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Abstract

Random effects models are of particular importance in modeling heterogeneity. A commonly
used random effects model for multivariate survival analysis is the frailty model. In this
project, a special frailty model with an Archimedean dependence structure is used to model
dependent risks. This modeling approach allows the construction of multivariate distribu-
tions through a copula with univariate marginal distributions as parameters. Copulas are
constructed by modeling distribution functions and survival functions, respectively. Mea-
sures of the dependence are applied for the copula model selections. Tail-based risk measures
for the functions of two dependent variables are investigated for particular interest. The
statistical application of the copula modeling approach to an insurance data set is discussed
where losses and loss adjustment expenses data are used. Insurance applications based on

the fitted model are illustrated.

Keywords: Multivariate distribution; Copula; Common random effects; Measure of depen-

dence; Measures of tail dependency; Risk measures; VaR; CTE
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Chapter 1

Introduction

Many financial and actuarial problems involve more than one random variable. Interactions
of these random events are of particular interest to practitioners. For example, an investor
needs to consider the returns of all securities included in the same investment portfolio.
A life insurer may be interested in the mortality of multiple lives insured under the same
policy. Property and casualty insurers are concerned about the losses from different lines of
business.

Although it is convenient to assume that the relevant random variables are independent,
this is often inappropriate. For instance, securities have a tendency to move together in the
same direction because of the market risk that stems from economy-wide factors affecting all
securities. Life insurance policies sold to married couples involve dependent risks (spouses’
remaining life times). Catastrophe insurance has to deal with the consequences resulting
from perils such as hurricanes, earthquakes, or tornadoes. It is of great importance to study
the relationships among different dimensions of an outcome and model the dependence
structure of these random variables.

Furthermore, failure to take proper account of extremal behavior in the tails may result
in devastating consequences. Large amounts of insurance losses have significant impact on
the solvency of insurers or reinsurers. Also, abnormal movements in interest rates or stock
prices can dramatically affect the values of assets or liabilities of financial institutions. As a

result, it is also necessary to capture the dependence of random variables at extreme values.
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1.1 Background and Motivation

The normal distribution has long dominated the study of multivariate distributions, based
on the fact that many elements of nature follow normal distributions and are related to
other normally distributed variables. As far as applications are concerned, multivariate nor-
mal distributions are appealing because the marginal distributions are also normal and the
association between two normal variables can be described by their marginal distributions
and the correlation coefficient. The modern portfolio theory, which is based on the assump-
tion of multivariate normal returns, establishes the variance (or standard deviation) as a
risk measure and the correlation coefficient between returns as a measure of dependence
(Markowitz, 1952, 1959). The drawback of models based on the normal distribution is that
they cannot capture the extremal behavior in the tails. The distribution of financial asset
returns is leptokurtic, which means the tails are fatter than those implied by normal distri-
butions. Financial asset returns also tend to be negatively skewed. Both of these suggest
that the multivariate normal model for financial assets is likely to understate the actual risk.

Copulas provide a convenient way to study the dependence between random variables.
According to Sklar’s Theorem, any joint distribution can be expressed in terms of a copula.
A copula separates the joint distribution into two components — the marginal distribution
of individual variables, and dependence parameter(s) that capture(s) the interdependence
of the marginal distributions. That is, a copula expresses the joint distribution of random
variables as a function of the marginal distributions of each variable.

This project aims to model the joint behavior of random variables, with an emphasis on
tail dependency. Models with common random effects are used to study the joint behavior
of random variables. Copulas are derived from modeling distribution functions and survival
functions, respectively. Tail-based risk measures for functions of dependent risks are derived.
The statistical applications of the copula modeling approach to insurance data are discussed
where losses and loss adjustment expenses data are used. Insurance applications based on

the fitted model are illustrated.

1.2 Literature Review

Copulas have been extensively studied in recent years. Joe (1997) and Nelsen (2006) gave

comprehensive discussions of copula functions and their statistical properties. Trivedi and
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Zimmer (2005) provided a guide to copula modeling, with special attention dedicated to
issues related to estimation and mis-specification. In Chapter 2, we will present the basic
statistical properties of multivariate distributions and copulas that are useful for our study
in this project.

This literature review focuses on multivariate modeling and its connection with copulas,
and results from previous research that applied copula models to actuarial and financial
problems. There is an extensive literature on copulas and multivariate models, and as a
result, we only provide a review of those that are most relevant to our random effects models
studied in Chapter 3, measures of dependence and tail dependency presented in Chapter
4, and tail-based risk measures discussed in Chapter 5. This review is not meant to give a
complete list of all related research.

