerance level to be 0.0001 to guarantee the
accuracy of the estimates is within three decimal places.

Since the Yuller-Walker estimation works only for the case when all µi’s are equal, we
give the CLS estimation under equal µi’s as well for comparison. Meanwhile, the case when
all the µi’s are equal and the γj ’s are known is also considered. The estimation formulas
and the algorithm both become quite different from that under the general assumption.

Case I: All µi’s are equal and all γj’s are unknown
When µi = µ, i = 0, 1, . . . , I, the objective function becomes

Q̃(θ) =
I∑
i=0

I−i∑
j=0

(Ci,j − ρCi,j−1 − γjµ)2 + λ

1−
I∑
j=0

γj

 .
Taking derivatives with respect to ρ, µ and γj , we obtain that

ρ̂ =
∑I
i=0

∑I−i
j=0(Ci,j − γ̂jµ̂)Ci,j−1∑I
i=0

∑I−i
j=0C

2
i,j−1

,

µ̂ =
∑I
i=0

∑I−i
j=0(Ci,j − ρ̂Ci,j−1)γ̂j∑I
i=0

∑I−i
j=0 γ̂

2
j

,

γ̂j =
∑I−j
i=0 (Ci,j − ρ̂Ci,j−1)µ̂+ λ̂

2
(I − j + 1)µ̂2 , j = 0, 1, . . . , I.

(3.27)

The estimation formulae for ρ and µ can be rewritten as

(∑I
i=0

∑I−i
j=0C

2
i,j−1

)
ρ̂+

(∑I
i=0

∑I−i
j=0 γ̂jCi,j−1

)
µ̂ =

∑I
i=0

∑I−i
j=0Ci,jCi,j−1,(∑I

i=0
∑I−i
j=0 γ̂jCi,j−1

)
ρ̂+

(∑I
i=0

∑I−i
j=0 γ̂

2
j

)
µ̂ =

∑I
i=0

∑I−i
j=0 γ̂jCi,j .

(3.28)

Solve (3.28) by treating them as the equations regarding to ρ̂ and µ̂, one can get

ρ̂ = f(γ̂) · g(γ̂)− b · h(γ̂)
f(γ̂)2 − a · g(γ̂) ,

µ̂ = b · f(γ̂)− a · g(γ̂)
f(γ̂)2 − a · g(γ̂) ,

(3.29)
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where γ̂ = (γ̂0, γ̂1, . . . , γ̂I), and

a =
I∑
i=0

I−i∑
j=0

C2
i,j−1,

b =
I∑
i=0

I−i∑
j=0

Ci,jCi,j−1,

f(γ̂) =
I∑
i=0

I−i∑
j=0

γ̂jCi,j−1,

g(γ̂) =
I∑
i=0

I−i∑
j=0

γ̂jCi,j ,

h(γ̂) =
I∑
i=0

I−i∑
j=0

γ̂2
j .

Under the constraint
I∑
j=0

γj = 1, the last equation in (3.27) gives

I∑
j=0

(∑I−j
i=0 (Ci,j − ρ̂Ci,j−1)µ̂+ λ̂

2
(I − j + 1)µ̂2

)
= 1.

After regrouping the terms, we further obtain

λ̂ =

(∑I
j=0

(∑I−j
i=0 (Ci,j − ρ̂Ci,j−1)

(I − j + 1)µ̂
)
− 1

)
× 2

−
(∑I

j=0
1

(I − j + 1)µ̂2

) . (3.30)

Algorithm 2.

• First randomly select a starting value ρ̂0 between 0 and 1.

• Based on this known ρ̂0, the starting values of µ̂ and γ̂j ’s can be estimated by Equa-
tions (3.23) and (3.24), respectively.

• After obtaining the starting values, the estimates of the parameters can be updated
iteratively using Equations (3.27), (3.29) and (3.30). During each iteration, update
ρ̂ and µ̂ first, then calculate the Lagrange multiplier λ̂ for this iteration, and finally
update γ̂j ’s with the updated ρ̂, µ̂ and the calculated λ̂.

• Repeat the iteration until the estimates coverages. The convergence criteria is the
same as Algorithm 1.

Case II: All µi’s are equal and all γj’s are known
Under this situation, the estimation becomes quite straightforward. The objective func-

tion that needs to be minimized is just Q(θ) =
∑I
i=0

∑I−i
j=0(Ci,j − ρCi,j−1 − γjµ)2. In this
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case, ρ and µ can be estimated directly using (3.29) with γ̂ replaced by the true γ. It is a
one step calculation and no iterative algorithm is needed.

3.4.3 Iterative Weighted Conditional Least Squares Estimation

The iterative weighted conditional least squares (IWCLS) estimation is one step further from
the CLS estimation. The IWCLS estimation of the parameters is obtained by minimizing
the sum of the squared error between each observation and its conditional mean, weighted
by the inverse of the conditional variance. This estimation becomes more reasonable because
less weights are put on the observations with bigger uncertainty.

According to (3.8) and noting that Ci,−1 = 0, for any 0 ≤ i ≤ I and 0 ≤ j ≤ I, we have

E[Ci,j |Ci,j−1] = γjµi + ρ · Ci,j−1,

Var[Ci,j |Ci,j−1] = γjµi + ρ · (1− ρ) · Ci,j−1.

To get the estimation of ρ, µi’s and γj ’s, one has to minimize the objective function

QW (θ) =
I∑
i=0

I−i∑
j=0

(Ci,j − ρCi,j−1 − γjµi)2

γjµi + ρ · (1− ρ) · Ci,j−1

under the constraint
I∑
j=0

γj = 1, where θ denotes the parameters that need to be estimated

in the objective function. The Lagrange multiplier method could also be applied to solve
the problem. The new objective function is

Q∗W (θ) =
I∑
i=0

I−i∑
j=0

(Ci,j − ρCi,j−1 − γjµi)2

γjµi + ρ · (1− ρ) · Ci,j−1
+ λ

(
1−

I∑
j=0

γj
)
.

Letting Di,j(θ) = γjµi + ρ · (1− ρ) ·Ci,j−1, the objective function (3.31) can be rewritten as

Q∗W (θ) =
I∑
i=0

I−i∑
j=0

(Ci,j − ρCi,j−1 − γjµi)2

Di,j(θ)
+ λ

(
1−

I∑
j=0

γj
)
. (3.31)

Taking derivatives with respect to each parameter could be troublesome because of the
existence of the denominator Di,j(θ). The solution would be to treat Di,j(θ) as known and
let it be estimated using a set of estimates of the parameters in θ, for instance, the CLS
estimation. Now taking derivatives of (3.31) with respect to ρ, µi’s and γj ’s and letting
them equal to zero, and by solving the system of equations, the following estimation results
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are obtained:

ρ̂ =

I∑
i=0

I−i∑
j=0

1
Di,j(θ̂)

(Ci,j − γ̂jµ̂i)Ci,j−1

I∑
i=0

I−i∑
j=0

1
Di,j(θ̂)

C2
i,j−1

,

µ̂i =

I−i∑
j=0

1
Di,j(θ̂)

(Ci,j − ρ̂Ci,j−1)γ̂j

I−i∑
j=0

1
Di,j(θ̂)

γ̂2
j

, i = 0, 1, . . . , I,

γ̂j =

I−j∑
i=0

1
Di,j(θ̂)

(Ci,j − ρ̂Ci,j−1)µ̂i + λ̂
2

I−j∑
i=0

1
Di,j(θ̂)

µ̂2
i

, j = 0, 1, . . . , I.

(3.32)

Summing over j for j = 0, 1, . . . , I of the expression of γ̂j and solving for λ̂, we get

λ̂ =

(
I∑
j=0

∑I−j
i=0

1
Di,j(θ̂)

(Ci,j − ρ̂Ci,j−1)µ̂i∑I−j
i=0

1
Di,j(θ̂)

µ̂2
i

− 1
)
× 2

−
(

I∑
j=0

1∑I−j
i=0

1
Di,j(θ̂)

µ̂2
i

) .

