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Abstract

Climate change is known to be an important risk of forest fire. Studies have shown an
increased risk of fire because of rising temperatures, drier conditions, more lightning from
stronger storms, added dry fuel for fires and a longer fire season and "global warming makes
forests more susceptible to fire." In this paper, we use modern functional data analysis
methods to explore the variations of forest fire rate in British Columbia, Canada among
63 consecutive years (1950-2012), and to investigate the historical effect of temperature
and precipitation on forest fire rate. Functional principle component analysis shows that
forest fire rate has increased since 2004 compared to years before that. Historical functional
linear model shows that the concurrent effect of temperature and precipitation are both
strong. Higher temperature and less precipitation lead to more forest fire. Temperature
from January to July has a historical effect on forest fire rate from August to November,
while only short term effect of precipitation up to two months is detected.

Keywords: Functional data analysis; Smoothing; Functional principle component analysis;
Historical functional linear model
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Chapter 1

Introduction

The data we are going to analyze include two parts: The Canadian National Fire Database
([2]) and Second Generation of Homogenized Temperatures and Precipitation for Canada
([13] and [7]). These data can be accessed from http://cwfis.cfs.nrcan.gc.ca/ha/nfdb and
http://www.ec.gc.ca/dccha-ahccd/, respectively. The Canadian National Fire Database
is a collection of forest fire locations and fire perimeters as provided by Canadian fire
management agencies including provinces, territories, and Parks Canada. It provides the
location of each fire and the specific date of occurrence for 63 consecutive years (1950-2012).
Several studies have been conducted with this database. For example, [5] talks about the
severity of large fires, which varies across boreal North America, and thus can be viewed
as an agent of ecological diversity. [8] talks about the variation in risk factors of forest fire
that also affects spatial fire patterns using analysis of variance and Pearson’s correlation.
[10] talks about the percentage of each ecozones area burnt annually across Canada. [3]
talks about carbon emissions due to forest fire in Canada.
The Homogenized Temperatures and Precipitation for Canada are prepared for climate
trends analysis in Canada. It provides daily and monthly maximum, minimum, median
and mean temperature and precipitation for 338 weather stations across Canada. The non-
climatic shifts, which are mainly due to the relocation of the station, changes in observing
practices and automation ([12]), are identified and adjusted using regression models ([11]).
There are many papers focusing on association between climate change and forest fire.
Climate change is known to be an important risk of forest fire. [1] shows an increased risk
of fire because of rising temperatures, drier conditions, more lightning from stronger storms,
added dry fuel for fires and a longer fire season and "global warming makes forests more
susceptible to fire." [9] talks about the temperature-driven global fire regime in the 21st
century, which is an unprecedentedly fire-prone environment.
Although many papers have studied direct association between climate change and forest
fire, there are few investigations on the historical effect of temperature and precipitation
on forest fire rate. For example, given the trajectory of temperature for the first 4 months,
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what would the trajectory of forest fire rate be for the remaining 8 months?
In this paper, we investigate the effect of temperature and precipitation on forest fire rate by
applying functional data analysis (FDA) methods. Since the data we are going to analyze
are weekly fire counts, weekly mean temperature and weekly mean precipitation for the years
1950-2012, all of them can be viewed as functions of time (week). They are called functional
data in FDA. There are FDA methods that can be applied to these functional data. For
example, functional principal component analysis (FPCA) can be used on forest fire data
to explore the variations of forest fire rate among years. Other methods, such as historical
functional linear model, can be used to estimate the historical effect of temperature and
precipitation on forest fire rate.
To obtain weekly forest fire counts in BC, we calculate the number of fires occurring in each
week according to their occurrence date. As for temperature data, we take the average of
7 consecutive days’ mean temperature as the weekly measurement. More details will be
discussed in Section 2.1.1 and Section 2.1.2.
The rest of paper is organized as follows. In Chapter 2, we discuss the statistical methods,
including missing data imputation, data smoothing, functional principle component analysis
and historical functional linear model. In Chapter 3, we explore the variations of forest fire
rate among years using functional principal component analysis, and estimate the effect of
temperature and precipitation on forest fire rate using historical functional linear model.
Conclusions are given in Chapter 4.
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Chapter 2

Methods

In this chapter we discuss the statistical methods used in this paper. Missing values are
replaced with random samples from observations that are available and satisfy certain cri-
teria. The criteria we use are different for forest fire data and temperature data. Next, we
transform our data into weekly-based form so that each year would have 52 observations.
After data manipulation, we represent 52 discrete points in each year with smooth curves.
Poisson process model will be used on forest fire data while the traditional Gaussian model
will be used on temperature and precipitation data. Then we apply the functional principle
component analysis on smoothed fire data. Finally we build a historical functional linear
regression model between forest fire and temperature + precipitation.

2.1 Data Manipulation And Missing Value Imputation

2.1.1 The Canadian National Fire Database

In forest fire data, the information we need is number of fires happened in each week of
year 1950 to 2012. However, some fire records only have reported year but no month or
day. Table 2.1 summarizes the number of such records in the dataset.
We ignore these records for now and assign a "week number" for each of the rest records

according to date they occurred. For example, fires occurred during January 1st to January
7th are consdiered week "1". There are exactly 52 weeks in one year when we treat February
29th as a day in week "9" and December 31st as a day in week "52". Next, we draw a random
sample from {1, 2, ..., 52} for each year in Table 2.1 with replacement. The sample size is
determined by how many missing values are there in each year. The weight for each number

Table 2.1: Number of fire records without reported month or day in each year

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2009 2010 2011 2012
Number of records 18 2 191 127 40 161 66 10 9 2 14 7 6 11
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Figure 2.1: Map of British Columbia, Canada. Forest fire recorded within British Columbia
during 1950-2012 are marked as small dots. Large dots are weather stations with available
temperature data during that year range.

in {1, 2, ..., 52} is determined by number of fires recorded in the corresponding week and
year. Finally we replace the missing week numbers with sampled numbers.

2.1.2 Homogenized Temperatures and Precipitation for Canada

The Homogenized Temperatures and Precipitation for Canada contains daily mean temper-
atures and precipitation for a large number of weather stations across Canada in multiple
years. Figure 2.1 shows the location of fires and weather stations where temperature and
precipitation data are collected on the map of British Columbia. 42 stations within British
Columbia and have records during year 1950 to 2012 are kept for analysis. For each missing
temperature, we take a random sample of size 1 from those temperature records that have
the same day, month and weather station. We also take the average for each day across
stations so that there is only one record left for each day. Finally, we take the average for
every 7 days as a weekly record to transform the temperature data to a weekly basis. The
same method is used to deal with precipitation.
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2.2 Data Smoothing: From Discrete Points to Smoothed
Curves

Our data consist of 52 weekly fire count records, 52 weekly average temperature records and
52 weekly average precipitation records in each year for 63 consecutive years (1950-2012).
We need to represent the data in 63 years with one single curve. The Gaussian model is
used for temperature and precipitation data, while the Poisson Process model is used for
forest fire data.

2.2.1 The Gaussian Model for Temperature and Precipitation Data

Since we use the exact same technique on temperature data and precipitation data, only
temperature is discussed in this section. Let zi represents the average temperature in a week,
where i = 1, 2, ..., 3276. We smooth the 3276 discrete data points by removing measurement
errors and represent them as a continuous function of time t. zi can be modeled as

zi = x(ti) + εi, (2.1)

where x(t) is the function, ti represents the ith week and εi is the independent and identically
distributed (i.i.d.) random error in Normal(0, σ2).
x(t) is then approximated as a linear combination of K basis functions

x(t) =
K∑
k=1

ckφk(t) = φφφ(t)T c, (2.2)

whereφφφ(t) = (φ1(t), ..., φK(t))T is a vector containingK basis functions and c = (c1, ..., cK)T

contains corresponding coefficients of basis functions.
We choose B-spline basis system for the temperature data. The basis coefficients ck’s are
estimated by minimizing the sum of squared errors

SSE =
3276∑
i=1

[
zi −

K∑
k=1

ckφk(ti)
]2

(2.3)

Let z be a vector of length 3276 of observed weekly average temperatures zi and ΦΦΦ be a
3276×K matrix containing values φk(ti). Equation (2.3) can be written in matrix form as

(z−ΦΦΦc)T (z−ΦΦΦc). (2.4)

