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Abstract

Random effects models are of particular importance in modeling heterogeneity. A commonly

used random effects model for multivariate survival analysis is the frailty model. In this

project, a special frailty model with an Archimedean dependence structure is used to model

dependent risks. This modeling approach allows the construction of multivariate distribu-

tions through a copula with univariate marginal distributions as parameters. Copulas are

constructed by modeling distribution functions and survival functions, respectively. Mea-

sures of the dependence are applied for the copula model selections. Tail-based risk measures

for the functions of two dependent variables are investigated for particular interest. The

statistical application of the copula modeling approach to an insurance data set is discussed

where losses and loss adjustment expenses data are used. Insurance applications based on

the fitted model are illustrated.

Keywords: Multivariate distribution; Copula; Common random effects; Measure of depen-

dence; Measures of tail dependency; Risk measures; VaR; CTE
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Chapter 1

Introduction

Many financial and actuarial problems involve more than one random variable. Interactions

of these random events are of particular interest to practitioners. For example, an investor

needs to consider the returns of all securities included in the same investment portfolio.

A life insurer may be interested in the mortality of multiple lives insured under the same

policy. Property and casualty insurers are concerned about the losses from different lines of

business.

Although it is convenient to assume that the relevant random variables are independent,

this is often inappropriate. For instance, securities have a tendency to move together in the

same direction because of the market risk that stems from economy-wide factors affecting all

securities. Life insurance policies sold to married couples involve dependent risks (spouses’

remaining life times). Catastrophe insurance has to deal with the consequences resulting

from perils such as hurricanes, earthquakes, or tornadoes. It is of great importance to study

the relationships among different dimensions of an outcome and model the dependence

structure of these random variables.

Furthermore, failure to take proper account of extremal behavior in the tails may result

in devastating consequences. Large amounts of insurance losses have significant impact on

the solvency of insurers or reinsurers. Also, abnormal movements in interest rates or stock

prices can dramatically affect the values of assets or liabilities of financial institutions. As a

result, it is also necessary to capture the dependence of random variables at extreme values.

1



CHAPTER 1. INTRODUCTION 2

1.1 Background and Motivation

The normal distribution has long dominated the study of multivariate distributions, based

on the fact that many elements of nature follow normal distributions and are related to

other normally distributed variables. As far as applications are concerned, multivariate nor-

mal distributions are appealing because the marginal distributions are also normal and the

association between two normal variables can be described by their marginal distributions

and the correlation coefficient. The modern portfolio theory, which is based on the assump-

tion of multivariate normal returns, establishes the variance (or standard deviation) as a

risk measure and the correlation coefficient between returns as a measure of dependence

(Markowitz, 1952, 1959). The drawback of models based on the normal distribution is that

they cannot capture the extremal behavior in the tails. The distribution of financial asset

returns is leptokurtic, which means the tails are fatter than those implied by normal distri-

butions. Financial asset returns also tend to be negatively skewed. Both of these suggest

that the multivariate normal model for financial assets is likely to understate the actual risk.

Copulas provide a convenient way to study the dependence between random variables.

According to Sklar’s Theorem, any joint distribution can be expressed in terms of a copula.

A copula separates the joint distribution into two components – the marginal distribution

of individual variables, and dependence parameter(s) that capture(s) the interdependence

of the marginal distributions. That is, a copula expresses the joint distribution of random

variables as a function of the marginal distributions of each variable.

This project aims to model the joint behavior of random variables, with an emphasis on

tail dependency. Models with common random effects are used to study the joint behavior

of random variables. Copulas are derived from modeling distribution functions and survival

functions, respectively. Tail-based risk measures for functions of dependent risks are derived.

The statistical applications of the copula modeling approach to insurance data are discussed

where losses and loss adjustment expenses data are used. Insurance applications based on

the fitted model are illustrated.

1.2 Literature Review

Copulas have been extensively studied in recent years. Joe (1997) and Nelsen (2006) gave

comprehensive discussions of copula functions and their statistical properties. Trivedi and
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Zimmer (2005) provided a guide to copula modeling, with special attention dedicated to

issues related to estimation and mis-specification. In Chapter 2, we will present the basic

statistical properties of multivariate distributions and copulas that are useful for our study

in this project.

This literature review focuses on multivariate modeling and its connection with copulas,

and results from previous research that applied copula models to actuarial and financial

problems. There is an extensive literature on copulas and multivariate models, and as a

result, we only provide a review of those that are most relevant to our random effects models

studied in Chapter 3, measures of dependence and tail dependency presented in Chapter

4, and tail-based risk measures discussed in Chapter 5. This review is not meant to give a

complete list of all related research.

Random effects models are of particular importance in modeling heterogeneity. A widely

used random effects model in multivariate survival analysis is the frailty model introduced

by Vaupel et al. (1979).

Oakes (1989, 1994) considered bivariate and multivariate survival models induced by

frailties. We start our literature review by presenting the frailty models first. For a contin-

uous random survival time, T , the survival function is defined as

S(t) = P (T > t) = 1− F (t) = 1−
∫ t

0
f(s)ds,

where F (t) and f(t) are the distribution function and density function of T , respectively.

The hazard function h(t) can be derived as

h(t) = −∂lnS(t)

∂t
=
f(t)

S(t)
.

Explanatory variables Z can be incorporated into survival analysis using Cox’s propor-

tional hazards model (Cox, 1972), in which the hazard function is represented as

h(t, Z) = eβZb(t),

where b(t) is the baseline hazard function, and β is a vector of regression parameters.

Let γ = eβZ . Integrating and exponentiating the negative hazard, Cox’s proportional

hazards model can then be expressed as

S(t|γ) = e−
∫ t
0 h(s,Z)ds = B(t)γ ,
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where B(t) = e−
∫ t
0 b(s)ds is the survival function corresponding to the baseline hazard func-

tion. Parameter γ is called a frailty in the sense that a larger value of γ implies a smaller

survival probability S(t|γ), indicating poorer survival.

Oakes (1989, 1994) then illustrated how the dependency among multiple survival times

can be modeled with frailties. Assuming that two survival times T1 and T2 are independent

given the frailty γ, we have

P (T1 > t1, T2 > t2 | γ) = P (T1 > t1 | γ)P (T2 > t2 | γ)

= S1(t1 | γ)S2(t2 | γ)

= B1(t1)γ B2(t2)γ .

Taking expectations over the potential values of γ, a realization of random variable Γ, we

can get the following joint multivariate survival function,

P (T1 > t1, T2 > t2) = EΓ [B1(t1)B2(t2)]Γ .

That is, multivariate survival models result when some unknown factors induce dependence

between random variables.

Marshall and Olkin (1988) proposed an approach of generating multivariate distribu-

tions by mixtures. The mixture model introduced by Marshall and Olkin (1988) takes the

following form,

F (x) =

∫
H(x)θdG(θ),

where H and G are univariate distribution functions, and θ > 0.

Let ϕ be the Laplace transform of G. Then F (x) = ϕ(−lnH(x)). As a result, the

univariate distribution function H can be expressed as

H(x) = e−ϕ
−1(F (x)).

Marshall and Olkin (1988) also considered the bivariate mixture model given by

F (x1, x2) =

∫ ∫
H1(x1)θ1H2(x2)θ2dG(θ1, θ2). (1.1)

Denote the marginal distributions of G by G1 and G2. The marginal distribution functions

of F (x1, x2) are given by

Fi(x) =

∫
Hi(x)θidGi(θi), i = 1, 2.
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It follows that if

Hi(x) = e−ϕ
−1
i (Fi(x)),

where ϕi is the Laplace transform of Gi, i = 1, 2, then F given by (1.1) is a bivariate

distribution function with marginal distributions F1 and F2 as parameters.

Models of common random effects that we will introduce in Chapter 3 have similar

flavor. We will expand the above mentioned models by Oakes (1989, 1994) and Marshall and

Olkin (1988), and use common random effects to model the dependence between random

variables. A unified approach will be applied to models based on distribution functions

and survival functions, respectively. Different bivariate distributions and their associated

copulas are resulted by modeling distribution functions and survival functions. A variety of

distributions for the common random effect will be discussed.

Frees and Valdez (1998) introduced actuaries to the concept of copulas, and illustrated

how the frailty models proposed by Oakes (1989, 1994) can be applied to actuarial science,

including estimation of joint life mortality and dependent decrement models. Frees and

Valdez (1998) also showed how to simulate and fit copulas, and discussed the usefulness of

copula functions by pricing a reinsurance contract and estimating expenses for pre-specified

losses.

Dupuis and Jones (2006) illustrated the usefulness of multivariate extreme value theory

and its actuarial applications. They used copula models and theoretical results from extreme

value theory to study the extremal behavior of the joint distribution of random variables,

with special attention dedicated to the asymptotic behavior of the dependence structure at

extreme values. Venter (2002) also emphasized the correlation among large losses, i.e., in

the right tails of the loss distributions. Various aspects of copulas regarding dependence

structure and tail dependency were discussed in both Dupuis and Jones (2006) and Venter

(2002). We will review the measures of dependence and tail dependency in Chapter 4.

Copula models have also been applied to other areas of actuarial research such as classical

risk theory. Albrecher et al. (2011) considered dependent risks in the setting of classical risk

theory. They modeled the dependency among claim sizes and among claim inter-occurrence

times with copulas, and derived explicit formulas for ruin probabilities.

Extensive applications of copulas can be found in finance literature. Monograph by

Cherubini et al. (2004) was dedicated to the financial applications of copula models, includ-

ing simulations of market scenarios, credit risk applications, and options pricing. However,
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the arguably most influential work of the financial application of copula was Li (2000), which

has been quoted numerous times in academia, used (or abused) by investment managers on

Wall Street, and mentioned by news and media. Li (2000) introduced a copula model in

finance to calibrate defaults. A random variable called the time-until-default was used to

characterize the default, and the use of normal copulas was illustrated in the valuation of

credit derivatives, such as credit default swaps and first-to-default contracts. Some even

“blamed” the work of Li (2000) for the global financial crisis in 20081.

Numerous risk measures have been proposed in financial and actuarial literature. Denuit

et al. (2005) provided a detailed overview of risk measures, their respective properties, and

theories behind different measures of risk. Jorion (2007) focused on the value-at-risk (VaR),

an extensively used risk measure in finance, and illustrated the use of VaR for integrated

risk management. A review of tail-based risk measures will be given in Chapter 5 before

they are applied to our model of common random effects.

The rest of this project is organized as follows. A brief review of multivariate distribu-

tions and copulas and their statistical properties is given in Chapter 2. In Chapter 3, models

with common random effects are used to study the joint behavior of two random variables.

Copula models are derived from modeling distribution functions and survival functions.

Chapter 4 is dedicated to measures of dependence and tail dependency, and the use of tail

dependency measures for copula model selections. Chapter 5 presents tail-based risk mea-

sures for functions of dependent risks. In Chapter 6, we apply the modeling approach and

risk measures to insurance claims consisting of losses and loss adjustment expenses. Chapter

7 contains the concluding remarks and possible directions for further research.

1http://www.cbc.ca/news/canada/story/2009/04/08/f-mathwhiz.html



Chapter 2

Multivariate Distributions and

Copulas

A copula function is a joint distribution function with marginal distribution functions as

parameters. Therefore, properties of copulas are analogous to those of joint distributions.

Comprehensive discussions of multivariate distributions and copula functions and their sta-

tistical properties can be found in monographs by Joe (1997) and Nelsen (2006). This

chapter outlines the basic properties and results useful for our models in later chapters.

Section 2.1 gives a brief summary of the propensities of joint distributions. Copulas are

introduced in Section 2.2.

2.1 Basics of Joint Distributions

The joint distribution of n random variables X1, X2, ..., Xn is defined as the function F

whose value at every point (x1, x2, ..., xn) in n-dimensional space Rn is specified by

F (x1, x2, ..., xn) = P (Xi ≤ xi; i = 1, 2, ..., n),

and the survival function corresponding to F (x1, x2, ..., xn) is given by

S(x1, x2, ..., xn) = P (Xi > xi; i = 1, 2, ..., n).

7
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2.1.1 Bivariate distributions

Without loss of generality, this project focuses on the joint behavior of two random vari-

ables. Necessary and sufficient conditions for a right-continuous function F to be a bivariate

distribution function are:

(i) lim
xi→−∞

F (x1, x2) = 0, for any i = 1, 2;

(ii) lim
xi→∞

F (x1, x2) = 1, for each i = 1, 2;

(iii) By the rectangle inequality, for all (a1, a2) and (b1, b2), with a1 ≤ b1, a2 ≤ b2,

F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2) ≥ 0.

Conditions (i) and (ii) imply that 0 ≤ F ≤ 1. Condition (iii) is referred to as the property

that F is 2-increasing. If F has second-order derivatives, then condition (iii) is equivalent to

∂2F (x1, x2)/∂x1∂x2 ≥ 0, that is, the joint density function, f(x1, x2) = ∂2F (x1, x2)/∂x1∂x2

is non-negative.