The algorithm for obtaining the estimation of all the parameters is presented below.

Algorithm 3.

• First we need to have a set of starting values for the parameters. We can either
choose their corresponding CLS estimations as the starting values or use the method
suggested by Algorithm 1. (We choose the estimates in Algorithm 1 in this project to
guarantee fair comparison between the CLS and IWCLS estimations.)

• After obtaining the starting values, the estimates of the parameters can be updated
iteratively using Equation (3.32). During each iteration, first calculate Di,j(θ̂) using
the previous estimates for the parameters, then update ρ̂ and µ̂i’s, next calculate the
Lagrange multiplier λ̂ for this iteration, and finally update γ̂j ’s with the updated ρ̂,
µ̂i’s and the calculated λ̂.

• Repeat the iteration until the estimates coverages. The convergence criterion is the
same as in Algorithm 1.

In the following, we consider two special cases the same as in the CLS estimation.

Case I: All µi’s are equal and all γj’s are unknown
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When µi = µ, i = 0, 1, . . . , I, the objective function becomes

Q̃W (θ) =
I∑
i=0

I−i∑
j=0

(Ci,j − ρCi,j−1 − γjµ)2

Di,j(θ̂)
+ λ

1−
I∑
j=0

γj

 ,
where Di,j(θ̂) = γ̂jµ̂+ ρ̂ · (1− ρ̂) · Ci,j−1. The derivation of the estimation formulae under
this case is very similar to the CLS estimation when all µi’s are equal, so only the results
are shown in the following.

The estimators of ρ and µ are given by

ρ̂ = fW (γ̂) · gW (γ̂)− bW · hW (γ̂)
fW (γ̂)2 − aW · hW (γ̂) ,

µ̂ = bW · fW (γ̂)− aW · gW (γ̂)
fW (γ̂)2 − aW · hW (γ̂) ,

(3.33)

where γ̂ = (γ̂0, γ̂1, . . . , γ̂I), and

aW =
I∑
i=0

I−i∑
j=0

C2
i,j−1

Di,j(θ̂)
,

bW =
I∑
i=0

I−i∑
j=0

Ci,jCi,j−1
Di,j(θ̂)

,

fW (γ̂) =
I∑
i=0

I−i∑
j=0

γ̂jCi,j−1
Di,j(θ̂)

,

gW (γ̂) =
I∑
i=0

I−i∑
j=0

γ̂jCi,j
Di,j(θ̂)

,

hW (γ̂) =
I∑
i=0

I−i∑
j=0

γ̂2
j

Di,j(θ̂)
.

The estimators of γj ’s and λ is given by

γ̂j =

( I−j∑
i=0

1
Di,j(θ̂)

(Ci,j − ρ̂Ci,j−1)
)
µ̂+ λ̂

2( I−j∑
i=0

1
Di,j(θ̂)

)
µ̂2

, j = 0, 1, . . . , I,

λ̂ =

(
I∑
j=0

∑I−j
i=0

1
Di,j(θ̂)

(Ci,j − ρ̂Ci,j−1)∑I−j
i=0

1
Di,j(θ̂)

µ̂
− 1

)
× 2

−

(
I∑
j=0

1∑I−j
i=0

1
Di,j(θ̂)

µ̂

) .

(3.34)

Algorithm 4.

• The choice of the starting values is the same as shown in Algorithm 2.

• After obtaining the starting values, the estimates of the parameters can be updated
iteratively using Equations (3.33) and (3.34). During each iteration, first calculate

34



Di,j(θ̂) using the previous estimates for the parameters, then update ρ̂ and µ̂, next
calculate the Lagrange multiplier λ̂ for this iteration, and finally update γ̂j ’s with the
updated ρ̂, µ̂ and the calculated λ̂.

• Repeat the iteration until the estimates coverages. The convergence criterion is the
same as in Algorithm 1.

Case II: All µi’s are equal and all γj’s are known
Under this situation, ρ and µ can still be estimated using (3.33) but with γ̂ replaced

by the true γ where Di,j(θ̂) is estimated using the previous estimates for ρ and µ. The
algorithm in this case is quite similar to Algorithm 4 but with only two parameters needed
to be updated. The starting value of µ for a given ρ̂0 can be obtained by using (3.25).
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Chapter 4

Numerical Illustration

Chapter 3 gives a thorough introduction to the Poisson INAR model that can be used to
model the unclosed claims triangle. In Section 3.4, three different parameter estimation
methods are considered and we also present the algorithms when the model has different
numbers of the model parameters needed to be estimated. In this chapter, we conduct
a simulation study to investigate the effectiveness of different estimation methods. We
simulate data under different triangle sizes to see the influence of the relative size of the
observed data compared to the number of parameters to be estimated. Section 3.3 has
discussed the prediction of the Poisson INAR model. In this chapter, we generate a random
sample when I = 14 to illustrate the accuracy of the prediction results. The chapter is
divided into two sections. Section 4.1 presents the estimation of the parameters based on
the results of the simulation study, and Section 4.2 shows the prediction results using the
simulated sample and summarizes the accuracy of various prediction figures.

4.1 Estimation of the Parameters

In order to know the efficiency of the three estimation methods and the influence of the rela-
tive size of the observed data compared to the number of unknown parameters, a simulation
study is conducted in this section in order to evaluate the estimation performance.

We choose three different sizes of the development triangle for our study with the final
settlement happening at I = 6, I = 10 and I = 14, respectively. For all different sizes of
development triangles, in the simulation we set µi = µ = 2000 , i = 0, 1, . . . , I and ρ = 0.5.
The choice of γj ’s for each size of the development triangle is quite random but with some
rules. They need to be added up to 1 and also in a non-increasing order because usually
the latter development years have less proportion of IBNyR claims. The following γj ’s are
selected:

I = 6: γ = (0.5, 0.2, 0.1, 0.1, 0.05, 0.03, 0.02);

I = 10: γ = (0.3, 0.2, 0.1, 0.1, 0.1, 0.08, 0.07, 0.03, 0.01, 0.005, 0.005);
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The number of unknown parameters
I Case 1 Case 2 General Case The observed data size
6 2 9 15 28
10 2 13 23 66
14 2 17 31 120

Table 4.1: The number of parameters that need to be estimated under different I and
different cases compared to the observed data size

I = 14: γ = (0.4, 0.2, 0.1, 0.1, 0.06, 0.04, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01).

A total number of 1000 random samples are generated for each set of the parameters (i.e.,
for I = 6, I = 10 and I = 14, respectively), so there are 3000 random samples in total for
all three sizes of triangles.

Consider three cases in our simulation study as mentioned in Section 3.4. Case 1 is that
all µi = µ and γj ’s are known so that we are to estimate ρ and µ only. Case 2 is the case
when the information µi = µ is available but γj ’s are unknown, so we are to estimate ρ,
µ and γj ’s. The General Case is the case without knowing the information that µi’s are
all the same and the γj ’s are also unknown. In this case, we have to use the algorithms
developed for the general model assumptions. Each set of 1000 simulated samples are used
repeatedly to do the estimation under Case 1, Case 2 and the General Case, also under
different estimation methods. Using the same simulated data under different cases and
different estimation methods eliminates the possible influence for the estimation accuracy
due to the randomness of the samples. Table 4.1 summarizes the number of parameters
that need to be estimated under different triangle sizes and different cases and the observed
data size under different I’s. From the table we can see that the observed data size grows
quicker than the number of unknown parameters as I increases.

To get a thorough understanding of the estimation results under different cases, different
estimation methods and different sizes of the triangle, we consider the bias and the mean
square error of the estimators for various parameters, and finally the distribution of the
estimators for ρ and µ. Under the General Case, the distribution of the average of the
estimators of all µi’s are drawn to compare with the one under the other two cases where
only one µ is estimated.

