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Abstract

A general long-term disability insurance portfolio with semiannual disability payments and a

lump sum death benefit payment is studied in this project. The transitions for policyholders

in this portfolio, between the healthy, temporarily disabled, permanently disabled and the

deceased statuses, are assumed to follow a continuous-time Markov process. The cash flow

method is applied to study the first and second moments of the present value of future

benefit payments and evaluate the total riskiness of the general insurance portfolio, which

is decomposed into its insurance risk and investment risk. An alternative recursive method

based on the term of the insurance policy is also demonstrated for the moment calculations

of a single policy case. Two stochastic interest rate models, a binomial tree model and an

AR(1) process, and a deterministic interest rate model are considered and illustrated.

Keywords: Long-term Disability Insurance Portfolio; Multi-state Transition Models; Bino-

mial Tree Model; AR(1) process; Investment Risk; Insurance Risk
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Chapter 1

Introduction

Most insurers offer separate insurance policies which provide financial supports to policy-

holders upon sickness, disability or death of the policyholder. The most common traditional

life insurance products are the term life insurance policy, and the endowment. Another im-

portant type of insurance products are the long-term care annuity products including the

disability insurance and the elder care insurance products, which are crucial to the social

security system.

In the literature of life insurance and long-term care insurance, we have seen papers

discussing the valuation of insurance policies or portfolios of such products. For example,

Beekman (1990) presented a premium calculation procedure for long term care insurance by

studying the random variable of first time loss of independence of Activities of Daily Liv-

ing (ADL). The data used was based on the result of a survey to the non-institutionalized

elderly people in Massachusetts in 1974. Parker (1997) introduced two cash flow approach-

es to evaluate the average risk per policyholder for a traditional term life and endowment

insurance portfolio and decomposed the total riskiness into the insurance risk and the in-

vestment risk by conditioning on the survivorship and the interest rate, respectively. An

Ornstein-Uhlenbeck process was applied to model the interest rate.

In general, the insurance risk (also called “the mortality risk”) of an insurance portfolio

results from mortality, disability or sickness. The average insurance risk per policy tends to

zero as the number of contracts in the insurance portfolio goes to infinity under independent

mortality assumption. Therefore, the insurance risk can be managed by risk pooling within

the insurance company. The insurance risk for an insurance portfolio with large size is

relatively small compared to the investment risk which comes from the fluctuations and

1



CHAPTER 1. INTRODUCTION 2

the correlations of the periodic interest rates according to Parker (1997). Marceau and

Gaillardetz (1999) presented the reserve calculation for a life insurance portfolio under

stochastic mortalities and AR(1) interest rate assumptions.

However, it is not accurate to evaluate the insurance risk of the insurance company

by separately evaluating the risk of each insurance portfolio consisting of only one type of

insurance product. There might be some policyholders who are insured simultaneously by

different types of insurance products (see Figure 1.1). Therefore, independent mortality

assumption does not hold in these cases.

Figure 1.1: The Pools for ABC Insurance Company

To better evaluate and manage the insurance risk resulting from both the disability

insurance product and the traditional life insurance product, we propose in this project a

long-term disability insurance product which has features of both the death benefit payment

and the disability annuity payments. The insurance risk of such portfolios is expected to be

lower than that of a term life insurance portfolio plus that of a disability annuity portfolio

since the annuity payments will partially offset the insurance risk resulting from mortality.

For the insurance model we study, there are four statuses for the insureds within this

long-term disability insurance product: Healthy, Temporarily Disabled, Permanently Dis-

abled and Deceased. For this disability model, we allow the possibility of recovering from

temporarily disabled but permanently disabled implies no possibility of any recovery. The

policyholder who is insured by this product shall be paid the semiannual disability benefit

during the period of disability and a lump sum death benefit upon the occurrence of the
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death. Considering such an insurance portfolio, two key issues need to be addressed for val-

uation purposes, namely selecting an interest rate model and a methodology for calculating

the transition probabilities including the assumptions of the forces of transition.

An appropriate interest rate model is a significant factor to accurately estimate the

investment risk of an insurance portfolio. The deterministic interest rate model can be seen

as the simplest interest rate model. In practice, this model is a common choice for the short-

term valuation. In other words, the actuaries usually predetermine the annual interest rate

for a short period (normally 3-5 years) and then adjust this rate according to the market

environment after the valuation period. In spite of its simplicity, the disadvantage of this

deterministic model is that it does not allow any fluctuations on the interest rate within the

valuation period and thus does not reflect the market variation promptly.

Since 1970s, several stochastic models have been studied to provide the flexibility in

modeling the interest rates. Panjer and Bellhouse (1980) introduced the application of the

autoregressive processes of order 1 and 2 (special cases of AR(p) process) and their con-

tinuous time analogues in the life insurance context. They argued that a more general

autoregressive moving average process (ARMA process) can also be applied to model the

interest rate. In addition, Cairns (2004) illustrated several other interest rate models such

as the Vasicek model, the discrete time binomial model and the Cox-Ingersoll-Ross (CIR)

model. Gaillardetz (2007) analyzed the impact of the interest guarantee on the future liabil-

ities with a binomial tree interest rate model by assuming time constant annual volatilities.

The binomial tree interest rate model is a good choice for long-term valuation purpose when

the future market condition is unknown and the long-term mean of the one-period interest

rate might move. The parameters of such model can be estimated by observing the average

historical market volatility.

Ideally, an appropriate interest rate model should be estimated using real data. Several

papers have modeled the interest rate from the data. For example, Giaccotto (1986) devel-

oped a methodology for moment calculations of insurance functions with both the stationary

interest rate process and non-stationary process such as the autoregressive integrated mo-

ving average process (ARIMA). The Vasicek model used for zero-coupon bond pricing was

also illustrated to obtain the present value of the life insurance functions. The Durand one-

year spot rate, the prime commercial paper and the medium grade preferred stock data were

used to test the stationarity of the interest rate model. Parker (1997) applied the Ornstein-

Uhlenbeck process as a model for the instantaneous rate of return in order to discount the
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expected insurance cash flows. The parameters are estimated from past data which reflects

the investment strategy of the insurer with respect to the insurance portfolio.

Instead of estimating and selecting an interest rate model from data, in this project,

we directly consider three interest rate models: the deterministic model, the binomial tree

model and the AR(1) model. That lets us focus on the methodology of the risk analysis

of the long-term disability insurance portfolio. Hence, we just set up the values of the

parameters of three interest rate models applied and we shall do some sensitivity tests of

the parameters chosen.

As we mentioned earlier, modeling the transition process of the statuses of the policy-

holders is another key issue which has a huge impact on the valuation results. A few papers

discussing the health insurance cases have been published since 1980s. Waters (1984) gave

the basic concepts of the transition probabilities, the forces of transition and their relation-

ships. Ramsay (1984) studied the ruin probability of the surplus of a sickness insurance

contract which pays the benefit only if the duration of the sickness exceeds certain period.

Waters (1990) illustrated a method of calculating the moment of benefit payments for a

sickness insurance contract by introducing the semi-Markov chain to model the transition

process. In Jones (1994), a Markov chain model was presented to calculate the transition

matrix of a multi-state insurance contracts consisting of three states with one-direction

transitions only (e.g. healthy, permanently disabled and deceased). Constant and piecewise

constant forces of transition were assumed in the paper. Levikson and Mizrahi (1994) priced

a long term care contract with three different care levels assuming that the policyholder’s

health status could only either remain unchanged or deteriorated.

Haberman et al.∼ (1997) introduced a general multi-state model for different types of

long term care (LTC) insurances including

1. stand-alone policy, which provides fixed annuity amount for policyholders at different

frailty levels;

2. enhanced annuity, which provides annuity payments to current residents of nursing

care homes;

3. LTC cover as a rider benefit, which can be regarded as a pre-death LTC payment;

4. enhanced pension, which combines both a standard post-retirement pension annuity

and an extra LTC payment; and
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5. insurance packages, which consists of LTC benefit payment, deferred life annuity pay-

ment and a lump sum death benefit payment.

This paper concentrates on the calculations of expected present values of payment streams.

Numerical results are given under both the time-continuous Markov chain process transition

assumption and the discrete approach. Haberman et al.∼ (1997) also mentioned anoth-

er popular transition process applied in valuations of insurance policies, the semi-Markov

model, which allows the effective modeling of duration dependence. The semi-Markov chain

model could be appropriately used when large sizes of insurance data is available and it

would provide more accuracy than the Markov chain model by considering the dependency

between different statuses of the policyholders. This process can be achieved by getting the

distribution matrix for duration of each specific transition as well as the proportions of each

specific transition within certain time periods. In their paper, the Danish insurance data

was used to estimate the piecewise constant forces of transition. The deterministic interest

rate model was applied for valuation purposes. However, recoveries from higher frailty levels

were not considered in Haberman et al.∼ (1997). More details on this topic can be found

in Haberman and Pitacco (1998).

In this project, we study a four-state model with two-directions transitions for a long-

term disability insurance under the piecewise constant forces of transition assumption. We

calculate the transition probabilities by establishing the relationships among the forces of

transition using the survey results illustrated in Rajnes (2010) and the assumptions in

Haberman et al.∼ (1997). The methodology is similar to the discrete-time Markov chain

approach illustrated in Haberman et al.∼ (1997) except that we consider the situation of

recoveries from higher frailty levels and we check the statuses of the policyholders semi-

annually for the insurance model we study. The service table in Bowers et al.∼ (1997) is

applied to calculate the transition probabilities of the policyholders at work. Kolmogorov’s

forward equations introduced in Daniel (2004) and Dickson et al.∼ (2009) are shown as an

alternative way to calculate the transition probabilities for our four-state disability insu-

rance model. Our work can be seen as an extension to the results in Parker (1997). We

calculate the moment of the future liabilities and analyze the risk of a long-term disability

insurance portfolio which provides both the disability annuity payments and a lump sum

death payment with the possibility of recoveries. An alternative recursive method based on

the benefit payment variable is also derived to calculate the moments of the future liabil-

ities for a single long-term disability insurance policy. Note that the dependent mortality
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structure is not considered in this project.

The rest parts of this thesis are organized as follows. Chapter 2 introduces the basic

concepts and framework of the multi-state transition model under a Markov chain process

assumption. Four practical examples and their transition probabilities are presented. A

long-term disability insurance model is introduced with details, that is the model we study

in this thesis. Chapter 3 discusses three interest rate models: the deterministic interest

rate model, the binomial tree model and the AR(1) model. Formulas are derived for some

basic interest rate functions, such as the mean, variance and the auto-covariance of the

discounted interest rate process. The mortality assumptions for the transition intensities

are also discussed. In Chapter 4, a recursive formula and its alternative cash flow method

are presented for calculating the moments of the future liabilities in the single policy case.

In Chapter 5, homogeneous and non-homogeneous long-term disability insurance portfolios

are considered, respectively. Closed-form formulas for calculating the average insurance and

investment risks for portfolio cases are provided. In Chapter 6, numerical illustrations are

shown for the general insurance portfolios described in the previous chapters with indepen-

dent transitions assumption and three interest rate models: deterministic, binomial tree

model and the AR(1) process. Chapter 7 concludes the project and discusses the future

work that could be done.



Chapter 2

The Discrete Time Multi-State

Transition Model

In this chapter, we introduce a multi-state transition model under the Markovian assump-

tion, which is widely applied in the insurance industry. The definitions and the actuarial

notations of the multi-state transition model and the non-homogeneous Markov chain are

given in Section 2.1. Several practical examples together with their transition matrices are

provided in Section 2.2. Section 2.3 presents a long-term disability income model studied

in this project.

2.1 Concepts of the Multi-State Transition Model

Multi− state transition models are probability models that describe the random move-

ments of a subject among various states. Daniel (2004) presented such models with ap-

plications in Actuarial Science. For practical interest of the survival and failure rates, the

subject could be either a person or a piece of machinery or even a loan contract.

To describe the transition process of a subject moving among different states, a com-

monly used model is the Markov chain model. Now we first define the state space, the

Markov chain process and its transition probabilities in a life insurance context.

Definition 2.1 For a policyholder who joins an insurance plan at age x, assume there are

r different states such as healthy, disabled or deceased at year t,

1. Define the finite integer-valued set Ξ = {0, 1, . . . , r − 1} as the state space of the

7
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Markov chain model;

2. Define Mt(x) ∈ Ξ as the state in which the policyholder is at age x+ t;

3. If the state of the policyholder at time t+s does not depend on the states prior to time

t for x ∈ N+ , t , s > 0, then the state process {Mt(x) , t ≥ 0} is called a continuous-

time Markov chain process. Mathematically, this means

Pr[Mt+s(x) = j |Mt(x) = i] = Pr[Mt+s(x) = j |Mt(x) = i,Mu(x) = s(x, u) , 0 ≤ u < t]

for t ≥ 0, where s(x, u) ∈ Ξ refers to the status at age x + u. The transition

probability of this Markov chain process is denoted by

sp
ij(x+ t) = Pr[Mt+s(x) = j |Mt(x) = i] , x ∈ N+ , t , s ≥ 0 , i , j ∈ Ξ .

Since for life insurance applications, the transition process among different states are

age dependent, we thus only focus on the non-homogeneous Markov chain process. In other

words, the transition probability stated above depends on both the duration s and the age

x+ t. However, a special case is the homogeneous Markov chain process where x+ t has no

impact on the transition probability.