Given the bivariate distribution function F (x1, x2) and its density function f(x1, x2),

the marginal distribution functions F1 and F2 are obtained by letting x2 →∞ and x1 →∞,

respectively. That is,

F1(x1) = lim
x2→∞

F (x1, x2)

=

∫ ∞
−∞

∫ x1

−∞
f(z1, z2)dz1dz2

=

∫ x1

−∞
f1(z1)dz1,

and

F2(x2) = lim
x1→∞

F (x1, x2)

=

∫ ∞
−∞

∫ x2

−∞
f(z1, z2)dz2dz1

=

∫ x2

−∞
f2(z2)dz2,

where f1(x1) and f2(x2) are marginal density functions.

For two random variables X1 and X2 with joint density function f(x1, x2) and marginal

densities f1(x1) and f2(x2), respectively, the conditional density of X1 given X2 = x2 is
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given by

f1 | 2(x1 |x2) =
f(x1, x2)

f2(x2)
,

and the conditional density of X2 given X1 = x1 is given by

f2 | 1(x2 |x1) =
f(x1, x2)

f1(x1)
.

The conditional distribution functions F1 | 2(x1 |x2) and F2 | 1(x2 |x1) are obtained by inte-

grating the conditional density functions. That is,

F1 | 2(x1 |x2) =

∫ x1

−∞
f1 | 2(z1 |x2)dz1

=

∫ x1

−∞

f(z1, x2)

f2(x2)
dz1, (2.1)

and

F2 | 1(x2 |x1) =

∫ x2

−∞
f2 | 1(z2 |x1)dz2

=

∫ x2

−∞

f(x1, z2)

f1(x1)
dz2. (2.2)

2.1.2 Fréchet-Hoeffding bounds

In this section we state the existence of maximal and minimal values of a multivariate

distribution function, usually referred to as the Fréchet-Hoeffding bounds. Multivariate

distribution functions take values in between these bounds on each point of their domain.

Consider multivariate distribution function F (x1, x2, ..., xn) with univariate marginal

distribution functions F1, F2, ..., Fn. The joint distribution function is bounded below and

above by the Fréchet-Hoeffding lower and upper bounds, as shown in the following theorem.

Theorem 2.1 (Fréchet-Hoeffding bounds) The Fréchet-Hoeffding lower and upper bounds

FL and FU are defined as

FL(x1, x2, ..., xn) = Max

{
n∑
i=1

Fi(xi)− n+ 1, 0

}
,

FU (x1, x2, ..., xn) = Min {F1(x1), F2(x2), ..., Fn(xn)} ,

implying

Max

{
n∑
i=1

Fi(xi)− n+ 1, 0

}
≤ F (x1, x2, ..., xn) ≤ Min{F1(x1), F2(x2), ..., Fn(xn)}. (2.3)



CHAPTER 2. MULTIVARIATE DISTRIBUTIONS AND COPULAS 10

Proof. Since

P{X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn} ≤ P{Xi ≤ xi}, i = 1, 2, ..., n,

we have

F (x1, x2, ..., xn) ≤ Min{F1(x1), F2(x2), ..., Fn(xn)} = FU (x1, x2, ..., xn).

Let Ai = {Xi ≤ xi}; and then Aci = {Xi > xi}. Note that

1− P{A1 ∩A2 ∩ ... ∩An} = P{(A1 ∩A2 ∩ ... ∩An)c}

= P{Ac1 ∪Ac2 ∪ ... ∪Acn}

≤ P{Ac1}+ P{Ac2}+ ...+ P{Acn}

= 1− P{A1}+ 1− P{A2}+ ...+ 1− P{An}.

As a result,

P{X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn} ≥
n∑
i=1

Fi(xi)− n+ 1,

which yields the left side of (2.3). 2

Fréchet-Hoeffding bounds give the maximal and minimal values of multivariate distri-

bution function. In many empirical studies, we know more about marginal distributions of

related variables than their joint distribution. Fréchet-Hoeffding bounds can be used to give

approximations of their joint distribution over the regions of interest.

2.2 Copulas

Since copulas are parametrically specified joint distributions generated from given marginal

distributions, properties of copulas are analogous to those of joint distributions presented in

the previous section. This section starts with the definition of copula and the relationship

between copula and multivariate distribution, followed by the definition of the survival

copula and additional properties of copulas. Families of commonly used copulas are given

at the end of this section.
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2.2.1 Copula functions and their connection with multivariate distribu-

tions

An n-dimensional copula function C(u1, u2, ..., un) is defined as a distribution function on

the unit n-cube [0, 1]n which satisfies the following conditions:

(i) C(1, ..., 1, ak, 1, ..., 1) = ak for every 1 ≤ k ≤ n and all ak in [0, 1];

(ii) C(a1, ..., an) = 0 if ak = 0 for any 1 ≤ k ≤ n;

(iii) C is n-increasing, that is, for all (a1, a2, ..., an) and (b1, b2, ..., bn), with ai ≤ bi, i =

1, 2, ...n,

2∑
i1=1

2∑
i2=1

...

2∑
in=1

(−1)i1+i2+...+inC(u1i1 , u2i2 , ..., unin) ≥ 0,

where uj1 = aj , uj2 = bj , j = 1, 2, ...n.

Sklar (1959, 1973) established the unique connection between copula functions and mul-

tivariate distributions, which is known as Sklar’s Theorem in copula literature.

Theorem 2.2 (Sklar) For a multivariate distribution function F (x1, x2, ..., xn) with uni-

variate marginal distribution functions F1, F2, ..., Fn, there exists a unique copula C such

that

F (x1, x2, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)).

Conversely, if C is a copula, and F1, F2, ..., Fn are univariate marginal distribution functions,

then the function F defined above is a multivariate distribution function with univariate

margins F1, F2, ..., Fn.

Proof. Since Fi’s are univariate distribution functions, Fi(Xi) follows the uniform distribu-

tion with support [0, 1]. Let C be the joint distribution function of F1(X1), F2(X2), ..., Fn(Xn).

Then

C(u1, u2, ..., un) = P{F1(X1) ≤ u1, F2(X2) ≤ u2, ..., Fn(Xn) ≤ un}

= P{X1 ≤ F−1
1 (u1), X2 ≤ F−1

2 (u2), ..., Xn ≤ F−1
n (un)}

= F (F−1
1 (u1), F−1

2 (u2), ..., F−1
n (un)),
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or equivalently, with xi = F−1
i (ui), i = 1, 2, ..., n,

C(F1(x1), F2(x2), ..., Fn(xn)) = F (x1, x2, ..., xn). (2.4)

Conversely,

F (x1, x2, ..., xn) = P{X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn}

= P{F1(X1) ≤ F1(x1), F2(X2) ≤ F2(x2), ..., Fn(Xn) ≤ Fn(xn)}

= C(F1(x1), F2(x2), ..., Fn(xn)). (2.5)

2

The practical implication of Sklar’s theorem is that copulas can be used to express a

multivariate distribution in terms of its marginal distributions and the copula function. If

we know a lot about the marginal distributions of individual variables, but little about their

joint behavior, then copulas allow us to piece together the dependence structure of these

variables.

Example 2.1 (Product copula) Let X1 and X2 be independent random variables. The

joint distribution function is

F (x1, x2) = F1(x1)F2(x2).

Then, with u1 = F1(x1) and u2 = F2(x2),

C(u1, u2) = C (F1(x1) , F2(x2))

= F (x1, x2)

= F1(x1)F2(x2)

= u1 u2.

The product copula corresponds to the independence case.

To summarize, the copula approach specifies a function that binds the marginal distri-

bution functions of random variables. The copula functions can be parameterized to include

measures of dependence between the random variables. As we have seen from Example 2.1,

independence is obtained by specifying a product copula. More copula functions will be

introduced in subsequent sections.
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2.2.2 Survival copulas

In the previous section, we have shown that any joint distribution has a unique copula

representation that uses marginal distribution functions as its variables. In some empirical

studies, such as statistical problems involving lifetime data or duration data, survival times

are of particular interest, or the joint survival functions may be known or easier to specify.

Then survival copulas might be more useful.

Suppose that function C(u1, u2) is a copula for random variables X1 and X2, with

ui = Fi(xi), i = 1, 2. The corresponding survival copula Ĉ(u1, u2) couples the joint survival

function to its univariate marginal survival functions in a manner completely analogous to

the way a regular copula connects the joint distribution function to its margin distribution

functions.

The joint survival function of two random variables X1 and X2 can be related to its

marginal survival functions as follows,

S(x1, x2) = P{X1 > x1, X2 > x2}

= 1− F1(x1)− F2(x2) + F (x1, x2)

= S1(x1) + S2(x2)− 1 + F (x1, x2)

= S1(x1) + S2(x2)− 1 + C(F1(x1), F2(x2))

= S1(x1) + S2(x2)− 1 + C(1− S1(x1), 1− S2(x2)), (2.6)

where Si(xi), i = 1, 2 are marginal survival functions, and by definition, Si(xi) = 1 −
Fi(xi), i = 1, 2.

Analogous to (2.5), the copula representation of the joint survival function can be defined

as

S(x1, x2) = Ĉ(S1(x1), S2(x2)), (2.7)

where Ĉ(u1, u2) is called the survival copula.

From (2.6) and (2.7), the regular copula and its corresponding survival copula of a

bivariate distribution can be related as follows:

Ĉ(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2). (2.8)

We comment that the survival copula and the survival function of copula are different.

The survival copula Ĉ(u1, u2) as defined in (2.7) and (2.8) specifies a function that binds the
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marginal survival functions together, whereas the survival function of the copula is defined

as C(u1, u2) = P{U1 > u1, U2 > u2}. Their relationship is given by

C(u1, u2) = P{U1 > u1, U2 > u2}

= 1− u1 − u2 + C(u1, u2)

= Ĉ(1− u1, 1− u2).

2.2.3 Additional properties

(1) Copula density

The joint density function of copula C(u1, u2) is given by

c(u1, u2) =
∂2C(u1, u2)

∂u1 ∂u2
. (2.9)

Now we can relate the joint density function of two random variables and its corresponding

copula density as follows:

f(x1, x2) =
∂2F (x1, x2)

∂x1 ∂x2

=
∂2C(F1(x1), F2(x2))

∂x1 ∂x2

=
∂2C(F1(x1), F2(x2))

∂F1(x1) ∂F2(x2)

∂F1(x1)

∂x1

∂F2(x2)

∂x2

= c(u1, u2)f1(x1)f2(x2). (2.10)

(2) Conditioning with copula

The conditional distributions can be defined using copulas. Let Ci(u1, u2) denote the deriva-

tive of copula function C(u1, u2) with respect to ui, i = 1, 2. The relationship between con-

ditional distributions and partial derivatives of copula functions is detailed in the following

proposition.

Proposition 2.1 (Conditioning with copula) Define

C1(u1, u2) =
∂C(u1, u2)

∂u1
,

C2(u1, u2) =
∂C(u1, u2)

∂u2
.
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Then

F1 | 2(x1 |x2) = C2(u1, u2), (2.11)

F2 | 1(x2 |x1) = C1(u1, u2). (2.12)

Proof. Sklar’s theorem establishes that

C(u1, u2) = C(F1(x1), F2(x2)) = F (x1, x2).

By definition,

C1(u1, u2) =
∂C(u1, u2)

∂u1

=
∂C(F1(x1), F2(x2))

∂F1(x1)

=

∂F (x1, x2)

∂x1

∂F1(x1)

∂x1

.

Furthermore, the derivatives of the joint distribution function and the marginal distri-

bution function are

∂F (x1, x2)

∂x1
=

∂

∂x1

∫ x2

−∞

∫ x1

−∞
f(z1, z2)dz1dz2 =

∫ x2

−∞
f(x1, z2)dz2,

and

∂F1(x1)

∂x1
= f1(x1).

Thus,

C1(u1, u2) =

∫ x2
−∞ f(x1, z2)dz2

f1(x1)
=

∫ x2

−∞

f(x1, z2)

f1(x1)
dz2 = F2 | 1(x2 |x1),

which is (2.11). (2.12) can be proven similarly. 2

The implication of the above proposition is that if C1(u1, u2) and C2(u1, u2) can be

inverted algebraically, then the simulation of the joint distribution can be done using the

corresponding conditional distribution. That is, first simulate a value of U1, say u1, then

simulate a value of U2 from C1(u1, u2) – the conditional distribution of U2 given U1 = u1.

The detailed procedure of simulating copulas is presented in Appendix B.
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(3) Fréchet-Hoeffding bounds

Because copulas are multivariate distribution functions, the Fréchet-Hoeffding bounds dis-

cussed in Section 2.1.2 also apply to copulas, that is,

Max

{
n∑
i=1

ui − n+ 1, 0

}
≤ C(u1, u2, ..., un) ≤ Min{u1, u2, ..., un}.