Random effects models are of particular importance in modeling heterogeneity. A widely
used random effects model in multivariate survival analysis is the frailty model introduced
by Vaupel et al. (1979).

Oakes (1989, 1994) considered bivariate and multivariate survival models induced by
frailties. We start our literature review by presenting the frailty models first. For a contin-

uous random survival time, T, the survival function is defined as

ﬂﬂszr>ﬂ:1—F@%:LiAv@M&

where F'(t) and f(t) are the distribution function and density function of T', respectively.

The hazard function h(t) can be derived as

Coms()  f(1)
M) =="5r = Sy

Explanatory variables Z can be incorporated into survival analysis using Cox’s propor-

tional hazards model (Cox, 1972), in which the hazard function is represented as
h(t, Z) = ePZb(t),

where b(t) is the baseline hazard function, and [ is a vector of regression parameters.
Let v = e84, Integrating and exponentiating the negative hazard, Cox’s proportional

hazards model can then be expressed as

S(tly) = e~ Jo M2 — B(py7,
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where B(t) = e~ Jo b(9)ds 5 the survival function corresponding to the baseline hazard func-
tion. Parameter ~ is called a frailty in the sense that a larger value of v implies a smaller
survival probability S(¢|7), indicating poorer survival.

Oakes (1989, 1994) then illustrated how the dependency among multiple survival times
can be modeled with frailties. Assuming that two survival times T} and T5 are independent

given the frailty -, we have

P(Tl > 1,715 >t2]’y) :P(Tl >t1"y)P(TQ >t2"}/)
= S1(t1]v) Sa2(t2[7)
— Bi(t1)" Bal(ts)".

Taking expectations over the potential values of 7, a realization of random variable I", we

can get the following joint multivariate survival function,
P(Ty > t1, Tz > t2) = Er [Bi(t1) Bal(ta)]" .

That is, multivariate survival models result when some unknown factors induce dependence
between random variables.

Marshall and Olkin (1988) proposed an approach of generating multivariate distribu-
tions by mixtures. The mixture model introduced by Marshall and Olkin (1988) takes the

following form,

F(x) = / H(x)dG(9),

where H and G are univariate distribution functions, and 6 > 0.
Let ¢ be the Laplace transform of G. Then F(z) = ¢(—InH(x)). As a result, the

univariate distribution function H can be expressed as
H(z)=e ¥ (F@),
Marshall and Olkin (1988) also considered the bivariate mixture model given by
F(z1,22) = //Hl(q:l)eng(azg)GQdG(Ql, 62). (1.1)

Denote the marginal distributions of G by G; and G2. The marginal distribution functions

of F(x1,x2) are given by

Fi(z) —/Hi(a:)eidGi(Gi), i=1,2.
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It follows that if
Hi(z) = e~ (Fi(@),

where ¢; is the Laplace transform of G;,i = 1,2, then F given by (1.1) is a bivariate
distribution function with marginal distributions F; and F5 as parameters.

Models of common random effects that we will introduce in Chapter 3 have similar
flavor. We will expand the above mentioned models by Oakes (1989, 1994) and Marshall and
Olkin (1988), and use common random effects to model the dependence between random
variables. A unified approach will be applied to models based on distribution functions
and survival functions, respectively. Different bivariate distributions and their associated
copulas are resulted by modeling distribution functions and survival functions. A variety of
distributions for the common random effect will be discussed.

Frees and Valdez (1998) introduced actuaries to the concept of copulas, and illustrated
how the frailty models proposed by Oakes (1989, 1994) can be applied to actuarial science,
including estimation of joint life mortality and dependent decrement models. Frees and
Valdez (1998) also showed how to simulate and fit copulas, and discussed the usefulness of
copula functions by pricing a reinsurance contract and estimating expenses for pre-specified
losses.

Dupuis and Jones (2006) illustrated the usefulness of multivariate extreme value theory
and its actuarial applications. They used copula models and theoretical results from extreme
value theory to study the extremal behavior of the joint distribution of random variables,
with special attention dedicated to the asymptotic behavior of the dependence structure at
extreme values. Venter (2002) also emphasized the correlation among large losses, i.e., in
the right tails of the loss distributions. Various aspects of copulas regarding dependence
structure and tail dependency were discussed in both Dupuis and Jones (2006) and Venter
(2002). We will review the measures of dependence and tail dependency in Chapter 4.

Copula models have also been applied to other areas of actuarial research such as classical
risk theory. Albrecher et al. (2011) considered dependent risks in the setting of classical risk
theory. They modeled the dependency among claim sizes and among claim inter-occurrence
times with copulas, and derived explicit formulas for ruin probabilities.