Definition 2.2 Suppose that we check the status of the policyholder every t0 year(s), say,

at times t0, 2t0, . . . . The corresponding states of the continuous-time Markov process at the

observation times are denoted by Mit0(x) for t0 > 0 and i ∈ N. Then denote Q(x,k,t0) the

transition matrix which stands for the transition probability after k observation periods

with equal length t0 year(s) given the policyholder’s status at age x. Its ij-th element is

then defined as follows:

Qij(x,k,t0) = Pr[Mkt0(x) = j |M0(x) = i] , k , x ∈ N+ , t0 > 0 , i , j ∈ Ξ . (2.1)

Furthermore, a general transition matrix property is given as:

Q(x,k,t0) = Q(x,l,t0) ×Q(x+t0l,k−l,t0) , 0 < l ≤ k , l , k , x ∈ N+ , t0 > 0 , i , j ∈ Ξ . (2.2)

2.2 Practical Examples of The Multi-State Model

In this section, we give some special examples of the multi-state transition model in the

actuarial context to demonstrate its framework under the Markov chain technique. Some
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of these examples can also be found in Daniel (2004); see also Dickson et al (2009). Note

that notations, such as px+t , qx+t , q
(i)
x+t and kpx+t,y+t, are standard actuarial notations in

Actuarial Mathematics; see Bowers et al.∼ (1997) for more details.

Figure 2.1: Basic Survival Model

Example 2.1. (Basic Survival Model) In the basic survival model (see Figure 2.1), we

concentrate on two states of a subject: intact and failed. This basic model describes a

subject moving from the survival state (state 0) to the absorbing failure state (state 1). For

instance, if the subject is a policyholder who is insured at age x, then the closed form for

the k-period transition matrix can be easily obtained as:

Q(x,k,t0) =

k−1∏
i=0

Q(x+t0i,1,t0) =

 k−1∏
i=0

t0px+t0i 1−
k−1∏
i=0

t0px+t0i

0 1

 , k , x ∈ N , t0 ≥ 0 .

This model could also be applied to examine the failure rate of a machinery.

Example 2.2. (Multiple-decrement Survival Model) Unlike the basic survival model, this

model has classified the failed state into several sub-states corresponding to the causes that

give rise to the failure of the subject such as heart disease, car accident, or murder etc (see

Figure 2.2). As illustrated by Figure 2.2, for this model, state 0 stands for the survival

status and state i refers to failure owing to reason i for i = 1, 2, . . . , n. The one-period
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Figure 2.2: Multiple-Decrement Survival Model

transition matrix of this (n+ 1)-state multiple-decrement survival model is given by

Q(x,1,t0) =



t0px t0q
(1)
x . . . . . . . . . t0q

(n)
x

0 1 . . . . . . . . . 0
...

. . .
...

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1


, x ∈ N , t0 > 0 , (2.3)

where the first row of the matrix stands for the probabilities of survival and failure owing

to reasons 1, 2, . . . , n, respectively, with t0px +
n∑
i=1

t0q
(i)
x = 1. Similarly to Example 2.1, the

general expression for the k-period transition matrix (k > 1) are given in the following
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proposition.

Proposition 2.1. For k , x ∈ N and t ≥ 0,

Q(x,k,t0) =

k−1∏
i=0

Q(x+t0i,1,t0) =



k−1∏
i=0

t0px+t0i 0 . . . . . . 0

k−2∑
j=0

[(
j∏
i=0

t0px+t0i

)
t0q

(1)
x+t0(j+1)

]
1

...

... 0
. . .

...
...

...
. . . 0

k−2∑
j=0

[(
j∏
i=0

t0px+t0i

)
t0q

(n)
x+t0(j+1)

]
0 . . . 0 1



T

.

(2.4)

Proof. The proof is by induction on period k. Obviously, (2.4) holds when k = 1. Assume

the formula holds for any Q(x,k−1,t0) for k , x ∈ N+ , k > 1 and t0 > 0, which is

Q(x,k−1,t0) =



k−2∏
i=0

t0px+t0i 0 . . . . . . 0

k−3∑
j=0

[(
j∏
i=0

t0px+t0i

)
t0q

(1)
x+t0(j+1)

]
1

...

... 0
. . .

...
...

...
. . . 0

k−3∑
j=0

[(
j∏
i=0

t0px+t0i

)
t0q

(n)
x+t0(j+1)

]
0 . . . 0 1



T

.
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Then for k-period, by (2.2),

Q(x,k,t0) = Q(x,k−1,t0) ×Q(x+t0(k−1),1,t0)

=



k−2∏
i=0

t0px+t0i 0 . . . . . . 0

k−3∑
j=0

[(
j∏
i=0

t0px+t0i

)
t0q

(1)
x+t0(j+1)

]
1

...

... 0
. . .

...
...

...
. . . 0

k−3∑
j=0

[(
j∏
i=0

t0px+t0i

)
t0q

(n)
x+t0(j+1)

]
0 . . . 0 1



T

×



t0px+t0(k−1) 0 . . . . . . . . . 0

t0q
(1)
x+t0(k−1) 1 0 . . . . . . 0

...
. . .

...
... 1

...
...

. . .
...

t0q
(n)
x+t0(k−1) 0 . . . . . . . . . 1



T

=



k−1∏
i=0

t0px+t+t0i 0 . . . . . . 0

k−2∑
j=0

[(
j∏
i=0

t0px+t0i

)
t0q

(1)
x+t0(j+1)

]
1

...

... 0
. . .

...
...

...
. . . 0

k−2∑
j=0

[(
j∏
i=0

t0px+t+t0i

)
q

(n)
x+t0(j+1)

]
0 . . . 0 1



T

, k , x ∈ N+ , k > 1 , t0 > 0 .

This proves that (2.4) is true for all k ∈ N+. �

Example 2.3. (Joint Life Model) This model has been widely applied in the pension industry

to describe the joint and last survival status of couples. Define state 0 as both husband and

wife alive, state 1 as husband alive and wife dead, state 2 as husband dead and wife alive,

and the absorbing state 3 as both husband and wife dead (see Figure 2.3). In this example,

we need two age variables, x and y, to describe respectively the entry ages of the husband

and wife. We use the notation Q((x,y),k,t0) for the k-period transition matrix in this case. It



CHAPTER 2. THE DISCRETE TIME MULTI-STATE TRANSITION MODEL 13

is not difficult to obtain a general formula of the k-period transition matrix for this multiple

life model:

Q((x,y),k,t0) =

k−1∏
i=0

Q((x+t0i,y+t0i),1,t0)

=


t0kpxy t0kpx − t0kpxy t0kpy − t0kpxy 1− t0kpx − t0kpy + t0kpxy

0 t0kpx 0 t0kqx

0 0 t0kpy t0kqy

0 0 0 1

 (2.5)

for k , x , y ∈ N and t0 > 0.

Figure 2.3: Joint Life Model

Note that (2.5) is applicable under both the independent and dependent mortality as-

sumptions for joint couples, such as copula and common shock models discussed in Chen

(2010). Under the independent mortality assumption, we have kpxy = kpx × kpy. Thus, the

transition matrix (2.5) for this special case can be further simplified to

Q((x,y),k,t0) =


t0kpx × t0kpy t0kpx × t0kqy t0kqx × t0kpy t0kqx × t0kqy

0 t0kpx 0 t0kqx

0 0 t0kpy t0kqy

0 0 0 1


for k , x , y ∈ N and t0 > 0.
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Figure 2.4: The Continuing Care Retirement Communities Model

Example 2.4. (CCRC’s) The Continuing Care Retirement Communities model have four

states (see Figure 2.4). State 0 refers to a resident living independently, state 1 stands for

temporarily living in the Health Center, state 2 stands for permanently living in the Health

Center, while the absorbing state 3 stands for deceased. Thus, t0kp
3j(x) = 0 for j = 0, 1, 2

and t0kp
33(x) = 1 for k ∈ N+.

After looking through the four examples above, we could classify the multi-state transi-

tion model into two types: the models in Examples 2.1 - 2.3 do not allow two-way transitions

and thus are called one-way multi-state transition model; whereas Example 2.4 allows

recovery for the policyholders and thus is called two-way multi-state transition model.

In Section 2.3, we introduce another example of two-way multi-state transition model.

2.3 The Long-Term Disability Insurance Model

The model introduced in this section is the main model studied in this project; the framework

of which is very similar to Example 2.4, except that the long-term disability model describes

the disability status instead of the living dependency status. Overall, there are four states

for a certain x-year-old policyholder in the model. State 0 refers to healthy, state 1 refers to

temporarily disabled, state 2 refers to permanently disabled and state 3 stands for deceased
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(see Figure 2.5). Once a policyholder becomes permanently disabled, he or she cannot

Figure 2.5: The Long-term Disability Insurance Model

recover from the disability anymore. However, chances are that a policyholder recovers

from a temporary disability.

In addition, for simplicity of valuation purposes, we assume

1. there is no pending time from the moment of turning disabled or deceased for an

insured to the moment that the insurer receives the relevant proof documents;

2. all the policyholders are healthy at the effective date of the insurance policy. In other

words, we have M0(x) = 0 , where x stands for the entry age of the policyholder and

x ∈ N+.

If a status check is done every t0 year(s), the general formula of the k-period transition

matrix is denoted by

Qij(x,k,t0) = Pr [Mt0k(x) = j |M0(x) = i] , k , x ∈ N+ , t0 > 0 , i , j ∈ Ξ. (2.6)

In this thesis, we design a long-term disability insurance product for which the status

check is done semiannually. In other words, t0 = 0.5. The reason for selecting this semian-

nual frequency of checking the states shall be explained in Chapter 5. Therefore, hereby we

have a special case for the k-period transition matrix:

Qij(x,k,0.5) = Pr [M0.5k(x) = j |M0(x) = i] , k , x ∈ N+ , i , j ∈ Ξ. (2.7)
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According to the transition rule of the model, the k-period transition matrix for the

disability income model for an x-year-old policyholder is of the form:

Q(x,k,0.5) =


Q00

(x,k,0.5) Q01
(x,k,0.5) Q02

(x,k,0.5) Q03
(x,k,0.5)

Q10
(x,k,0.5) Q11

(x,k,0.5) Q12
(x,k,0.5) Q13

(x,k,0.5)

0 0 Q22
(x,k,0.5) Q23

(x,k,0.5)

0 0 0 1

 , k , x ∈ N+ ,

where the explicit formulas for these non-zero transition probabilities are provided in Chap-

ter 4. The detailed transition assumptions and the methodology such as the Kolmogorov’s

equation shall be introduced in Chapters 3 and 4.



Chapter 3

Model Assumptions

3.1 Interest Rate Models

3.1.1 Summary and Actuarial Notations

For actuarial valuation purposes, the interest rate assumption is a significant element for

premium and reserve calculations. In this chapter, we introduce several interest rate models

applied in our valuations including the deterministic interest rate model, the binomial tree

model and the autoregressive model of order 1, the AR(1) model.

Define δi as the effective annual interest rate over the time interval [i, i+1) year(s) and

assume the starting value δ0 is known. Hereby we define the discounted interest rate function

over the time interval [0, s) years as follows:

V (δ0, s) =


[

[s]−1∏
i=0

(1 + δi)
−1

]
(1 + δ[s])

−{s} , s > 1

(1 + δ0)−s , 0≤ s ≤1

, (3.1)

where [s] is the integer part of s, and {s} is the decimal part of s. In this project, each

interest rate period is a policy year.

In the following sections, we show the framework of three different interest rate models

and derive their interest rate functions in detail.

3.1.2 Deterministic Interest Rate Model

In this section, we introduce two types of deterministic interest rate models: one with single

scenario and the other with multiple scenarios (Bowers et al.∼ 1997). In this project, we

17
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apply the former model, which sets the annual interest rates δi to be constant over time for

simplicity purpose:

E[V (δ0, s)] = V (δ0, s) =

[s]−1∏
i=0

(1 + δi)
−1

 (1 + δ[s])
−{s} = (1 + δ0)−s , s ≥ 0 . (3.2)

On the contrary, the latter model is also a popular choice applied in the industry: a se-

quence of annual interest rates, {δ0, δ1, . . . , }, for several years (normally 3-5 years) are

predetermined by an actuarial perspective of the future economic environment.

3.1.3 Binomial Tree Model

In this section, we introduce a frequently used model which is used to describe the price

movement of financial derivatives and stocks, the binomial tree model. Assume that the

annual interest rate each year is an independent trial, starting from the value of r(0, 0) in the

first period. The annual interest rate for the next year moves up to r(1, 1) with probability

p and moves down to r(1, 0) with probability 1− p (see Figure 3.1).

Once the starting value of the annual interest rate is given, the annual interest rate

for the [k, k + 1) period, δk, follows a binomial distribution with parameters k and p with

probability

Pr [δk = r(k, j)] = pj(1− p)k−j , j = 0, 1, . . . , k ; k ∈ N , (3.3)

where r(k, j) stands for j ups during the time interval [0, k + 1) years.

Similar to Gaillardetz (2007), we set the probabilities of moving up and down to be

equal (i.e. , p = 0.5). Now we assume the annual volatility, {σr(k)}, which can be analyzed

from the capital market environment and has a relationship with r(k, j), as is described in

the following proposition.

Proposition 3.1. (Black et al.∼ 1990) For j = 0, 1, . . . , k−1 ; k ∈ N+, the annual volatility

for the time period [k − 1, k) is defined as

[σr(k)]2 =V ar[ ln(δk) | δk−1 = r(k − 1, j)] ,

and its relationship with the annual interest rate can be expressed as:

[σr(k)]2 =

{
0.5 ln

[
r(k, j + 1)

r(k, j)

]}2

. (3.4)
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Figure 3.1: The Binomial Tree Model

Proof. Since

ln(δk) | [δk−1 = r(k − 1, j)] =

{
ln [r(k, j + 1)] with probability 0.5

ln [r(k, j)] with probability 0.5
,

thus the first and second moments of the annual interest rate for the period [k, k + 1) are

as follows:

E[ln(δk) | δk−1 = r(k − 1, j)] = 0.5 {ln [r(k, j)] + ln [r(k, j + 1)]} ,

E[ln2(δk) | δk−1 = r(k − 1, j)] = 0.5
{
ln2 [r(k, j)] + ln2 [r(k, j + 1)]

}
.