The number of basis functions K need to be chosen. Generally speaking, the more basis
functions we choose, the closer the fitted curve will be compared to the discrete data points.
However, if we choose too many basis functions, the fitted curves may be too rough, thus we
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overfit the data. Overfitting makes it difficult to interpret results derived from rough curves.
In addition, since a lot of random errors are included in the curves, the results become
questionable. We want the fitted curves to catch the trend of data without overfitting it.
In order to achieve that, instead of controlling K, we add a roughness penalty term. We
choose more basis functions than needed that will overfit the data, then combine the SSE
with a penalty term, and finally minimize the sum of these two. A roughness penalty term
is usually a term that is related to the roughness (or smoothness) of the fitted curve. For
example, a commonly used penalty term is the integral of the square of the second derivative
of the curve (L2 norm). The more rough the fitted curve is, the larger the penalty term
will be. On the contrary, SSE will get smaller as the fitted curve get rough. By minimizing
the sum of these two terms, we are able to find a fitted curve that is not as rough as what
we will end up with when only minimizing the likelihood because of the penalty term. We
can also control how much weight to put on the penalty term by multiplying the penalty
term with a constant µ. It is called "tuning parameter" or "smoothing parameter". When
choosing a large µ, a small increase in roughness of the curve will increase the overall sum
a lot. Thus the final fitted curve will be smoother. Two extreme cases will happen when
µ = 0 and µ = ∞. For µ = 0, there is no penalty on roughness, so the fitted curve is the
same as what we get from minimizing negative likelihood only. When µ =∞, we will have
the smoothest curve possible, which is a straight line when using L2 norm.
We use L2 norm as penalty for our temperature data. It is expressed as

PEN = µ

∫
[x′′(t)]2dt

= µ

∫ [ K∑
k=1

ckφ
′′
k(t)

]2

dt,

(2.5)

where φ′′k(t)’s are second derivatives of basis functions.
We re-express the roughness penalty PEN in matrix terms as follows.

PEN = µ

∫ [
φφφ′′

T (t)c
]2
dt = µcTRc (2.6)

where φφφ′′(t) = (φ′′1(t), ..., φ′′K(t))T is a vector containing the secondderivatives of K basis
functions and

R =
∫

φφφ′′(t)φφφ′′T (t)dt. (2.7)

Composite Simpson’s rule ([1]) is used to approximate the integral involved in equation 2.7
numerically. We have

R =
R∑
r=1

vr
[
φφφ′′(ur)φφφ′′T (ur)

]
, (2.8)
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where ur = a+ (r − 1)g, g = b−a
R−1 ,

vr =


g
3 r = 1 or r = R

4g
3 r = 2, 4, 6...
2g
3 r = 3, 5, 7...

on the support of t ∈ (a, b) and R is an integer.
The new criterion to be minimized, namely the penalized sum of squared errors, is

PENSSE = SSE + PEN (2.9)

Equation 2.9 can be written in matrix terms as

PENSSE = (z−ΦΦΦc)T (z−ΦΦΦc) + µcTRc (2.10)

Finally, the estimate ĉi that minimizes (2.10) is

ĉ = (ΦΦΦTΦΦΦ + µR)−1ΦΦΦT z. (2.11)

The estimated smooth function is then

x̂(t) = φφφ(t)T ĉ (2.12)

2.2.2 The Poisson Process Model for Forest Fire Data

Since number of fires in each week is a count that can only take non-negative integer values,
another possible choice to smooth the data is using Poisson process model. Assume fires
that occur in year i follows an inhomogeneous Poisson process Ni(t), which denotes the
total number of fires occurring during time t in year i. A Poisson process is a stochastic
process that counts the number of events(fires) and the time points at which these events
occur in a given time interval. The time to which the next event occurs is independent of
the other events and the numbers of events occurred in disjoint intervals are independent
of each other. The Poisson process is inhomogeneous in the sense that events occur at a
variable rate as time t varies. Let the rate parameter λ(t) be a function of t. It is what we
use to smooth the forest fire data.

2.2.3 The Maximum Likelihood Approach to the Rate Function

We use the maximum likelihood approach to estimate the rate function λ(t). For our
inhomogeneous Poisson process model, let Na,b be the expected number of events between
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time a and b. Then
Na,b =

∫ b

a
λ(t)dt. (2.13)

Thus the number of fires in the time interval [a, b], given as N(b)−N(a), follows a Poisson
distribution with associated parameter Na,b

Pr[N(b)−N(a) = k] = e−Na,b(Na,b)k

k! , k = 0, 1, ... (2.14)

Considering our forest fire data, all 52 observations in each year follow Poisson distributions
with rate Nj−1,j for j = 1, 2, ..., 52, respectively.
Let L be the likelihood function and l be the log-likelihood function.

L =
52∏
j=1

e(−Nj−1,j)(Nj−1,j)kj

kj !
(2.15)

where Nj−1,j =
∫ j
j−1 λ(t)dt is the rate of fire in week j and kj is the number of fire observed

in week j. One constraint on λ(t) is that it has to be non-negative over t. To apply this
constraint to the maximum likelihood function, we substitute λ(t) with eρ(t). The likelihood
then becomes

L =
52∏
j=1

e
[−
∫ j

j−1 exp(ρ(t))dt][
∫ i
j−1 exp(ρ(t))dt]kj

kj !
(2.16)

The log-likelihood is

l = −
52∑
j=1

∫ j

j−1
exp(ρ(t))dt+

52∑
j=1

kj log[
∫ j

j−1
exp(ρ(t))dt]−

52∑
j=1

log(kj !) (2.17)

Again, we write ρ(t) as a linear combination of Fourier basis functions:
1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), ...
where ω is the frequency. Let φφφ(t) = (φ1(t), φ2(t), ...)T be a vector containing these basis
functions, the log-likelihood function becomes

l = −
∫ 52

0
exp(cTφφφ(t))dt+

52∑
j=1

kj log[
∫ j

j−1
exp(cTφφφ(t))dt]−

52∑
j=1

log(kj !) (2.18)

where c = (c1, c2, ...)T is the vector containing coefficients of basis functions.
To estimate the integrals involved in the above equation, we again use composite Simpson’s
rule. The log-likelihood function becomes

l = −
R∑
r=1

vr exp(cTφφφ(ur)) +
52∑
i=1

ki log{
Q∑
q=1

[wq exp(cTφφφ(siq))]} −
52∑
i=1

log(ki!) (2.19)
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where ur = 0 + (r − 1)g, g = 52
R−1 ,

vr =


g
3 r = 1 or r = R

4g
3 r = 2, 4, 6...
2g
3 r = 3, 5, 7...

and siq = i− 1 + (q − 1)h, h = 1
Q−1 ,

wq =


h
3 q = 1 or q = Q

4h
3 q = 2, 4, 6...

2h
3 q = 3, 5, 7...

. (2.20)

We still use harmonic acceleration operator as penalty, which is expressed as

µ

∫ 52

0
[λ′′′(t) +ωλ′(t)]2dt = µcT

{
R∑
r=1

vr
[
φφφ′′′(ur) +ωφφφ′(ur)

][
φφφ′′′

T (ur) +ωφφφ′
T (ur)

]}
c (2.21)

One problem we have here is that there is no closed form for c, so numerical method has
to be used to find the maximum of likelihood. Similar to the trick we applied to SSE, we
add the negative of log-likelihood (2.19) and harmonic acceleration operator (2.21) together
and minimize it to find ĉ = argminc(−(2.19) + (2.21)).

2.2.4 Difficulties in Finding the Global Minimum

It is difficult to find the global minimum of a function in high dimension. We use Simulated
annealing, an algorithm for global optimum searching, and carefully choose the initial point
of iterations. A reasonable choice of initial point is ĉN , the estimated coefficients under
traditional Gaussian model, since ĉN and ĉ should be close to each other.

2.2.5 Functional Principal Component Analysis on Forest Fire Data

We use functional principal component analysis (FPCA) to study the variations in forest
fire data. Before doing FPCA, the mean curve is usually subtracted. Let ȳ(t) = 1

n

∑n
i=1 yi(t)

and ri(t) = yi(t)− ȳ(t). We will conduct FPCA on ri(t)’s.
Let ξ1(t) be the first functional principal component (FPC). It is estimated by maximizing

n∑
i=1

f2
i1, (2.22)

subject to ‖ξ1‖2 =
∫
ξ2

1(s)ds = 1, where fi1 =
∫
ξ1(s)ri(s)ds is the first PC score of the i-th

curve ri(t).
Similarly, the second FPC ξ2(t) is estimated by maximizing

∑n
i=1 f

2
i2, subject to ‖ξ2‖2 =

9



∫
ξ2

2(s)ds = 1 and
∫
ξ1(s)ξ2(s)ds = 0, where fi2 =

∫
ξ2(s)ri(s)ds is the second FPC score of

the i-th curve ri(t). The subsequent FPCs, ξ3(t), ..., ξM (t), can be estimated similarly with
additional constraints

∫
ξu(s)ξv(s)ds = 0 for all u, v where 1 ≤ u < v ≤ Q.