In the case of bivariate copulas, the two bounds are themselves copulas, with the lower

bound

CL(u1, u2) = Max(u1 + u2 − 1, 0), (2.13)

and the upper bound

CU (u1, u2) = Min(u1, u2). (2.14)

The distribution of CL(u1, u2) has all its mass on the diagonal between (0, 1) and (1, 0),

whereas that of CU (u1, u2) has its mass on the diagonal between (0, 0) and (1, 1). In these

cases we say CL(u1, u2) and CU (u1, u2) describe perfect negative and perfect positive depen-

dence, respectively. In probability theory, perfect positive or negative dependence is defined

in terms of comonotonicity or countermonotonicity (Denuit et al., 2005).

Definition 2.1 X1 and X2 are comonotonic if and only if there exists a random variable

Z and non-decreasing functions g1 and g2, such that

X1 = g1(Z), X2 = g2(Z).

Proposition 2.2 If (X1, X2) has copula CU then X1 and X2 are said to be comonotonic.

If (X1, X2) has copula CL then they are said to be countermonotonic.

Proof. See Denuit et al. (2005). 2

We have the following remarks: (i) X1 and X2 are comonotonic if and only if for any

(x1, x2) and (x′1, x
′
2), there are either {x1 ≤ x′1, x2 ≤ x′2} or {x1 ≥ x′1, x2 ≥ x′2}. (ii) X1

and X2 are countermonotonic if and only if for any (x1, x2) and (x′1, x
′
2), there are either

{x1 ≤ x′1, x2 ≥ x′2} or {x1 ≥ x′1, x2 ≤ x′2}.
Comonotonocity and countermonotonicy are two extreme cases of dependence. A de-

tailed introduction of dependence measures will be given in Chapter 4.
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2.3 Some Families of Copulas

A large number of copulas have been proposed in the literature, and each of these copulas

imposes a different dependence structure. In this section, we discuss some copulas that have

appeared frequently in empirical applications.

2.3.1 Archimedean copulas

Bivariate Archimedean copulas take the form

C(u1, u2; γ) = φ−1(φ(u1) + φ(u2)), (2.15)

where φ is known as a generator function, and γ is the dependence parameter embedded in

the function form of Archimedean generator.

A generator function that satisfies the following properties is capable of generating a

valid copula,

(i) φ(1) = 0;

(ii) φ′(s) < 0;

(iii) φ′′(s) > 0.

These properties imply that φ(s) is a convex decreasing function.

(1) Product copula

Let φ(s) = −ln(s), implying that the inverse of this generator is φ−1(t) = e−t.

Using generator function (2.15), we obtain the product copula below:

C(u1, u2) = e−(−ln(u1)−ln(u2))

= eln(u1u2)

= u1u2.

(2) Clayton copula

The Clayton copula has generator function φ(s) = s−γ − 1, and the inverse of the generator

is given by φ−1(t) = (1 + t)−1/γ .
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From the definition of Archimedean family of copulas given by (2.15), we can derive the

function form of the Clayton copula:

C(u1, u2) = (1 + u−γ1 − 1 + u−γ2 − 1)
− 1
γ

= (u−γ1 + u−γ2 − 1)
− 1
γ . (2.16)

The dependence parameter γ takes values in the inteval (0,∞). As γ approaches zero, the

copula becomes the one for the independence case. As γ approaches infinity, the copula

reaches the Fréchet-Hoeffding upper bound. The Clayton copula can only account for posi-

tive dependence, and it exhibits relatively strong left tail dependence and relatively weak

right tail dependence. Details of the dependence structure are shown in Chapter 4.

(3) Frank copula

The Frank copula is produced by the generator function, φ(s) = −ln
(
e−γs−1
e−γ−1

)
. The inverse

of this generator is given by φ−1(t) = − 1
γ ln(1 + e−t(e−γ − 1)).

By the definition of the Archimedean family of copulas in (2.15), we have the function

of the Frank copula:

C(u1, u2) = −1

γ
ln

(
1 + e

ln( e
−γu1−1

e−γ−1
)+ln( e

−γu2−1

e−γ−1
)
(e−γ − 1)

)
= −1

γ
ln

(
1 +

(e−γu1 − 1)(e−γu2 − 1)

e−γ − 1

)
. (2.17)

The dependence parameter γ can take any real value in (−∞,∞), with values −∞, 0,

and∞ corresponding to the Fréchet-Hoeffding lower bound, independence, and the Fréchet-

Hoeffding upper bound, respectively. The Frank copula exhibits strong dependence in the

middle of the distribution, and weak tail dependence. Detailed description of the dependence

structure is in Chapter 4.

2.3.2 Elliptical copulas

Elliptical copulas are associated with elliptical distributions which include the multivariate

normal and multivariate t distributions.

The bivariate normal copula is given by

C(u1 , u2) = Φρ

(
Φ−1(u1) ,Φ−2(u1)

)
=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1− ρ2)1/2
e
− s

2−2ρst+t2

2(1−ρ2) dsdt,
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where Φρ is the distribution function of a standard bivariate normal distribution with cor-

relation coefficient ρ, and Φ is the standard normal distribution function.

The normal copula is symmetric in both tails, and allows for both positive and negative

dependence. As the dependence parameter ρ approaches -1 and 1, the bivariate normal

copula attains the Fréchet-Hoeffding lower and upper bounds.

The bivariate t copula is given by

C(u1 , u2) =

∫ t−1
v (u1)

−∞

∫ t−1
v (u2)

−∞

1

2π(1− ρ2)1/2

(
1 +

(s2 − 2ρst+ t2)

v(1− ρ2)

)− v+2
2

dsdt,

where t−1
v is the quantile function of the univariate t distribution with v degrees of freedom,

and ρ is the correlation coefficient.

The bivariate t copula is also symmetric and can capture both positive and negative

dependence. Of the two parameters in the t copula, the degree of freedom v controls the

heaviness of tails, while ρ measures the correlation between the two variables.



Chapter 3

Modeling Bivariate Distributions

and Copulas with Common

Random Effects

The modeling framework in this project is motivated by the approaches introduced in Mar-

shall and Olkin (1988) on generating multivariate distributions by mixtures and in Oakes

(1989, 1994) on frailty model. These approaches allow derivation of multivariate distri-

butions with univariate marginal distributions as parameters, which greatly simplifies the

construction of copulas. The mixture models can be used to capture a wide range of the

dependence structure, as well as various levels of the tail dependence. This approach is also

quite flexible and can model the joint behavior of random variables in terms of distribution

functions or survival functions.

3.1 Modeling Distribution Functions

Following the presentations of the mixture model in Marshall and Olkin (1988), let Xi, i =

1, 2, be random variables with conditional distribution functions,

Fi(xi |Θ = θ) = Hi(xi)
θ,

where Hi is the baseline distribution function, and Θ is the common random effect that

affects X1 and X2 simultaneously.

20
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Assume that conditional on Θ = θ, {Xi | θ, i = 1, 2} are independent. As a result, the

conditional joint distribution function can be written as

F (x1, x2 | θ) = F1(x1 |Θ = θ)F2(x2 |Θ = θ)

= H1(x1)θH2(x2)θ.

The unconditional joint distribution function is

F (x1, x2) =

∫ ∞
−∞

H1(x1)θH2(x2)θg(θ)dθ

= EΘ

[
H1(x1)ΘH2(x2)Θ

]
,

where g(θ) is the density function of the common random effect Θ.

Assume that the Laplace transform of the common random effect variable Θ is

ϕ(s) = EΘ

[
e−sΘ

]
.

Then the unconditional joint distribution function can be written as

F (x1, x2) = EΘ

[
H1(x1)ΘH2(x2)Θ

]
= EΘ

[
eΘlnH1(x1)+ΘlnH2(x2)

]
= ϕ (−lnH1(x1)− lnH2(x2)) . (3.1)

That is, the joint distribution function of X1 and X2 can be expressed by the Laplace

transform of the random effect Θ and the baseline distribution functions H1 and H2.

Similarly, the unconditional univariate marginal distributions can also be expressed in

terms of the Laplace transform,

Fi(xi) = EΘ

[
Hi(xi)

Θ
]

= EΘ

[
eΘlnHi(xi)

]
= ϕ (−lnHi(xi)) , i = 1, 2. (3.2)

From equation (3.2), we immediately have −lnHi(xi) = ϕ−1(Fi(xi)), provided that the

inverse of function ϕ exists. Then the unconditional joint distribution function given by

equation (3.1) can be expressed as a function of univariate marginal distribution functions,

F (x1, x2) = ϕ (−lnH1(x1)− lnH2(x2))

= ϕ
(
ϕ−1(F1(x1)) + ϕ−1(F2(x2))

)
. (3.3)



CHAPTER 3. MODELS OF COMMON RANDOM EFFECTS 22

Following the copula representation of joint distribution functions in Chapter 2, the joint

distribution function F given by equation (3.3) can then be expressed as the following

copula,

C(u1, u2) = ϕ
(
ϕ−1(u1) + ϕ−1(u2)

)
. (3.4)

We remark that modeling the joint distribution function with common random effect Θ

gives exactly the same results as the Archimedean approach of generating copulas introduced

in (2.15). The relationship between the Archimedean generator and the Laplace transform

of the common random effect is given by

φ(s) = ϕ−1(s). (3.5)

Here the generator, which is the inverse of the Laplace transform of the common random

effect Θ, uniquely determines an Archimedean copula.

The following subsections are devoted to various distributions of the common random

effect Θ and their corresponding copulas. The dependence structure of these copulas is

investigated in Chapter 4.

3.1.1 Independence

If the common random effect Θ is degenerate, the resulting joint distribution and copula

correspond to independence. The Laplace transform of the degenerate distribution with

constant mass at unity is

ϕ(s) = e−s.

The Archimedean generator, therefore, is

φ(s) = −ln s,

which corresponds to the product copula, as by (3.4) we can obtain

C(u1, u2) = e−(−lnu1−lnu2)

= u1 u2.
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3.1.2 Clayton copula

If the common effect Θ follows a gamma distribution with a scale parameter of 1 and a

shape parameter of 1/γ (or a rate parameter of γ), the Laplace transform is given by

ϕ(s) = (1 + s)
− 1
γ .

The inverse of the Laplace transform is

φ(s) = s−γ − 1,

which corresponds to the Clayton copula, as by (3.4) we have

C(u1, u2) = (1 + u−γ1 − 1 + u−γ2 − 1)
− 1
γ

= (u−γ1 + u−γ2 − 1)
− 1
γ ,

that is (2.16) in last chapter.

3.1.3 Frank copula

The Frank copula in (2.17) can be derived from our model by letting the common random

effect Θ follow a logarithmic distribution

f(θ) =
1

γ

(1− eγ)θ

θ
.

The Laplace transform of the above logarithmic distribution is given by

ϕ(s) = −1

γ
ln
(
1 + e−s(e−γ − 1)

)
.

The Archimedean generator, therefore, is

φ(s) = −ln

(
e−γs − 1

e−γ − 1

)
,

which corresponds to the Frank copula, since by (3.4) we obtain

C(u1, u2) = −1

γ
ln

(
1 + e

ln
(
e−γu1−1

e−γ−1

)
+ln

(
e−γu2−1

e−γ−1

)
(e−γ − 1)

)
= −1

γ
ln

(
1 +

(e−γu1 − 1)(e−γu2 − 1)

e−γ − 1

)
.
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3.1.4 Gumbel copula

The Gumbel copula was originally studied by Gumbel (1960), and can be found in empirical

work like Hougaard (1986a). Details of its dependence structure is explored in Chapter 4.

The focus of this section is the derivation of the Gumbel copula using common random

effects. If the common random effect Θ follows a positive stable distribution with probability

density function

f(θ) = − 1

πθ

∞∑
k=1

Γ(1 + k
γ )

k!

(
−θ−

1
γ

)k
sin

(
kπ

γ

)
,

then the resulting multivariate distribution has the representation of the Gumbel copula.

The Laplace transform of the above positive stable distribution is given by

ϕ(s) = e−s
1
γ
.

The Archimedean generator, therefore, is

φ(s) = (−lns)γ ,

which corresponds to the Gumbel copula, given by

C(u1, u2) = e−
(

(−lnu1)γ+(−lnu2)γ
) 1
γ

. (3.6)

Table 3.1 summarizes the above mentioned popular copulas and their generators.