Therefore, the variance of the annual interest rate for [k, k + 1) can be derived as:

V ar[ln( δk) | δk−1 = r(k − 1, j)]

=0.25 {ln [r(k, j + 1)]− ln [r(k, j)]}2

=

{
0.5 ln

[
r(k, j + 1)

r(k, j)

]}2

, j = 0, 1, . . . , k − 1 ; k ∈ N+ . (3.5)

�

Now assume the annual volatility σr(k) is constant over time, then by Proposition 3.1,

we can further obtain a relationship between the values of two adjacent interest rates, r(k, j)

and r(k, j − 1), at any time k:
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r(k, j + 1)

r(k, j)
=e2σr(k) , j = 0, 1, . . . , k − 1 ; k ∈ N+ . (3.6)

In addition, denote L(0, T ) the current price of the zero-coupon bond which has a maturity

of T years and its value is estimated with the risk-free interest rate r.

Given the starting value of the annual interest rate, there are k possible values for δk

with 2k possible paths. Therefore, the expectation of V (δ0, k), the discounted interest rate

factor over [0, k) years for k ∈ N+ can be calculated as follows by matching the market price

and the annual interest rate in the binomial tree model (see Gaillardetz (2007)):

E[V (δ0, k)] = L(0, k) =

(
1

1 + r

)k
=

(
1

2

)k−1 1

1 + δ0

1∑
j1=0

j1+1∑
j2=j1

· · ·
jk−2+1∑

jk−1=jk−2

{
k−1∏
m=1

[1 + r(m, jm)]−1

}
.

(3.7)

for k > 1 , k ∈ N+. Rewriting (3.7), we have:

2k−1(1 + δ0)

(1 + r)k
=

1∑
j1=0

j1+1∑
j2=j1

· · ·
jk−2+1∑

jk−1=jk−2

{
k−1∏
m=1

[1 + r (m, jm)]−1

}
. (3.8)

By solving (3.6) and (3.8), we can obtain the values for all the annual interest rates

r(k, j). Since the status check is done semiannually for the disability insurance product

studied in this project, k is not necessarily an integer. A more general formula of (3.7) can

be derived as follows:

E[V (δ0, s)]

=


(

1
1+δ0

)s
, 0≤ s ≤1

( 1
2

)[s]−1

1+δ0

1∑
j1=0
· · ·

j[s]∑
j[s]−1=j[s]−2

{[
[s]−1∏
m=0

1
1+r(m,jm)

] [
1

1+r([s],j[s])

]{s}}
, s >1

. (3.9)

The longest term of the insurance product we study is 25 years, which implies that there

are 225 paths of interest rate scenarios under the binomial tree model. Instead of using the

time-consuming method provided by (3.9) to calculate the exact expectation of V (δ0, k), we

use random sampling method to approximate the expectation for coding purpose. For each
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trial, we generate a series of Bernoulli random variables with length of 25 to denote the up

and down status and repeat this process for 1, 000, 000 times.

If s = u, we have

E[V (δ0, s)V (δ0, u)] = E[V (δ0, s)
2]

=


( 1

1+δ0
)2s , 0≤ s ≤1

( 1
2

)[s]−1

(1+δ0)2

1∑
j1=0
· · ·

j[s]∑
j[s]−1=j[s]−2

{[
1

1+r([s],j[s])

]2{s}
{

[s]−1∏
m=0

[
1

1+r(m,jm)

]2
}}

, s >1
.

(3.10)

If s < u, we have

E[V (δ0, s)V (δ0, u)]

=



( 1
1+δ0

)s+u , A
( 1
2

)[u]−1

(1+δ0)2

1∑
j1=0
· · ·

j[u]∑
j[u]−1=j[u]−2

{ ∏
l=s ,u

{[
1

1+r([l],j[l])

]{l} [[l]−1∏
m=0

1
1+r(m,jm)

]}}
, B

( 1
2

)[u]−1

(1+δ0)s+1

1∑
j1=0
· · ·

j[u]∑
j[u]−1=j[u]−2

{[
1

1+r([u],j[u])

{u}
] [[u]−1∏

m=0

1
1+r(m,jm)

]}
, C

,

(3.11)

where A stands for the situation that 0 ≤ s , u ≤ 1, B stands for the situation that s , u ≥ 1

and C stands for other situations.

3.1.4 AR(1) Model

In this section, we shall construct a stationary AR(1) process to model the interest rate.

The key results can be found in Pandit and Wu (1983). Assume the start value of the force

of interest for the time period [0, 1), ln(1 + δ0), is known and it is also the long-term mean

of the annual force of interest, ln(1 + δk):

ln(1 + δk)− ln(1 + δ0) = φ [ln(1 + δk−1)− ln(1 + δ0)] + ak , k ∈ N+ , (3.12)
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where the residual ak ∼ N(0, σ2
a) are i.i.d. Gaussian random variables. By induction, we

have

ln(1 + δk)− ln(1 + δ0) = φ [ln(1 + δk−1)− ln(1 + δ0)] + ak

= φ {φ [ln(1 + δk−2)− ln(1 + δ0)]}+ φak−1 + ak

= . . .

=
k−1∑
j=0

φjak−j , k ∈ N+ . (3.13)

The long-term mean and variance of the process can be expressed as:

E[ln(1 + δk) | δ0] = ln(1 + δ0) , k ∈ N , (3.14)

and

lim
k→∞

V ar[ln(1 + δk)| δ0] = lim
k→∞

V ar

k−1∑
j=0

φjak−j

 = lim
k→∞

[
σ2
a

1− φ2k

1− φ2

]
=

σ2
a

1− φ2
(3.15)

if the process is stationary (i.e. |φ| < 1). In general, we can obtain the variance of the force

of interest by applying (3.13):

V ar[ln(1 + δk) | δ0] = V ar

k−1∑
j=0

φjak−j

 =
k−1∑
j=0

φ2jV ar[ak−j ] =
1− φ2k

1− φ2
σ2
a , k ∈ N+ .

(3.16)

Proposition 3.2 Provided with n periods of past data for the annual interest rate prior

to time 0, δ−n, δ−(n−1), . . . , δ−1, we can apply the ordinary least square method to get the

estimate of φ as follows:

φ̂ =

−1∑
k=−(n−1)

[ln(1 + δk)− ln(1 + δ0)] [ln(1 + δk−1)− ln(1 + δ0)]

−1∑
k=−(n−1)

[ln(1 + δk)− ln(1 + δ0)]2
, k ∈ Z . (3.17)

The last step is to get the expected value and the auto-covariance of the discounted

interest rates. Firstly, since the sequence ln(1 + δs) has a normal pattern, the expectation
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of the discounted interest rate factor V (δ0, s) follows a lognormal distribution. Now define

a new function to express the sum of the forces of interest:

Definition 3.1 The sum of the forces of interest is denoted by

I(δ0, s) =


[s]−1∑
i=0

ln(1 + δi) + {s}ln
(
1 + δ[s]

)
, s ≥ 1

s · ln(1 + δ0) , 0 ≤ s < 1

,

where [s] stands for the integer part of s and {s} stands for the decimal part of s.

Using the terms in Definition 4.1, we can further obtain the expressions of the expected

value and the variance of V (δ0, s) as well as the covariance terms of V (δ0, s) and V (δ0, u)

(refer to Propositions 3.3 - 3.5):

Proposition 3.3 The expected value of the discounted interest rate factor over s year(s) is

E[V (δ0, s)] = E
[
e−I(δ0,s)

]
=

 exp
[
−sln(1 + δ0) + σ2

a
2 c(s)

]
, s ≥ 1(

1
1+δ0

)s
, 0 ≤ s < 1

, (3.18)

where  c(s) = {s}2 + [s]−1

(1−φ)2
+

2b(s)(φ−φ[s])
(1−φ)2

+ [b(s)]2 φ2−φ2[s]
1−φ2 ,

b(s) = {s} − 1
1−φ ,

s ≥ 1 .

Proof. Obviously, (3.18) holds when 0 ≤ s < 1. For s ≥ 1, we express the expected value

of the discounted interest rate factor, V (δ0, s), in terms of the sum of the force of interest,

I(δ0, s):

E[V (δ0, s)] = E
[
e−I(δ0,s)

]
= exp

{
−E [I(δ0, s)] +

1

2
V ar [I(δ0, s)]

}

= exp

−sln(1 + δ0) +
1

2
V ar

[s]−1∑
i=1

Xi + {s}X[s]

 , (3.19)

where {
Xi = ln(1 + δi)− ln(1 + δ0)

ak = Xk − φXk−1

(3.20)
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for i ∈ N and k ∈ N+.

V ar

[s]−1∑
i=1

Xi + {s}X[s]


= V ar

[s]−1∑
i=1

i−1∑
j=0

ai−jφ
j + {s}

[s]−1∑
j=0

a[s]−jφ
j


= V ar

[s]−1∑
j=1

aja(s, j) + {s}a[s]


= σ2

a


[s]−1∑
j=1

[a(s, j)]2 + {s}2


= σ2
a

{
{s}2 +

[s]− 1

(1− φ)2 +
2b(s)

(
φ− φ[s]

)
(1− φ)2 + [b(s)]2

φ2 − φ2[s]

1− φ2

}
, (3.21)

where a(s, j) = b(s)φ[s]−j + 1
1−φ and b(s) = {s} − 1

1−φ for s ≥ 1. Therefore, (3.19) can be

rewritten as

E[V (δ0, s)] = exp

{
−sln(1 + δ0) +

σ2
a

2
c(s)

}
, s ≥ 1 ,

where

c(s) = {s}2 +
[s]− 1

(1− φ)2 +
2b(s)

(
φ− φ[s]

)
(1− φ)2 + [b(s)]2

φ2 − φ2[s]

1− φ2
.

�

Proposition 3.4 The variance of the discounted interest rate factor over s years is

V ar [V (δ0, s)] =

 exp
{
−2sln(1 + δ0) + σ2

ac(s)
}(

eσ
2
ac(s) − 1

)
, s ≥ 1

0 , 0 ≤ s < 1
, (3.22)

where

c(s) = {s}2 +
[s]− 1

(1− φ)2 +
2b(s)

(
φ− φ[s]

)
(1− φ)2 + [b(s)]2

φ2 − φ2[s]

1− φ2
, s ≥ 1 .

Proof. Since we have assumed that the annual interest rate is known for the first year, it

is very obvious that (3.22) holds for 0 ≤ s < 1.
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For s ≥ 1, we express the second moment of the discounted interest rate factor, E
[
V 2(δ0, s)

]
,

in terms of the sum of the forces of interest, I(δ0, s):

E
[
V 2(δ0, s)

]
= E

(
e−2I(δ0,s)

)
= exp

{
−2E [I(δ0, s)] +

1

2
V ar [2I(δ0, s)]

}
= exp {−2sln(1 + δ0) + 2V ar [I(δ0, s)]} .

Furthermore, by using the conclusion in Proposition 3.3, we have the expression of the

variance of the discounted interest rate factor as follows:

V ar [V (δ0, s)] = E
[
V 2(δ0, s)

]
− {E [V (δ0, s)]}2

= E
[
e−2I(δ0,s)

]
− E

[
e−2I(δ0,s)

]2

= exp
{
−2sln(1 + δ0) + 2σ2

ac(s)
}
− exp

{
−2sln(1 + δ0) + σ2

ac(s)
}

= exp
{
−2sln(1 + δ0) + σ2

ac(s)
}(

eσ
2
ac(s) − 1

)
,

where  c(s) = {s}2 + [s]−1

(1−φ)2
+

2b(s)(φ−φ[s])
(1−φ)2

+ [b(s)]2 φ2−φ2[s]
1−φ2 ,

b(s) = {s} − 1
1−φ ,

s ≥ 1 .

�

Proposition 3.4 is just a special case of the covariance function. To get the covariance

terms for the discounted interest rate factors at different time moments, we need to find the

value of the cross expectation terms, E[V (δ0, s)V (δ0, u)] for s , u ≥ 0 and s 6= u.

By symmetry, we have E[V (δ0, s)V (δ0, u)] = E[V (δ0, u)V (δ0, s)]. Thus, we only need to

discuss the situation where s < u. Set s = t0k and u = t0i for 0 < t0 ≤ 1 and k , i ∈ N,

where t0 implies the frequency of the status check. For our model in this thesis, t0 = 0.5.

The derivations for the special case of t0 = 1 (i.e. s and u are integer-valued) was given in

Chen (2010).

Proposition 3.5 For 0 ≤ s < u, the auto-covariance function of the discounted interest

rate process is

Cov [V (δ0, s), V (δ0, u)]

=

 exp
{
−(s+ u)ln(1 + δ0) + σ2

a
2 [c(s) + c(u)]

}(
eσ

2
ad(s,u) − 1

)
, 1 ≤ s < u

0 , otherwise
, (3.23)
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where 

d(s, u) =
[s]−1∑
j=1

a(s, j)a(u, j) + {s}a (u, [s]) ,

c(s) = {s}2 + [s]−1

(1−φ)2
+

2b(s)(φ−φ[s])
(1−φ)2

+ [b(s)]2 φ2−φ2[s]
1−φ2 ,

b(s) = {s} − 1
1−φ ,

a(s, u) = b(s)φ[s]−u + 1
1−φ .

(3.24)

Proof. Firstly, for 0 ≤ s < 1 , s < u, we have

Cov [V (δ0, s), V (δ0, u)] =E [V (δ0, s)V (δ0, u)]− E [V (δ0, s)]E [V (δ0, u)]

=V (δ0, s)E [V (δ0, u)]− E [V (δ0, s)]E [V (δ0, u)]

=

(
1

1 + δ0

)s
E [V (δ0, u)]−

(
1

1 + δ0

)s
E [V (δ0, u)]

=0 .