Let
v(s, t) =

n∑
i=1

ri(s)ri(t) (2.23)

be the variance-covariance function for ri(t)’s. All FPCs can be calculated as the eigen-
functions of the following functional eigenequations∫

v(s, t)ξm(s)ds = ρmξm(t), (2.24)

where ρm is the corresponding eigenvalue, q = 1, ...,M and ρ1 ≥ ... ≥ ρM . Each eigenfunc-
tion ξm(t) takes account ρ1∑M

m=1 ρm
of the total variations among n curves. Usually only the

first few eigenfunctions need to be calculated such that they take account more than 95%
of the total variations.

2.2.6 Historical Functional Linear Regression

Let yi(t), xi(t) and zi(t), t ∈ [0, T ], be the forest fire rate, temperature and precipitation
over time t in the i-th year, respectively. We use the historical functional linear model ([6])
to test the effect of temperature and precipitation on forest fire rate. The model is written
as

yi(t) = β0(t) +
∫ t

0
β1(s, t)xi(s)ds+

∫ t

0
β2(s, t)zi(s)ds+ εi(t). (2.25)

β1(s, t) represents the effect of temperature xi(s) at time s on the forest fire rate yi(t) at
time t. The integral is from 0 to t such that only xi before t will affect yi at t. In this way
the model avoids backwards causation. And as a result, the support of β1(s, t) becomes
a triangle rather than a rectangle. Figure 2.2 shows an example of our forest fire versus
temperature case. We are going to estimate β1(s, t) over this triangle support and test the
significance of it. Similarly, β2(s, t) represents the effect of precipitation zi(s) at time s on
the forest fire rate yi(t) at time t. The same procedure is applied to β2(s, t) as β1(s, t).
In order to simplify the estimation of model (2.25), we only consider temperature effect for
now and ignore precipitation. The model then becomes

yi(t) = β0(t) +
∫ t

0
β1(s, t)xi(s)ds+ εi(t). (2.26)

To further simplify the notations, we drop the intercept function β0(t) by subtracting the
mean curve from our data. Let y∗i (t) = yi(t) − ȳ(t) and x∗i (t) = xi(t) − x̄(t), where ȳ(t) =

10



1
n

∑n
i=1 yi(t) and x̄(t) = 1

n

∑n
i=1 xi(t). We obtain

y∗i (t) =
∫ t

0
β1(s, t)x∗i (s)ds+ εi(t). (2.27)

In addition, we drop the asterisk in what follows.
Let β1(s, t) be approximated by β̂1(s, t), a linear combination of known 2-dimentional basis
functions φk(s, t), namely

β̂1(s, t) =
K∑
k=1

bkφk(s, t). (2.28)

We construct the 2-dimentional basis function system by taking the tensor product of two
1-dimentional basis function systems. Let η1(s), η2(s), ..., ηK1(s) and θ1(t), θ2(t), ..., θK2(t)
be the two 1-dimentional basis function systems. Define the 2-dimentional basis function
system as the set of basis functions

{ηk1(s)θk2(t)}, (2.29)

where k1 ∈ {1, ...,K1}, k2 ∈ {1, ...,K2} and k1 < k2. The constraint k1 < k2 arises because
of the triangular shape of the support of β1(s, t). Figure 2.2 shows one possible basis
function system that is consist of the tensor product of two 1-dimentional basis function of
size 10. The total number of 2-dimentional basis functions K = K1(K2+1)

2 when K1 = K2.
We continue working on the estimation of β(s, t). Define

ψik(t) =
∫ t

0
xi(s)φk(s, t)ds. (2.30)

Equation 2.25 becomes

yi(t) =
K∑
k=1

bk

∫ t

0
xi(s)φk(s, t)ds+

∫ t

0
xi(s)εa(s, t)ds+ εi(t) =

K∑
k=1

bkψik(t) + ε′i(t), (2.31)

where εa(s, t) = β1(s, t) − β̂1(s, t) is the error due to approximation of β1(s, t) and ε′i(t) is
the combined error.
Let y(t) and e(t) be the vectors of length n containing values of yi(t) and ε′i(t), respectively.
Let ΨΨΨ(t) be the n ×K matrix containing values of ψik(t) and let b = (b1, ..., bK)T be the
coefficient vector. We re-express equation (2.25) as

y(t) = ΨΨΨ(t)b + e(t). (2.32)

We wish to minimize
SSE =

∫ T

0

n∑
i=1
{ε′i(t)}2dt, (2.33)
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Figure 2.2: An example of triangular support and basis functions. The grey shadowed
area is the triangular support of β1(s, t). Each black dot indicates a 2-dimentional basis
function. In this example, s and t represent time (in weeks) of which mean temperature
and number of forest fire are recorded, respectively, thus s ∈ (0, 52) and t ∈ (0, 52). These
basis functions are constructed by the tensor product of two 1-dimentional basis function
systems of size 10. Getting rid of those basis functions that are out of the support, we end
up with 55 of them.
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which is equivalent to solving for the normal equations{∫ T

0
ΨΨΨT (t)ΨΨΨ(t)dt

}
b =

∫ T

0
ΨΨΨT (t)y(t)dt. (2.34)

Similar to section 2.2.1 and 2.2.2, we need to take roughness penalty into consideration.
For our 2-dimentional basis functions, we consider roughness in each dimension separately.
Let

PEN1 = λ1

∫∫ [
D3β1(s, t)

ds3 + ω2Dβ1(s, t)
ds

]2
dsdt (2.35)

and

PEN2 = λ2

∫∫ [
D3β1(s, t)

dt3
+ ω2Dβ1(s, t)

dt

]2
dsdt (2.36)

be the harmonic acceleration operators along s and t, respectively, where λ1 and λ2 are
smoothing parameters and ω is the frequency.

PEN1 = λ1

∫∫ [ K∑
k=1

bkφ
′′′
k(ds)(s, t) + ω2

K∑
k=1

bkφ
′
k(ds)(s, t)

]2
dsdt

= λ1

∫∫ [ K∑
k=1

bk

(
φ′′′k(ds)(s, t) + ω2φ′k(ds)(s, t)

)]2
dsdt,

(2.37)

where φ′′′k(ds)(s, t) and φ′k(ds)(s, t) represent the third and first derivatives w.r.t. s.
Let φφφ1(s, t) be a length K vector containing functions φ′′′k(ds)(s, t) + ω2φ′k(ds)(s, t) for k =
1, 2, ...,K. Equation (2.37) can be written in matrix terms as

PEN1 = λ1

∫∫ [
bTφφφ1(s, t)

]2
dsdt

= λ1

∫∫ [
bTφφφ1(s, t)φφφT1 (s, t)b

]
dsdt

= λ1bT
{∫∫ [

φφφ1(s, t)φφφT1 (s, t)
]
dsdt

}
b

= λ1bTR1b,

(2.38)

where R1 =
∫∫ [

φφφ1(s, t)φφφT1 (s, t)
]
dsdt is an K ×K matrix.

Similarly, we can work out the matrix form of PEN2

PEN2 = λ2bTR2b, (2.39)

where R2 resembles R1 except that derivatives of basis functions involved are taken w.r.t.
t.
Now we wish to minimize the summation of SSE and two penalty terms, denoted as

PENSSE = SSE + PEN1 + PEN2, (2.40)
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which is equivalent to solving for the normal equations{∫ T

0
ΨΨΨT (t)ΨΨΨ(t)dt+ λ1R1 + λ2R2

}
b =

∫ T

0
ΨΨΨT (t)y(t)dt. (2.41)

There are three types of integrals involved in equation (2.41): The large integrals over
(0, T ) that we can see directly on both sides of equation; small integrals in ψik(t) contained
in ΨΨΨ(t); and double integrals in R1 and R2. We approximate the latter two types using
numerical method such as the composite Simpson’s rule. As for the first type of integrals, we
approximate them by a multivariate linear model. Evaluate yi(t) and ψi1(t), ψi2(t), ..., ψiK(t)
at a finite set of time points tq, q = 0, ..., Q. This gives us

E(yi) = ΨΨΨib, (2.42)

where yi = (yi(t0), ..., yi(tQ))T and

ΨΨΨi =


ψi1(t0) · · · ψik(t0) · · · ψiK(t0)

... . . . ... . . . ...
ψi1(tQ) · · · ψik(tQ) · · · ψiK(tQ)

 .

Stacking these matrices yi and ΨΨΨi on top of each other, we obtain the n(Q + 1) × 1 and
n(Q+ 1)×K matrices y and ΨΨΨ, respectively. The normal equations are

{ΨΨΨTΨΨΨ + λ1R1 + λ2R2}b = ΨΨΨTy, (2.43)

thus the estimated coefficients are

b̂ = {ΨΨΨTΨΨΨ + λ1R1 + λ2R2}−1ΨΨΨTy. (2.44)

To add the precipitation effect back to our model, we do the following procedure.