Table 3.1: Archimedean Copulas and Their Generators

Generator φ(s) Laplace transform of Θ Range of γ Bivariate copula C(u1, u2)

Independence −ln(s) e−s Not applicable u1u2

Clayton s−γ − 1 (1 + s)−1/γ γ > 0 (u−γ1 + u−γ2 − 1)−1/γ

Frank −ln
(
e−γs−1
e−γ−1

)
− 1
γ ln(1 + e−s(e−γ − 1)) −∞ < γ <∞ − 1

γ ln
(

1 + (e−γu1−1)(e−γu2−1)
e−γ−1

)
Gumbel (−lns)γ e−s

1/γ
γ ≥ 1 e−

(
(−lnu1)γ+(−lnu2)γ

)1/γ
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3.2 Modeling Survival Functions

In empirical studies that involve duration data and lifetime data, working with survival

functions would be both natural and convenient. We use the ideas proposed in Marshall

and Olkin (1988) for constructing multivariate distributions with mixtures and apply the

same methodology to the joint survival functions and their univariate marginals.

Let Xi, i = 1, 2, be random variables with conditional survival function

Si(xi |Θ = θ) = Bi(xi)
θ,

where Bi is the baseline survival function, and Θ is the common random effect.

Assume that conditional on Θ = θ, {Xi | θ, i = 1, 2} are independent. As a result, the

conditional joint survival function can be written as

S(x1, x2 | θ) = S1(x1 |Θ = θ)S2(x2 |Θ = θ)

= B1(x1)θB2(x2)θ.

The unconditional joint survival function is

S(x1, x2) =

∫ ∞
−∞

B1(x1)θB2(x2)θg(θ)dθ

= EΘ

[
B1(x1)ΘB2(x2)Θ

]
,

where g(θ) is the density function of the common random effect Θ.

Assume that the Laplace transform of the common random effect variable Θ is

ϕ(s) = EΘ

[
e−sΘ

]
.

Then, the unconditional joint survival function can be written as

S(x1, x2) = EΘ

[
B1(x1)ΘB2(x2)Θ

]
= EΘ

[
eΘlnB1(x1)+ΘlnB2(x2)

]
= ϕ (−lnB1(x1)− lnB2(x2)) . (3.7)

That is, the joint survival function of X1 and X2 can be expressed by the Laplace transform

of the common random effect Θ and the baseline survival functions B1 and B2.
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Similarly, the unconditional univariate marginal survival functions can also be expressed

in terms of the Laplace transform,

Si(xi) = EΘ

[
Bi(xi)

Θ
]

= EΘ

[
eΘlnBi(xi)

]
= ϕ (−lnBi(xi)) , i = 1, 2. (3.8)

From equation (3.8), we have −lnBi(xi) = ϕ−1(Si(xi)), given that the inverse of function

ϕ exists. Then the unconditional joint survival function given by equation (3.7) can be

expressed as a function of univariate marginal survival functions,

S(x1, x2) = ϕ (−lnB1(x1)− lnB2(x2))

= ϕ
(
ϕ−1(S1(x1)) + ϕ−1(S2(x2))

)
. (3.9)

Then the joint distribution function can be written as

F (x1, x2) = F1(x1) + F2(x2)− 1 + S(x1, x2)

= F1(x1) + F2(x2)− 1 + ϕ(ϕ−1(1− F1(x1)) + ϕ−1(1− F2(x2))). (3.10)

From (3.9), we have the survival copula representation

Ĉ(u1, u2) = ϕ
(
ϕ−1(u1) + ϕ−1(u2)

)
, (3.11)

which corresponds to the survival copula introduced in (2.7).

Furthermore, the joint distribution function F given by equation (3.10) can also be

expressed as the following regular copula,

C(u1, u2) = u1 + u2 − 1 + ϕ(ϕ−1(1− u1) + ϕ−1(1− u2)). (3.12)

The copulas given by (3.11) and (3.12) are related through equation (2.8), which means

that the two approaches of modeling distribution functions and modeling survival functions

are symmetric. Given the marginal survival functions and the regular copula, the joint

survival distribution and survival copula can be obtained. Given the marginal distribution

functions and the survival copula, the joint distribution and regular copula can be obtained.

In the following subsections, we present the various distributions of the common effect

Θ and the corresponding copulas based on the modeling of survival functions.
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3.2.1 Independence

Same as the results from modeling the distribution functions, if the common random effect

Θ is degenerate, the resulting multivariate survival function and copula correspond to in-

dependence. The Laplace transform of the degenerate distribution with constant mass at

unity is

ϕ(s) = e−s.

The Archimedean generator, therefore, is

φ(s) = −ln s,

which corresponds to the product copula by (3.12) that

C(u1, u2) = u1 + u2 − 1 + e−(−ln (1−u1)−ln (1−u2))

= u1 + u2 − 1 + (1− u1)(1− u2)

= u1 u2.

3.2.2 Pareto copula

Now let the common random effect Θ follows a gamma distribution with a scale parameter

of 1 and a shape parameter of 1/γ (or a rate parameter of γ). The Laplace transform of the

gamma distribution is given by

ϕ(s) = (1 + s)
− 1
γ .

The Archimedean generator, therefore, is

φ(s) = s−γ − 1,

which corresponds to the following Pareto copula, as by (3.12) we can obtain

C(u1, u2) = u1 + u2 − 1 + (1 + (1− u1)−γ − 1 + (1− u2)−γ − 1)
− 1
γ

= u1 + u2 − 1 +
(
(1− u1)−γ + (1− u2)−γ − 1

)− 1
γ . (3.13)
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3.2.3 Frank copula

The Frank copula is invariant to the choice of distribution function or survival function.

Assuming that the common random effect Θ follows a logarithmic distribution as given in

Section 3.1.3, then the Laplace transform has the form

ϕ(s) = −1

γ
ln(1 + e−s(e−γ − 1)).

The Archimedean generator, therefore, is

φ(s) = −ln

(
e−γs − 1

e−γ − 1

)
,

which corresponds to the Frank copula, as by (3.12) we have

C(u1, u2) = u1 + u2 − 1− 1

γ
ln

(
1 + e

ln

(
e−γ(1−u1)−1

e−γ−1

)
+ln

(
e−γ(1−u2)−1

e−γ−1

)
(e−γ − 1)

)

= u1 + u2 − 1− 1

γ
ln

(
1 +

(
e−γ(1−u1) − 1

) (
e−γ(1−u2) − 1

)
e−γ − 1

)

= −1

γ
ln
(
e−γ(u1+u2−1)

)
− 1

γ
ln

(
1 +

(
e−γ(1−u1) − 1

) (
e−γ(1−u2) − 1

)
e−γ − 1

)

= −1

γ
ln

(
e−γ(u1+u2−1) +

e−γ(u1+u2−1)
(
e−γ(1−u1) − 1

) (
e−γ(1−u2) − 1

)
e−γ − 1

)

= −1

γ
ln

(
(e−γ − 1) + (e−γu1 − 1) (e−γu2 − 1)

e−γ − 1

)
= −1

γ
ln

(
1 +

(e−γu1 − 1)(e−γu2 − 1)

e−γ − 1

)
.

3.2.4 Hougaard copula

The Hougaard copula, which was proposed in Hougaard (1986b, 1987), can be constructed

through modeling survival functions and assuming that the common random effect follows

a positive stable distribution given in Section 3.1.4.

The Laplace transform of this positive stable distribution is given by

ϕ(s) = e−s
1/γ
.

The Archimedean generator, therefore, is

φ(s) = (−lns)γ ,
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which corresponds to the Hougaard copula, given by

C(u1, u2) = u1 + u2 − 1 + e−[(−ln(1−u1))γ+(−ln(1−u2))γ ]1/γ .

Generally speaking, modeling distribution functions and modeling survival functions

yield different joint distributions because

P (X ≤ x |Θ = θ) = H(x)θ 6= (1−B(x))θ.

The Frank copula is symmetric around (1/2 , 1/2). Thus it is invariant to the choice of

distribution function or survival function in the common random effect model. The product

copula is also invariant to the choice of functions. Gamma and positive stable families of the

common random effect yield different bivariate distributions and therefore different copulas.

Table 3.2 summarizes the differences between the two approaches of modeling the joint

behavior of random variables. Properties of these copulas and their dependence structure

are discussed in Chapter 4.

Table 3.2: Two Approaches of Modeling Joint Behavior of Random Variables

Laplace transform of
Distribution of Θ

Modeling distribution function

the common effect Θ Copula type Copula function C(u1, u2)

e−s Degenerate Product (independence) u1u2

(1 + s)−1/γ Gamma Clayton (u−γ1 + u−γ2 − 1)−1/γ

− 1
γ ln(1 + e−s(e−γ − 1)) Logarithmic Frank − 1

γ ln
(

1 + (e−γu1−1)(e−γu2−1)
e−γ−1

)
e−s

1/γ
Positive stable Gumbel e−

(
(−lnu1)γ+(−lnu2)γ

)1/γ
Laplace transform of

Distribution of Θ
Modeling survival function

the common effect Θ Copula type Copula function C(u1, u2)

e−s Degenerate Product (independence) u1u2

(1 + s)−1/γ Gamma Pareto u1 + u2 − 1 +
(
(1− u1)−γ + (1− u2)−γ − 1

)−1/γ

− 1
γ ln(1 + e−s(e−γ − 1)) Logarithmic Frank − 1

γ ln
(

1 + (e−γu1−1)(e−γu2−1)
e−γ−1

)
e−s

1/γ
Positive stable Hougaard u1 + u2 − 1 + e−

(
(−ln(1−u1))γ+(−ln(1−u2))γ

)1/γ



Chapter 4

Measuring Dependence

Given the wide selection of copula models, how should one model be chosen over the others in

empirical work? One of the key considerations is the nature of the dependence captured by

different copulas. The nature of the dependence captured by the dependence parameter(s)

varies from one copula to another. Moreover, commonly used measures of dependence are

related to the parameter(s) in copula functions. This chapter starts with a brief review of

the widely used measures of dependence – linear correlation and rank correlation, followed

by the application of measures of rank correlation to the models with common random

effects. Measures of tail dependence will also be discussed.

4.1 Review of Dependence Measures

This section reviews the commonly used measures of dependence in statistics literature. We

focus on the dependence measures that have appeared more often in empirical work, instead

of a complete list of all the measures of dependence.

Two random variables X1 and X2 are said to dependent or associated if they are not

independent in the sense that F (x1, x2) = F1(x1)F2(x2), or S(x1, x2) = S1(x1)S2(x2). Let

δ(X1, X2) denote a scalar measure of dependence. Embrechts et al. (2002) listed four desir-

able properties of dependence measure:

(i) Symmetry: δ(X1, X2) = δ(X2, X1);

(ii) Normalization: −1 ≤ δ(X1, X2) ≤ +1;

30
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(iii) δ(X1, X2) = +1 if and only if (X1, X2) are comonotonic; δ(X1, X2) = −1 if and only

if (X1, X2) are countermonotonic;

(iv) For a strictly monotonic transformation T : R −→ R of X1:

δ(T (X1), X2) =

{
δ(X1, X2) if T is increasing,

−δ(X1, X2) if T is decreasing.

4.1.1 Correlation coefficient

The most commonly used measure of dependence (or association) between two random

variables X1 and X2 is Pearson’s correlation coefficient, which is defined as

ρX1X2 =
Cov (X1, X2)

[Var(X1)]
1
2 [Var(X2)]

1
2

, (4.1)

where Cov(X1, X2) = E[X1X2] − E[X1]E[X2], Var(X1) and Var(X2) are the variances of

X1 and X2, respectively.

It is well known that:

(i) ρX1X2 is a measure of linear dependence,

(ii) ρX1X2 is symmetric,

(iii) the lower and upper bounds on the inequality −1 ≤ ρX1X2 ≤ +1 measure perfect

negative and positive linear dependence, and

(iv) it is invariant with respect to strictly increasing linear transformations of the variables.

The weakness of using the correlation coefficient as a measure of dependence includes:

(i) in general, zero correlation does not imply independence,

(ii) it is not defined for heavy-tail distributions whose second moments do not exist,

(iii) it is not invariant under strictly increasing nonlinear transformations, and

(iv) attainable values of the correlation coefficients within interval [−1,+1] between two

variables depend upon their respective marginal distributions.

These limitations have motivated alternative measures of dependence based on ranks.
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4.1.2 Rank correlation

Consider two random variables X1 and X2 with continuous distribution functions F1 and

F2, respectively, and joint distribution function F . Two well-established measures of rank

correlation are Spearman’s rho and Kendall’s tau.

Spearman’s rho is the linear correlation between the distribution functions, defined as

ρS(X1, X2) = ρ(F1(X1), F2(X2)),

where ρ = ρX1X2 is defined in (4.1).

Kendall’s tau is defined as

τK(X1, X2) = P{(X1 −X ′1)(X2 −X ′2) > 0} − P{(X1 −X ′1)(X2 −X ′2) < 0}, (4.2)

where (X1, X2) and (X ′1, X
′
2) are two independent pairs of random variables from F . The

first term on the right hand side of equation (4.2) is referred to as the probability of con-

cordance, and the second term as the probability of discordance, and hence

τK(X1, X2) = P{concordance} − P{discordance}.