For 1 ≤ s < u,

E[V (δ0, s)V (δ0, u)] =E
{
e−[(I(δ0,s)I(δ0,u)]

}
=exp

{
−E [I(δ0, s) + I(δ0, u)] +

1

2
V ar [I(δ0, s) + I(δ0, u)]

}
=exp

{
−E [I(δ0, s)]− E [I(δ0, u)] +

1

2
V ar [I(δ0, s)]

+
1

2
V ar [I(δ0, u)] + Cov [I(δ0, s), I(δ0, u)]

}
=exp

{
− (s+ u)ln(1 + δ0) +

1

2
V ar [I(δ0, s)] +

1

2
V ar [I(δ0, u)]

+ Cov [I(δ0, s), I(δ0, u)]

}
, (3.25)
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where V ar[I(δ0, s)] is given in (3.21) and the covariance term can be obtained by

Cov [I(δ0, s), I(δ0, u)]

=Cov

[s]−1∑
i=1

Xi + {s}X[s]

 ,

[u]−1∑
i=1

Xi + {u}X[u]


=Cov


[s]−1∑
j=1

aja(s, j) + {s}a[s]

 ,
[u]−1∑
j=1

aja(u, j) + {u}a[u]


=Cov


[s]−1∑
j=1

aja(s, j) + {s}a[s]

 ,
 [s]∑
j=1

aja(u, j)


=σ2

a

[s]−1∑
j=1

a(s, j)a(u, j) + {s}a(u, [s])


=σ2

ad(s, u) , 0 ≤ s < u , (3.26)

where

d(s, u) =

[s]−1∑
j=1

a(s, j)a(u, j) + {s}a (u, [s])

for 1 ≤ s < u. Therefore, the covariance function can be rewritten as

Cov [V (δ0, s), V (δ0, u)]

=E [V (δ0, s), V (δ0, u)]− E [V (δ0, s)]E [V (δ0, u)]

=exp

{
−(s+ u)ln(1 + δ0) +

σ2
a

2
[c(s) + c(u) + 2d(s, u)]

}
− exp

{
−(s+ u)ln(1 + δ0) +

σ2
a

2
[c(s) + c(u)]

}
=exp

{
−(s+ u)ln(1 + δ0) +

σ2
a

2
[c(s) + c(u)]

}(
eσ

2
ad(s,u) − 1

)
, 1 ≤ s < u .

For those intermediate terms used for calculations, please refer to (3.24). �

By symmetry, we can obtain a more general formula for the covariance function for s 6= u

and s , u > 0 as follows:

Cov [V (δ0, s), V (δ0, u)]

= σ2
a

min([s],[u])−1∑
j=1

a(s, j)a(u, j)

+ {min(s, u)}a (max(s, u),min ([s], [u])) (3.27)
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for s , u > 0 and s 6= u.

3.2 Mortality Assumptions

In this section, we shall introduce the mortality assumptions and tables used to calculate

the transition intensities among the four states for the long-term disability insurance model

introduced in Section 2.3.

The main purpose of this insurance product is to provide funds for employees in case of

disability or death, so we apply the service table and the mortality table provided in Bowers

et al.∼ (1997).

Definition 3.2 Define the transition intensity (or the force of transition), µij(x) as fol-

lows:

µij(x) = lim
h→0+

hp
ij(x)

h
, h > 0 , x ∈ N+ , i , j ∈ Ξ , i 6= j ,

where hp
ij(x) is the transition probability of the continuous-time Markov chain process,

{Mt(x); t ≥ 0} defined in Definition 2.1 and

µij(x+ t) = µij(x) ,

for any t ∈ [0, 1) and any x ∈ N+.

Furthermore, we make the piecewise constant force assumption for the transition process

within each age interval [x, x + 1) for convenience purpose. In other words, the transition

intensity, denoted by µij(x + t), is a constant for t ∈ [0, 1). The relationships between the

transition intensity and the transition probability in calculating the transition matrix shall

be presented in Chapter 4.

In addition to the piecewise constant forces of transition assumption for each age interval,

we make some assumptions to describe the relationships between the constant forces of

transition, µij(x + t) , i , j ∈ Ξ. According to a disability survey in Japan presented in

Rajnes (2010) and the OPCS data studied in Martin et al.∼ (1988) used by Haberman et

al.∼ (1997), we make several further assumptions as follows:

• The chance of recovery for disability is 10% of that of becoming temporarily disabled:

µ10(x) = 0.1µ01(x);
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• the mortality rate for healthy, temporarily disabled and permanently disabled people

are the same: µ03(x) = µ13(x) = µ23(x);

• the chance of turning permanently disabled for an insured who is temporarily disabled

is at the same level as that for a healthy insured: µ12(x) = µ02(x);

• among all the disabled people, the chance of being permanently disabled is 1.5 times

as that of being temporarily disabled: µ02(x) = 1.5µ01(x).

3.3 Other Assumptions

In later chapters, we shall study the future lifetime and the status of an insured and

the present value of the future benefits generated from an insurance portfolio. We de-

fine Z(x, n, FV ) the variable of the present value of the future benefit payments (PVFBP)

to the insured who is insured by the n-year term disability insurance plan at age x with face

value FV .

For this insurance portfolio, we further assume that the transition processes are all i.i.d

among all the insureds and the interest rate process is independent of the transition process

for the insureds.

In Chapters 4 and 5, we shall apply all the assumptions stated in this chapter to calculate

the transition intensities and the moments of the PVFBP under the disability insurance

policy, and analyze the risk for a single policy and for a portfolio.



Chapter 4

Valuation of Single Policies

In this chapter, we firstly introduce a long-term disability insurance product and then pro-

vide the methodology for calculating the transition probabilities used for valuations. The

Kolmogorov’s forward equation is also presented as an alternative method for calculation

purpose. In Sections 4.2 and 4.3, the recursive method and the cash flow method are given

for moment calculation of the Present Value of the Future Benefit Payment (PVFBP).

4.1 The Markov Chain Model for Transition Probability Cal-

culation

The long-term disability insurance model consists of four states as was described in Section

3.4: healthy, temporarily disabled, permanently disabled and deceased. The policy for the

n-year term disability insurance product is given as follows:

1. the status check is done semiannually;

2. semiannual benefit payment b1 (we set b1 to be the face value (FV) of this policy) is

paid while temporarily disabled and before the maturity date of the policy;

3. semiannual benefit payment b2 = 2FV is paid while permanently disabled and before

the maturity date of the policy;

4. a lump sum payment of b3 = 30FV is paid upon the earliest moment between death

and the maturity date of the policy.

30
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In the next section, we shall introduce assumptions and propositions for calculating the

transition process (see Section 8.3 in Dickson et al.∼ (2009)).

4.1.1 The Assumptions and Propositions

Assumption 1. The transition process for the long-term disability insurance model is

a continuous time non-homogeneous Markov chain process. In other words, the future

transition probabilities only depend on the previous state and age of the policyholder, but

not depend on the duration that the policyholder has stayed in a certain state.

Assumption 2. The transition probability, hp
ij(x), is a differentiable function of h for

i, j ∈ Ξ , h > 0 and x ∈ N. This property will guarantee the existence of the force of

transition, µij(x), by its definition.

Proposition 4.1. For a small positive value of h,

hp
ij(x) = hµij(x) + o(h) , i 6= j , i, j ∈ Ξ . (4.1)

Proof. It is easy to derive this proposition by rewriting the definition of the force of

transition, µij(x), in Definition 3.2. �

Furthermore, we have

hp
ij(x) ≈ hµij(x) , i 6= j , i, j ∈ Ξ , (4.2)

for small positive value of h.

Lemma 4.1. For a small positive value of h, we have the following transition probability

that the insured never leaves state i between age x and x+ h, denoted as hp
īi(x):

hp
īi(x) = 1− h

3∑
j=0,j 6=i

µij(x) + o(h) , i , j ∈ Ξ , h > 0 , x ∈ N+ . (4.3)

Proof. From the conclusion of Proposition 4.1, we have

h
3∑

j=0,j 6=i
µij(x) + o(h) =

3∑
j=0,j 6=i

hp
ij(x) , i , j ∈ Ξ , h > 0 , x ∈ N+ . (4.4)
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For a small positive value of h, we have

hp
īi(x) + o(h) = hp

ii(x) = 1−
3∑

j=0,j 6=i
hp
ij(x) ,

where hp
ii(x) is the probability that given the information that the insured is in state i at

age x, the probability of the same insured is in state i at age x+ h. Furthermore, by (4.4),

we have

hp
īi(x) = 1− h

3∑
j=0,j 6=i

µij(x) + o(h) , i , j ∈ Ξ , h > 0 , x ∈ N+ .

�

Proposition 4.2. For a small positive value of h, the transition probability hp
īi(x) can be

expressed as

hp
īi(x) = exp

−
∫ h

0

3∑
j=0,j 6=i

µij(x+ s)ds

 , i , j ∈ Ξ , h > 0 , x ∈ N+ . (4.5)

Proof. Firstly, we have

hp
īi(x+ t) =

t+hp
īi(x)

tpīi(x)

by definition. By applying (4.3), we can write

hp
īi(x+ t) = 1− h

3∑
j=0,j 6=i

µij(x+ t) + o(h) . (4.6)

Multiplying both sides of (4.6) by 1/h and rearranging, we get

t+hp
īi(x)− tp

īi(x)

h · tpīi(x)
= −

3∑
j=0,j 6=i

µij(x+ t) +
o(h)

h
.

Letting h→ 0, we have

d
{
ln
[
tp
īi(x)

]}
dt

= −
3∑

j=0,j 6=i
µij(x+ t) .
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By integration over the interval [0, h] for h > 0, we have

ln
[
hp
īi(x)

]
− ln

[
0p
īi(x)

]
= −

∫ h

0

3∑
j=0,j 6=i

µij(x+ s)ds .

Finally, taking the exponential on both sides of this equation, we can easily obtain the result

shown in (4.5). Furthermore, under the constant force of transition assumption, we have

for 0 ≤ h ≤ 0.5, the conclusion of Proposition 4.2 can be rewritten as

hp
īi(x) = exp

−h
3∑

j=0,j 6=i
µij(x)

 , i , j ∈ Ξ , h > 0 , x ∈ N+ .

�

Now by (4.2) and (4.3) for a small positive value of h, the further issue to be taken into

account is how small the interval should be to guarantee the accuracy of the transition

probabilities. We can check the reasonableness of the frequency of status check, t0, by

adding each row of the transition matrix and see if the row sum is very close to 1. In the

previous chapters, we have set t0 = 0.5, which implies a semiannual status check frequency.

When t0 = 0.5, the one-step transition probability can be expressed in terms of the

forces of transition (or transition intensity):

0.5p
ij(x) =

 e
−

0.5∫
0

∑
k 6=i

µik(x+t)dt

, i = j

hµij(x) , i 6= j

=

 e
−0.5

∑
k 6=i

µik(x)

, i = j

0.5µij(x) , i 6= j
, i , j ∈ Ξ , x ∈ N+ . (4.7)

By following the testing method above, we conclude that the value of t0 = 0.5 is s-

mall enough to guarantee the accuracy of the approximation of the transition probabilities.

Now, the one-period transition probability for the continuous time Markov chain process

{Mt(x) ; t ≥ 0} can be obtained in terms of the forces of transition:

Qij(x,1,0.5) =0.5p
ij(x)

=

 e
−0.5

∑
k 6=i

µik(x)

, i = j

0.5µij(x) , i 6= j
, i , j ∈ Ξ , x ∈ N+ . (4.8)
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By applying the general formula for a one-period transition probability demonstrated

in (4.7), we give a numerical example of the one-period transition matrix for a 40-year-old

insured below:

Q(40,1,0.5) =


0.998240 0.00028 0.000423 0.001057

0.000028 0.998494 0.000423 0.001057

0 0 0.998944 0.001057

0 0 0 1

 ,

of which the row sums are 1.000002 , 1.000001 , 1.000001 and 1 respectively. Obviously, those

values are fairly close to 1. Furthermore, the general formula of the k-step transition matrix

under the long-term disability insurance model for an x-year-old insured can be obtained

approximately as follows:

Q(x,k,0.5)

=
k−1∏
i=0

Q(x+0.5i,1,0.5)

=
k−1∏
i=0




e
−0.5

3∑
j=1

µ0j(x+0.5i)

1− e−0.5µ10(x+0.5i) 0 0

1− e−0.5µ01(x+0.5i) e
−0.5

3∑
j=0,j 6=1

µ1j(x+0.5i)

0 0

1− e−0.5µ02(x+0.5i) 1− e−0.5µ12(x+0.5i) e−0.5µ23(x+0.5i) 0

1− e−0.5µ03(x+0.5i) 1− e−0.5µ13(x+0.5i) 1− e−0.5µ23(x+0.5i) 1



T

, (4.9)

where k , x ∈ N+ , j ∈ Ξ. Alternatively, it can be calculated by the Kolmogorov’s forward

equation introduced in the next section.

4.1.2 The Kolmogorov’s Forward Equation

In this section, we shall extend the results of Proposition 4.1 and 4.2 to a more general

formula, which is known as The Kolmogorov’s Forward Equation (see Chapter 8 of

Dickson et al.∼ (2009)):

Proposition 4.3. (The Kolmogorov’s Forward Equation) For t ≥ 0, x ∈ N, and a small
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positive value of h, we have

t+hp
ij(x) = tp

ij(x)− h
3∑

k=0,k 6=j

[
tp
ij(x)µjk(x+ t)− tp

ik(x)µkj(x+ t)
]

+ o(h) , (4.10)

and thus the following equation holds for the transition probabilities (see Dickson et al.∼
(2009)):

d
[
tp
ij(x)

]
dt

=
3∑

k=0,k 6=j

[
tp
ik(x)µkj(x+ t)− tp

ij(x)µjk(x+ t)
]
, t ≥ 0 , x ∈ N+ . (4.11)

Proof. By definition, we have

t+hp
ij(x) = tp

ij(x)hp
jj(x+ t) +

3∑
k=0,k 6=j

tp
ik(x)hp

kj(x+ t) , t , h ≥ 0 , x ∈ N .