4.1.1 Bias and Mean Square Error

First of all, we calculate the relative bias and the square root of the mean square error of
the estimators under each triangle size, each case and each estimation method. The relative
bias is given by the distance between the estimated and the true value of the parameters
divided by the true value. We present the relative bias instead of bias here so that the
accuracy of the estimates for different model parameters are comparable to each other. The
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mean square error of estimators is the variance of the estimators plus the square of the bias. We
present the square root of the mean square error here so that it has the same scale as the model
parameters. The results are organized and shown in Tables 4.2 to 4.4 in this section.

I = 6
YW CLS IWCLS

Bias Root MSE Bias Root MSE Bias Root MSE

Case 1
ρ̂ -0.09886 0.13785 0.00012 0.00734 0.00013 0.00707
µ̂ 0.06653 369.69462 0.00015 23.71062 0.00019 23.58873

Case 2

ρ̂ -0.09886 0.13785 -0.10082 0.13302 -0.09031 0.12229
µ̂ 0.09143 506.13061 0.09325 488.40579 0.08358 449.56267

-0.04096 0.38362 -0.04704 0.37890 -0.04314 0.37874
0.01525 0.16070 0.01742 0.15982 0.01607 0.16051
0.05674 0.15624 0.06553 0.15463 0.05980 0.15495

γ̂j 0.02881 0.15587 0.03357 0.15443 0.03055 0.15484
0.07480 0.17471 0.08609 0.17331 0.07913 0.17381
0.09812 0.18570 0.11197 0.18448 0.10291 0.18497
0.10959 0.19113 0.12304 0.19010 0.11394 0.19091

General
Case

ρ̂ -0.53641 0.32307 -0.56474 0.31173
0.49350 1189.16190 0.51845 1147.21756
0.49344 1190.87668 0.51957 1149.22785
0.49477 1195.87579 0.52096 1153.62683

µ̂i 0.49264 1191.98240 0.51879 1148.78634
0.49617 1197.97751 0.52171 1154.67218
0.49411 1194.36324 0.51999 1152.12680
0.49774 1202.61042 0.52321 1157.49310
-0.29092 0.29298 -0.32249 0.28115
0.10461 0.13274 0.11611 0.12999
0.41869 0.11527 0.46492 0.11153

γ̂j 0.22152 0.11041 0.24619 0.10512
0.53953 0.12735 0.59818 0.12219
0.66796 0.14160 0.73728 0.13670
0.67519 0.15180 0.74432 0.14728

Table 4.2: Summary of relative bias and square root of mean square error of the estimators un-
der I = 6. The true values of the parameters are: ρ = 0.5, µi = µ = 2000 and γ =
(0.5, 0.2, 0.1, 0.1, 0.05, 0.03, 0.02).
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I = 10
YW CLS IWCLS

Bias Root MSE Bias Root MSE Bias Root MSE

Case 1
ρ̂ -0.12939 0.10556 -0.00093 0.00667 -0.00062 0.00624
µ̂ 0.09948 325.74874 0.00020 23.36263 0.00004 22.93440

Case 2

ρ̂ -0.12939 0.10556 -0.12859 0.10432 -0.11889 0.09551
µ̂ 0.12600 411.44294 0.12522 406.59919 0.11580 372.91806

-0.09420 0.20318 -0.09419 0.20301 -0.08909 0.20336
-0.02122 0.13119 -0.02122 0.13118 -0.02003 0.13150
0.07502 0.08091 0.07502 0.08088 0.07090 0.08106
0.03712 0.07975 0.03711 0.07975 0.03491 0.08012
0.01834 0.07930 0.01834 0.07930 0.01719 0.07961

γ̂j 0.03486 0.07910 0.03487 0.07909 0.03287 0.07944
0.03450 0.08097 0.03450 0.08096 0.03262 0.08129
0.16822 0.09700 0.16823 0.09699 0.15918 0.09746
0.45939 0.10994 0.45931 0.10993 0.43504 0.11032
0.60156 0.11419 0.60126 0.11419 0.57224 0.11450
0.32049 0.11497 0.32049 0.11497 0.30677 0.11530

General
Case

ρ̂ -0.66433 0.35031 -0.54401 0.29120
0.64673 1366.79175 0.52910 1134.86239
0.64702 1366.37727 0.52978 1136.03474
0.64746 1367.26176 0.53055 1138.26104
0.64846 1369.59326 0.53128 1139.01081
0.64669 1367.33203 0.52950 1138.17723

µ̂i 0.64845 1370.16621 0.53114 1139.95040
0.64977 1374.10748 0.53217 1142.78759
0.64853 1371.82981 0.53130 1142.23022
0.64821 1370.93267 0.53091 1140.58644
0.64883 1371.59685 0.53201 1143.99267
0.64559 1368.42685 0.52883 1140.21470
-0.38082 0.16240 -0.33398 0.16280
-0.08773 0.11003 -0.07687 0.11300
0.30262 0.07699 0.26521 0.07588
0.15504 0.06548 0.13576 0.06680
0.08097 0.06150 0.07082 0.06374
0.15052 0.05983 0.13173 0.06226

γ̂j 0.14469 0.06048 0.12682 0.06321
– continued on next page
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– continued from previous page

I = 10
YW CLS IWCLS

Bias Root MSE Bias Root MSE Bias Root MSE
0.68794 0.07423 0.60303 0.07727
1.81471 0.08782 1.59319 0.09085
2.24310 0.09549 1.97313 0.09817
1.15178 0.09929 1.01764 0.10147

Table 4.3: Summary of relative bias and square root of mean square error of the estimators un-
der I = 10. The true values of the parameters are: ρ = 0.5, µi = µ = 2000 and γ =
(0.3, 0.2, 0.1, 0.1, 0.1, 0.08, 0.07, 0.03, 0.01, 0.005, 0.005).

I = 14
YW CLS IWCLS

Bias Root MSE Bias Root MSE Bias Root MSE

Case 1
ρ̂ -0.03956 0.08254 -0.00061 0.00487 -0.00054 0.00432
µ̂ 0.03314 278.93873 0.00014 18.45920 0.00013 18.00123

Case 2

ρ̂ -0.03956 0.08254 -0.04084 0.08042 -0.03017 0.06724
µ̂ 0.03820 323.11770 0.03947 314.74369 0.02902 263.69561

-0.01511 0.34678 -0.01771 0.34544 -0.01339 0.34627
0.00029 0.16781 0.00033 0.16768 0.00028 0.16791
0.01623 0.10856 0.01891 0.10835 0.01455 0.10821
0.00834 0.10808 0.00970 0.10788 0.00763 0.10795
0.01704 0.10259 0.01990 0.10233 0.01487 0.10258
0.02071 0.10484 0.02422 0.10456 0.01838 0.10485
0.03828 0.11265 0.04441 0.11237 0.03375 0.11262

γ̂j 0.05781 0.11669 0.06652 0.11645 0.05172 0.11681
0.02927 0.11599 0.03378 0.11577 0.02630 0.11611
0.00856 0.11701 0.01093 0.11680 0.00675 0.11713
0.01068 0.11688 0.01184 0.11667 0.00963 0.11702
-0.00341 0.11609 -0.00262 0.11589 -0.00317 0.11621
0.00850 0.11692 0.00896 0.11672 0.00864 0.11706
-0.00290 0.11689 -0.00246 0.11669 -0.00385 0.11702
-0.01716 0.11625 -0.01647 0.11605 -0.01805 0.11639

ρ̂ -0.57655 0.31133 -0.31039 0.18164
0.56367 1219.72536 0.30345 714.01897

– continued on next page
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I = 14
YW CLS IWCLS

Bias Root MSE Bias Root MSE Bias Root MSE
0.56529 1223.49418 0.30497 717.63585
0.56519 1224.10913 0.30449 716.39022
0.56375 1221.82708 0.30267 712.11029
0.56138 1215.70909 0.30146 710.13724
0.56428 1221.59427 0.30319 713.17936
0.56374 1221.34126 0.30287 712.11347