The similarity between Spearman’s rho and Kendall’s tau is that both of them measure

monotonic dependence between random variables, and both are based on the concept of

concordance, which refers to the property that large values of one random variable are

associated with large values of another, whereas discordance refers to large values of one

being associated with small values of the other.

These two well-established measures of rank correlation have properties of symmetry,

normalization, comonotonicity and countermonotonicity, and both assume the value of zero

under independence. Further,

ρS(X1, X2) = τK(X1, X2) = −1 if and only if C = CL = Max(u1 + u2 − 1, 0),

ρS(X1, X2) = τK(X1, X2) = +1 if and only if C = CU = Min(u1, u2),

ρS(X1, X2) = τK(X1, X2) = 0 if and only if C = u1u2.

4.2 Measures of Rank Correlation for Models of Common

Random Effects

Spearman’s rho and Kendall’s tau can be expressed in terms of copulas as follows:

ρS(X1, X2) = ρS(C) = 12

∫ 1

0

∫ 1

0
C(u1, u2)du1du2 − 3; (4.3)
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τK(X1, X2) = τK(C) = 4

∫ 1

0

∫ 1

0
C(u1, u2)

∂2C(u1, u2)

∂u1 ∂u2
du1du2 − 1 (4.4a)

= 1− 4

∫ 1

0

∫ 1

0

∂C(u1, u2)

∂u1

∂C(u1, u2)

∂u2
du1du2. (4.4b)

More details about (4.3) and (4.4) can be found in Joe (1997) or Nelsen (2006).

For the two approaches of modeling the joint behavior of random variables in Chapter

3, the following proposition shows that the regular copula and its associated survival copula

have same rank correlations.

Proposition 4.1 The rank correlation of the survival copula Ĉ is equal to that of the

regular copula C, that is,

ρS(C) = ρS(Ĉ), (4.5)

τK(C) = τK(Ĉ), (4.6)

where the survival copula Ĉ is defined by equation (2.8).

Proof. From (2.8) and the expression of Spearman’s rho in terms of copulas in (4.3), we

have

ρS(Ĉ) = 12

∫ 1

0

∫ 1

0
Ĉ(u1, u2)du1du2 − 3

= 12

∫ 1

0

∫ 1

0
(u1 + u2 − 1 + C(1− u1, 1− u2))du1du2 − 3

= 12

∫ 1

0

∫ 1

0
(1− u1 − u2 + C(u1, u2))du1du2 − 3

= 12

∫ 1

0

∫ 1

0
(1− u1 − u2)du1du2 + 12

∫ 1

0

∫ 1

0
C(u1, u2)du1du2 − 3

= 12

∫ 1

0

∫ 1

0
C(u1, u2)du1du2 − 3

= ρS(C),

because in the third last line,
∫ 1

0

∫ 1
0 (1− u1 − u2)du1du2 = 0.
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Similarly, using (2.8), (4.4b), and the properties of copulas in Section 2.2.1, we obtain

τK(Ĉ) = 1− 4

∫ 1

0

∫ 1

0

∂Ĉ(u1, u2)

∂u1

∂Ĉ(u1, u2)

∂u2
du1du2

= 1− 4

∫ 1

0

∫ 1

0

(
∂C(1− u1, 1− u2)

∂(1− u1)
− 1

)(
∂C(1− u1, 1− u2)

∂(1− u2)
− 1

)
du1du2

= 1− 4

∫ 1

0

∫ 1

0

(
∂C(u1, u2)

∂u1
− 1

)(
∂C(u1, u2)

∂u2
− 1

)
du1du2

= 1− 4

∫ 1

0

∫ 1

0

∂C(u1, u2)

∂u1

∂C(u1, u2)

∂u2
du1du2

+ 4

∫ 1

0

∫ 1

0

∂C(u1, u2)

∂u1
du1du2 + 4

∫ 1

0

∫ 1

0

∂C(u1, u2)

∂u2
du1du2 − 4

∫ 1

0

∫ 1

0
du1du2

= 1− 4

∫ 1

0

∫ 1

0

∂C(u1, u2)

∂u1

∂C(u1, u2)

∂u2
du1du2

= τK(C).

2

Unlike Pearson’s correlation coefficient, rank correlations depend on the copula of a

bivariate distribution and not on the functional forms of the marginal distributions. In

other words, each copula specifies a unique dependence structure and the rank correlation is

a function of the dependence parameter(s) embedded in the copula. Because of the limited

dependence parameter space, the Clayton, Pareto, Gumbel, and Hougaard copulas permit

only non-negative association, while the Frank copula allows positive as well as negative

association.

Furthermore, Kendall’s tau can be evaluated directly from the Laplace transform of the

common random effect Θ, as shown in the following theorem.

Theorem 4.1 Let X1 and X2 be random variables with copulas generated by the models

of common random effects (3.4) or (3.11). Then Kendall’s tau is given by

τK(X1, X2) = 1 + 4

∫ 1

0
ϕ′(ϕ−1(s))ϕ−1(s)ds,

where ϕ(s) is the Laplace transform of the common random effect.

Proof. Genest and MacKay (1986) gave the following expression for Kendall’s tau,

τK(X1, X2) = 1 + 4

∫ 1

0

φ(s)

φ′(s)
ds,
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where φ(s) is the Archimedean generator.

Since the Archimedean generator, φ(s), is the inverse of the Laplace transform of the

common random effect, ϕ(s), that is, φ(s) = ϕ−1(s), then using the formula for the derivative

of an inverse function, we have

φ(s)

φ′(s)
= ϕ′(ϕ−1(s))ϕ−1(s).

The desired result follows immediately. 2

Table 4.1 illustrates Spearman’s rho and Kendall’s tau for the copulas specified in Chap-

ter 3.

Table 4.1: Copulas and Their Rank Correlations

Copula type Copula Function C(u1, u2) Spearman’s rho Kendall’s tau

Product u1u2 0 0

Clayton (u−γ1 + u−γ2 − 1)−1/γ Complicated form γ
2+γ

Frank − 1
γ ln
(

1 + (e−γu1−1)(e−γu2−1)
e−γ−1

)
1 + 12

γ {D2(γ)−D1(γ)} 1 + 4
γ {D1(γ)− 1}

Gumbel e−
(

(−lnu1)γ+(−lnu2)γ
)1/γ

No closed form 1− γ−1

Hougaard u1 + u2 − 1 + e−
(

(−ln(1−u1))γ+(−ln(1−u2))γ
)1/γ

No closed form 1− γ−1

Pareto u1 + u2 − 1 +
(
(1− u1)−γ + (1− u2)−γ − 1

)−1/γ
Complicated form γ

2+γ

The dependence measures of Frank copula depend on Debye faction, defined as Dk(x) = k
xk

∫ x
0

tk

et−1dt, for k = 1, 2. Dk(−x) = Dk(x) + kx
k+1

Figure 4.1 shows the scatter plots for bivariate distributions with identical marginal

exponential distributions (with mean of 1) and identical rank correlation but different de-

pendence structures. Perspective plots of the corresponding copula densities are given in

Figure 4.2. If these random variables represent the insurance losses, then the Gumbel and

Pareto copulas would be preferable models for insurers since extreme losses have tendency

to occur together. Measures of tail dependency discussed in next section can be used to

capture the extremal dependence.

4.3 Measures of Tail Dependency

As we have seen from Figures 4.1 and 4.2, copulas with same rank correlation may have

dramatically different tail behavior. Measures of tail dependence may help to distinguish
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Figure 4.1: Simulated Samples from Five Copulas with Same Marginal Distri-
butions (Exponential with Mean of 1) and Same Rank Rorrelation (Kendall’s
tau = 0.50)
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Figure 4.2: Five Copulas with the Same Rank Correlation (Kendall’s tau =
0.50)

 

copulas. In some empirical applications, the joint behavior of tail values of random variables

is of particular interest. For example, investors may be more concerned about the probability

that the rates of returns of all securities in a portfolio fall below given levels. This requires

measures of tail dependency. The tail dependency measure can be defined in terms of

conditional probability that one random variable exceeds some value given that another

exceeds some value. Various measures of tail dependency can be found in Joe (1997),

Nelsen (2006), Venter (2002), and Frahm (2006).

4.3.1 Tail concentration functions

Let X1 and X2 be random variables with continuous distribution functions F1 and F2, and

copula C. Then U1 = F1(X1) and U2 = F2(X2) are standard uniform random variables.

The right and left tail concentration functions can be defined with reference to how much

probability is in regions near (1, 1) and (0, 0). For any z in (0, 1), the left tail concentration
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function is defined as

L(z) = P (U1 < z |U2 < z)

=
P (U1 < z,U2 < z)

P (U2 < z)

=
C(z, z)

z
, (4.7)

and the right tail concentration function is

R(z) = P (U1 > z |U2 > z)

=
P (U1 > z,U2 > z)

P (U2 > z)

=
1− P (U1 < z)− P (U2 < z) + P (U1 < z,U2 < z)

1− P (U2 < z)

=
1− 2z + C(z, z)

1− z
. (4.8)

The relationship between the tail concentration functions of regular copula and its as-

sociated survival copula is detailed in the following proposition.

Proposition 4.2 Let Ĉ be the survival copula associated with the regular copula C. Then

the left (right) tail concentration function of Ĉ is equal to the right (left) tail concentration

function of C, that is

L
Ĉ

(z) = RC(1− z), R
Ĉ

(z) = LC(1− z).

Proof. By the definition of the left tail concentration function in (4.7),

L
Ĉ

(z) =
Ĉ(z, z)

z

=
2z − 1 + C(1− z, 1− z)

1− (1− z)

= RC(1− z);

Similarly,

R
Ĉ

(z) =
1− 2z + Ĉ(z, z)

1− z

=
C(1− z, 1− z)

1− z
= LC(1− z).

2
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4.3.2 Upper (lower) tail dependence coefficients

The degree of extreme co-movements of random variables can be defined by taking limits

of equations (4.7) and (4.8). The upper (lower) tail dependence coefficients capture the

probability that one event is extermal conditional on another extreme event, which are

given by

λL = lim
z→0

P (U1 < z|U2 < z)

= lim
z→0

C(z, z)

z
, (4.9)

and

λR = lim
z→1

P (U1 > z|U2 > z)

= lim
z→1

1− 2z + C(z, z)

1− z
. (4.10)

If λR (λL) is positive, then the two variables are said to be right (left) tail dependent, with

larger values indicating stronger dependence.

4.3.3 Extremal dependence coefficients

Let UMin = Min{U1, U2}, and UMax = Max{U1, U2}. The lower extremal dependence coeffi-

cient is defined as

εL = lim
z→0

P (UMax < z |UMin < z)

= lim
z→0

P (UMax < z,UMin < z)

P (UMin < z)

= lim
z→0

P (U1 < z,U2 < z)

1− P (U1 > z,U2 > z)

= lim
z→0

P (U1 < z,U2 < z)

P (U1 < z) + P (U2 < z)− P (U1 < z,U2 < z)

= lim
z→0

C(z, z)

2z − C(z, z)
, (4.11)
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whereas the upper extremal dependence coefficient is defined as

εR = lim
z→1

P (UMax > z |UMin > z)

= lim
z→1

P (UMax > z,UMin > z)

P (UMin > z)

= lim
z→1

P (U1 > z,U2 > z)

1− P (U1 < z,U2 < z)

= lim
z→1

1− P (U1 < z)− P (U2 < z) + P (U1 < z,U2 < z)

1− P (U1 < z,U2 < z)

= lim
z→1

1− 2z + C(z, z)

1− C(z, z)
. (4.12)

Thus the lower extremal dependence coefficient can be interpreted as the probability that

the best performer is affected by the worst one provided that the latter has an extremely

bad performance, while the upper extremal dependence coefficient measures the probability

that the worst performer is affected by the best given that the latter has an extremely good

performance.

The following proposition relates the tail dependence coefficients and the extremal de-

pendence coefficients.

Proposition 4.3 Let λL and λR be the tail dependence coefficients defined by equations

(4.9) and (4.10), and εL and εR be the corresponding extremal dependence coefficients

defined by equations (4.11) and (4.12). Then

εL =
λL

2− λL
, εR =

λR
2− λR

.

Proof. From the definition of lower extremal dependence coefficient given in (4.11), and

using limz→0
C(z,z)
z = λL by equation (4.9), we have

εL = lim
z→0

C(z, z)

2z − C(z, z)

= lim
z→0

C(z,z)
z

2− C(z,z)
z

=
λL

2− λL
.
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Similarly, using (4.12) and (4.10),

εR = lim
z→1

1− 2z + C(z, z)

1− C(z, z)

= lim
z→1

1−2z+C(z,z)
1−z

2− 1−2z+C(z,z)
1−z

=
λR

2− λR
.