Extensive applications of copulas can be found in finance literature. Monograph by
Cherubini et al. (2004) was dedicated to the financial applications of copula models, includ-

ing simulations of market scenarios, credit risk applications, and options pricing. However,
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the arguably most influential work of the financial application of copula was Li (2000), which
has been quoted numerous times in academia, used (or abused) by investment managers on
Wall Street, and mentioned by news and media. Li (2000) introduced a copula model in
finance to calibrate defaults. A random variable called the time-until-default was used to
characterize the default, and the use of normal copulas was illustrated in the valuation of
credit derivatives, such as credit default swaps and first-to-default contracts. Some even
“blamed” the work of Li (2000) for the global financial crisis in 20081.

Numerous risk measures have been proposed in financial and actuarial literature. Denuit
et al. (2005) provided a detailed overview of risk measures, their respective properties, and
theories behind different measures of risk. Jorion (2007) focused on the value-at-risk (VaR),
an extensively used risk measure in finance, and illustrated the use of VaR for integrated
risk management. A review of tail-based risk measures will be given in Chapter 5 before
they are applied to our model of common random effects.

The rest of this project is organized as follows. A brief review of multivariate distribu-
tions and copulas and their statistical properties is given in Chapter 2. In Chapter 3, models
with common random effects are used to study the joint behavior of two random variables.
Copula models are derived from modeling distribution functions and survival functions.
Chapter 4 is dedicated to measures of dependence and tail dependency, and the use of tail
dependency measures for copula model selections. Chapter 5 presents tail-based risk mea-
sures for functions of dependent risks. In Chapter 6, we apply the modeling approach and
risk measures to insurance claims consisting of losses and loss adjustment expenses. Chapter

7 contains the concluding remarks and possible directions for further research.

"http:/ /www.cbc.ca/news/canada/story/2009/04 /08 /f-mathwhiz.html



Chapter 2

Multivariate Distributions and

Copulas

A copula function is a joint distribution function with marginal distribution functions as
parameters. Therefore, properties of copulas are analogous to those of joint distributions.
Comprehensive discussions of multivariate distributions and copula functions and their sta-
tistical properties can be found in monographs by Joe (1997) and Nelsen (2006). This
chapter outlines the basic properties and results useful for our models in later chapters.
Section 2.1 gives a brief summary of the propensities of joint distributions. Copulas are

introduced in Section 2.2.

2.1 Basics of Joint Distributions

The joint distribution of n random variables X, Xo, ..., X, is defined as the function F

whose value at every point (z1, z2, ..., ) in n-dimensional space R" is specified by
F(zy,x9,...;xy) = P(X; <x;;1=1,2,...,n),
and the survival function corresponding to F'(x1,x2, ..., x,) is given by

S(z1, 22, ..., xn) = P(X; > a1 =1,2,...,n).
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2.1.1 Bivariate distributions

Without loss of generality, this project focuses on the joint behavior of two random vari-
ables. Necessary and sufficient conditions for a right-continuous function F' to be a bivariate

distribution function are:

(i) lim F(xy,29) =0, for any i = 1,2;

Ti——00

(ii) lim F(x1,x9) =1, for each i =1,2;

T;—00

(iii) By the rectangle inequality, for all (a1, as) and (b1, b2), with a1 < by, as < b,

F(bl,bg) — F(al,bz) — F(bl,ag) —|—F(CL1,(L2) >0

Conditions (i) and (ii) imply that 0 < F' < 1. Condition (iii) is referred to as the property
that F' is 2-increasing. If F has second-order derivatives, then condition (iii) is equivalent to
0?F(x1,12) /021029 > 0, that is, the joint density function, f(x1,z2) = 02F(x1,22)/011012
is non-negative.

Given the bivariate distribution function F(x1,z2) and its density function f(z1,z2),
the marginal distribution functions F; and F5 are obtained by letting xo — 0o and x1 — oo,
respectively. That is,

Fi(z1) = lim F(z1,22)

T2—00

[e'e) 1
= / / f(zl, ZQ)ledZQ
T

= J1(z1)dz1,

—0Q
and

F2(fL'2) = hm F(l‘l,ivz)

T1—r00

o] T2
= / / f(zl,ZQ)dZdel
—00 J —00
Z2

= fa(22)dz2,

—0o0
where fi(z1) and fo(z2) are marginal density functions.
For two random variables X; and X9 with joint density function f(z1,22) and marginal

densities fi(x1) and fao(z2), respectively, the conditional density of X; given Xy = x5 is
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given by
f(z1,22)
1| we) = —F——,
f1|2( 1’ 2) f2($2)
and the conditional density of Xo given X; = x; is given by
f(z1, 29)
To|x)) = —F—2.
f2|1( 2| 1) fl(xl)