µ̂i 0.56471 1223.02642 0.30368 715.51060
0.56386 1221.80602 0.30320 715.12868
0.56570 1225.00806 0.30432 714.76026

General 0.56289 1218.99465 0.30233 712.13633
Case 0.56451 1222.27252 0.30388 715.39006

0.56343 1222.16816 0.30311 715.94596
0.56456 1222.23501 0.30384 714.13453
0.56459 1223.60645 0.30375 715.30190
-0.34445 0.25503 -0.21694 0.27884
0.00734 0.15511 0.00479 0.15920
0.35918 0.11015 0.22670 0.10529
0.18302 0.09438 0.11574 0.09729
0.38780 0.08231 0.24421 0.08773
0.46810 0.07926 0.29507 0.08731
0.82048 0.08454 0.51734 0.09384

γ̂j 1.17422 0.08998 0.74050 0.09936
0.59223 0.09180 0.37259 0.10021
0.29635 0.09401 0.18337 0.10192
0.15496 0.09476 0.09831 0.10236
0.07570 0.09454 0.04485 0.10189
0.04680 0.09544 0.03106 0.10275
0.02285 0.09549 0.01067 0.10277
0.00583 0.09500 -0.00397 0.10222

Table 4.4: Summary of relative bias and square root of mean square error of the estimators un-
der I = 14. The true values of the parameters are: ρ = 0.5, µi = µ = 2000 and γ =
(0.4, 0.2, 0.1, 0.1, 0.06, 0.04, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01).
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Based on the tables, we have the following observations. First we compare the estimation
results under different cases. It can seen that the YW estimates of ρ are the same under
Case 1 and Case 2. The reason is that ρ is estimated by (3.20) and the formula relates
only to the observed data. If looking at the relative bias of ρ̂ and µ̂ under the two least
squares estimation methods, under Case 1, the estimates can be accurate up to around
0.001% of the true value, while under Case 2, the estimates are around 10% of the true
value. Under the General Case, the relative bias of ρ̂ and µ̂i’s are around 50%. Therefore,
we can conclude that the least squares estimation methods do not perform well under the
General Case and because of the high bias, the estimation results under the General Case is
not that reliable. The variability of the estimators for the YW estimation does not change
much from Case 2 to Case 1, i.e., reducing the model parameters does not improve the YW
estimation a lot. However, under Case 1, the mean square errors of the estimators with the
least squares estimations are much better than those under Case 2, which means that the
accuracy of the CLS and IWCLS estimations depends highly on the number of parameters
needed to be estimated. Moreover, we can see that the estimation results for the least
squares estimations are much better under Case 2 compared to the General Case, which
again confirms that less model parameters do lead to better estimates. However, we can
see from the tables that the square root of MSE of the γ̂j ’s are mostly bigger under Case 2
than that under the General Case. The reason is that although the estimations have much
bigger bias under the General Case, the variance of the estimators are actually smaller than
that under Case 2. Because the square root of MSE depends mainly on the variance of the
estimators, the square root of MSE under Case 2 is bigger as a result. It means that the
estimates under the General Case is biased but clustered quite together for γj ’s.

As has mentioned before, the estimation results under the General Case is not that
reliable, and therefore we compare different estimation methods under Case 1 and Case 2
only. Under Case 1, the least squares estimation methods perform much better than the YW
estimation and there are not much difference between the CLS and the IWCLS estimations
although that the IWCLS estimation tends to have smaller MSE values. Under Case 2,
the three methods do not show much difference especially when looking at the estimation
results of the γj ’s. However, in terms of the MSE, the IWCLS estimators for ρ and µ are
always smaller than those under the other two methods.

When comparing the estimation results of different sizes of the development triangle,
there is a big improvement from I = 10 to I = 14 compared to from I = 6 to I = 10.
Although the estimation under Case 1 is always very good, the estimation is improved from
I = 10 to I = 14 while there is not much improvement from I = 6 to I = 10 in terms of
the estimation error. Under Case 2, when I = 6 or I = 10, the estimation of γj ’s is quite
deviated from the true value at the tail, while for I = 14, the relative biases of γ̂j ’s are
always small. Moreover, if looking at the relative bias of ρ̂ and µ̂, the biases are around
10% when I = 6 and I = 10 while they are in the range of 3% to 4% when I = 14. We
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also observe that, as the dimension of the triangle becomes bigger, the IWCLS estimation
is more efficient compared to the CLS estimation.

To conclude, under simple cases (when there are not many parameters needed to be
estimated), the least squares estimations are quit accurate compared to the YW estimation,
but as the unknown parameters get increased, all three methods becomes less reliable. The
IWCLS estimation method always shows the smallest estimation error among the three, and
as the size of development triangle grows, it performs better than the other two methods.
Increasing the size of development triangle could improve the accuracy of the estimation,
but the improvement is not significant at the early stage.

4.1.2 Distribution of ρ̂

Instead of the relative bias of ρ̂, we directly draw the box plots for ρ̂ to guarantee that the
scale of the plots does not change under different cases or triangle sizes, so the comparison
becomes more straightforward. However, the histograms are free scaled under different
cases and triangle sizes; by this way we could see the shape of the distribution more clearly.
If the same scale is used, the distribution under Case 2 and the General Case would be flat
compared to Case 1. In addition to the observations presented in Section 4.1.1, there are
several new findings by looking at the distribution of the estimators. Figure 4.1 show the
box plots of ρ̂ and Figure 4.2 shows the histograms of ρ̂.

First of all, we can clearly see the improvement of the YW estimation under Case 1
from I = 6 to I = 14 by the box plots and the histograms. By looking at Tables 4.2 and
4.3, we can see that there is not much improvement of the estimation from I = 6 to I = 10.
Now by looking at Figure 4.1, we observe that although the interquartile range is smaller,
the number of outliers actually gets bigger as I changes from 6 to 10. For the figures under
Case 2, the distribution seems more and more centred around the true value as the size of
the triangles grow bigger. If looking at the histograms under the General Case in Figure
4.2, we could see that there are two modes among the estimates of ρ̂, so it seems a bimodal
distribution, but as the triangle size becomes larger, this phenomenon gets weaker: when I
equals to 10 or 14, this phenomenon does not exist under the IWCLS estimation methods .
This again demonstrates that a larger size of development triangle, which has more observed
data, could make the estimation algorithms more reliable and the IWCLS performs better
than the CLS estimation in the sense that it converges effectively to its true value.

Secondly, we discuss the skewness of the estimators. From Figures 4.1 and 4.2, we
observe that the distributions of ρ̂ under Case 1 and Case 2 are skewed to left while under
the General Case, its distribution is skewed to the right. The large negative bias obtained
from all three estimation methods under Case 2 could be well explained now. From the box
plots, we see that all the medians are below the true value, and further more, because the
distribution is left-skewed, the mean is even smaller than the median; as a result, the bias
of the estimators is negative and relatively large under all three estimation methods. For
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the General Case, the interquartile ranges are all below the true values, which again shows
that the estimation results under the General Case are not that reliable.

Figure 4.1: Box plots of ρ̂. The true value of ρ is 0.5.

To conclude, by looking at the distribution of the estimators of ρ, the improvement of
the estimations can be easily observed when I becomes large. However, since all the esti-
mation methods give skewed distributions for the estimators of ρ and bimodal distributions
under the CLS estimation method, other methods should be studied to get more accurate
estimations. But fortunately when I = 14 and under Case 2, the estimation results are
quite good and could be used to perform further studies.
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Figure 4.2: Histograms of ρ̂. The true value of ρ is 0.5.
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4.1.3 Distribution of µ̂

Similar to Section 4.1.2, the distributions of µ̂ under Case 1 and Case 2 and the distribution
of the average of µ̂i’s under the General Case are presented in Figures 4.3 and 4.4 in terms
of the box plots and the histograms, respectively, under different methods and triangle sizes.