2

Table 4.2 summarizes the measures of tail dependency for the copula functions specified

in Chapter 3. If the dependency over the right tail is of particular interest to practition-

ers, then the Gumbel and Pareto copulas should be considered. Mis-specification of the

dependence structure, especially the dependency over the tails, may result in devastating

consequences, which will be shown in insurance applications in Chapter 6.
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Chapter 5

Risk Measures

Dependent risks are inherent in the business of insurance companies. The prerequisites of

managing risk are first understanding risks and then quantifying and measuring risks. The

previous chapters of this project are devoted to modeling the dependent risks and identifying

the dependence structure. In this chapter, we will incorporate the dependence between

risks into risk measure calculations with an emphasis on the tail-based risk measures. This

chapter is organized as follows: Section 5.1 provides a review of two widely used tail-based

risk measures – value-at-risk (VaR) and conditional tail expectations (CTE). An illustration

of calculating tail-based risk measures for functions of dependent risks is given in Section

5.2.

5.1 Introduction

A risk measure π is a mapping from random variable(s) Y to a non-negative real number,

i.e., π : Y −→ R. According to Artzner et al. (1999), a function π : Y −→ R is said to be

coherent risk measure for risk Y if it satisfies the following properties:

(i) Monotonicity: For two risks Y1 and Y2, if Y1 ≤ Y2, then π(Y1) ≤ π(Y2);

(ii) Sub-additivity: For two risks Y1 and Y2, π(Y1 + Y2) ≤ π(Y1) + π(Y2);

(iii) Positive homogeneity: If α > 0, then π(αY ) = απ(Y );

(iv) Translation invariance: For all a ∈ R, π(Y + a) = π(Y ) + a.

43
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Numerous risk measures have been proposed in insurance and finance literature, for

example, value-at-risk (VaR), tail VaR, conditional tail expectation (CTE), conditional

VaR, expected shortfalls, Esscher risk measures, and Wang risk measures. Denuit et al.

(2005) provided a review of various methods of measuring risks.

For illustrative purposes, we focus on two tail-based risk measures – VaR and CTE, to

measure dependent risks.

5.1.1 Value-at-risk (VaR)

The value-at-risk (VaR) summarizes the worst loss with a given level of confidence. Despite

its numerous critics, VaR is still one of the most widely used risk measures. VaR has become

the benchmark risk measure used by financial analysts and regulators in quantifying the

market risk and setting capital requirements for market risk exposures (Denuit et al., 2005).

Definition 5.1 Given a risk Y and a probability level p ∈ (0, 1), the corresponding VaR,

denoted by VaR(Y, p), is defined as

P (Y ≤ VaR(Y, p)) = p.

The VaR gives the maximum likely loss at a specified confidence level. If risk Y has

a continuous distribution, then VaR(Y, p) can be defined explicitly with the help of the

quantile function F−1
Y ,

VaR(Y, p) = F−1
Y (p).

5.1.2 Conditional tail expectation (CTE)

VaR measures the worst case loss, where the worst case is defined as the upper tail event

with 1 − p probability. One problem with the quantile risk measure is that it does not

take into consideration what the loss will be if that 1− p worst case event actually occurs.

The loss above the quantile and its probabilities do not affect VaR. The conditional tail

expectation (CTE) is designed to address such problems with the quantile risk measure.

The conditional tail expectation (CTE) measures the average loss in the worst 100(1−
p)% cases, defined as

CTE(p) = E[Y |Y > VaR(Y, p)].
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5.2 VaR and CTE for the Functions of Dependent Risks

As we have mentioned in Chapter 1, insurers are more concerned about their total risk

exposure, which is a function of dependent risks. The function might be a linear form

as is the case for the total loss from different lines of business, different securities in a

given portfolio, and different geographical locations, or a more complicated form such as

reinsurance agreement, which depends on retention and policy limit.

Assume X1 and X2 are two dependent risks with joint distribution function F (x1, x2)

and the associated copula function C(F1(x1), F2(x2)). We are interested in a new risk,

Y = g(X1, X2), (5.1)

where g is a general function form satisfying the condition that its first-order partial deriva-

tives are non-negative.

In order to obtain the distribution function FY (y) or its density function fY (y) based

on the joint distribution function or density function of X1 and X2, we can use the method

of transformations.

Define two new variables z1 = y = g(x1, x2) and z2 = x2. z2 could be other functions

of x1 and x2 as long as it yields a convenient inverse transformation. For the sake of

simplicity, we assume that z2 = x2 is a simplest function that gives inverse transformation:

x1 = g−1(z1, z2) and x2 = z2. The Jacobian of this transformation is

J =

∣∣∣∣∣∂x1∂z1
∂x1
∂z2

∂x2
∂z1

∂x2
∂z2

∣∣∣∣∣
=

∣∣∣∣∣∂x1∂z1
∂x1
∂z2

0 1

∣∣∣∣∣
=
∂x1

∂z1
.

Then the joint density of Z1 and Z2 is

fZ1,Z2(z1, z2) = fX1,X2(g−1(z1, z2), z2) |J |

= fX1,X2(g−1(z1, z2), z2)

∣∣∣∣∂x1

∂z1

∣∣∣∣
= fX1,X2(g−1(z1, z2), z2)

∣∣∣∣∂g−1(z1, z2)

∂z1

∣∣∣∣ . (5.2)
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The density function fY (y) can be obtained by first replacing z1 and z2 by y and x2,

respectively, and then integrating the joint density function (5.2),

fY (y) =

∫
fY,X2(y, x2)dx2. (5.3)

Even for the simplest function form of g(X1, X2), an explicit expression of function

in (5.3) can be very hard to derive. Properties of (5.3) can be obtained using numerical

evaluation tools such as simulation.

The remainder of this section will concentrate on the linear combinations of dependent

risks, with the form

Y = αX1 + βX2. (5.4)

In the context of financial and actuarial applications, the new risk Y given in (5.4) can

be interpreted as follows. If X1 and X2 are rates of returns of two stocks or stock indices,

and α ∈ [0, 1] and β = 1−α, then Y is the rate of return of the portfolio. If X1 and X2 are

losses from two different lines of insurance, and α = β = 1, then Y is insurer’s total loss.

The mean and variance of Y are

E[Y ] = αE[X1] + βE[X2],

and

Var[Y ] = α2Var[X1] + β2Var[X2] + 2αβCov (X1, X2) .

If the joint behavior of X1 and X2 is modeled by our common random effect model, then

the variance of Y can be expressed as

Var[Y ] = EΘ

[
Var[αX1 + βX2 |Θ]

]
+ VarΘ

[
E[αX1 + βX2 |Θ]

]
= EΘ

[
α2Var[X1 |Θ] + β2Var[X2 |Θ]

]
+ VarΘ

[
αE[X1 |Θ] + βE[X2 |Θ]

]
.

If X1 and X2 have a copula function C, i.e., F (x1, x2) = C(F1(x1), F2(x2)), then the

distribution function of Y can be expressed as

FY (y) = P (Y ≤ y)

= P (αX1 + βX2 ≤ y)

=

∫ +∞

−∞

∫ y−βx2
α

−∞
f(x1, x2)dx1dx2

=

∫ +∞

−∞

∫ y−βx2
α

−∞
c(F1(x1), F2(x2))f1(x1)f2(x2)dx1dx2, (5.5)



CHAPTER 5. RISK MEASURES 47

where c(F1(x1), F2(x2)) is the copula density function defined in (2.9) and (2.10).

The closed form solution for equation (5.5) does not exist in most cases. Numerical

methods or simulations are needed to find the statistical properties of Y .

The double integration in equation (5.5) can be reduced to single integration if the joint

behavior of X1 and X2 is modeled by our common effect model in Chapter 3. In fact, the

distribution function of Y , conditional on Θ = θ, is

G(y | θ) = P (αX1 + βX2 ≤ y |Θ = θ)

=

∫ +∞

−∞
P

(
X2 ≤

y − αx1

β

∣∣∣X1 = x1,Θ = θ

)
f1(x1)dx1

=

∫ +∞

−∞

[
H2

(
y − αx1

β

)]θ
dϕ (−lnH1(x1)) ,

where ϕ is the Laplace transform of the common random effect Θ. As a result, the uncon-

ditional distribution function of Y can be expressed as

FY (y) =

∫ +∞

−∞
G(y | θ)f(θ)dθ,

where f(θ) is the probability density function of Θ.

The explicit expressions of FY (y) for the Pareto copula and the Gumbel copula are

shown in the following sections.

5.2.1 Pareto copula

The density function of Pareto copula can be derived by taking derivatives of equation

(3.13), namely

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2

= (1 + γ)
[
(1− u1)−γ + (1− u2)−γ − 1

]−2− 1
γ
(1− u1)−1−γ(1− u2)−1−γ .

Therefore, the distribution function of Y given by equation (5.5) can be written as

FY (y) =

∫ +∞

−∞

∫ y−βx2
α

−∞
(1 + γ)

[
(1− F1(x1))−γ + (1− F2(x2))−γ − 1

]−2− 1
γ

×
[
1− F1(x1)

]−1−γ[
1− F2(x2)

]−1−γ
f1(x1)f2(x2)dx1dx2,

where Fi(xi) and fi(xi), i = 1, 2, are the univariate marginal distribution function and

density function, respectively.
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5.2.2 Gumbel copula

The density function of Gumbel copula can be obtained by taking derivatives of equation

(3.6), as follows

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2

=
e
−
[

(−lnu1)γ+(−lnu2)γ
] 1
γ

u1u2

[
(−lnu1)γ + (−lnu2)γ

]−2+ 2
γ

×
[
(lnu1)(lnu2)

]γ−1
{

1 + (γ − 1)
[
(−lnu1)γ + (−lnu2)γ

]− 1
γ

}
. (5.6)

Therefore, the distribution function of Y given by equation (5.5) can be expressed as

FY (y) =

∫ +∞

−∞

∫ y−βx2
α

−∞

e
−
[

(−lnF1(x1))γ+(−lnF2(x2))γ
] 1
γ

F1(x1)F2(x2)

×
[
(−lnF1(x1))γ + (−lnF2(x2))γ

]−2+ 2
γ
[
(lnF1(x1))(lnF2(x2))

]γ−1

×
{

1 + (γ − 1)
[
(−lnF1(x1))γ + (−lnF2(x2))γ

]− 1
γ

}
f1(x1)f2(x2)dx1dx2, (5.7)

where Fi(xi) and fi(xi), i = 1, 2, are the univariate marginal distribution function and

density function, respectively.



Chapter 6

Applications

In this chapter, the statistical application of the copula modeling approach to insurance

data is discussed. The joint behavior of losses and loss adjustment expenses in insurance

claims (data) are investigated. The insurance applications based on the fitted model are

illustrated.

6.1 Data and Previous Work

The insurance loss data set was supplied by the Insurance Services Office (ISO) and consists

of liability claims of an insurance company. This data set was available from various sources,

including the R package, “Copula”, and the personal webpage of Professor Edward W. (Jed)

Frees1.

This data set contains 1500 randomly selected claims. For each claim, the indemnity

payment (loss), the allocated loss adjustment expense (ALAE), and the policy limit were

recorded. 34 claims that had indemnity payments greater than the policy limit were cen-

sored. A statistical summary of the data is shown in Table 6.1.

Figure 6.1 shows the scatterplot of losses versus expenses. These plots suggest a positive

dependence between the loss and ALAE, and the dependence appears to become stronger

at high values of losses.

Klugman and Parsa (1999) fitted an inverse paralogistic and an inverse Burr distribution

to the loss and ALAE data, respectively, and then used a Frank copula to model the joint

1http://research3.bus.wisc.edu/file.php/129/DataCode/LOSSDATA.txt

49
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Table 6.1: Statistical Summary of Losses and Expenses Data

Loss Loss
Loss ALAE Policy Limit

(Uncensored) (Censored)

Number 1,500 1,500 1,352 1,466 34

Average 41,208 12,588 559,098 37,110 217,941

Standard Deviation 102,748 28,146 418,649 92,513 258,205

Minimum 10 15 5,000 10 5,000

25 Percentile 4,000 2,333 300,000 3,750 50,000

Median 12,000 5,471 500,000 11,048 100,000

75 Percentile 35,000 12,572 1,000,000 32,000 300,000

Maximum 2,173,595 501,863 7,500,000 2,173,595 1,000,000

Figure 6.1: Scatterplots of Loss against ALAE
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distribution of losses and expenses. Frees and Valdez (1998) chose Pareto distributions for

the univariate marginals, and used Q-Q plots and the Akaike information criterion (AIC)

for the model selection among the Clayton, Frank, and Gumbel copulas. Both Q-Q plots

and AIC suggested that the Gumbel copula is preferred.

Frees and Valdez (1998) also used the estimated bivariate distribution of losses and

expenses to calculate reinsurance premiums and estimate expenses for pre-specified losses.

Simulations were performed to estimate reinsurance premiums based on a pro-rata sharing

of expenses. If the unrealistic assumption of independence between losses and expenses is

made, reinsurance premiums would be substantially undervalued for higher policy limits

and higher retention values set by the reinsured.