Then by the conclusions in Propositions 4.1 and 4.2, we can rewrite the formula as

t+hp
ij(x)

= tp
ij(x)

1− h
3∑

k=0,k 6=j
µjk(x+ t) + o(h)

+ h
3∑

k=0,k 6=j
tp
ik(x)µkj(x+ t) + o(h)

= tp
ij(x) + h

3∑
k=0,k 6=j

[
tp
ik(x)µkj(x+ t)− tp

ij(x)µjk(x+ t)
]

+ o(h) , (4.12)

for t , h ≥ 0 , x ∈ N+ . �

Basically, (4.11) sets a system of Kolmogorov’s Forward Equations for the Markov chain

process. Letting t = t0(l−1) and h = t0 in (4.12), the transition probabilities after l periods

can be expressed as:

Qij(x,l,t0)

= t0lp
ij(x)

≈ t0(l−1)p
ij(x) + t0

3∑
k=0,k 6=j

[
t0(l−1)p

ik(x)µkj (x+ t0(l − 1))− t0(l−1)p
ij(x)µjk (x+ t0(l − 1))

]
for t0 > 0 , x , l ∈ N+ and i , j , k ∈ Ξ.
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4.2 Recursive Formula for Moment and Calculations

In this section, we derive a recursive formula to calculate the moments of the present value

of future benefit payments (PVFBP) by applying the results in Proposition 4.3.

Define Z(x, n, FV ) the variable of the future benefit payments to an n-year term disabil-

ity insurance for an insured who joins the plan at age x with temporary disability benefit

payment FV . Following the policy rule stated at the beginning of Section 4.1, we can

calculate the moment of the PVFBP by considering two different situations:

Situation 1: No recovery from the disability (if applies) during the term of the contract

For this situation, we define t1 the time of becoming temporarily disabled, t2 the time of

becoming permanently disabled and t3 the time of death. Figures 4.1 - 4.4 illustrates four

possible scenarios under this situation:

1. Healthy→Temporarily Disabled→Permanently Disabled→Deceased (i.e. t1 < t2 < t3)

2. Healthy→Temporarily Disabled→Deceased (i.e. t1 < t2 = t3)

3. Healthy→Permanently Disabled→Deceased (i.e. t1 = t2 < t3)

4. Healthy→Deceased (i.e. t1 = t2 = t3)

Figure 4.1: The Long-Term Disability Insurance Model: Transition Scenario 1

Situation 2: At least one recovery from disability during the term of contract

Under this situation (see Figure 4.5), we define t′1 the first time becoming temporarily
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Figure 4.2: The Long-Term Disability Insurance Model: Transition Scenario 2

Figure 4.3: The Long-Term Disability Insurance Model: Transition Scenario 3

disabled and t′2 the first time recovering from disabled after age x. For both situations

above, t1, t2, t3, t
′
1, t
′
2 are all multipliers of the checking frequency t0 (t0 = 0.5 in this thesis).

Moreover, for both situations above, we define T1, T2, T3, T
′
1 and T ′2 the relevant ran-

dom variables of those turning time points, the possible values of which are denoted as

t1, t2, t3, t
′
1 and t′2. Then considering the future benefit payments generated from the two

situations, we can obtain a recursive expression of the first moment of E {[Z(x, n, FV )]} by

summing up the expectations under the two situations, denoted by E1 {[Z(x, n, FV )]} and

E2 {[Z(x, n, FV )]}, respectively.

Considering the four scenarios shown in Situation 1, if FV stands for the temporary dis-

ability benefit payment amount, then the corresponding part of the future benefit payments
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Figure 4.4: The Long-Term Disability Insurance Model: Transition Scenario 4

Figure 4.5: The Long-Term Disability Insurance Model: Transition Scenario 5

for this insured can be obtained by:

E1 {[Z(x, n, FV )]m}

=EV

{
n∑

t1=0.5

n∑
t2=t1

n+0.5∑
t3=t2

Pr(T1 = t1, T2 = t2, T3 = t3)

×

[
I{t2>t1}

t2−0.5∑
k=t1

[FV · V (δ0, k)]m + I{t3>t2}

t3−0.5∑
k=t2

[2FV · V (δ0, k)]m

+ I{t3≤n} [30FV · V (δ0, t3)]m
]}

(4.13)
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where EV denotes the expectation with respect to the interest rate process and

Pr(T1 = t1, T2 = t2, T3 = t3)

=I{t1<t2} × I{t2<t3} × q
′
01(x, t1)× q′12(x+ t1, t2 − t1)× q′23(x+ t2, t3 − t2)

+ I{t1<t2} × I{t2=t3} × q
′
01(x, t1)× q′13(x+ t2, t3 − t1)

+ I{t1=t2} × I{t2<t3} × q
′
02(x, t2)× q′23(x+ t2, t3 − t2) + I{t1=t2} × I{t2=t3} × q

′
03(x, t3) ,

(4.14)

and q′ij(x, t) stands for the probability that an insured starting from state i at age x (first

insured age), stays in state i for (t− 0.5) years and then transfers to state j at age x+ t. In

other words,

q′ij(x, t) =

 Qii(x,2t−1,0.5) ×Q
ij
(x+t−0.5,1,0.5) , t > 0.5

Qij(x,1,0.5) , t = 0.5
. (4.15)

Note that the four terms in (4.14) correspond to the scenarios (a), (b), (c), (d) shown in

Figures 4.1 - 4.4 respectively. Under Situation 2 above, an x-year-old insured becomes

temporarily disabled at a certain time point in the age interval [x, x+ t) and then recovers

from the disability at age x+t′, we assume that the transition processes before and after age

x+t are independent conditioning on interest rates. In other words, if we define Y1 and Y2 to

be the random variables of the present value of the future benefit payments before and after

the first time recovering from temporarily disabled after age x. Then by the assumption

stated above, we have

E
[
Y i

1Y
j

2

]
= EV

{
E
[
Y i

1Y
j

2 |{δk; k ∈ N}
]}

= EV

{
E
[
Y i

1 |{δk; k ∈ N}
]
]E
[
Y j

2 |{δk; k ∈ N}
]}

, i , j ∈ N+ , (4.16)

where {δk; k ∈ N} refers to the interest rate process from time 0.

Then a recursive formula to estimate the second part of the first two moments of the

future benefit payment with chances of recovery can be expressed in terms of the moments

of an insurance with shorter terms:
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E2 [Z(x, n, FV )] =EV [E (Y1 + Y2|{δk; k ∈ N})]

=EV


n−0.5∑
t′1=0.5

n∑
t′2=t′1+0.5

q′01(x, t′1)q′10(x+ t′1, t
′
2 − t′1)

×


t′2−0.5∑
k=t′1

FV · V (δ0, k) + V (δ0, t
′
2)E

[
Z(x+ t′2, n− t′2, FV )

]


=
n−0.5∑
t′1=0.5

n∑
t′2=t′1+0.5

q′01(x, t′1)q′10(x+ t′1, t
′
2 − t′1)

×


t′2−0.5∑
k=t′1

FV · E [V (δ0, k)] + E
[
V (δ0, t

′
2)
]
E
[
Z(x+ t′2, n− t′2, FV )

]
(4.17)

and

E2

[
Z2(x, n, FV )

]
=EV

[
Y 2

1 + Y 2
2 + 2Y1Y2|{δk; k ∈ N}

]
=EV


n−0.5∑
t′1=0.5

n∑
t′2=t′1+0.5

q′01(x, t′1)q′10(x+ t′1, t
′
2 − t′1)

×

{FV · t′2−0.5∑
k=t′1

V (δ0, k)

2

+
[
V (δ0, t

′
2)
]2
E
[
Z2(x+ t′2, n− t′2, FV )

]

+ 2V
(
δ0, t

′
2

)
E
[
Z(x+ t′2, n− t′2, FV )

] FV · t′2−0.5∑
k=t′1

V (δ0, k)

} (4.18)

for t′1 , t
′
2 ≥ 0 , n > 0.5 , and x ∈ N+. In addition, we have

E [Zm(x, n, FV )] = E1 [Zm(x, n, FV )] , m = 1, 2 , n ≤ 0.5 , FV > 0 , x ∈ N+ , (4.19)

since we have only one observation for a half-year term policy and observations of recov-

ery is impossible. Now with the starting values, Z(x, 0.5, FV ) known, one can obtain

Z(x, 0.5n, FV ) recursively (n > 1) by applying (4.17) and (4.18).
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4.3 Cash Flow Method for Moment Calculations

In addition to the recursive procedure introduced in the previous section, there is a more

direct and efficient way to obtain the moments of the PVFBP for an insured and further

to analyze the insurance risk and investment risk of an insurance portfolio, which is known

as the Cash Flow Method. In this section, we simply demonstrate the framework of this

method for the moment calculation of the long-term disability insurance product.

The main idea of the cash flow method in the context of traditional life insurance mo-

ment calculation applications (e.g. term life insurance, endowment) is to first calculate the

possibility of a survival/death payment at any future payment time t, and then get the

expectation of the cash flow on payment at time t. Finally, by adding the values of all these

expected cash flows at each payment time t, we can get the expectation of the PVFBP.

However, for our long-term disability insurance model studied in this project, we shall de-

rive a more complicated formula for the expectation of the PVFBP since there are both the

semiannual disability payments and a lump sum death payment for this case.

Now we start from calculating the first moment of the PVFBP under the cash flow

method. Firstly, we define S(x,t,n), I(x,t,n) and D(x,t,n) as the indicators of being temporarily

disabled, permanently disabled and becoming newly deceased (dies since the last status

check) at age x+ t, respectively, for a policyholder who signs an n-year term policy at age x.

Define CF(x, t, n, FV ) as the random variable of the cash outflow on the benefit payment

at time t for the policyholder who is involved in the policy stated at the beginning of this

chapter. Then we can express the cash flow variable in terms of those indicators as

CF (x, t, n, FV ) =

{
FV ·

[
S(x,t,n) + 2I(x,t,n) + 30D(x,t,n)

]
t ≤ n

0 t > n
, (4.20)

for x, n ∈ N+, t > 0, where S(x,t,n), I(x,t,n) and D(x,t,n) follow Bernoulli distribution with

parameters π0(x, t, n), π1(x, t, n), π2(x, t, n) and π3(x, t, n), respectively, and πi(x, t, n) for

i = 0, 1, 2, 3 is the probability of being paid nothing, being temporarily disabled, perma-

nently disabled and newly deceased, respectively, at time t for t > 0. The starting values of

the probabilities above are given by

πi(x, 0.5, n) =


Q0i

(x,1,0.5) , i = 1, 2, 3

1−
3∑
j=1

πj(x, 0.5, n) , i = 0
. (4.21)



CHAPTER 4. VALUATION OF SINGLE POLICIES 42

It is not difficult to get a recursive formula for πi(x, t, n) for t > 0.5 and i = 1, 2, 3; it is

given by

πi(x, t, n) =
2∑
j=0

Qji(x+t−0.5,1,0.5)πj(x, t− 0.5, n) . (4.22)

Therefore, the expected value of the cash outflow at time t for t > 0.5 and i = 1, 2, 3 is given

by

E [CF (x, t, n, FV )] = FV · E
[
S(x,t,n) + 2I(x,t,n) + 30D(x,t,n)

]
=

3∑
i=1

biπi(x, t, n) , (4.23)

and the first moment of the PVFBP is calculated as follows:

E [Z(x, n, FV )] =

2n∑
t=1

E [CF (x, 0.5t, 0.5n, FV )]E [V (δ0, 0.5t)] (4.24)

For the second moment of the PVFBP under the cash flow model, we need to consider the

correlation terms between cash flows at different time points (e.g.Cov [CF (x, s, n), CF (x, t, n)])

for s 6= t. Parker (1997) introduced a method of calculating the variance of the PVFBP by

dividing it into an insurance risk and an investment risk conditioning on rates of return:

V ar [Z(x, n, FV )]

=V ar {E [Z(x, n, FV ) | V (δ0, k)]}+ E {V ar [Z(x, n, FV ) | V (δ0, k)]}

=

2n∑
s=1

2n∑
u=1

E [V (δ0, 0.5s)V (δ0, 0.5u)]Cov [CF (x, 0.5s, 0.5n, FV ), CF (x, 0.5u, 0.5n, FV )]

+

2n∑
s=1

2n∑
u=1

Cov [V (δ0, 0.5s), V (δ0, 0.5u)]E [CF (x, 0.5s, 0.5n, FV )]E [CF (x, 0.5u, 0.5n, FV )]

(4.25)

for x, n ∈ N+. For the covariance terms, Cov [CF (x, 0.5s, n, FV ), CF (x, 0.5u, n, FV )], the

calculation is more complicated for the long-term disability insurance than that for the

traditional life insurance product demonstrated by Parker (1997).

Now rewriting the auto-covariance of cash flows in terms of the covariance terms of these
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indicators gives:

Cov [CF (x, s, n, FV ), CF (x, u, n, FV )]

=(b1FV )2Cov
[
S(x,s,n), S(x,u,n)

]
+ (b2FV )2Cov

[
I(x,s,n), I(x,u,n)

]
+ (b3FV )2Cov

[
D(x,s,n), D(x,u,n)

]
+ b1b2FV

2
{
Cov

[
S(x,s,n), I(x,u,n)

]
+ Cov

[
S(x,u,n), I(x,s,n)

]}
+ b1b3FV

2
{
Cov

[
S(x,s,n), D(x,u,n)

]
+ Cov

[
S(x,u,n), D(x,s,n)

]}
+ b2b3FV

2
{
Cov

[
I(x,s,n), D(x,u,n)

]
+ Cov

[
I(x,u,n), D(x,s,n)

]}
, 0 < s , u ≤ n . (4.26)

To calculate the covariance terms of these indicators, we need to discuss two situations:

s = u and s 6= u, below.