1. Choose another set of 2-dimentional basis functions.

2. Define the precipitation version of "ΨΨΨ" matrix, combine it with ΨΨΨ by column. Denote
the combined matrix as ∆∆∆.

3. Define two penalty terms for precipitation as λ3R3 and λ4R4.

4. The estimated coefficients, namely ĉ, is then ĉ = {∆∆∆T∆∆∆ + λ1R1 + λ2R2 + +λ3R3 +
λ4R4}−1∆∆∆Ty.
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Chapter 3

Results

3.1 Smoothed Curves of Temperature Data

The discrete temperature data are smoothed using 1827 B-spline basis functions. The
smoothing parameter is chosen to be µ = 100. Figure 3.1 shows the results of smoothing
the temperature data for a selection of years using Gaussian model. It shows that mean
weekly temperatures in BC are mostly below zero in January, mid-November and December.
The highest temperature appears around week 30, which corresponds to late July.

3.2 Smoothed Curves of Precipitation Data

We also use 1827 B-spline basis functions to smooth precipitation data. The smoothing
parameter is chosen to be 100. Figure 3.2 shows the results of smoothing the precipitation
data for a selection of years using Gaussian model. The precipitation has more variations
between weeks compared to temperature. There is more precipitation in winters than
summer. November has the highest precipitation in a year.

3.3 Smoothed Curves of Forest Fire Data

For the forest fire data, we use the Poisson process model to do the smoothing. The
smoothing parameter we choose is µ = 100. Results for selected years are shown in figure
3.3. Most years have 0 forest fire recorded in January, February, November and December.
June and July have the most forest fires recorded and the number reaches the peak at the
end of July.
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Figure 3.1: Discrete points are original records of mean temperatures in each week.
Smoothed curves are derived using the Gaussian model. A selection of years is shown
here.
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Figure 3.2: Discrete points are original records of mean precipitation in each week.
Smoothed curves are derived using the Gaussian model. A selection of years is shown
here.
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Figure 3.3: Discrete points are original records of number of fires in each week. Smoothed
curves are derived using the Poisson process model. Results of a selection of years are shown
here.
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3.4 FPCA

Functional principal component analysis (FPCA) is used here to detect the variations in
the number of forest fires recorded within British Columbia among 63 years. We choose the
first four functional principal components so that more than 95% of the total variations is
covered. Figure 3.4 shows the four FPCs. Each of them takes account 72.6%, 14.3%, 6.8%
and 3.4% of the total variations, respectively. FPC1 is positive throughout the year, but
the FPC1 value in winter is close to 0, while it rises through spring and peaks in summer.
It means that forest fires are most variable in summer and very stable in winter. Year 2009
and 2008 have very high number of fire recorded in the summer and thus have very large
FPC1 scores. FPC2 is positive through April to July (early summer), negative through
August to October (late summer) and 0 otherwise. It means FPC2 score measures the
change of forest fire between early summer and late summer. For example, there is much
less forest fire recorded in early summer compared to late summer in year 2012 , thus it has
the smallest FPC2 score (-377). In year 2004, there is much more forest fire recorded in early
summer compared to late summer, thus it has the largest FPC2 score (238). FPC3 and
FPC4 are not very interpretable. Figure 3.5 displays the scatterplot of PFC2 score versus
PFC1 score for each year. We can see clearly that year 2004 and 2012 have extreme FPC2
scores, which means they have large difference between early summer and late summer,
and year 2009 has the largest FPC1 score, which indicates large number of forest fires in
summer. In addition, most years after 2000 are on the right side of panel, which means
there have been more forest fire in recent years than in the past during summer.

3.5 Historical Functional Linear Model

The effect of temperature and precipitation on forest fire rate is modelled by the historical
functional linear model. Two sets of 19 Fourier basis functions are chosen to construct the
2-dimentional basis functions, making it a total of 190 basis functions. Two smoothing
parameters are chosen to be 1e6. An identical setup is applied to precipitation as well.
Figure 3.6 shows the predicted forest fire curves from the linear model for some years, along
with the observed data and smoothed curve. Our model predicts the trend well during
off-summer. However, for some years in the summer where extreme number of fires are
observed, our model performs conservatively.

3.5.1 Estimated Temperature/Precipitation Effect And Permutation Tests

Figure 3.7 is a heat map showing the estimated effect of temperature on forest fire. In
addition, in order to know whether the effect differs from 0 significantly, we use permutation
tests to find point-wise confidence intervals at a series of time points. We perform the
following procedure:
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Figure 3.4: Four functional principal components for the forest fire data are plotted. Each
of them takes account 72.6%, 14.3%, 6.8% and 3.4% of the total variations, respectively.
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Figure 3.6: Discrete points shows original number of fires in each week. Solid curves are
smoothed fire data using Poisson process model. Dashed curves are predicted fire curves
from temperature using historical functional linear model.
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Figure 3.7: A heat map showing the estimated effect of temperature on forest fire, β̂1(s, t).
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1. Randomly shuffle the labels of the curves of forest fire. Keep the labels of the curves
of temperature unchanged.

2. Pair each curve of forest fire and temperature according to their new labels and redo
the historical functional linear regression to get a new estimate of β1(s, t), denoted as
β̂1m(s, t).

3. Evaluate β̂1m(s, t) at (si, tj), where i = 1, ..., I, j = 1, ..., J and si < tj . Let the total
number of time points be T .

4. Repeat step 1, 2 and 3 M times. At each time point (si, tj), find out which quantile
β̂1(si, tj) is among β̂11(si, tj), β̂12(si, tj), ..., β̂1M (si, tj).

5. β̂1(si, tj)’s that fall below 5% or above 95% are considered significant.

We choose I = 100, J = 100, thus T = 5050 and M = 1000. Figure 3.8 shows the locations
of these significant points.
Figure 3.7 and 3.8 shows that a higher temperature through the year always has positive
effect on forest fire rate from August to November. This indicates that there exists positive
historical effect of temperature on forest fire rate. We also find that the effect is most
influential when s is close to t in January, August, September, October and December, which
is a sign of strong concurrent effect of temperature. However, no significant association is
found between temperature and forest fire rate from March to June.
Figure 3.9 and 3.10 shows the effect of precipitation on forest fire rate. There exists strong
negative concurrent effect and moderate negative short-term effect up to approximately two
months.
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Figure 3.8: The quantile each β̂1(si, tj) corresponds to. White line and Black line show the
contours of 5th and 95th quantiles, respectively.
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Figure 3.9: A heat map showing the estimated effect of precipitation on forest fire, β̂2(s, t).
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Chapter 4

Conclusions

Functional data analysis is used to explore the fluctuation and variation of weekly forest
fire rate in British Columbia among 63 years. The effect of weekly average temperature on
forest fire rate is also investigated.
Functional principal component analysis shows that forest fire rate is most variable in
summer and very stable during winter time. We also find out that forest fire rate is higher
and less stable in the last decade than before. Year 2008 and 2009 have the most recorded
forest fire among 63 years, and year 2004 and 2012 have the largest fire rate difference.
Historical functional linear model shows that there exists significant effect of temperature
on forest fire rate. In particular, a higher temperature through the year always has positive
effect on forest fire rate from August to November, which is a sign of historical effect of
temperature. Compared to this historical effect, concurrent effect of temperature is stronger
in certain months. The effect of precipitation is mostly negative and concurrent with a 2-
month short-term effect detected.
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Appendix A

Code

#############################visualize raw data###############
library(maps)
library(mapdata)
#read in forest fire data
dat=read.csv("D:\\research\\forest_fire\\data\\NFDB_point_20131108
.txt",quote="\"",head=T,sep=",")
#keep only fires in BC
datbc=dat[dat[,2]=="BC",]

#read in weather station information where temperature data were col
lected
stations = read.csv("C:\\Users\\Administrator\\Dropbox\\ongoing for
est fire\\data\\Homog_daily_me
an_temp\\Homog_temperature_stations_v2014.csv", head=T)
#keep only stations within BC and have data between 1950 and 2012
stations=subset(stations,stations$Prov=="BC" & stations$beg.yr<=195
0 & stations$end.yr>=2012)

#fire and weather station distribution on map of BC
#BC map
map("worldHires","Canada",xlim=c(-140,-114),ylim=c(48,60),fill=T,co
l="gray90")
#fire
points(datbc$LONGITUDE,datbc$LATITUDE,pch=".")
#weather stations where temperature data are collected
points(stations$long..deg.,stations$lat..deg.,col=2,pch=19)
#add vancouver and victoria label to the map
text(x=-122,y=48.45,label="Victoria",cex=1,font=2,col=1)
text(x=-122.3,y=49.55,label="Vancouver",col=5,cex=1,font=2)
#################################################OK
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######fire numbers in 52 weeks of a year############
#since there are some obs. without date (only year), "doy" will h
ave some NA in it. We replace it with 0
#so we can carry out calculation in the loop. Use the result fro
m the loop to generate week number
s to replace NA in doy.