Another empirical investigation using this data set was by Denuit et al. (2005). They

used the losses and expenses data as a case study for modeling Archimedean copulas. Denuit

et al. (2005) confirmed that the Gumbel copula provides the best fit to the data, and the

Frank copula also gives a very good fit.

6.2 Fitting Copula Models

To fit a copula to losses and expenses data, we need to determine the appropriate marginal

distributions first, then choose the function form of copula. A variety of methods can be

used for copula selection, including, among others, the visual detection from the empiri-

cal distributions, log-likelihood values, Akaike Information Criterion (AIC), and Bayesian

Information Criterion (BIC).

6.2.1 Fitting marginal distributions

The first step of copula model fitting is to determine the appropriate marginal distributions.

We present the fit of univariate marginals with generalized Pareto distribution. With loca-

tion parameter, µ, scale parameter, θ, and shape parameter, γ, the distribution function of

the generalized Pareto distribution is

F (x) = 1−
(

1 + γ
x− µ
θ

)− 1
γ

.

Our choice of generalized Pareto distributions for modeling univariate marginals is based

on two reasons. Firstly, the generalized Pareto distributions would improve the overall fit as
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it has one more parameter. The second and more important reason is that the generalized

Pareto model would be more flexible than the 2-parameter Pareto distribution proposed in

Frees and Valdez (1998) and Denuit et al. (2005). If one is interested in the losses above

a high threshold, then the generalized Pareto model can deal with the threshold excesses

easily by setting the location parameter equal to the threshold.

Since the data set contains censored losses, the log-likelihood function is given by

lnL(µ, θ, γ) =
n∑
i=1

(1− δi) ln f(xi) +
n∑
i=1

δi ln (1− F (xi)),

where δi is the censoring indicator, with δi = 0 indicating uncensored case and δi = 1

indicating censored case.

Table 6.2: Fitting Marginal Distributions

Parameter
Loss ALAE

Estimate Standard Error Estimate Standard Error

Location µ 10 8.472 15 4.518

Scale θ 12,692.9472 612.485 6,773.2501 289.203

Shape γ 0.8834 0.051 0.4529 0.036

Log-likelihood -16,536.176 -15,410.135

Table 6.2 summarizes the results from the maximum likelihood estimation fitting of

the marginal distributions. The maximum likelihood estimates of the locations parame-

ters are the minimum values in the sample, and their standard errors are based on their

order statistics. The overall fit shows some minor improvement over the Pareto marginal

distributions in Frees and Valdez (1998) and Denuit et al. (2005), evidenced by smaller

AIC values. Since our generalized Pareto model has three parameters, while the para-

metric model chosen by Frees and Valdez (1998) and Denuit et al. (2005) has two, we

compute and compare the AIC values for each model. AIC of the generalized Pareto

model for loss is 2k − 2 lnL = 2(3) + 2(16, 536.176) = 33, 078.35, which is smaller than

the AIC for the 2-parameter Pareto model of loss, 2(2) + 2(16, 537.369) = 33, 078.74.

The generalized Pareto estimation of ALAE also has an improvement, with the AIC of

2(3)+2(15, 410.135) = 30, 826.27, against the AIC value of 2(2)+2(15, 413.449) = 30, 830.90
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Figure 6.2: Scatterplots of Empirical and Marginal Distributions
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for the 2-parameter Pareto model. However, the comparison of the BIC values, which pe-

nalizes extra parameters more strongly than AIC does, shows that the 2-parameter Pareto

model is preferable.

6.2.2 Visualizing dependence structure

Before fitting copula models, we first look at the joint behavior of the empirical and marginal

distributions of loss and ALAE data. A good model of the bivariate distribution has sta-

tistical properties that resemble those of the empirical distributions. Figure 6.2 gives the

scatterplots of the empirical and marginal distributions of losses versus those of ALAE; the

empirical distribution is given by

F̂ (s) =
1

n

n∑
i=1

1{xi ≤ s},

where n is the number of observations, and 1 is the indicator function.

Marginal distributions are from the fitted generalized Pareto models in the previous
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section. The joint behavior of marginal distributions is similar to that of the empirical dis-

tribution, which once again justifies the choice of the generalized Pareto marginal distribu-

tions. Both plots show strong right tail dependence and relatively weak left tail dependence,

suggesting Gumbel and Pareto copulas could be good choices for the joint behavior of losses

and expenses.

6.2.3 Fitting copula models

The next step of the estimation process is to feed the marginal distributions obtained from

the previous step to copula functions to estimate the dependence parameter. The maximum

likelihood estimator is obtained by maximizing

lnL(γ) =
n∑
i=1

ln c(û1i, û2i; γ),

with respect to the dependence parameter γ, where c denotes the copula density given by

(2.9), and û1 and û2 are marginal distributions from the previous step. The copula functions

to be fitted include all the copula expressions derived through modeling the distribution

functions and the survival functions, as listed in Table 3.2.

Maximum likelihood estimates of selected copula functions are shown in Table 6.3.

Each copula model is estimated based on empirical marginal distributions and paramet-

ric marginal distributions. The Gumbel copula has the largest log-likelihood value, and

therefore produces the best fit for both empirical and parametric marginal distributions.

The Pareto copula also produces a very good fit. We recall that the Gumbel copula is gen-

erated by modeling the distribution functions and assuming that the common random effect

follows a positive stable distribution, whereas the Pareto copula comes from modeling the

survival functions and assuming that the common random effect has a gamma distribution.

Insurance applications in the next two sections are based on the fitted Gumbel and Pareto

copulas.

Perspective plots of the fitted copulas and their implied bivariate density functions are

shown in Figure 6.3 and Figure 6.4, respectively. Both Gumbel and Pareto copulas have

strong right tail dependence and relatively weak left tail dependence. The trivial difference

between these two copulas is that the Gumbel copula has a slightly heavier left tail than

the Pareto copula. Given the relationships between the marginal distributions as shown in

Figure 6.2, it makes perfect sense why the Gumbel copula gives the best fit and the Pareto
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Table 6.3: Maximum Likelihood Estimates of the Copula Functions

Copula
Empirical Distribution

Dependence parameter Standard error Log-likelihood value

Clayton 0.5196 0.0425 93.833

Frank 3.1014 0.1680 172.506

Gumbel 1.4432 0.0288 206.995

Hougaard 1.3773 0.0277 138.372

Pareto 0.7752 0.0459 201.662

Copula
Parametric Marginal Distribution

Dependence parameter Standard error Log-likelihood value

Clayton 0.5137 0.0436 86.640

Frank 3.1484 0.1699 172.885

Gumbel 1.4555 0.0295 203.774

Hougaard 1.3788 0.0282 132.701

Pareto 0.7972 0.0471 198.691
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Figure 6.3: Perspective Plots of the Fitted Copula Models

 

Figure 6.4: Joint Probability Density Functions
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copula is in the second place. That is why we emphasize the importance of visual detection

of the dependence structure before fitting copula models. A final comment regarding fitting

copula to losses and expenses data is that the Frank copula, which was chosen by Klugman

and Parsa (1999), should never be preferred, because the Frank copula is symmetric and

cannot capture the strong dependence in the right tail only.

Figure 6.5 gives the conditional distributions based on the fitted copulas. For the purpose

of comparison, the quantiles of 0.01, 0.05, 0.50, 0.95, and 0.99 are selected. As far as

high quantiles (right tail) are concerned, results from the two fitted copulas are very close.

However, over the left tail, the dependence in the Pareto copula is quite weak compared to

that in the Gumbel copula.

Figure 6.5: Conditional Distribution Functions Based on the Fitted Copulas

 

Measures of dependence can be computed from the estimated dependence parameters

given in Table 4.1. For example, the dependence parameter of 1.4555 in the fitted Gumbel

copula corresponds to Kendall’s tau correlation measure of 0.313. Table 6.4 gives the rank

correlations based on the fitted copula models. The fitted Gumbel copula has rank correla-

tions very close to those directly estimated from the raw data, which once again shows that

the Gumbel copula gives the best fit to the losses and expenses data.
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Tail dependency measures based on our fitted copula models are presented in Figure

6.6 and Table 6.5. The upper and lower limits of tail concentration functions as shown in

Figure 6.6 correspond to the tail dependence coefficients in Table 6.5. Both the tail depen-

dence coefficients and extremal dependence coefficients indicate that losses and expenses

are asymptotically independent in the left tails, and asymptotically dependent in the right

tails. As the insurance loss approaches its maximum loss amount, there is a probability of

around 0.40 that the loss adjustment expense also reaches its maximum amount.

Table 6.4: Measures of Dependence Based on the Fitted Copulas

Spearman’s Rho Kendall’s Tau

Raw Data 0.452 0.315

Gumbel Copula 0.448 0.313

Pareto Copula 0.414 0.285

Table 6.5: Measures of Tail Dependency Based on the Fitted Copulas

Tail Dependence Coefficients Extremal Dependence Coefficients

Left Tail Right Tail Left Tail Right Tail

Gumbel Copula 0 0.390 0 0.242

Pareto Copula 0 0.419 0 0.265

6.3 Tail-based Risk Measures for Total Cost of Claim

After estimating and selecting the bivariate models for dependent risks, now we can take a

further step to quantify the impact of dependency between risks. In this and next sections,

we aim at answering two questions: how does ignorance or mis-specification of dependency

affect risk measures? If the unrealistic assumption of independence is made, what is the

magnitude of insurance mispricing?

To answer the first question, we consider the sum of two dependent risks that has been

discussed in Chapter 5 as an illustration. Given the bivariate distribution of losses and
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Figure 6.6: Tail Concentration Functions Based on the Fitted Copulas

 

expenses, we are interested in the total cost of claim, which is equal to the sum of losses and

expenses. Numerical integration can be used to find the quantitative properties of interest.

Simulation, however, is much simpler.

The marginal distributions of losses and expenses and the dependence structure captured

by copulas are important inputs into the simulation algorithm. To estimate VaR and CTE,

we simulate 500,000 observations of losses and expenses using the estimated parameters of

the marginal distributions and the dependence parameter that specifies copula. We add up

the simulated losses and loss adjustment expenses to get the total cost for each claim. The

VaR can be obtained from the quantiles of the distribution of the total cost, and the CTE

is calculated as the mean of the simulated value above its corresponding quantile.

The results of VaR and CTE for the Gumbel, Pareto, and Frank copulas, and the

independence case are presented in Table 6.6 and Table 6.7. For comparison purposes, four

quantiles – 90%, 95%, 97.5%, and 99%, were selected.

If independence is assumed, VaR is understated at all four chosen quantiles. The mag-

nitude of underestimation ranges from 1% at the 90th percentile, to around 6% at the 95th

and 97.5th percentiles. However, if the dependence structure is mistakenly specified as the
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Frank copula, then the VaR at 90th and 95th percentiles overestimates those based on the

Gumbel or Pareto copula. But at the 97.5th and 99th percentiles, the Frank copula gives

an underestimation of VaR.

As for the CTE estimates, mis-specification of the dependence structure and ignorance

of dependency make no difference. Both result in underestimation of the average cost in

the worst case scenarios, ranging from about 2% as compared with the Gumbel copula to

around 4% as compared with the Pareto copula.

These results confirm the importance of selecting an appropriate dependence structure

in calculating risk measures. As expected, the unrealistic assumption of independence tends

to understate the actual risk measured by the VaR and CTE. But mis-specification of

dependence structure may lead to an overestimation or underestimation of the VaR. This

suggests that mis-specification of dependency may do as much harm as, if not more than,

the assumption of independence.

Table 6.6: Comparison of Simulation-based Value-at-Risk Estimates

Copula
Quantile

90% 95% 97.5% 99%

Gumbel 119,430 223,255 409,120 901,875

Pareto 119,402 222,856 412,470 933,255

Independence 118,435 212,587 385,426 849,477

Frank 125,337 225,528 399,816 877,036

6.4 Pricing Reinsurance Contracts

Knowing the joint distribution of losses (X1) and expenses (X2) also allows us to estimate

reinsurer’s expected payment under a reinsurance agreement such as the one discussed in

Frees and Valdez (1998). Suppose there is a reinsurance policy with limit L and insurer’s

retention R. Also, assume that the reinsurer pays a pro-rata share of expenses, which is
X1−R
X1

for losses below the policy limit and L−R
L for losses equal or above the policy limit.

The reinsurer’s payment is
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Table 6.7: Comparison of Simulation-based CTE Estimates

Copula
Quantile

90% 95% 97.5% 99%

Gumbel 714,740 1,268,990 2,241,683 4,722,434

Pareto 723,319 1,286,481 2,275,776 4,795,396

Independence 692,263 1,228,894 2,176,917 4,613,115

Frank 700,704 1,236,247 2,177,815 4,586,743

g(X1, X2) =


0, if X1 < R;

X1 −R+ X1−R
X1

X2, if R ≤ X1 < L;

L−R+ L−R
L X2, if X1 ≥ L.