Figure 4.3: Box plots of µ̂. The true value of µ is 2000. Under the General Case, µi = µ
and the box plots of the averaged estimated µi’s are shown.

The improvement of the YW estimation under Case 1 can be seen clearly from Figure 4.3
that the median of the estimates gets closer and closer to the true value and the interquartile
range gets narrowed down. Under Case 2, there are not much difference between different
estimation methods, but the distributions are skewed to the right. The skewness is bigger
for I = 10 and I = 14 but the distribution has a smaller interquartile range compared to
I = 6. Therefore, the estimation results do not improve much from I = 6 to I = 10, but
get more accurate from I = 10 to I = 14. Because of the right skewness of the distribution,
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Figure 4.4: Histograms of µ̂. The true value of µ is 2000. Under the General Case, µi = µ,
and the distributions of the averaged estimated µi’s are shown.
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the mean of the estimators is bigger than the median, and furthermore, the median is
above the true value of the parameter µ, which implies the positive bias of µ̂ under Case 2.
Under the General Case, the IWCLS estimation does show better results compared to the
CLS estimation. However, both of them present a distribution far from the true value and
the bi-modality is also observed for the CLS estimation. Therefore, to better estimate the
parameters under the General Case, more advanced estimation methods should be used.

4.2 Prediction of Loss Reserve

According to the discussion in Section 4.1, we have concluded that larger triangle size
leads to superior estimates of the model parameters and under Case 2 when assuming all
µi = µ, the estimation results are good enough to do the prediction. Among the three
estimation methods, the IWCLS estimation performs the best and it tends to perform
much better than the other two as the triangle size grows. Therefore, in this section, we
choose Case 2 with I = 14 to do the prediction. We choice the same parameters as in
the simulation study (µ = 2000, ρ = 0.5 and γ = (0.4, 0.2, 0.1, 0.1, 0.06, 0.04, 0.02, 0.01, 0.01
, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01)) to generate a random sample first. Then, the IWCLS esti-
mation is used to get the estimates for the model parameters. Based on the estimated model
parameters and the prediction formulae in Section 3.3, we could get the prediction results
for various numbers, and the MSEP is also calculated. The results are shown in Tables 4.5
to 4.7. Table 4.5 presents the estimated unclosed claims ĈPoi_INARi,j , the outstanding claims
R̂Poi_INARi,I−i and the estimated ultimate claim numbers µ̂ with the corresponding credibility
type estimator µ̂Poi_INARi . Table 4.6 and Table 4.7 show the MSEP of the prediction re-
sults displayed in Table 4.5, and the percentage of the error of prediction, which is defiend
as the square root of the MSEP over the estimated values; the latter is presented to show
effectively the prediction error.

From Table 4.5, it can be seen that as the development year becomes bigger, the esti-
mated ĈPoi_INARi,j ’s for different accident years become more close to each other; in other
words, ĈPoi_INARi,j tends to have the same value for all i ≥ I−j as j increases. The reason is
that for later development years, the unclosed claims depend mainly on the newly reported
claims in that development year (the IBNyR claims) and merely on the observed data.
Since the mechanism of the reporting process of different accident years are the same, i.e.,
different accident years share the same development pattern of the unclosed claims, their
estimation results are thus similar. The empirical estimates Ci,I−i/β̂I−i for µ varies a lot
because it depends mainly on the diagonal values of the observed data. When the observed
unclosed claims Ci,I−i’s are larger than usual, the empirical estimates for µ become larger
than the true value, for example when i = 1, 7, 9 in our data. The credibility type estimator
µ̂Poi_INARi incorporates both the observed information and the prior information of µ,
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which produces a reasonable estimation. For recent accident years, µ̂Poi_INARi converges to the
estimated prior information µ̂ because less weights are put on the empirical estimates.

As for the prediction error of the estimated unclosed claims ĈPoi_INARi,j , it can be seen from
Table 4.6 that for a particular accident year i, the prediction error increases as j increases and for
a particular development year j, the prediction error gets slightly bigger for recent accident year
i. The reason could be that, the later the accident year and the development year are, the less
observed data we have, and therefore, the more uncertainty is observed in the prediction results.
The development year j seems to have more impact on the MSEP of the estimators compared to the
accident year i, partially because we ignore the parameter estimation errors so that the prediction
errors for recent accident years are possibly underestimated. For the MSEP of the outstanding
claims R̂Poi_INARi,I−i , clearly, as the accident year i increases, the MSEP increases but the percentage
of prediction error is nearly around 0.01. In contrary, the MSEP of the ultimate claims µ̂Poi_INARi

decreases dramatically as the accident year i increases, and the percentage of prediction error follows
the same pattern. As mentioned earlier, µ̂Poi_INARi converges to the estimated prior information
µi because less weights are put on the empirical estimates as the accident year i increases. Hence,
since we ignore the parameter estimation error, the MSEP for the latter accident years converges
to 0.

Acci-
-dent
year i R̂Poi_INARi,I−i M̂SEP[R̂Poi_INARi,I−i ]

% Root
MSEP µ̂Poi_INARi M̂SEP[µ̂Poi_INARi ]

% Root
MSEP

0 41 0.0000 0.0000 2120 108094.0024 0.1551
1 68 0.1812 0.0062 2293 24985.5069 0.0689
2 91 0.9253 0.0106 2155 5832.0119 0.0354
3 112 2.3030 0.0135 2089 1388.1740 0.0178
4 143 4.0114 0.0140 2103 343.0491 0.0088
5 170 6.3091 0.0148 2092 90.5894 0.0045
6 202 8.2739 0.0143 2092 26.5008 0.0025
7 289 11.2566 0.0116 2102 8.8228 0.0014
8 349 15.8855 0.0114 2091 3.3383 0.0009
9 526 24.7088 0.0094 2094 1.1927 0.0005
10 669 47.8334 0.0103 2090 0.3853 0.0003
11 923 97.9947 0.0107 2090 0.1207 0.0002
12 1264 209.3019 0.0115 2091 0.0334 0.0001
13 1639 371.9909 0.0118 2091 0.0104 0.0000
14 2094 814.8506 0.0136 2091 0.0024 0.0000

Table 4.7: The estimated MSEP of the outstanding and ultimate claim numbers

51



To conclude, we can see that when I = 14 and under Case 2, we get pretty good prediction results
for all the figures that we are interested in, and their prediction error is within a reasonable range.
However, because we ignore the parameter estimation error, the MSEP is a bit underestimated for
the later accident years and for the ultimate claim numbers.
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Chapter 5

Conclusion and Further Discussion

The IBNR claims reserving problem deals with the major risk carried by the non-life insur-
ers. Traditionally, the non-parametric models such as the CL and the BF methods are used
widely in industry because of their nice interpretations and simple estimation procedures.
However, more research has been done to study the stochastic frameworks underlying the
non-parametric models with parametric assumptions. The accuracy of the loss reserves
could be measured precisely when using the parametric models. As presented in Chapter
2, different parametric models are designed to be applied to different kinds of claim data,
either claim counts or claim amount. Since the traditional time series are not suitable
for modelling claim counts data, Kremer (1995) brought up the idea of using the INAR
processes to model the IBNR claims. The idea is extended by this project to model the
unclosed claims and both theoretical and numerical results are presented in this project.

The proposed Poisson INAR model has nice interpretations of the model parameters
and the unclosed claims can be written as a summation of not yet settled claims from all
previous and current development years. The Poisson INAR model also has the property of
non-dispersion similar to the Poisson model. An unclosed development pattern is introduced
and better describes the development of IBNR claims. The predictions can be done under
both known and unknown model parameters, and by ignoring the parameter estimation
error, we are able to successfully estimate the mean square error of prediction for various
figures. As for the estimation of the parameters of the Poisson INAR model, the Yuller-
Walker estimation is an extension from the Yuller-Walker estimates of the AR(1) processes
while the least squares estimations are the commonly used statistical methods to estimate
the model parameters, which require an iterative algorithm.