#transfer date into days of a year (1-365)
doy=strptime(datbc$REP_DATE, "%Y-%m-%d %H:%M:%S")$yda
y+1
#replace "na" with "0"
doy[is.na(doy)]=0
fire_wk=matrix(nrow=63,ncol=52)

#the loop counts the number of fires occurred in each week
of a year for 1950-2012.

#The result is a 63 by 52 matrix. Rows correspond to year
s, columns correspond to weeks.
for(i in 1:63){
for(j in 1:52){
fire_wk[i,j]=sum(as.numeric(datbc$YEAR_==(1949+i) &
(1+(j-1)*7)<=doy & doy<=(j*7)))
}
}
#add row names and column names
rownames(fire_wk,do.NULL=F)
rownames(fire_wk)=c(1950:2012)
colnames(fire_wk)=c(1:52)

#sample missing data
write.csv(as.data.frame(fire_wk),file="C:\\Users\\Admi
nistrator\\Desktop\\2.csv")
sample2012=sample(c(1:52),11,replace=T,prob=fire_
wk["2012",])
sample2011=sample(c(1:52),6,replace=T,prob=fire_
wk["2011",])
sample2010=sample(c(1:52),7,replace=T,prob=fire_
wk["2010",])
sample2009=sample(c(1:52),14,replace=T,prob=fire
_wk["2009",])
sample2007=sample(c(1:52),2,replace=T,prob=fire_
wk["2007",])
sample2006=sample(c(1:52),9,replace=T,prob=fire_
wk["2006",])
sample2005=sample(c(1:52),10,replace=T,prob=fire_wk["2005",])
sample2004=sample(c(1:52),66,replace=T,prob=fire_wk["2004",])
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sample2003=sample(c(1:52),161,replace=T,prob=fire_wk["2003",])
sample2002=sample(c(1:52),40,replace=T,prob=fire_wk["2002",])
sample2001=sample(c(1:52),127,replace=T,prob=fire_wk["2001",])
sample2000=sample(c(1:52),191,replace=T,prob=fire_wk["2000",])
sample1999=sample(c(1:52),2,replace=T,prob=fire_wk["1999",])
sample1998=sample(c(1:52),18,replace=T,prob=fire_wk["1998",])
#replace NA in doy with sampled week numbers
doy=strptime(datbc$REP_DATE, "%Y-%m-%d %H:%M:%S")$yday+1
doy[datbc$YEAR_==2012 & datbc$MONTH_==0]=sample2012
doy[datbc$YEAR_==2011 & datbc$MONTH_==0]=sample2011
doy[datbc$YEAR_==2010 & datbc$MONTH_==0]=sample2010
doy[datbc$YEAR_==2009 & datbc$MONTH_==0]=sample2009
doy[datbc$YEAR_==2007 & datbc$MONTH_==0]=sample2007
doy[datbc$YEAR_==2006 & datbc$MONTH_==0]=sample2006
doy[datbc$YEAR_==2005 & datbc$MONTH_==0]=sample2005
doy[datbc$YEAR_==2004 & datbc$MONTH_==0]=sample2004
doy[datbc$YEAR_==2003 & datbc$MONTH_==0]=sample2003
doy[datbc$YEAR_==2002 & datbc$MONTH_==0]=sample2002
doy[datbc$YEAR_==2001 & datbc$MONTH_==0]=sample2001
doy[datbc$YEAR_==2000 & datbc$MONTH_==0]=sample2000
doy[datbc$YEAR_==1999 & datbc$MONTH_==0]=sample1999
doy[datbc$YEAR_==1998 & datbc$MONTH_==0]=sample1998

#final calculation of number of fires in each week
fire_wk=matrix(nrow=63,ncol=52)
for(i in 1:63){
for(j in 1:52){
fire_wk[i,j]=sum(as.numeric(datbc$YEAR_==(194
9+i) & (1+(j-1)*7)<=doy & doy<=(j*7)))
}
}
rownames(fire_wk,do.NULL=F)
rownames(fire_wk)=c(1950:2012)
colnames(fire_wk)=c(1:52)

#plot one curve for each year
plot(c(1:52),fire_wk[1,],type="l",ylim=c(0,1200),ma
in="fire numbers in each week by year",
xlab="week",ylab="number of fire")
for(i in 1:62){
lines(c(1:52),fire_wk[i+1,],col=(i+1))
}

#plot a selection of years using ggplot
###
library(ggplot2)
library(reshape2)
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library(plyr)
fire_wk_plotdat=melt(fire_wk)
fire_wk_plotdat=subset(fire_wk_plotdat,Var1=
=1950|Var1==1960|Var1==1970|Var1==
1980|Var1==1990|Var1==2000|Var1==201
0|Var1==2011|Var1==2012)
fire_wk_plotdat=rename(fire_wk_plotdat,c("Va
r1"="year"))

plotobj=ggplot()
plotobj=plotobj+geom_point(data = fire_wk_
plotdat, aes(x = Var2, y = value),size=2)+fac
et_wrap(~year,ncol=3,scale="free")
plotobj=plotobj+ xlab("Week") + ylab("Num
ber of fire")+xlim(0,52)+ylim(0,400)
plotobj=plotobj+ theme(axis.text.y = eleme
nt_text(size=15),axis.text.x = element_text(si
ze=15),text= element_text(size=20),panel.g
rid.major = element_blank(), panel.grid.mino
r = element_blank(), panel.background = e
lement_blank(), axis.line = element_line(colou
r = "black"))
plotobj
####################################

#####Poisson process to smooth forest fire data#
#use exp(alpha(t))=lambda(t) since we have constr
aint "lambda(t)>0"

library(fda)
#define 29 fourier basis functions
weekbasis51 <- create.fourier.basis(c(0, 52), nb
asis=29, period=52)

#one set of Simpson’s method variables
R=1000
g=52/(R-1)
U=(c(1:R)-1)*g
V=c(g/3,rep(c(4*g/3,2*g/3),(R-2)/2),g/3)

#another set of Simpon’s method variables
Q=50
h=1/(Q-1)
W=c(h/3,rep(c(4*h/3,2*h/3),(Q-2)/2),h/3)
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#define basis matrices that will be used later
basismat=eval.basis(U, weekbasis51)
basismat3=eval.basis(U, weekbasis51,3)
basismat2=eval.basis(U, weekbasis51,2)
basismat1=eval.basis(U, weekbasis51,1)
t=c(1:52)

#define an empty matrix to contain coefficien
ts of basis functions
Chat=matrix(ncol=63,nrow=29)

#a loop to calculate the coefficient of basis f
unctions
for(I in 1:63){
K=fire_wk[I,]
#take the log of fire data. If original fire coun
t=0 then let it be 0.001 so that log(fire)=-6.9
result <- smooth.basis(t, log(K+0.001), week
basis51)

#smoothing the forest fire data using normal
model.
#This is done so that we could get a better ini
tial value for simulated annealing method
#to find the penalized MLE of poisson process
Kfd <- result$fd
KfdPar <- fdPar(Kfd, vec2Lfd(c(0,(2*pi/52)^2
,0), c(0, 52)), 1e2)
Kfd1 <- smooth.fd(Kfd, KfdPar)

#smoothing parameter is chosen to be 1e2
miu=1e2
#a function to calculate the penalizied likeli
hood of poisson process
#it is the sum of negative likelihood and pe
nalty. When rough, negative likelihood gets sm
aller, penalty gets larger.
ppmle=function(c){
p1=-exp(t(c)%*%t(basismat))%*%V
p2=c()
for(i in 1:52){
S=i-1+(c(1:Q)-1)*h
Phi=eval.basis(S, weekbasis51)
p2[i]=K[i]*log((exp(t(c)%*%t(Phi))%*%W))#
}
p2=sum(p2)
#p3=-sum(log(factorial(K)))
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p4=exp(t(c)%*%t(basismat))^2*((t(c)%*%t(ba
sismat1))^3+3*t(c)%*%t(basismat1)*t(c)%*%t(b
asismat2)+t(c)%*%t(basismat3)+2*pi/52
*t(c)%*%t(basismat1))^2
p4=-miu*p4%*%V
-(p1+p2+p4)
}

#find minimum of sum of negative likeliho
od and penalty
chat=optim(matrix(Kfd1$coefs,ncol=1),
ppmle,method = "SANN")$par
Chat[,I]=chat
}