1. If s = u, then we have

Cov
[
D(x,s,n), D(x,u,n)

]
= π3(x, s, n) [1− π3(x, s, n)]

Cov
[
S(x,s,n), S(x,u,n)

]
= π1(x, s, n) [1− π1(x, s, n)]

Cov
[
I(x,s,n), I(x,u,n)

]
= π2(x, s, n) [1− π2(x, s, n)]

Cov
[
S(x,s,n), D(x,u,n)

]
= Cov

[
S(x,u,n), D(x,s,n)

]
= −π1(x, s, n)π3(x, s, n)

Cov
[
I(x,s,n), D(x,u,n)

]
= Cov

[
I(x,u,n), D(x,s,n)

]
= −π2(x, s, n)π3(x, s, n)

Cov
[
I(x,s,n), S(x,u,n)

]
= Cov

[
I(x,u,n), S(x,s,n)

]
= −π1(x, s, n)π2(x, s, n)

,

(4.27)

for 0 < s = u ≤ n and for s = u ≥ n,

Cov
[
D(x,s,n), D(x,u,n)

]
= Cov

[
S(x,s,n), S(x,u,n)

]
= Cov

[
I(x,s,n), I(x,u,n)

]
= Cov

[
S(x,s,n), D(x,u,n)

]
= Cov

[
I(x,s,n), D(x,u,n)

]
= Cov

[
I(x,s,n), S(x,u,n)

]
= 0 .

2. If 0 < s < u (we do not need to discuss the situation that s > u owing to symmetry),

we have for s < u ≤ n,

Cov
[
D(x,s,n), D(x,u,n)

]
= −E

[
D(x,s,n)

]
E
[
D(x,u,n)

]
= −π3(x, s, n)π3(x, u, n) ,

Cov
[
D(x,s,n), S(x,u,n)

]
= −E

[
D(x,s,n)

]
E
[
S(x,u,n)

]
= −π3(x, s, n)π1(x, u, n) ,

Cov
[
D(x,s,n), I(x,u,n)

]
= −E

[
D(x,s,n)

]
E
[
I(x,u,n)

]
= −π3(x, s, n)π2(x, u, n) , (4.28)
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Cov
[
I(x,s,n), D(x,u,n)

]
= E

[
I(x,s,n)D(x,u,n)

]
− E

[
I(x,s,n)

]
E
[
D(x,u,n)

]
= π2(x, s, n)Q23

(x+s,2u−2s,0.5) − π2(x, s, n)π3(x, u, n) ,

Cov
[
I(x,s,n), I(x,u,n)

]
= E

[
I(x,s,n)I(x,u,n)

]
− E

[
I(x,s,n)

]
E
[
I(x,u,n)

]
= π2(x, s, n)Q22

(x+s,2u−2s,0.5) − π2(x, s, n)π2(x, u, n) ,

Cov
[
I(x,s,n), S(x,u,n)

]
= E

[
I(x,s,n)S(x,u,n)

]
− E

[
I(x,s,n)

]
E
[
S(x,u,n)

]
= −π2(x, s, n)π1(x, u, n) , (4.29)

and

Cov
[
S(x,s,n), D(x,u,n)

]
= E

[
S(x,s,n)D(x,u,n)

]
− E

[
S(x,s,n)

]
E
[
D(x,u,n)

]
= π1(x, s, n)Q13

(x+s,2u−2s,0.5) − π1(x, s, n)π3(x, u, n) ,

Cov
[
S(x,s,n), I(x,u,n)

]
= E

[
S(x,s,n)I(x,u,n)

]
− E

[
S(x,s,n)

]
E
[
I(x,u,n)

]
)

= π1(x, s, n)Q12
(x+s,2u−2s,0.5) − π1(x, s, n)π2(x, u, n) ,

Cov
[
S(x,s,n), S(x,u,n)

]
= E

[
S(x,s,n)S(x,u,n)

]
− E

[
S(x,s,n)

]
E
[
S(x,u,n)

]
= π1(x, s, n)Q11

(x+s,2u−2s,0.5) − π1(x, s, n)π1(x, u, n) . (4.30)

Otherwise, if u > n, we have

Cov
[
D(x,s,n), D(x,u,n)

]
= Cov

[
S(x,s,n), S(x,u,n)

]
= Cov

[
I(x,s,n), I(x,u,n)

]
= Cov

[
S(x,s,n), D(x,u,n)

]
= Cov

[
I(x,s,n), D(x,u,n)

]
= Cov

[
I(x,s,n), S(x,u,n)

]
= 0

Finally, by applying (4.25) - (4.30), it is not difficult to get the variance of the PVFBP

using the cash flow method. In general, there are several advantages of the cash flow method

compared to the recursive formula:

1. The cash flow method is much less complicated than the recursive formula shown in

previous section.

2. The cash flow method is more efficient than the recursive method in programming. For

example, the moment calculation process takes several hours by applying the recursive

method but only costs less than 1 second using the cash flow method.

3. By applying the cash flow method, we are able to classify the risks and look at the

portion of investment risk and insurance risk respectively in order to make up a good

hedging strategy.
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In the following chapter, we shall introduce the risk analysis of an insurance portfolio

under the cash flow method.



Chapter 5

Valuation of Long-term Disability

Insurance Portfolio

In this chapter, we shall extend the result obtained for a single policy to the insurance

portfolios which consists of great many numbers of policies. In addition, we shall also

calculate the insurance risk and the investment risk of the insurance portfolio by applying

the cash flow method only.

5.1 Cash Flow Method for Homogeneous Portfolio

In this section, we study the homogeneous portfolio case, that is, all the policies in this

insurance portfolio have the same face value. It implies that all the policies in this insurance

portfolio have the same face value and all the policyholders included join the plan at the

same age.

To calculate the moments of the PVFBP for this insurance portfolio, we need to follow

the steps as was done in Chapter 4 by deriving the expected value, variance and auto-

covariance terms of the total cash outflow at each payment time. Define CF (x, t, n, FV, c)

the total cash flow paid out at time t for a homogeneous portfolio which consists of c n-

year term policies with all the policyholders aged x at the time of entry and the temporary

disability benefit payment to be FV . Let xi be the age of the ith policyholder (xi = x for

46
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all i in this case); then the random variable of cash flow at time t can be expressed as

CF (x, t, n, FV, c) =

c∑
i=1

FV
[
S(xi,t,n) + 2I(xi,t,n) + 30D(xi,t,n)

]
(5.1)

for c, x ∈ N+ and FV, t, n > 0.

Therefore, under the assumption that each policyholder insured in the insurance portfolio

has an identical and independent mortality distribution, the expected value of the cash

outflow at time t for the whole homogeneous portfolio can be expressed as

E [CF (x, t, n, FV, c)] = E

[
c∑
i=1

CF (xi, t, n, FV )

]
= cE [CF (xi, t, n, FV )]

= c
3∑
i=1

biπi(x, t, n) , (5.2)

where b1 = FV, b2 = 2FV , and b3 = 30FV . Similarly, it is not difficult to extend the results

in (4.25) - (4.29) to get the covariance terms of the portfolio:

Cov [CF (x, s, n, FV, c), CF (x, u, n, FV, c)]

= Cov

[
c∑
i=1

CF (xi, s, n, FV ),
c∑
i=1

CF (xi, u, n, FV )

]

=

c∑
i=1

c∑
j=1

Cov [CF (xi, s, n, FV ), CF (xj , u, n, FV )]

=

c∑
i=1

Cov [CF (xi, s, n, FV ), CF (xi, u, n, FV )]

= cCov [CF (x, s, n, FV ), CF (x, u, n, FV )] (5.3)

for c, x ∈ N+ and s, u, n, FV > 0 since the transition process for each policyholder is

uncorrelated.

5.2 Cash Flow Method for Non-homogeneous Portfolio

In this section, we consider a more general case, namely the non-homogeneous portfolio case,

where the start age of the policyholder included, the face value of each policy, and the length
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of the policies are not identical. The method of approaching the expectation and the auto-

covariance terms of the total cash outflow is similar to the one for the homogeneous portfolio.

The idea is to classify the whole portfolio into several small homogeneous portfolios.

Now assume that a non-homogeneous portfolio which consists of m homogeneous port-

folios and the ith ni-year term insurance portfolio consists of ci policies with the same entry

age xi and the face value, FVi, where
m∑
i=1

ci = N .

Furthermore, we define the following sets:
χ = {x1, x2, . . . , xm}
η = {n1, n2, . . . , nm}
z = {FV1, FV2, . . . , FVm}
ζ = {c1, c2, . . . , cm}

to be the information sets indicating ages, terms, face values and numbers of policies, re-

spectively, for the non-homogeneous portfolio. Then we are able to define the cash outflow

at time t for a non-homogeneous portfolio stated above in terms of the information sets,

CF (χ, t, η,z, ζ,m).

Then the expected value of such non-homogeneous portfolio at time t can be obtained

by extending the results for the single policy:

E [CF (χ, t, η,z, ζ,m)] =

m∑
i=1

E [CF (xi, t, ni, FVi, ci)]

=

m∑
i=1

ciE [CF (xi, t, ni, FVi)] , xi, ci ∈ N+ , FVi , t , ni > 0 .

(5.4)
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Similarly, since the fact that the transition process of any policyholder(s) among homo-

geneous group(s) is uncorrelated still applies, we have the following covariance term:

Cov [CF (χ, s, η,z, ζ,m), CF (χ, u, η,z, ζ,m)]

= Cov

 m∑
i=1

ci∑
j=1

CF (xi, s, ni, FVi),
m∑
i=1

ci∑
j=1

CF (xi, u, ni, FVi)


=

m∑
i=1

ci∑
j=1

Cov [CF (xi, s, ni, FVi), CF (xi, u, ni, FVi)]

=

m∑
i=1

ciCov [CF (xi, s, ni, FVi), CF (xi, u, ni, FVi)] , xi, ci ∈ N+ , FVi , s , u , , ni > 0 .

(5.5)

With all the closed forms of the expectation, variance and auto-covariance functions of

the cash flow, the next step is to analyze the insurance risk and investment risk of the whole

non-homogeneous portfolio.

5.3 Risk Analysis of Non-homogeneous Portfolio

Parker (1997) introduced two ways to classify the insurance and investment risks under the

cash flow method for an insurance portfolio of term life and endowment contracts by condi-

tioning on the interest rates and the mortalities, respectively. For our disability insurance

model, we apply a similar method to analyze the risks. Note that in our case, the mortality

distribution is replaced by the multi-state transition process.

Now we introduce the first way of dividing the total riskiness per policyholder involved

in the insurance portfolio, which is denoted by

V ar


m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci

 , xi , ci ∈ N+ , ni , FVi > 0 . (5.6)

1. The first way is to divide the risk by conditioning on the interest rate process, denoted
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by I = {δk; k ∈ N}

V ar


m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci



=E

V ar



m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci


∣∣∣∣∣I



+ V ar

E



m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci


∣∣∣∣∣I}

 , (5.7)

where the first term above corresponds to the so-called insurance risk, which can be

further calculated by

E

V ar



m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci


∣∣∣∣∣I



=E

V ar


2n∑
s=1

V (δ0, 0.5s)CF (χ, 0.5s, η,z, ζ,m)

m∑
i=1

ci

∣∣∣∣∣I



=
1(

m∑
i=1

ci

)2E

{
2n∑
s=1

2n∑
u=1

[
V (δ0, 0.5s)V (δ0, 0.5u)

× Cov [CF (χ, 0.5s, η,z, ζ,m), CF (χ, 0.5u, η,z, ζ,m)]

]}

=
1(

m∑
i=1

ci

)2

2n∑
s=1

2n∑
u=1

m∑
i=1

{
ciE [V (δ0, 0.5s)V (δ0, 0.5u)]

× Cov [CF (xi, 0.5s, ni, FVi), CF (xi, 0.5u, ni, FVi)]

}
(5.8)

for m,xi, ci ∈ N+, ni, FVi > 0, n = max{ni} and the second term standing for the
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investment risk can be further calculated by:

V ar

E



m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci


∣∣∣∣∣I



=V ar

E


2n∑
s=1

V (δ0, 0.5s)CF (χ, 0.5s, η,z, ζ,m)

m∑
i=1

ci

∣∣∣∣∣I



=V ar


2n∑
s=1

m∑
i=1

ciE [CF (xi, 0.5s, ni, FVi)]V (δ0, 0.5s)

m∑
i=1

ci


=

1(
m∑
i=1

ci

)2

2n∑
s=1

2n∑
u=1

m∑
i=1

c2
i

{
E [CF (xi, 0.5s, ni, FVi)]E [CF (xi, 0.5u, ni, FVi)]

× Cov [V (δ0, 0.5s), V (δ0, 0.5u)]

}
(5.9)

for xi, ci ∈ N+ , ni, FVi > 0.