Among the three estimation methods discussed in this project, we conclude from the
simulation study that the IWCLS estimation method always shows the smallest estimation
error among the three, and as the size of development triangle grows, it also performs better
than the other two methods. If assuming that all the accident years have the same ultimate
claim numbers, which means that the average claim frequency does not change over years
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for this kind of insurance coverage, the estimation is quite accurate as there are less model
parameters to be estimated. If further assumes that the pattern of the newly reported
claims in each development year is known, the estimation is even better especially using
the least square estimation methods. Another major finding is that increasing the size of
the development triangle, which means that we are dealing with claims of long settlement
pattern and more data is observed and needed, the accuracy of the estimation is improved.
However, all of the three estimation methods do not provide good estimation results under
the general model assumption. More advanced estimation methods such as the maximum
likelihood estimation or the Bayesian methods could be studied.

For the prediction results under the case when the average claim frequency is the same
for all the accident years, the credibility type of estimator for the ultimate claim numbers is
related to the situation of different accident years by incorporating the empirical estimates
and converges to the estimated prior estimate for the recent accident years when there are
few observed information available. The uncertainty of the predicted unclosed claims for
later accident years and development years are usually bigger so as to the uncertainty of
the outstanding claims. In addition, because we ignore the parameter estimation error, the
mean square error of prediction is a bit underestimated.

The proposed Poisson INAR model could be extended under the Bayesian framework
by assuming a prior distribution for the expected number of claims of each accident year. In
Appendix B, we present the properties of this extended model and provided the prediction
and the MSEP formulas. However, the estimation procedure for this model could be more
complicated.
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Appendix A

The Auto-correlation of the
Poisson INAR Model

An alternative proof of the covariance formula in (3.7):

Since for each i, Xi,j ’s are independent, using the variance formula given in (3.7), we have

Cov[Ci,j , Ci,j−h] = Cov
[ j∑
k=0

ρk ◦Xi,j−k,
j−h∑
k=0

ρk ◦Xi,j−h−k

]

= Cov
[ j∑
k=h

ρk ◦Xi,j−k,
j−h∑
k=0

ρk ◦Xi,j−h−k

]

=
j−h∑
k=0

Cov[ρk+h ◦Xi,j−h−k, ρ
k ◦Xi,j−h−k]

=
j−h∑
k=0

(
E[Cov[ρk+h ◦Xi,j−h−k, ρ

k ◦Xi,j−h−k|ρk ◦Xi,j−h−k]]

+ Cov[E[ρk+h ◦Xi,j−h−k|ρk ◦Xi,j−h−k],E[ρk ◦Xi,j−h−k|ρk ◦Xi,j−h−k]]
)

=
j−h∑
k=0

Cov[ρh · ρk ◦Xi,j−h−k, ρ
k ◦Xi,j−h−k]

= ρh
j−h∑
k=0

Var[ρk ◦Xi,j−h−k]

= ρhVar[Ci,j−h]

= ρh
( j−h∑
k=0

ρkγj−h−k

)
µi

=

 j∑
k=h

ρkγj−k

µi.
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Appendix B

Model Unclosed Claims with
Bayesian Method

The idea of this model comes from the Poisson-Gamma model mentioned in Section 2.4. It
is also an extension of the Poisson INAR model discussed in this project.

Assumption B1. There exist random variables Θi,Xi,j , Ci,j as well as constants γ0, . . . , γI >
0 with

∑I
j=0 γj = 1 such that for all 0 ≤ i, j ≤ I,

• Conditionally, given Θi, the newly reported claims Xi,j , which is generated in acci-
dent year i but reported with delay j, are independently Poisson distributed with
E[Xi,j |Θi] = Var[Xi,j |Θi] = Θiγj .

• (Θi, (Xi,0, . . . , Xi,I)), (i = 0, . . . , I) are independent and Θi is Gamma distributed
with shape parameter ai and scale parameter bi.

• The unclosed claims Ci,j of different accident years are independent, and follow an
INAR process such that

Ci,j = ρ ◦ Ci,j−1 +Xi,j

with ρ ◦ Ci,j−1 =
∑Ci,j−1
k=1 Yk, where Yk ∼ Bermoulli(1, ρ) and 0 ≤ ρ ≤ 1. Define

that Ci,−1 = 0.

Remark B1. Model Assumption B1 has a similar interpretation as for Assumption 1.
The only difference between the two is that Assumption B1 assumes a prior distribution
for the expected claim numbers for each accident year, which can be useful when the prior
information for the expected claim numbers is available. The model presented here also
resolves the non-dispersion property of the Poisson INAR model.

The properties of the Bayesian Poisson INAR model are presented in the following.

Proposition B1. The unclosed claims Ci,j can be written as a summation of the not yet
settled claims from all the past and current development years j − k, 0 ≤ k ≤ j, i.e.,

Ci,j =
j∑

k=0
ρk ◦Xi,j−k, 0 ≤ i, j ≤ I. (B.1)
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Conditioning on Ci,j−h, Ci,j can be written as

Ci,j =
h−1∑
k=0

ρk ◦Xi,j−k + ρh ◦ Ci,j−h, 0 ≤ i ≤ I, 1 ≤ j ≤ I, 1 ≤ h ≤ j. (B.2)

Based on the observed data DI ,

Ci,j =
i+j−I−1∑
k=0

ρk ◦Xi,j−k + ρi+j−I ◦ Ci,I−i, 1 ≤ i ≤ I, j > I − i. (B.3)

The proof is the same as Proposition 1 and are quite straightforward.

Proposition B2. The mean, variance and the auto-correlation of Ci,j can be obtained as

E[Ci,j ] =
(

j∑
k=0

ρkγj−k

)
ai
bi
,

Var[Ci,j ] =
(

j∑
k=0

ρkγj−k

)
ai
bi

+

 j∑
k=0

ρkγj−k

2
ai
b2i
,

Cov[Ci,j , Ci,j−h] =
(

j∑
k=h

ρkγj−k

)
ai
bi

+

 j∑
k=0

ρkγj−k

j−h∑
k=0

ρkγj−h−k

 ai
b2i
.

(B.4)

Proof. Note that Θi follows a Gamma distribution with shape parameter ai and scale pa-
rameter bi, and hence E[Θi] = ai/bi and Var[Θi] = ai/b

2
i . Conditioning on Θi, the Bayesian

Poisson INAR model reduces simply to the Poisson INAR model with µi = Θi, and accord-
ing to Proposition 2,

E[Ci,j |Θi] =
(

j∑
k=0

ρkγj−k

)
Θi,

Var[Ci,j |Θi] =
(

j∑
k=0

ρkγj−k

)
Θi,

Cov[Ci,j , Ci,j−h|Θi] =
(

j∑
k=h

ρkγj−k

)
Θi.

Therefore,

E[Ci,j ] = E[E[Ci,j |Θi]]

= E

 j∑
k=0

ρkγj−k

Θi


=

 j∑
k=0

ρkγj−k

 ai
bi
,

Var[Ci,j ] = E[Var[Ci,j |Θi]] + Var[E[Ci,j |Θi]]
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= E

 j∑
k=0

ρkγj−k

Θi

+ Var

 j∑
k=0

ρkγj−k

Θi


=

 j∑
k=0

ρkγj−k

E[Θi] +

 j∑
k=0

ρkγj−k

2

Var[Θi]

=

 j∑
k=0

ρkγj−k

 ai
bi

+

 j∑
k=0

ρkγj−k

2
ai
b2i
,

Cov[Ci,j , Ci,j−h] = E[Cov[Ci,j , Ci,j−h|Θi]] + Cov[E[Ci,j |Θi],E[Ci,j−h|Θi]]

= E

 j∑
k=h

ρkγj−k

Θi

+ Cov

 j∑
k=0

ρkγj−k

Θi,

j−h∑
k=0

ρkγj−h−k

Θi


=

 j∑
k=h

ρkγj−k

E[Θi] +

 j∑
k=0

ρkγj−k

j−h∑
k=0

ρkγj−h−k

Var[Θi]

=

 j∑
k=h

ρkγj−k

 ai
bi

+

 j∑
k=0

ρkγj−k

j−h∑
k=0

ρkγj−h−k

 ai
b2i
.