#store it as "Chat_1_63_b29_1e2"
Chat_1_63_b29_1e2=Chat

#plot of discrete data and smoothed lines
yhat=basismat%*%chat
plot(c(1:52),K,main="year 1951")
lines(U,exp(yhat))
plot(U,yhat)

par(mfrow=c(2,2))
for(i in 1:63){
K=fire_wk[i,]
chat=Chat_1_63_b29_1e2[,i]
yhat=basismat%*%chat
plot(c(1:52),K,xlab="week",ylab="number o
f fire",main=seq(1950,2012,1)[i],ylim=c(0,
600))
lines(U,exp(yhat))
}

#add smoothed curve to original discrete d
ata plot using ggplot
ypredicted=exp(basismat%*%Chat_1_63_b29
_1e2)
rownames(ypredicted)=seq(0,52,length=1000)
colnames(ypredicted)=1950:2012
smoothed_fire_wk_plotdat=melt(ypredicted)
smoothed_fire_wk_plotdat=subset(smoothed
_fire_wk_plotdat,Var2==1950|Var2==1960
|Var2==1970|Var2==1980|Var2==1990|Va
r2==2000|Var2==2010|Var2==2011|Var2=
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=2012)
smoothed_fire_wk_plotdat=rename(smooth
ed_fire_wk_plotdat,c("Var2"="year"))

plotobj=plotobj+geom_line(data=smoothe
d_fire_wk_plotdat, aes(Var1, value))
plotobj
##################ok

############FPCA using curves smooth
ed from Poisson process#######
library(fda)
newyhat=basismat%*%Chat_1_63_b29_1e2
newy=exp(newyhat)
#use 101 basis functions to interpolate poin
ts
weekbasis101=create.fourier.basis(c(0, 52)
, nbasis=101, period=52)
newyfd <- smooth.basis(argvals=seq(0,52,l
ength=1000), y=newy,weekbasis101, fdnam
e
s=list("week", "year", "count"))$fd
new_weekfirepcaobj=pca.fd(center.fd(newyf
d), nharm = 4,centerfns = TRUE)
weekbasis29 <- create.fourier.basis(c(0, 52)
, nbasis=29, period=52)
new_weekfirefd=fd(Chat_1_63_b29_1e2, we
ekbasis29,fdnames=list("week", "year", "co
unt"))
new_harmaccelLfd <- vec2Lfd(c(0,(2*pi/5
2)^2,0), c(0, 52))
#harmonic parameter, used to define func
tional version of our month fire data
new_harmfdPar <- fdPar(weekbasis29,
new_harmaccelLfd, lambda=1e2)#will try differ
ent lambda below
new_weekfirepcaobj=pca.fd(center.fd(ne
w_weekfirefd), nharm = 4,new_harmfdPa
r,cente
rfns = TRUE)

#plotting results
op <- par(mfrow=c(2,2))
par(op)

#plot mean curve+-pc
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plot.pca.fd(new_weekfirepcaobj, cex.mai
n=0.9)
#plot PC
plot(new_weekfirepcaobj$harmonics)
#plot pc in seperate graphs
par(mfrow=c(2,2))
par(pty="s")
plot(new_weekfirepcaobj$harmonics[1],x
lab="week",main=paste("PC",1,sep=""),yl
im=c
(-.4,.4))
plot(new_weekfirepcaobj$harmonics[2],x
lab="week",main=paste("PC",2,sep=""),ylim=
c(-.4,.4))
plot(new_weekfirepcaobj$harmonics[3],
xlab="week",main=paste("PC",3,sep=""),ylim=
c(-.4,.4))
plot(new_weekfirepcaobj$harmonics[4],
xlab="week",main=paste("PC",4,sep=""),ylim=
c(-.4,.4))
#ggplot for pc
pcvalue=eval.fd(seq(0,52,length=1000),
new_weekfirepcaobj$harmonics)
rownames(pcvalue)=seq(0,52,length=10
00)
pcvalue_plotdat=melt(pcvalue)
plotobj2=ggplot(data=pcvalue_plotdat,ae
s(x=Var1,y=value))+geom_line()+facet_w
rap(~Var2,ncol=2,scale="free")
plotobj2=plotobj2+theme(axis.text.y =
element_text(size=15),axis.text.x = elemen
t_text(size=15),text= element_text(size=
20),panel.grid.major = element_blank(), pa
nel.grid.minor = element_blank(), panel.
background = element_blank(), axis.lin
e = element_line(colour = "black"))
plotobj2=plotobj2+ylim(-0.35,0.4)+xlab
("week")+ylab("FPCs")
plotobj2=plotobj2+geom_hline(yinterce
pt=0, linetype="dotted")
plotobj2=plotobj2+geom_vline(xinterce
pt=seq(0,52,length=13),linetype="dot
ted")+annotate("text",x=seq(0,52,length
=13)[1:12]+0.4,y=-0.35,label=c("Jan","F
eb","Mar","Apr","May","Jun","Jul","Aug","Se
p","Oct","Nov","Dec"),hjust=0,size=3)
plotobj2
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#scores 1 vs scores 2
plotscores(new_weekfirepcaobj,scores=c
(1,2),pch=".")
text(new_weekfirepcaobj$scores[,1],new_
weekfirepcaobj$scores[,2],labels=c(c(
50:99),"00","01","02","03","04","05","06"
,"07","08","09","10","11","12"))
#ggplot of scores 1 vs scores 2
score12=new_weekfirepcaobj$scores[,1
:2]
score12=cbind(1950:2012,score12)
colnames(score12)=c("Year","FPC1_score
","FPC2_score")
score12=data.frame(score12)
score12$Year=substring(score12$Ye
ar,3)
score12=cbind((c(rep(0,54),rep(1,9))),
score12)
colnames(score12)[1]="grp"
plotobj5=ggplot(data=score12)+geo
m_point(aes(x=FPC1_score,y=FPC2_score)
,size=2,shape=16)
plotobj5=plotobj5+geom_point(aes(
x=FPC1_score[grp==1],y=FPC2_score[grp

==1]),size=3,shape=15)
plotobj5=plotobj5+theme(axis.text.y
= element_text(size=15),axis.text.x = el

ement_text(size=15),text= element_
text(size=20),panel.grid.major = element
_blank(), panel.grid.minor = element
_blank(), panel.background = element_blan
k(), axis.line = element_line(colour
= "black"),panel.border = element_r
ect(colour = "black", fill=NA))
plotobj5=plotobj5+labs(x="FPC1 sc
ore",y="FPC2 score")
plotobj5=plotobj5+geom_text(aes(
FPC1_score,FPC2_score,label=Year), size=
6,hjust=-0.2)
plotobj5=plotobj5+geom_vline(xinterc
ept=0,linetype="dotted")+geom_hli
ne(yintercept=0,linetype="dotted")
plotobj5
#plot scores: scatterplot
plot(rep(0,63),new_weekfirepcaobj$sc
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ores[,1],xlab="",ylab="PC1 scores
",ylim=c(-400,500))

plot(rep(0,63),new_weekfirepcaobj$
scores[,2],xlab="",ylab="PC2 scores
",ylim=c(-400,500))
plot(rep(0,63),new_weekfirepcaobj$
scores[,3],xlab="",ylab="PC3 score
s",ylim=c(-400,500))
plot(rep(0,63),new_weekfirepcaobj$
scores[,4],xlab="",ylab="PC4 scor
es",ylim=c(-400,500))
library(ggplot2)
library(reshape2)
plotdat=melt(as.matrix(new_weekfire
pcaobj$scores))
plotobj3=ggplot(data = plotdat, aes
(x = Var2, y = value))+ geom_poi
nt()+ xlab("PC") + ylab("value")
#plot scores: boxplot
boxplot(new_weekfirepcaobj$scores,
use.cols = TRUE,xlab="PC",ylab=
"scores")
library(ggplot2)
library(reshape2)
plotdat=melt(as.matrix(new_weekfi
repcaobj$scores))
plotobj4=ggplot(data = plotdat, a
es( x=factor(Var2),y = value))+ ge
om_boxplot()+ xlab("PC") + ylab("v
alue")
############################ok

#########temperature data######################

#read in station information
stations = read.csv("C:\\Users\\Admini
strator\\Dropbox\\ongoing forest fire\\
data\\Homo
g_daily_mean_temp\\Homog_temperatu
re_stations_v2014.csv", head=T)
stations=subset(stations,stations$Prov=
="BC" & stations$beg.yr<=1950 & station
s$end.yr>=2012)
stations

#read in file names
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filelist=list.files(path="C:\\Users\\Admi
nistrator\\Dropbox\\ongoing forest fire\
\data\\Ho
mog_daily_mean_temp\\Homog_daily_m
ean_temp_v2014")