2. An alternative way is to divide the total risk by conditioning on the transition process

of each policyholder included in the insurance portfolio, where the transition process of

the policyholders in the portfolio is denoted by M. The total risk is divided as follows:

V ar


m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci



=E

V ar



m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci


∣∣∣∣∣M



+ V ar

E



m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci


∣∣∣∣∣M

 (5.10)
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for xi, ci ∈ N+ and FVi, ni > 0. The first term standing for the investment risk can be

calculated by

E

V ar



m∑
i=1

ci∑
j=1

Zi(xi, ni, FVi)

m∑
i=1

ci


∣∣∣∣∣M



=E

V ar


2n∑
s=1

CF (χ, 0.5s, η,z, ζ,m)V (δ0, 0.5s)

m∑
i=1

ci
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)2

2n∑
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2n∑
u=1

{
E [CF (χ, 0.5s, η,z, ζ,m)CF (χ, 0.5u, η,z, ζ,m)]

× Cov [V (δ0, 0.5s), V (δ0, 0.5u)]

}
(5.11)

while the second term representing the insurance risk is
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m∑
i=1

{
ciE [V (δ0, 0.5s)]E [V (δ0, 0.5u)]

× Cov [CF (xi, 0.5s, ni, FVi), CF (xi, 0.5u, ni, FVi)]

}
(5.12)

for xi, ci ∈ N+ , FVi, ni > 0.
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By applying the results derived in (5.4) - (5.12), we are able to analyze numerically

the risks for a non-homogeneous insurance portfolio. In Chapter 6, we shall analyze the

numerical valuation results of a general long-term disability insurance portfolio.



Chapter 6

Numerical Illustration

In this chapter, we illustrate the numerical moment calculation results for the single policy

and the general insurance portfolios. The insurance risk and the investment risk across age

groups upon the term of the policy are studied. For the single policy case, sensitivity tests

have been done for several parameters of the long-term disability insurance models such as

the benefit payments ratios and the convergence speed of the AR(1) interest rate process.

For the portfolio case, the insurance risk and the investment risk with three different interest

rate models are analyzed. Cash flow of future benefit payments are calculated. Extreme

cases are considered under the binomial tree interest rate model.

6.1 Single Policy Case

We consider an n-year term disability policy introduced in the previous chapters with semi-

annual disability payments of $1 for temporarily disability (TD Benefit), $2 for permanent

disability (PD Benefit) and a lump sum death benefit of $30 to policyholders at working

ages. For the single policy case, the expectation and the variance of the PVFBP, which can

be used for premium calculations and risk analysis, are calculated in this section.

The three interest rate models presented in Chapter 3 are used for the calculation process:

the deterministic interest model, the binomial tree model and the AR(1) process. For the

base scenario, the values of the parameters in the three models are set up as follows. Note

that in the following we sometimes refer to the expectation and the variance as the first two

moments.

54
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1. For the deterministic interest rate model, we assume the annual constant interest rate

is δk = 0.06 , k ∈ N.

2. For the binomial tree interest rate model, we assume that the starting value of the

annual interest rate and the risk-free interest rate for a zero-coupon bond are δ0 = r =

0.06. This is a special case which has the same expectation of the discounted interest

rates, E[V (δ0, k)] , k ∈ N, as the one in the deterministic interest rate model. The

expectation and the variance of the interest rate functions are estimated by simulations

for 1 million times.

3. For the AR(1) model, we assume that the long-term mean and the starting value of

the annual interest rate is δ0 = 0.06 and the long-term mean of the annual force of

interest is ln(1 + δ0) = ln(1.06). The convergence speed to this long-term mean is

φ = 0.9 with the volatility of the residual being σa = 0.01.

Figure 6.1: Expectation of PVFBP vs Age for a 15-year Disability Insurance Policy with
Three Interest Rate Models under The Base Scenario
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We first calculate the moments with the three interest rate models. Note that for single

policy case, the numerical results under the cash flow method and the recursive method

are exactly the same. Therefore, we illustrate the results for both the single policy and the

portfolio case under the cash flow method for efficiency purpose.

Figure 6.2: Variance of PVFBP vs Age for a 15-year Disability Insurance Policy with Three
Interest Rate Models

Figures 6.1 and 6.2 show the numerical results of the expected value and variance of

the present value of future payments of 15-year long-term disability contracts for insureds

who entered the plan between age 35 and 45, respectively. Obviously, for the single policy

case, the numerical results under the three interest rate models mentioned above are highly

consistent (the values almost fall on the same line and the binomial interest model is equiv-

alent to the deterministic model in this case). For the binomial tree interest rate model,

the best scenario refers to the lowest annual interest rates in each year being selected to

form the upper bound of the PVFBP and the worst scenario is the case where the highest

annual interest rates being selected (see the two lines in bold) to form the lower bound of
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the PVFBP. For the age groups of 35-45, the mortality rate is rapidly growing at senior

ages. Therefore, the first moment of the PVFBP has a concave up and increasing trend with

respect to the age since the death benefit payment is a major payment under our long-term

disability policy. The variance of the PVFBP which can be considered as a rough estimate

of the insurance risk for the single policy case (when investment risk is relatively small) is

also increasing in age for the ages considered, 35-55.

The moment calculation results are very close under the three interest rate models,

especially the binomial tree model and the deterministic model (the first moments are the

same). We will show further graphical results for moment calculations and the sensitivity

tests of the benefit payment amounts under the AR(1) model only. Figure 6.3 shows that

the first moment and the variance of the PVFBP across the entry age group 35-45 with

terms of policies from 1 to 15 years are increasing functions in both the entry ages and the

terms of policy. By comparing the growth of the mortality rates within each age intervals,

we observe that policyholders from 38-39, 40-41, 42-43, 46-47, 49-50 and 52-53 experience

relatively rapid growth in the mortality rates. This implies that for a 1-year term policy, the

growth of the first two moments as a function of age is relatively high in the age intervals

mentioned above. For example, mathematically we have

E[Z(39, 1, 1)]− E[Z(38, 1, 1)] > E[Z(38, 1, 1)]− E[Z(37, 1, 1)]

since age group 38-39 is a peak of the growth in mortality rates. However, the longer the

term of the policy is, the less impact the differences in the growth of mortality rates in the

last year of the policy have on the first two moments of the PVFBP. The first two moments

tend to be concave up in age for long-term policies.

Figure 6.4 shows both the insurance risk (left) and the investment risk (right) for a

15-year disability insurance policy with the AR(1) interest rate process. The insurance risk

observed is concave up in age and the term of policies. The investment risk for terms of

policies longer than 2 years, though relatively small compared to the insurance risk, has a

more obvious concave up trend in both the age and the term of policy than the insurance

risk does. In general, the longer the term of the policy (or the more senior the age) is, the

faster the investment risk is increasing. To calculate the investment risk and the insurance

risk in Figure 6.4, we use (5.9) and (5.12) since Parker (1997) suggested that these two

formulas provide better estimates than the methods expressed by (5.8) and (5.11).

In addition to the studies under the base scenario, the next step is to do some sensitivity
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Figure 6.3: Expectation and Variance of PVFBP vs Term Policy and Age under the AR(1)
Interest Rate Model (φ = 0.9;σa = 0.01; δ0 = 0.06)

Figure 6.4: Insurance and Investment Risk of PVFBP vs Term Policy and Age under the
AR(1) Interest Rate Model (φ = 0.9;σa = 0.01; δ0 = 0.06)
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Figure 6.5: Expectation and Variance of PVFBP vs Disability Benefit b2 for a 15-year
Disability Insurance Policy under the AR(1) Interest Rate Models (b1 = 1; b3 = 30;φ =
0.9;σa = 0.01; δ0 = 0.06)

tests on the benefit payment amounts and the parameters in the interest rate model. Figures

6.5 and 6.6 illustrate the benefit ratios within two disability payment levels and the ratios

between death benefit and semiannual disability payments, respectively. Since the numerical

results under three different interest rate models differ not much, here we show only the

numerical results under the AR(1) interest rate process for 15-year term policies in which

policyholders entered the plan between ages 35 and 45.

In Figure 6.5, we have fixed the benefit for temporarily disabled, b1 = 1, and the death

benefit, b3 = 30, to test the impact of changing in permanent disability benefit payment b2.

While Figure 6.6, b1 = 1 and b2 = 2 are fixed and we test the impact of changing in death

benefit payment b3.

Since two factors have been fixed for the sensitivity tests, changing the third factor is

equivalent to adding a certain amount of supplementary benefit for the permanent disability

(the death). Therefore, the change in the expectation of PVFBP, Z(x, 15, 1), is proportional

to the change in the benefit amount b2 (b3), ∆b2 (∆b3). The change in the expectation of

PVFBP with respect to the change in the benefit amount, ∆E[Z(x,15,1)]
∆b2

(∆E[Z(x,15,1)]
∆b3

), is

higher for the senior age groups owing to the larger possibility of paying the supplementary

benefits.
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Figure 6.6: Expectation and Variance of PVFBP vs Death Benefit b3 for a 15-year Disability
Insurance Policy under the AR(1) Interest Models (b1 = 1; b2 = 2;φ = 0.9;σa = 0.01; δ0 =
0.06)

In addition, the second moment of PVFBP, E[Z2(x, 15, 1)], includes more terms which

are related to the benefit amount b2 (b3). Therefore, the larger b2 (b3) is, the more significant

its impact has on the dollar amount change in E[Z2(x, 15, 1)]. We discover that there is a

concave up trend of the variance terms in the benefit ratios, especially when the changing

factor is the major benefit payments (i.e. b3) in our policy (see Figure 6.6). In other words,

the variance of the PVFBP is more sensitive for higher benefit ratios. Again, a combined

effect of a larger possibility of the supplementary payments for the senior aged groups and

the large value of the major benefit b3, the variance terms of the PVFBP is concave up

in age. However, if we fix the death benefit amount and change the permanent disability

benefit amount which is relatively small compared to the former one, we do not necessarily

have a concave curve (see Figure 6.5).

Now we perform the sensitivity tests for the model parameters in the AR(1) interest

rate model by starting from φ, the convergence speed to the long-term mean of the annual

interest rate. From Figure 6.7, we can conclude that the expected value of the PVFBP has

a concave up shape in both the age and the convergence speed, φ, though the increase in

the changing speed in φ is small. Similarly, we observe exactly the same principle in the

insurance risk. In other words, the expected value of the PVFBP and the insurance risk of



CHAPTER 6. NUMERICAL ILLUSTRATION 61

Figure 6.7: Expectation and Variance of PVFBP vs φ and Age for a 15-year Disability
Insurance Policy under the AR(1) Interest Rate Models (σa = 0.01; δ0 = 0.06)

a 15-year term policy is more sensitive to the changes in age than that of the convergence

speed, φ, in the AR(1) interest rate model.

Furthermore, by looking at the investment risk shown in Figure 6.8 (right), it is not

surprising to see the sudden change in the variance terms when the convergence speed is

high. Note that the insurance risk and the investment risk shown here do not add up to the

variance term shown in Figure 6.7, since we are using two different approaches to get the

best estimates of the risks (see (5.9) and (5.12) for reference).

The investment risk is extremely sensitive when φ is close to 1. Theoretically, the

intermediate term, a(s, u), in calculating the auto-covariance terms of the interest rate

functions turns huge when 1 − φ is close to zero (see Proposition 3.5 for reference). This

explains the reason why the investment risk has a turn point when φ is close to 1.

Figures 6.9 and 6.10 illustrate the sensitivity test results on δ0, the long-term mean

parameter of the annual interest rate in the AR(1) interest rate model. Overall, the ex-

pectation, the variance of the PVFBP, the insurance risk and the investment risk are all

decreasing in the long-term mean parameter. Their concave up and decreasing trends in age

are still satisfied at any values of the long-term mean parameter δ0 and the gwoth is fairly

slow at large values of δ0. The concave down shape of the change of the four quantities

in δ0 can also be observed from Figures 6.9 and 6.10. To sum up, the four quantities are
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Figure 6.8: Insurance and Investment Risk vs φ and Age for a 15-year Disability Insurance
Policy under the AR(1) Interest Rate Models (σa = 0.01; δ0 = 0.06)

Figure 6.9: Expectation and Variance of PVFBP vs δ0 and Age for a 15-year Disability
Insurance Policy under the AR(1) Interest Rate Models (σa = 0.01;φ = 0.9)
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Figure 6.10: Insurance and Investment Risk vs δ0 and Age for a 15-year Disability Insurance
Policy under the AR(1) Interest Rate Models (σa = 0.01;φ = 0.9)

decreasing functions of δ0, and are more sensitive to small values of δ0.

Figures 6.11 and 6.12 show the numerical results of the sensitivity test due to the change

in volatility term in the AR(1) interest rate model, σa. Not surprisingly by its name, the

investment risk is increasing in σa with a quicker speed at large values of σa and senior ages

(see Figure 6.12). This is because a more senior age gives rise to a larger expected values

on the cash flow on the benefit payment. Furthermore, the expectation, variance and auto-

covariance terms of the interest rate functions which are used to calculate the insurance risk

are increasing functions of σ2
a (see Chapter 3).

In summary, all the four terms are concave up functions of σa, and they are more sensitive

to the change in σa at the senior age groups. While the investment risk is the most sensitive

one to the change in σa, the sensitivity of the variance of the PVFBP lies between that of

the investment risk and the insurance risk by combining their effects.

6.2 A Numerical Example of Non-homogeneous Portfolio

In this section, we illustrate the numerical results for portfolio cases under the three interest

rate models mentioned in Section 6.1. The total riskiness of a non-homogeneous long-term
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Figure 6.11: Expectation and Variance of PVFBP vs σa and Age for a 15-year Disability
Insurance Policy under the AR(1) Interest Rate Models (δ0 = 0.06;φ = 0.9)

Figure 6.12: Insurance and Investment Risk vs σa and Age for a 15-year Disability Insurance
Policy under the AR(1) Interest Rate Models (δ0 = 0.06;φ = 0.9)
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disability insurance portfolio with each of its subsidiary homogeneous portfolios shall be

decomposed into the insurance risk and the investment risk.

Table 6.1 lists the information of the numerical example of the long-term disability

insurance portfolio that we study. In total, this whole big portfolio consists of 14 homoge-

neous insurance portfolios with different entry ages, terms of policies, temporarily disability

benefit amounts (TD Benefit), permanent disability benefit amounts (PD Benefit) and the

lump sum death benefit amounts. The service table and the mortality table in Bowers et

al.∼ (1997) were used to model the transition process between policyholder’s statuses. The

policyholders are assumed to be healthy at their entry ages.