Proposition B3. The conditional mean and variance of Ci,j given Ci,j−h can be obtained
as

E[Ci,j |Ci,j−h] =
(
h−1∑
k=0

ρkγj−k

)
E[Θi|Ci,j−h] + ρh · Ci,j−h,

Var[Ci,j |Ci,j−h] =
(
h−1∑
k=0

ρkγj−k

)2

Var[Θi|Ci,j−h]

+
(
h−1∑
k=0

ρkγj−k

)
E[Θi|Ci,j−h] + ρh · (1− ρh) · Ci,j−h,

0 ≤ i ≤ I, 1 ≤ j ≤ I, 1 ≤ h ≤ j.

(B.5)

Based on the observed data DI , for any 1 ≤ i ≤ I and j ≥ I − i,

E[Ci,j |DI ] =

i+j−I−1∑
k=0

ρkγj−k

E[Θi|DI ] + ρi+j−I · Ci,j−h,

Var[Ci,j |DI ] =

i+j−I−1∑
k=0

ρkγj−k

2

Var[Θi|DI ]

+

i+j−I−1∑
k=0

ρkγj−k

E[Θi|DI ] + ρi+j−I · (1− ρi+j−I) · Ci,I−i.

(B.6)
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Proof. Taking conditional expectation of both sides of (B.2), we get

E[Ci,j |Ci,j−h] = E
[
h−1∑
k=0

ρk ◦Xi,j−k + ρh ◦ Ci,j−h
∣∣∣∣Ci,j−h

]

= E
[
h−1∑
k=0

ρk ◦Xi,j−k

∣∣∣∣Ci,j−h
]

+ ρh · Ci,j−h

= E
[
E
[
h−1∑
k=0

ρk ◦Xi,j−k

∣∣∣∣Θi

] ∣∣∣∣Ci,j−h
]

+ ρh · Ci,j−h

= E
[
h−1∑
k=0

ρkE[Xi,j−k|Θi]
∣∣∣∣Ci,j−h

]
+ ρh · Ci,j−h

= E
[
h−1∑
k=0

ρkγj−kΘi

∣∣∣∣Ci,j−h
]

+ ρh · Ci,j−h

=
(
h−1∑
k=0

ρkγj−k

)
E[Θi|Ci,j−h] + ρh · Ci,j−h.

To get the conditional variance, simply take variance of both sides of (B.2),

Var[Ci,j |Ci,j−h] = Var
[
h−1∑
k=0

ρk ◦Xi,j−k + ρh ◦ Ci,j−h
∣∣∣∣Ci,j−h

]

= Var
[
h−1∑
k=0

ρk ◦Xi,j−k

∣∣∣∣Ci,j−h
]

+ ρh · (1− ρh) · Ci,j−h

= Var
[
E
[
h−1∑
k=0

ρk ◦Xi,j−k

∣∣∣∣Θi

] ∣∣∣∣Ci,j−h
]

+ E
[
Var

[
h−1∑
k=0

ρk ◦Xi,j−k

∣∣∣∣Θi

] ∣∣∣∣Ci,j−h
]

+ ρh · (1− ρh) · Ci,j−h

= Var
[
h−1∑
k=0

ρkE[Xi,j−k|Θi]
∣∣∣∣Ci,j−h

]

+ E
[
h−1∑
k=0

Var[ρk ◦Xi,j−k|Θi]
∣∣∣∣Ci,j−h

]
+ ρh · (1− ρh) · Ci,j−h

= Var
[
h−1∑
k=0

ρkE[Xi,j−k|Θi]
∣∣∣∣Ci,j−h

]

+ E
[
h−1∑
k=0

(
ρk · (1− ρk)E[Xi,j−k|Θi] + ρ2kVar[Xi,j−k|Θi]

) ∣∣∣∣Ci,j−h
]

+ ρh · (1− ρh) · Ci,j−h

= Var
[
h−1∑
k=0

ρkγj−kΘi

∣∣∣∣Ci,j−h
]
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+ E
[
h−1∑
k=0

(
ρk(1− ρk)γj−kΘi + ρ2kγj−kΘi

) ∣∣∣∣Ci,j−h
]

+ ρh · (1− ρh) · Ci,j−h

=
(
h−1∑
k=0

ρkγj−k

)2

Var[Θi|Ci,j−h] +
(
h−1∑
k=0

ρkγj−k

)
E[Θi|Ci,j−h]

+ ρh · (1− ρh) · Ci,j−h.

According to Propositions B2 and B3, the non-parametric assumptions for this Bayesian
Poisson INAR model can be introduced assuming an unclosed claims development pattern
{βj}Ij=0 with βj =

∑j
k=0 ρ

kγj−k. For any 0 ≤ i ≤ I, 0 ≤ j ≤ I − 1 and 1 ≤ h ≤ I − j,

E[Ci,0] = βjE[Θi],
E[Ci,j+h|Ci,0, . . . , Ci,j ] = ρh · Ci,j + (βj+h − ρh · βj) · E[Θi|Ci,0, . . . , Ci,j ].

(B.7)

The prediction formula for Ci,j , 1 ≤ i ≤ I and j ≥ I − i with unknown parameters is given
by

ĈPoiGa_INAR
i,j = Ê[Ci,j |DI ]

= ρ̂i+j−I · β̂I−i ·
Ci,I−i

β̂I−i
+ (β̂j − ρ̂i+j−I · β̂I−i) · Ê[Θi|DI ].

(B.8)

The prediction combines the empirical estimates with the posterior mean of the expected
ultimate claim numbers.

To obtain the prediction results, one has to estimate the posterior mean of Θi’s. The
posterior distribution of Θi, i = 0, 1, . . . , I, are stated in the following lemma and the
corresponding posterior mean is straightforward from the lemma.

Lemma B1. Under Assumption B1, we have the following results for the posterior distri-
bution of Θi, i = 0, 1, . . . , I.

(1) Given ci,0, Θi ∼ Gamma
(
aPosti,0 , bPosti,0

)
, where

aPosti,0 = ai + ci,0, bPosti,0 = bi + γ0.

(2) Given ci,0, ci,1, Θi follows a weighted sum of gamma distributions with its probability
density function (pdf) given by

min(ci,0,ci,1)∑
y1=0

w(y1, ci,1, ci,0)∑min(ci,0,ci,1)
y1=0 w(y1, ci,1, ci,0)

· g
(
θi; aPosti,1 (y1), bPosti,1

)

where g
(
θi; aPosti,1 (y1), bPosti,1

)
is the pdf of a gamma distribution with parameters

aPosti,1 (y1) = ai + ci,0 + ci,1 − y1, bPosti,1 = bi + γ0 + γ1,
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and

w(y1, ci,1, ci,0) =
(
ci,0
y1

)
·
(

ρ

1− ρ

)y1

· 1
γy1

1 (ci,1 − y1)! ·
Γ(aPosti,1 (y1))

(bPosti,1 )a
Post
i,1 (y1)

.