#read in temperature data
readtempdata=function(id){
read.table(paste("C:\\Users\\Administra
tor\\Dropbox\\ongoing forest fire\\data
\\Homog
_daily_mean_temp\\daily_temp\\",grep(i
d,filelist,value=T),sep=""),head=F)
}
tempdata=lapply(stations$stnid,readte
mpdata)

#add column names
addcolnames=function(x){
x=as.data.frame(x)
colnames(x)=c("yr","mo",paste("day",1:3
1,sep=""))
return(x)
}
tempdata_=lapply(tempdata,addcoln
ames)

#clean the data

samplebyday=function(x){
x=as.matrix(x)
if(length(x[x!="M"])!=0){
for(i in 1:length(x)){
if(x[i]=="M" & any(x[1:i]!="M")){
x[i]=sample(x[1:i][x[1:i]!="M"],1,rep
lace=T)
}
}
return(x)
}
else{return(x)}
}

cleandata=function(x){
#delete a and e
x_=as.matrix(as.data.frame(x))
x_[substr(x_, nchar(x_), nchar(x_))=
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="a" | substr(x_, nchar(x_), nchar(x_
))=="E"]=substr(x
_, 1, nchar(x_)-1)[substr(x_, nchar(x_
), nchar(x_))=="a" | substr(x_, nchar(
x_), nchar(x_))=="E"]
#replace missing values with a rando
m sample from corresponding mont
h and day
x_=as.data.frame(x_)
month1=x_[as.numeric(as.characte
r(x_$mo))==1,]
nomdata=as.data.frame(lapply(mo
nth1,samplebyday))
for(j in 2:12){
monthly=x_[as.numeric(as.charac
ter(x_$mo))==j,]
nomlist=lapply(monthly,sampleb
yday)
nomdata=rbind(nomdata,as.data
.frame(nomlist))
}

#some dates do not exist. Set th
em to NA
#nomdata[as.numeric(as.charact
er(nomdata$mo))==2,]$day29=
"NA"
#nomdata[as.numeric(as.charac
ter(nomdata$mo))==2,]$day30
="NA"
#nomdata[as.numeric(as.chara
cter(nomdata$mo))==2,]$day
31="NA"
#nomdata[as.numeric(as.charac
ter(nomdata$mo))==4,]$day30="NA"
#nomdata[as.numeric(as.charac
ter(nomdata$mo))==6,]$day30="NA"
#nomdata[as.numeric(as.charac
ter(nomdata$mo))==9,]$day30="NA"
#nomdata[as.numeric(as.chara
cter(nomdata$mo))==11,]$day30="NA"
return(nomdata)
}

cleanedtempdata=lapply(tem
pdata_,cleandata)
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#combine weather stations toge
ther
cleanedtempdata_=cleanedtem
pdata[[1]]
for(i in 2:42){
cleanedtempdata_=rbind(cleaned
tempdata_,cleanedtempdata[[i]])
}

#keep only year 1950 to 2012
cleanedtempdata__=subset(clean
edtempdata_,as.numeric(as.charac
ter(cleanedtempdat
a_$yr))>=1950 & as.numeric(as.c
haracter(cleanedtempdata_$yr))<=2012)

#some stations has incomplete 20
12 data. find out which ones
incomplete2012=function(x){
sum(as.numeric(as.numeric(as.char
acter(x$yr))==2012))
}
incomp2012=lapply(cleanedtempd

ata,incomplete2012)#station 10 has 11. station 15 ha
s 11. station 24 has 5. station 26 has 5.
stations$stnid[10];stations$stnid[1
5];stations$stnid[24];stations$stnid[26]

#change all "M" into NA
cleanedtempdata__[cleanedtempdata__=="M"]=NA

#change all numbers into numeric
chartonum=function(x){
y=as.numeric(as.character(x))
return(y)
}
tempdata=as.data.frame(do.call(cbin
d,lapply(cleanedtempdata__,chartonum)))

#change all Feb 29th data to NA
tempdata$day29[tempdata$mo==2]=NA

#sort data by year and month
tempdata=tempdata[with(tempdata, or
der(yr,mo )), ]
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#check no NA
any(is.na(tempdata[,1:32][tempdata$mo==4,]))

#calculate daily average data
avgdata=matrix(nrow=63*12,ncol=33)
for (i in 1:63){
for(j in 1:12){
sbst=tempdata[tempdata$mo==j
& tempdata$yr==(1949+i),]
avgdata[12*(i-1)+j,]=do.call(cbind,l
apply(sbst,mean))
}
}

#change daily data to weekly data
avgdata=as.data.frame(avgdata)
avgdata_wk=matrix(nrow=63,ncol=52)
for(i in 1:63){
alldata=subset(avgdata,avgdata[,1]==(1949+i))
jan=as.matrix(subset(alldata,alldata[,2]==1)[,3:33])
feb=as.matrix(subset(alldata,alldata[,2]==2)[,3:33])
mar=as.matrix(subset(alldata,alldata[,2]==3)[,3:33])
apr=as.matrix(subset(alldata,alldata[,2]==4)[,3:33])
may=as.matrix(subset(alldata,alldata[,2]==5)[,3:33])
jun=as.matrix(subset(alldata,alldata[,2]==6)[,3:33])
jul=as.matrix(subset(alldata,alldata[,2]==7)[,3:33])
aug=as.matrix(subset(alldata,alldata[,2]==8)[,3:33])
sep=as.matrix(subset(alldata,alldata[,2]==9)[,3:33])
oct=as.matrix(subset(alldata,alldata[,2]==10)[,3:33])
nov=as.matrix(subset(alldata,alldata[,2]==11)[,3:33])
dec=as.matrix(subset(alldata,alldata[,2]==12)[,3:33])
avgdata_wk[i,1]=mean(jan[1:7])
avgdata_wk[i,2]=mean(jan[8:14])
avgdata_wk[i,3]=mean(jan[15:21])
avgdata_wk[i,4]=mean(jan[22:28])
avgdata_wk[i,5]=mean(c(jan[29:31],feb[1:4]))
avgdata_wk[i,6]=mean(feb[5:11])
avgdata_wk[i,7]=mean(feb[12:18])
avgdata_wk[i,8]=mean(feb[19:25])
avgdata_wk[i,9]=mean(c(feb[26:28],mar[1:4]))
avgdata_wk[i,10]=mean(mar[5:11])
avgdata_wk[i,11]=mean(mar[12:18])
avgdata_wk[i,12]=mean(mar[19:25])
avgdata_wk[i,13]=mean(c(mar[26:31],apr[1]))
avgdata_wk[i,14]=mean(apr[2:8])
avgdata_wk[i,15]=mean(apr[9:15])
avgdata_wk[i,16]=mean(apr[16:22])
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avgdata_wk[i,17]=mean(apr[23:29])
avgdata_wk[i,18]=mean(c(apr[30],may[1:6]))
avgdata_wk[i,19]=mean(may[7:13])
avgdata_wk[i,20]=mean(may[14:20])
avgdata_wk[i,21]=mean(may[21:27])
avgdata_wk[i,22]=mean(c(may[28:31],jun[1:3]))
avgdata_wk[i,23]=mean(jun[4:10])
avgdata_wk[i,24]=mean(jun[11:17])
avgdata_wk[i,25]=mean(jun[18:24])
avgdata_wk[i,26]=mean(c(jun[25:30],jul[1]))
avgdata_wk[i,27]=mean(jul[2:8])
avgdata_wk[i,28]=mean(jul[9:15])
avgdata_wk[i,29]=mean(jul[16:22])
avgdata_wk[i,30]=mean(jul[23:29])
avgdata_wk[i,31]=mean(c(jul[30:31],aug[1:5]))
avgdata_wk[i,32]=mean(aug[6:12])
avgdata_wk[i,33]=mean(aug[13:19])
avgdata_wk[i,34]=mean(aug[20:26])
avgdata_wk[i,35]=mean(c(aug[27:31],sep[1:2]))
avgdata_wk[i,36]=mean(sep[3:9])
avgdata_wk[i,37]=mean(sep[10:16])
avgdata_wk[i,38]=mean(sep[17:23])
avgdata_wk[i,39]=mean(sep[24:30])
avgdata_wk[i,40]=mean(oct[1:7])
avgdata_wk[i,41]=mean(oct[8:14])
avgdata_wk[i,42]=mean(oct[15:21])
avgdata_wk[i,43]=mean(oct[22:28])
avgdata_wk[i,44]=mean(c(oct[29:31],nov[1:4]))
avgdata_wk[i,45]=mean(nov[5:11])
avgdata_wk[i,46]=mean(nov[12:18])
avgdata_wk[i,47]=mean(nov[19:25])
avgdata_wk[i,48]=mean(c(nov[26:30],dec[1:2]))
avgdata_wk[i,49]=mean(dec[3:9])
avgdata_wk[i,50]=mean(dec[10:16])
avgdata_wk[i,51]=mean(dec[17:23])
avgdata_wk[i,52]=mean(dec[24:30])
}