Table 6.1: The Policy Information of the General Insurance Portfolio

Group No. No. of Policies Age Term of Policies TD Benefit PD Benefit Death Benefit
1 80 35 5 1,000 2,000 30,000
2 500 35 10 2,000 4,000 60,000
3 350 35 15 3,000 6,000 90,000
4 100 35 20 5,000 10,000 150,000
5 60 35 25 3,000 6,000 90,000
6 500 40 10 3,000 6,000 90,000
7 400 40 15 5,000 10,000 150,000
8 180 40 20 5,000 10,000 150,000
9 400 45 5 3,000 6,000 90,000
10 200 45 10 5,000 10,000 150,000
11 160 45 15 5,000 10,000 150,000
12 500 50 5 2,000 4,000 60,000
13 650 50 10 5,000 10,000 150,000
14 400 55 5 2,000 4,000 60,000

Now we are able to analyze the risks for each homogeneous insurance portfolio. Ta-

ble 6.2 illustrates the numerical results of the two approaches of the insurance risk and

the investment risk stated in Chapter 5. The top-left columns shown in the table are for

E{V ar[Z(c)
c |I]}, the insurance risk per policy calculated by conditioning on the interest rate

(see (5.8)), and the bottom-left columns are for V ar{E[Z(c)
c |M ]}, the insurance risk per pol-

icy calculated by conditioning on the transition process (see (5.12)). The top-right columns

in the table are for V ar{E[Z(c)
c |I]}, the investment risk per policy calculated by conditioning

on the interest rate (see (5.9)) and the bottom-right columns are for E{V ar[Z(c)
c |M ]}, the

investment risk per policy calculated by conditioning on the transition process (see (5.11)).
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Table 6.2: The Risk Decomposition for Each of Homogeneous Insurance Portfolios under
Three Interest Rate Models

E{V ar[Z(c)
c |I]} V ar{E[Z(c)

c |I]}
Deterministic Binomial AR(1) Binomial AR(1)

Group 1 70,354 70,365 71,111 7 366

Group 2 94,109 94,241 96,341 1,579 17,696

Group 3 478,484 480,735 495,951 41,229 153,361

Group 4 6,402,452 6,471,241 6,724,840 680,755 1,082,959

Group 5 4,800,291 4,894,796 5,112,225 982,811 788,264

Group 6 326,467 326,933 334,348 8,818 98,341

Group 7 1,757,076 1,765,441 1,822,093 284,629 1,058,367

Group 8 5,224,336 5,280,491 5,488,758 1,640,440 2,634,408

Group 9 315,351 315,403 318,837 382 20,955

Group 10 3,549,058 3,554,128 3,635,256 62,963 706,025

Group 11 6,636,770 6,668,059 6,882,286 699,126 2,635,245

Group 12 179,497 179,526 181,471 443 24,413

Group 13 1,677,092 1,679,456 1,717,606 156,179 1,766,707

Group 14 344,719 344,776 348,528 1,103 60,827

Average 1,377,330 1,385,077 1,427,007 174,685 652,004

V ar{E[Z(c)
c |M ]} E{V ar[Z(c)

c |M ]}
Deterministic Binomial AR(1) Binomial AR(1)

Group 1 70,354 70,354 70,401 18 1,076

Group 2 94,109 94,108 94,543 1,712 19,494

Group 3 478,484 478,459 484,532 43,505 164,780

Group 4 6,402,452 6,401,668 6,555,695 750,328 1,252,105

Group 5 4,800,291 4,799,261 4,978,234 1,078,346 922,255

Group 6 326,467 326,465 327,986 9,287 104,703

Group 7 1,757,076 1,756,986 1,779,161 293,084 1,101,299

Group 8 5,224,336 5,223,713 5,346,714 1,697,218 2,776,452

Group 9 315,351 315,352 315,564 433 24,228

Group 10 3,549,058 3,549,034 3,565,365 68,057 775,916

Group 11 6,636,770 6,636,440 6,717,809 730,745 2,799,722

Group 12 179,497 179,497 179,616 472 26,268

Group 13 1,677,092 1,677,081 1,684,587 158,554 1,799,726

Group 14 344,719 344,720 344,947 1,159 64,408

Average 1,377,330 1,377,249 1,395,477 182,513 683,534
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For most of the homogeneous insurance portfolio groups, the investment risk with the

AR(1) model is much higher than the one with the binomial interest rate model. This is

because the investment risk level is determined by the volatility terms in the two interest

rate models that we select, i.e., σa and σr(k). However, Group 5 including all the 25-year-

term policies for 35-year-old policyholders is an exception case. This could be explained

by the fact that the variations in the possible values of the annual interest rate under the

binomial interest rate model are fairly high when the valuation term is long. Therefore,

the binomial tree interest rate model is a good estimate for long-term valuations when the

future market condition is unknown and the market return does not seem to have a clear

trend of converging to a long-term mean.

Table 6.3: The Risk Decomposition for the Non-homogeneous Long-term Disability Insu-
rance Portfolio under Three Interest Rate Models

E
{
V ar

[
Z(c)
c |I

]}
V ar

{
E
[
Z(c)
c |I

]}
No. of Policies Deterministic Binomial AR(1) Binomial AR(1)

4,480 93,014 93,345 95,829 10,136.2 58,668

44,800 9,301.4 9,334.5 9,583 10,136.2 58,668

448,000 930.1 933.5 958.3 10,136.2 58,668

4,480,000 93.01 93.35 95.8 10,136.2 58,668

44,800,000 9.301 9.3 9.6 10,136.2 58,668

Infinity 0 0 0 10,136.2 58,668

V ar
{
E
[
Z(c)
c |M

]}
E
{
V ar

[
Z(c)
c |M

]}
No. of Policies Deterministic Binomial AR(1) Binomial AR(1)

4,480 93,014 93,011 93,856 10,470.1 60,641

44,800 9,301.4 9,301.1 9,386 10,169.5 58,865

448,000 930.1 930.1 939 10,139.5 58,687

4,480,000 93.01 93.01 93.9 10,136.5 58,670

44,800,000 9.301 9.3 9.4 10,136.2 58,668

Infinity 0 0 0 10,136.2 58,668

Table 6.3 illustrates the numerical results for two approaches (see Chapter 5) of calculat-

ing the insurance risk and the investment risk under three interest rate models. Comparing

with the numerical results calculated separately for each of small homogeneous portfolios,

the insurance risk per policy for the big non-homogeneous portfolio is reduced to a large

degree, from 1,377,330 in Table 6.2 to less than 100,000 in Table 6.3. This indicates that
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the correlations among the policies of different homogeneous groups can never be neglected

for valuation purposes. Thus, developing the methodology of evaluating the risk for the

non-homogeneous long-term disability portfolio is crucial.

From Table 6.3, we observe that the insurance risk per policy is gradually fading out

when the portfolio size is increasing. Therefore, the insurance risk per policy can be managed

by pooling technique. However, the total riskiness per policy will not go to zero when there

are infinite number of contracts in the portfolio. The limit of this risk is exactly the limit

of the investment risk which can not be reduced by pooling.

Table 6.4: The Risk Decomposition Comparison for the Term Life Insurance Portfolio,
Disability Only Portfolio and the Long-term Disability Insurance Portfolio under Three
Interest Rate Models

Total Insurance Risk

No. of Policies Benefits Deterministic Binomial AR(1)

Portfolio 1 4,480 Death only 335,825,056 335,815,917338,391,200

Portfolio 2 4,480 Disabilities only 91,057,971 91,052,237 92,406,720

Sum of 1+2 8,960 N/A 426,883,027 426,868,154430,797,920

Our Portfolio 4,480 Both 416,704,333 416,690,042420,475,462

Total Investment Risk

No. of Policies Benefits Deterministic Binomial AR(1)

Portfolio 1 4,480 Death only 0 21,922,374 142,059,187

Portfolio 2 4,480 Disabilities only 0 4,296,819 18,906,039

Sum of 1+2 8,960 N/A 0 26,219,193 160,965,226

Our Portfolio 4,480 Both 0 45,409,952 262,831,341

Recall that in Chapter 1, we have mentioned the advantage of designing this long-term

disability insurance product is to better evaluate the insurance and investment risks for

term life insurance portfolios and disability payment only portfolios under the circumstance

that common policyholders exist in both of the portfolios. Table 6.4 compares the results

of evaluating the risks of such portfolios separately and measuring the risks by regarding

them as one whole portfolio. Extreme cases are considered: the policyholders involved in

the term life insurance portfolio group and the disability payment only portfolio are exactly

the same groups of people. Refer to (5.9) and (5.12) for the methodology of calculating the
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insurance risk and the investment risk. Instead of the average risk per policy, the total risk

of the whole portfolio is applied.

From Table 6.4, we discover that the insurance risk is overestimated by about 2.44%-

2.45%, and the investment risk is underestimated by approximately 40% once the valuation

is done separately, neglecting the correlations of the two insurance groups. Therefore, taking

into account of the correlation, we have the methodology to allow more accurate valuation

results.

Figure 6.13: Expected Cash Flows of the General Long-term Disability Insurance Portfolio
of Benefit Payments with AR(1) Interest Rate Models

Figure 6.13 shows the expected cash flow of benefit payments from the group effective

date to the maturity date of the longest contracts in the insurance portfolio. We observe

a 5-year cycle of the cash flow: the expected cash flow paid out is increasing within each

cycle until it reaches the year that some of the policies terminate. The peak of the cash flow

of benefit payments occurs at year 10 because the majority of the policies in the portfolio
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terminates at that time. Thus, appropriate hedging strategies considering duration matching

possibly be made according to this cash flow pattern to avoid the ruin of the insurance

company.



Chapter 7

Conclusion

In this project, we study an insurance product providing both a semiannual disability pay-

ment and a lump sum death benefit. By extending the methodology in Parker (1997) and

Dickson et al.∼ (2009) to this new insurance product, we calculate the moments of fu-

ture benefit streams and analyze the risks of such a non-homogeneous long-term disability

insurance portfolio under two stochastic interest rate models, the AR(1) process and the

binomial tree model. The deterministic interest rate model is also illustrated. The tran-

sition process between the four statuses of the policyholders is modeled by Markov chain

techniques and this process is assumed to be independent among different policyholders.

For the single policy case, we derive a recursive formula to calculate the first two moments

of the PVFBP of the long-term disability insurance policy.

Two approaches by conditioning on the interest rate model and policyholder’s transition

process among four statuses, have been applied to evaluate the insurance risk and the

investment risk of a long-term disability insurance portfolio, respectively. In practice, for

an insurance portfolio with a large size, the insurance risk is relatively small compared with

the investment risk by enlarging the portfolio size, since the former one fades out while

the latter one reaches a limit. In addition, a good estimate of the investment risk is very

significant for the insurers before bringing out any investment strategy. The accuracy in

estimating the investment risk is thus the key issue to be considered in risk management.

According to our study, we observe that separate valuations for disability and life insu-

rance products underestimate the investment risk if there are common active insureds who

bought both products. The purpose of designing this new insurance product is to improve

the accuracy in insurer’s valuations of insurance portfolios including the life products and
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the disability products with insureds involved in both plans. Thus, the promotion of this

product could help the insurers better manage the insurance risk and the investment risk,

which are significant quantities of the risk management of insurance companies.

There are four quantities we mainly study in this project: the expectation and variance

of the present value of future benefit streams, the insurance risk and the investment risk for

the long-term insurance policies. Their sensitivities (single policy case) to the values of the

long-term mean, the volatility and the convergence speed to the long-term mean parameter

of the AR(1) model as well as the benefit amounts have been tested.

To sum up, all of the four quantities are increasing in the benefit payment amount, the

volatility term σa, and the convergence speed φ in the AR(1) interest rate model. However,

they are decreasing functions of the long-term mean parameter δ0. The investment risk

is very sensitive to the change in σa, especially for policyholders entering the plan at the

senior age groups and at large values of σa. A similar interesting pattern also shows in the

sensitivity test on the convergence speed φ: the investment risk suddenly increases when φ

is close to one. For portfolio cases, we have discovered in an illustration a larger investment

risk under the binomial tree interest rate model than the one under the AR(1) interest model

when the policy term is 25 years. Furthermore, the design of this new insurance product

gives rise to a much lower total insurance risk and higher investment risk to a large degree

comparing with the one evaluated separately for the term life insurance portfolio and the

disability insurance portfolio. Therefore, the advantage of this new product is to guarantee

the insurer’s valuation accuracy.

In our study, we only derive the formulas for the first two moments of the PVFBP of

the long-term disability insurance policy under the Markov chain model without insurance

data available. However, further research could be done based on the methodology and the

primary result shown in this project. One could calculate the expectation of the difference

between the PVFBP and the PVFPI (Present Value of Future Premium Income). Thus, cash

flow projections of the whole insurance portfolio for 3-5 years could be done. Appropriate

hedging strategies could be taken according to the cash flow pattern. As was indicated

in Jones (1994), for some actuarial applications of the multi-state models, the Markov

assumption is inappropriate. In the model that we study in this project, the probability

of transition leaving from the disabled states may be affected not only by the age of the

individual but also the time since becoming disabled, called duration. To incorporate this

duration dependence, a semi-Markov chain process for the transitions can be used. See
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Hoem (1972), Jones(1994) and Janssen and Manca (2007) for more details in using semi-

Markov models in life insurance and disability insurance applications. Last but not least, the

limitation we have in our research is that we have assumed all policyholders to be healthy at

the moment of the effective date of the policy. However, this is not always true in practice.

The methodology of calculating the transition probabilities illustrated in this thesis could

be extended to allow different statues for the policyholders at the time of entry.
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