(3) In general, given ci,0, ci,1, . . . , ci,j , the pdf of Θi is given by

min(ci,j ,ci,j−1)∑
yj=0

. . .

min(ci,1,ci,0)∑
y1=0

w(y1, . . . , yj , ci,0, . . . , ci,j)
w̄(ci,0, . . . , ci,j)

g
(
θi; aPosti,j (ȳ), bPosti,j

)
,

where g
(
θi; aPosti,j (ȳ), bPosti,j

)
is the pdf of a gamma distribution with parameters

aPosti,j (ȳ) = ai +
j∑

k=0
ci,k − j · ȳ, bPosti,j = bi +

j∑
k=1

γk

with ȳ =
∑j
k=1 yk/j. The weight function can be written as

w(y1, . . . , yj , ci,0, . . . , ci,j) =
(
ci,j−1
yj

)
. . .

(
ci,0
y1

)
·
(

ρ

1− ρ

)j·ȳ

×
j∏

k=1

(
1

γykk (Ci,k − yk)!

)
·

Γ(aPosti,j (ȳ))

(bPosti,j )a
Post
i,j (ȳ)

,

and

w̄(ci,0, . . . , ci,j) =
min(ci,j ,ci,j−1)∑

yj=0
. . .

min(ci,1,ci,0)∑
y1=0

w(y1, . . . , yj , ci,0, . . . , ci,j).

Proof. The proof is very similar to that of Proposition 1 in Gourieroux and Jasiak (2004).

(1) According to Assumption B1, Θi has a prior distribution with Gamma pdf, that is,

π(θi) = baii
Γ(ai)

θai−1
i e−biθi .

Given ci,0, the posterior distribution of Θi can be written as

π(θi|ci,0) = Pr[Ci,0 = ci,0|θi]π(θi)∫
Pr[Ci,0 = ci,0|θi]π(θi)dθi

=
e−θiγ0 (θiγ0)ci,0

ci,0!
b
ai
i

Γ(ai)θ
ai−1
i e−biθi∫ e−θiγ0 (θiγ0)ci,0

ci,0!
b
ai
i

Γ(ai)θ
ai−1
i e−biθidθi

= θ
ai+ci,0−1
i e−(bi+γ0)θi∫

θ
ai+ci,0−1
i e−(bi+γ0)θidθi

=
(bi+γ0)(ai+ci,0)

Γ(ai+ci,0) θ
ai+ci,0−1
i e−(bi+γ0)θi∫ (bi+γ0)(ai+ci,0)

Γ(ai+ci,0) θ
ai+ci,0−1
i e−(bi+γ0)θidθi
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= (bi + γ0)(ai+ci,0)

Γ(ai + ci,0) θ
ai+ci,0−1
i e−(bi+γ0)θi .

Therefore, given ci,0, Θi ∼ Gamma
(
aPosti,0 , bPosti,0

)
, with aPosti,0 = ai + ci,0 and bPosti,0 =

bi + γ0.

(2) Given ci,0, ci,1, the posterior distribution of Θi is given by

π(θi|ci,0, ci,1) = Pr[Ci,1 = ci,1, Ci,0 = ci,0|θi]π(θi)∫
Pr[Ci,1 = ci,1, Ci,0 = ci,0|θi]π(θi)dθi

= Pr[Ci,1 = ci,1|Ci,0 = ci,0, θi]Pr[Ci,0 = ci,0|θi]π(θi)∫
Pr[Ci,1 = ci,1|Ci,0 = ci,0, θi]Pr[Ci,0 = ci,0|θi]π(θi)dθi

.

where

Pr[Ci,1 = ci,1|Ci,0 = ci,0, θi]Pr[Ci,0 = ci,0|θi]π(θi)

=
min(ci,0,ci,1)∑

y1=0

(
ci,0
y1

)
ρy1(1− ρ)ci,0−y1 · e(−θiγ1) (θiγ1)ci,1−y1

(ci,1 − y1)!
e(−θiγ0)(θiγ0)ci,0

ci,0!
baii

Γ(ai)
θai−1
i e(−biθi).

By omitting the terms that are not related to θi and y1’s,

π(θi|ci,0, ci,1) ∝
min(ci,0,ci,1)∑

y1=0

(
ci,0
y1

)
·
(

ρ

1− ρ

)y1

· 1
γy1

1 (ci,1 − y1)!θ
ai+ci,0+ci,1−y1−1
i e−(bi+γ0+γ1)θi

Let aPosti,1 (y1) = ai + ci,0 + ci,1 − y1, bPosti,1 = bi + γ0 + γ1 and

w(y1, ci,1, ci,0) =
(
ci,0
y1

)
·
(

ρ

1− ρ

)y1

· 1
γy1

1 (ci,1 − y1)! ·
Γ(aPosti,1 (y1))

(bPosti,1 )a
Post
i,1 (y1)

.

Noting that g(θi; aPosti,1 (y1), bPosti,1 ) is the pdf of the gamma distribution with parameter
aPosti,1 (y1) and bPosti,1 , and therefore,

π(θi|ci,0, ci,1) ∝
min(ci,0,ci,1)∑

y1=0
w(y1, ci,1, ci,0)g(θi; aPosti,1 (y1), bPosti,1 ).

Thus,

π(θi|ci,0, ci,1) =
∑min(ci,0,ci,1)
y1=0 w(y1, ci,1, ci,0)g(θi; aPosti,1 (y1), bPosti,1 )∑min(ci,0,ci,1)

y1=0 w(y1, ci,1, ci,0)
.

Now the prove completes.

(3) The proof for this general case is similar as (2), so we omit it here.

The accuracy of the estimates can be measured by the MSEP (mean square error of pre-
diction). We present a similar lemma below as Lemma 1.
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Lemma B2. Under Assumption B1, if the model parameters are known, then ĈPoiGa_INAR
i,j =

E[Ci,j |DI ], denoted as Ĉi,j for simplicity below.

(1) The conditional MSEP is given by

MSEP[Ĉi,j |DI ] = (βj − ρi+j−I · βI−i)2Var[Θi|DI ] + (βj − ρi+j−I · βI−i)E[Θi|DI ]
+ ρi+j−I · (1− ρi+j−I) · Ci,I−i.

(2) The unconditional MSEP is

MSEP[Ĉi,j ] =
(
βj − ρi+j−I · βI−i

)2
E[Var[Θi|DI ]]

+ (βj − ρi+j−I · βI−i)
ai
bi

+ ρi+j−I · (1− ρi+j−I) · Ci,I−i.

Proof. By the definition of the conditional MSEP, we can easily get

MSEP[Ĉi,j |DI ] = E[(Ci,j − Ĉi,j)2|DI ] = Var[Ci,j |DI ].

According to (B.6) given in Proposition B3,

MSEP[Ĉi,j |DI ] =

i+j−I−1∑
k=0

ρkγj−k

2

Var[Θi|DI ]

+

i+j−I−1∑
k=0

ρkγj−k

E[Θi|DI ] + ρi+j−I · (1− ρi+j−I) · Ci,I−i.

If written using the development pattern βj given by (B.7),

MSEP[Ĉi,j |DI ] =(βj − ρi+j−I · βI−i)2Var[Θi|DI ] + (βj − ρi+j−I · βI−i)E[Θi|DI ]
+ ρi+j−I · (1− ρi+j−I) · Ci,I−i,

where E[Θi|DI ] and Var[Θi|DI ] can be calculated using the results presented in Lemma B1.

The unconditional MSEP is the expectation of the conditional MSEP, which gives

MSEP[Ĉi,j ] = E[MSEP[Ĉi,j |DI ]]

= E
[
(βj − ρi+j−I · βI−i)2Var[Θi|DI ]

]
+ E

[
(βj − ρi+j−I · βI−i)E[Θi|DI ]

]
+ ρi+j−I · (1− ρi+j−I) · Ci,I−i

= (βj − ρi+j−I · βI−i)2E[Var[Θi|DI ]] + (βj − ρi+j−I · βI−i)E[Θi]
+ ρi+j−I · (1− ρi+j−I) · Ci,I−i,

in which E[Θi] = ai/bi and E[Var[Θi|DI ]] can be calculated using the results presented in
Lemma B1.
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