#store data as "tempdata_wk"
tempdata_wk=avgdata_wk

#smooth the temp data
weekbasis29 <- create.fourier.basis(c
(0, 52), nbasis=29, period=52)
harmaccelLfd <- vec2Lfd(c(0,(2*pi/52)^2
,0), c(0, 52))
harmfdPar <- fdPar(weekbasis29, harma
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ccelLfd, lambda=1e2)
weektempfd <- smooth.basis(argvals=c(1:5
2), y=t(tempdata_wk),fdParobj=harmfdPar,
fdnames=list("week", "year", "temperature"))
$fd

#plot temp data and smoothed curve using ggplot
library(ggplot2)
library(reshape2)
library(plyr)

yhattemp=eval.fd(seq(0,52,length=1000),weektempfd)
rownames(yhattemp)=seq(0,52,length=1000)
colnames(yhattemp)=1950:2012
yhattemp_plotdat=melt(yhattemp)
yhattemp_plotdat=rename(yhattemp_plotdat,c
("Var2"="year"))
yhattemp_plotdat=subset(yhattemp_plotdat,y
ear==1950|year==1960|year==1970|
year==1980|year==1990|year==2000|year=
=2010|year==2011|year==2012)

tempdata_wk_=tempdata_wk
rownames(tempdata_wk_)=1950:2012
colnames(tempdata_wk_)=1:52
tempdata_wk_plotdat=melt(tempdata_wk_)
tempdata_wk_plotdat=rename(tempdata_wk_p
lotdat,c("Var1"="year"))
tempdata_wk_plotdat=subset(tempdata_wk_pl
otdat,year==1950|year==1960|year==
1970|year==1980|year==1990|year==2000|ye
ar==2010|year==2011|year==2012)

plotobj1=ggplot()+geom_line(data=yhattemp_
plotdat, aes(Var1, value))
plotobj1=plotobj1+geom_point(data = tempda
ta_wk_plotdat, aes(x = Var2, y = value
),size=2)+facet_wrap(~year,ncol=3,scale="free")
plotobj1=plotobj1+ xlab("Week") + ylab("Mean
weekly temperature (??C)")+xlim(0,52)

+ylim(-15,25)
plotobj1=plotobj1+ theme(axis.text.y = eleme
nt_text(size=15),axis.text.x = elemen
t_text(size=15),text= element_text(size=20),p
anel.grid.major = element_blank(), p
anel.grid.minor = element_blank(), panel.backg
round = element_blank(), axis.line
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= element_line(colour = "black"))
plotobj1
########################################ok

#####################
#historical functional linear model
#use log fire count
#include intercept function, but no penalty, use only 19 basis
#beta(s,t) use 29 fourier basis by 29 fourier basis, both with
HAO penalty lambda 1e5
#plot exp(fitted)
###################

#historical functional linear model
weekbasis29=create.fourier.basis(c(0, 52), nbasis=29, period=52)

#empty matrix
Psimatrix=matrix(nrow=50*63,ncol=435)

#evaluate the integral at 50 points
tpoints=seq(0,52,length=50)

psitmat=eval.basis(tpoints,weekbasis29)
all1vec=rep(1,29*29)
psimatrix=matrix(nrow=50,ncol=435)
for(i in 1:28){
all1vec[(29*i+1):(29*i+i)]=0
}
for(i in 1:63){
for(q in 1:50){
tpoint=tpoints[q]#the given t_0 to t_Q
targ=seq(0,tpoint,length=50)#t used to estimate integral in each psi
gap=tpoint/49
psismat=eval.basis(targ,weekbasis29)
xvalues=eval.fd(targ,weektempfd)
xvalue=xvalues[,i]
xcbind=replicate(29,xvalue)
aa=replicate(29,colSums(xcbind*psismat)*gap)
bb=as.vector(aa)
cc=rep(psitmat[q,],each=29)
psimatrix[q,]=t(bb*cc)[all1vec==1]
}
Psimatrix[(1+(i-1)*50):(50+(i-1)*50),]=psimatrix
}
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#y values
Y=as.vector(eval.fd(tpoints,logfire))

#build alpha(t) matrix, use 19 basis functions
weekbasis19=create.fourier.basis(c(0, 52), nbasis=19, period=52)
alphamat=do.call(rbind, replicate(63, eval.basis(tpoints,w
eekbasis19), simplify=FALSE))

Y2Y2T=yyt(Y2[1,])
for(i in 2:10000){
Y2Y2T=Y2Y2T+yyt(Y2[i,])
}#need to add up the matrices multiply by gap=(52/99)^2
lambda1=1e5
lambda2=1e5
pen1=Y1Y1T*(52/99)^2*lambda1
pen2=Y2Y2T*(52/99)^2*lambda2

#solve for coefficients
Psimat=cbind(alphamat,Psimatrix)
coefab=solve(t(Psimat)%*%Psimat+pen1+pe
n2)%*%t(Psimat)%*%Y
coefa=coefab[1:19]
coefb=coefab[20:454]

#alpha function
alphafd=fd(coefa,weekbasis19)

#plot alpha function
plot(seq(0,52,length=1000),exp(eval.fd(seq(0,5
2,length=1000
),alphafd)),type="l")

#try to use ggplot to plot y(t),yhat(t) and origi
nal discrete data points
#these are copied from above
plotobj=ggplot()+geom_line(data=smoothed_fire_wk_p
lotda
t, aes(Var1, value))
plotobj=plotobj+geom_point(data = fire_wk_plotdat,
aes(x = Var2, y = value),size=2)

plotobj=plotobj+ xlab("Week") + ylab("Number
of fire")+xlim(0,52)+ylim(0,400)
plotobj=plotobj+ theme(axis.text.y = element_te
xt(size=15),axis.text.x = element_
text(size=15),text= element_text(size=20),panel.
grid.major = element_blank(), pa
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nel.grid.minor = element_blank(), panel.backgrou
nd = element_blank(), axis.line =
element_line(colour = "black"))

#we add the yhat(t) to the plot above
yhat_hlm=Psimatrix%*%coefb
yhatdat=exp(rep(eval.fd(tpoints,alphafd),63)+yhat_hlm)
yhatdat=cbind(rep(1950:2012,each=50),tpoints,yhatdat)
colnames(yhatdat)=c("year","week","value")
yhatdat=as.data.frame(yhatdat)
yhatdat=subset(yhatdat,year==1950|year==1960|
year==1970|year==1980|year=
=1990|year==2000|year==2010|year==2011|year==2012)

plotobj=plotobj+geom_line(data=yhatdat,aes(x=w
eek,y=value),linetype = 2)+face
t_wrap(~year,ncol=3,scale="free")
plotobj

#plot triangular support of s,t
plotd=data.frame(cbind(c(0,0,52),c(0,52,52)))
pobj=ggplot()+geom_polygon(data=plotd,aes(x=
X1,y=X2),fill="grey")
pobj=pobj+ theme(axis.text.y = element_text(siz
e=15),axis.text.x = element_tex
t(size=15),text= element_text(size=20),panel.gri
d.major = element_blank(), pan
el.grid.minor = element_blank(), panel.backgroun
d = element_blank(), axis.line
= element_line(colour = "black"),panel.border =
element_rect(colour = "black",
fill=NA),legend.position="none")
pobj=pobj+xlab("s")+ylab("t")
pobj
all1vec_=rep(1,100)
for(i in 1:9){
all1vec_[(10*(i-1)+1+i):(10*i)]=0
}
basisfnc=data.frame(cbind(1:55,rep(seq(0,52,leng
th=10),10)[all1vec_==1],rep(
seq(0,52,length=10),each=10)[all1vec_==1]))
colnames(basisfnc)=c("b","s","t")
pobj=pobj+geom_point(data=basisfnc,aes(x=s,y=t))
pobj

#plot beta(s,t), heat map
sdat=eval.basis(seq(0,52,length=100),weekbasis29)
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tdat=sdat
all1vec2=rep(1,10000)
for(i in 1:99){
all1vec2[(100*i+1):(100*i+i)]=0
}
bmat=kronecker(sdat,tdat)
colnames(bmat)=1:841
rownames(bmat)=1:10000
bmat=bmat[all1vec2==1,all1vec==1]
tpts=seq(0,52,length=100)

scoord=rep(0,100)
for(i in 2:100){
tpt=tpts[i]
scoord=c(scoord,rep(tpt,101-i))
}

tcoord=tpts
for(i in 2:100){
tpt=tpts[i]
tcoord=c(tcoord,tpts[i:100])
}

betastvalue=bmat%*%coefb

###################################ok
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