The reinsurance premium can be calculated as E[g(X1, X2)]. Simulation-based re-

insurance premiums for independence, Gumbel copula, and Pareto copula are presented

in Tables 6.8, 6.9, and 6.10, respectively. Premiums are calculated using the 500,000 simu-

lations for each specification of dependence structure as presented in Section 6.3.

For all three cases, reinsurance premiums decrease as insurers’ retention increases. This

makes perfect sense because when the reinsured retains larger amount of loss, reinsurer’s

expected payment falls, and as a result, reinsurance premiums decrease. For a given ratio of

insurers’ retention to policy limit, an increase in policy limit may lead to increase or decrease

in reinsurance premiums. That’s because two forces are working in opposite directions

when policy limit increases. On the one hand, increase in policy limit means that insurers

cede more losses and expenses to reinsurer, which tends to increase reinsurer’s expected

payment. On the other hand, insurers’ retention also increases because of the constant

ratio of insurers’ retention to policy limit, which means that reinsurer’s expected payment

will decrease. The total effect depends on the ratio of insurers’ retention to policy limit.

For example, if the retention is zero, then the reinsurance contract is the same as regular

insurance policy, reinsurance premiums always increase as policy limit increases. If the ratio

of insurers’ retention to policy limit equals 0.25 or 0.50, reinsurance premiums first increase

then decrease. But at a ratio of 0.75 or 0.95, reinsurance premiums always decrease as

policy limit increases.
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If the unrealistic assumption of independence between losses and expenses is made, mis-

pricing of insurance contracts would result. Table 6.11 gives the ratios of dependence to

independence reinsurance premiums based on the fitted models. A ratio above 1.0 suggests

an undervaluation of reinsurance contract under the assumption of independence. An in-

crease in the ratio of insurers’ retention to policy limit leads to an increase in the magnitude

of mispricing. As the policy limit increases, the ratios of dependence to independence rein-

surance premiums tend to rise first, then fall after the policy limit reaches high percentiles.

These results underscore the importance of selecting the appropriate model for extremal

dependence.

Table 6.8: Simulation-based Reinsurance Premiums – Independence Case

Ratio of Insurer’s Retention to Policy Limit (R/L)

Policy Limit (L)
0.00 0.25 0.50 0.75 0.95

10, 000 19,758 11,926 7,126 3,285 623

100, 000 38,484 14,523 7,392 3,088 553

500, 000 53,417 13,231 6,435 2,620 460

1, 000, 000 59,241 12,297 5,901 2,384 419

Table 6.9: Simulation-based Reinsurance Premiums – Gumbel Copula

Ratio of Insurer’s Retention to Policy Limit (R/L)

Policy Limit (L)
0.00 0.25 0.50 0.75 0.95

10, 000 19,763 13,311 8,319 3,956 765

100, 000 38,513 17,114 9,030 3,863 702

500, 000 53,515 15,027 7,396 3,053 542

1, 000, 000 59,387 13,647 6,630 2,710 481
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Table 6.10: Simulation-based Reinsurance Premiums – Pareto Copula

Ratio of Insurer’s Retention to Policy Limit (R/L)

Policy Limit (L)
0.00 0.25 0.50 0.75 0.95

10, 000 19,745 13,256 8,295 3,952 765

100, 000 38,508 17,286 9,147 3,922 714

500, 000 53,500 15,167 7,506 3,104 553

1, 000, 000 59,469 13,889 6,796 2,804 498

Table 6.11: Ratios of Dependence to Independence Reinsurance Premiums

Ratio of Insurer’s Retention to Policy Limit (R/L)

Policy Limit (L) 0.00 0.25 0.50 0.75 0.95

Gumbel Pareto Gumbel Pareto Gumbel Pareto Gumbel Pareto Gumbel Pareto

10, 000 1.000 0.999 1.116 1.112 1.167 1.164 1.204 1.203 1.227 1.227

100, 000 1.001 1.001 1.178 1.190 1.222 1.237 1.251 1.270 1.270 1.291

500, 000 1.002 1.002 1.136 1.146 1.149 1.166 1.165 1.185 1.178 1.203

1, 000, 000 1.002 1.004 1.110 1.129 1.124 1.152 1.137 1.176 1.147 1.188



Chapter 7

Concluding Remarks

In this project, the joint behavior of two random variables is studied using models of common

random effects. Following Oakes (1989, 1994) and Marshall and Olkin (1988), dependency

between two random variables is modeled through common random effects. Bivariate distri-

bution and survival functions are generated with univariate marginals as parameters, which

greatly simplifies the construction of copulas. Commonly used copulas, such as the Clayton,

Frank, and Gumbel copulas, can be generated using common random effects. Measures of

tail dependency are applied for the copula model selections. Tail-based risk measures for

the functions of two dependent variables are investigated for particular interests.

Our contributions made in this research project can be described as follows. Firstly, a

unified approach is proposed to study the dependency between random variables. Oakes

(1989, 1994) applied the frailty model to account for the dependencies among multiple lives.

Marshall and Olkin (1988) illustrated the use of mixture models to construct multivariate

distributions. We combine their methods together and use models of common random effects

to study both bivariate distributions and survival functions. The second contribution is the

use of measures of tail dependency for copula model selection. The conventional tools for

model selection such as AIC or BIC focus on the overall fit to the data, and as a result

the selected copula model may or may not be able to capture the dependency in the tails.

Finally, risk measures of functions of dependent risks are investigated. We incorporate the

dependency between random variables into the calculation of tail-based risk measures. The

financial consequences of mis-specification of dependency and ignorance of dependence are

illustrated using insurance losses and expenses data.

This work can be further extended and continued in many ways. Several distributions
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of the common random effect Θ are illustrated in this project. The modeling framework

can be applied to other distributions of Θ. For example, if the common random effect has

Laplace transform ϕ(s) = (1 − γ)/(es − γ), then the resulting copula belongs to the Ali-

Mikhail-Haq family (Nelsen, 2006). Then, more interesting results, including the behavior

of tail dependency, could be derived from other distributions of the common random effect.

Secondly, more work can be done on the risk measures of functions of dependent risks. We

tried the linear combinations of dependent risks in this project, and used simulations to

find the statistical quantities of interest. Approximations of distribution functions of the

functions of dependent risks such as bounds may be explored to gain more insight into the

impact of dependency between risks.



Appendix A

Fitting Copulas to Data

Sklar’s Theorem suggests that the construction of a model for the joint behavior of m

random variablesX1, X2, ..., Xm can be broken into two parts: the estimation of the marginal

distribution functions, F1, F2, ..., Fm, and the estimation of the dependence parameter(s) in

copula C.

A.1 Forming a Pseudo-sample for the Copula

Let F̂1, F̂2, ... , F̂m denote estimates of the marginal distribution functions. The pseudo-

sample from the copula consists of the vector Û1, Û2, ... , Ûm, where

Ût = (Ût,1, ... , Ût,m)′ = (F̂1(Xt,1), ... , F̂m(Xt,m))′, t = 1, 2, ..., n.

Possible methods of obtaining the marginal estimates F1, F2, ... , Fm include the follow-

ing:

(1) Parametric estimation

We can choose an appropriate parametric model for the data to get F̂1(Xt,1), ... , F̂m(Xt,m).

(2) Non-parametric estimation

We could estimate the empirical distribution function F̂i from X1,i, X2,i, ... , Xn,i by

using

F̂i(x) =
1

n

n∑
t=1

1{Xt,i ≤ x}, i = 1, 2, ...,m,
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where n is the number of observations, and 1 is the indicator function.

(3) Extreme value theory for the tails

If one is interested in the distribution in the tails, for example, insurance losses above

a threshold, then parametric models that provide good overall fits to the data may not

be useful. Empirical distribution functions are also poor estimators of the underlining

distribution in the tails. Extreme value theory can be used to fit a generalized Pareto

distribution for the tails.

A.2 Maximum Likelihood Estimation

Let Cγ denote a parametric copula, where γ is the dependence parameter(s) to be estimated.

The maximum likelihood estimator can be obtained by maximizing

lnL(Û1, ... , Ûm; γ) =

n∑
t=1

ln c(Ût)

with respect to γ, where c is the copula density function with dependence parameter γ,

defined as

c(u1, u2, ... , um) =
∂mCγ(u1, u2, ... , um)

∂u1∂u2 ... ∂um
,

and Ût denotes the t-th pseudo-observation from the copula.

A.3 Estimation Based on Rank Correlations

Suppose that the assumed model is of the form F (x1, x2) = C(F1(x1), F2(x2); γ), where γ

is the dependence parameter to be estimated. For many copulas, a functional relationship

exists between either Kendall’s tau and γ or Spearman’s rho and γ (Table 4.1). For example,

if we have a relationship of the form τK = g(γ), then the chosen copula is calibrated by

γ̂ = g−1(τK).

A.4 Full Maximum Likelihood

Alternatively, we can estimate all parameters using the full maximum likelihood approach.

Let C(x1, x2; γ) be a bivariate copula model with dependence parameter γ. Assume that
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both C and Fi are differentiable. The joint density is

f(x1, x2) = c(F1(x1 |β1), F2(x2 |β2); γ)f1(x1 |β1)f2(x2 |β2),

where c is the copula density defined as

c(F1(x1 |β1), F2(x2 |β2)) =
∂2C(F1(x1 |β1), F2(x2 |β2); γ)

∂F1(x1 |β1)∂F2(x2 |β2)
,

and fi(xi |βi) is the density function corresponding to Fi(xi |βi), and βi’s are parameter(s)

for the marginal distributions of Xi.

The full maximum likelihood estimator can be obtained by maximizing the log-likelihood

function

lnL(x1, x2;β1, β2, γ) =

n∑
j=1

ln c(F1(x1j |β1), F2(x2j |β2)); γ) +

2∑
i=1

n∑
j=1

ln fi(xij |βi)

with respect to β1, β2, and γ.

In this project, we use the two-step maximum likelihood method. Firstly, marginal

distributions for losses and expenses are estimated. Marginal distribution functions are

then fed to the copula functions to estimate the dependence parameter.



Appendix B

Simulating Copulas and Bivariate

Distributions

Simulation is a powerful numerical evaluation approach that can be used to gain insight

into the behavior of dependent risks. In this project, simulations are used on at least

two occasions. Simulations help to visualize the dependence property, especially the tail

dependence structure in Chapter 4. In Chapters 5 and 6, the closed form solution for

the distribution of the functions of dependent risks is not available, where simulations are

applied to generate the tail-based risk measures. This section outlines the procedures used

in simulating copulas and bivariate distributions.

B.1 Conditional Sampling

Conditional sampling is a simple method for generating random variables from a known

copula function. The theoretical basis of this approach is Proposition 2.1. The conditional

distribution of X2 given X1 = x1 is given by F2 | 1(x2 |x1) = C1(u1, u2). If C1 is invertable

algebraically, then X2 can be simulated by the conditional distribution. The steps of simu-

lating copulas by conditioning are as follows:

(i) Draw two independent uniformly distributed variables (v1, v2) from [0, 1].

(ii) Set u1 = v1.

(iii) Generate x1 by inverting the marginal distribution function, x1 = F−1(u1).

69



APPENDIX B. SIMULATING COPULAS AND BIVARIATE DISTRIBUTIONS 70

(iv) Invert the conditional distribution C1(u1, u2) and get u2 = C−1
1 (v2 |u1).

(v) Generate x2 by inverting the marginal distribution function, x2 = F−1(u2).

For example, the conditional distribution of the Pareto copula has the following form:

C1(u1, u2) = 1−
[
(1− u1)−γ + (1− u2)−γ − 1

]−1− 1
γ
(1− u1)−1−γ ,

and u2 can be solved in closed form as

u2 = 1−
[
1− (1− u1)−γ + (1− u1)−γ(1− v2)

− γ
1+γ

]− 1
γ
.

B.2 Sampling by Mixture

The conditional distribution of Gumbel copula cannot be inverted algebraically. To generate

random variables from the Gumbel copula using conditional sampling, we have to calculate

u2 = C−1
1 (v2 |u1) iteratively. Marshall and Olkin (1988) proposed a simulating approach

based on mixtures of powers. The following steps show how this algorithm can be used to

generate random variables as an alternative to the conditional sampling:

(i) Draw a random variable θ with Laplace transform ϕ(s).

(ii) Draw two independent uniformly distributed variables (v1, v2) from [0, 1].

(iii) Set ui = ϕ(−θ−1ln vi) for i = 1, 2.

(iv) Generate xi by inverting the marginal distribution functions, xi = F−1(ui) for i = 1, 2.

For example, the Gumbel copula can be simulated by first drawing θ with Laplace

transform ϕ(s) = e−s
1/γ

and two independent uniform variables (v1, v2), then generating

ui = e−(− 1
θ

lnvi)
1/γ

for i = 1, 2.
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