The conditional distribution functions Fi|o(z1 | z2) and Fy|i(z2|z1) are obtained by inte-

grating the conditional density functions. That is,

gl
Fyja(er | 22) = / fiya(z | 22)dz

S RrIC TV (2.1)

—0o0 f2(x2)

and

T2
F2|1(952|1’1)—/ far1(z2 | 1)dze

_ [T ez, (2.2)

—o0 fl (‘rl)
2.1.2 Fréchet-Hoeffding bounds

In this section we state the existence of maximal and minimal values of a multivariate
distribution function, usually referred to as the Fréchet-Hoeffding bounds. Multivariate
distribution functions take values in between these bounds on each point of their domain.
Consider multivariate distribution function F(xi,x2,...,2,) with univariate marginal
distribution functions Fi, Fy, ..., F},. The joint distribution function is bounded below and

above by the Fréchet-Hoeffding lower and upper bounds, as shown in the following theorem.

Theorem 2.1 (Fréchet-Hoeffding bounds) The Fréchet-Hoeffding lower and upper bounds
Fr, and Fy are defined as

n
Fr(x1, 22, ..., ) = Max {Z Fi(z;) —n+ 1,0} ,

=1
FU(x1,$2, ,iL'n) = Min {F1($1), FQ(.CIZ'Q), ,Fn(xn)} ;

implying

Max {Z Fy(x) —n + 1,0} < F(x1, 22, ..., n) < Min{Fy(z1), Fo(22), ..., Fn(zn)}.  (2.3)
=1
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Proof. Since
P{X) <z1,Xo<mg,...; Xj, <uwp} < P{X; <}, i=12..,n,
we have
F(z1,2z2,...,xn) < Min{Fy(z1), Fa(x2), ..., Fp(xn)} = Fu(z1, 22, ..., T0).
Let A; = {X; < x;}; and then A = {X; > z;}. Note that

1-P{AINAN..NA}=P{(A1NAyN..NA,}
= P{ATUASU...UA}
< P{AS} + P{AS} + ... + P{A°}
=1—P{A;}+1—P{Ay} +..+1— P{A,}.

As a result,

n
P{X1 < a1, Xy <@g, X Swn} > Y Fi(wi) —n+1,
i=1
which yields the left side of (2.3). O
Fréchet-Hoeffding bounds give the maximal and minimal values of multivariate distri-
bution function. In many empirical studies, we know more about marginal distributions of
related variables than their joint distribution. Fréchet-Hoeffding bounds can be used to give

approximations of their joint distribution over the regions of interest.

2.2 Copulas

Since copulas are parametrically specified joint distributions generated from given marginal
distributions, properties of copulas are analogous to those of joint distributions presented in
the previous section. This section starts with the definition of copula and the relationship
between copula and multivariate distribution, followed by the definition of the survival
copula and additional properties of copulas. Families of commonly used copulas are given

at the end of this section.
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2.2.1 Copula functions and their connection with multivariate distribu-

tions

An n-dimensional copula function C(u1,us, ..., uy,) is defined as a distribution function on

the unit n-cube [0, 1] which satisfies the following conditions:

(1) C(1,...,1,a,1,...,1) = a, for every 1 < k < n and all a; in [0, 1];

(ii) C(a1,...,an) =0if ap =0 for any 1 <k <mn;

(iii) C is m-increasing, that is, for all (a1, a9, ...,a,) and (by,be, ..., by), with a; < b;, i =

1,2,..n,

2 2

2
Z Z Z(*1)11+22+"'+ch(ul’i17u2i27 ...,Unin) Z 07

i1=112=1 ip=1
where u;1 = aj, uje = bj,j =1,2,..n.

Sklar (1959, 1973) established the unique connection between copula functions and mul-

tivariate distributions, which is known as Sklar’s Theorem in copula literature.

Theorem 2.2 (Sklar) For a multivariate distribution function F(x1,x9,...,z,) with uni-
variate marginal distribution functions Fi, Fo, ..., F},, there exists a unique copula C such
that

F(l‘l,l‘g, ,l’n) = C’(Fl(xl), Fg(l'g), ceey Fn(l‘n))

Conversely, if C is a copula, and F1, Fy, ..., F}, are univariate marginal distribution functions,
then the function F' defined above is a multivariate distribution function with univariate

margins Fy, Fy, ..., F,.

Proof. Since F}’s are univariate distribution functions, F;(X;) follows the uniform distribu-
tion with support [0, 1]. Let C be the joint distribution function of F (X71), Fo(X2), ..., Fn(X5).
Then

C(Ul,UQ, ,un) = P{Fl(Xl) S ul,FQ(XQ) S ug, ,Fn(Xn) S un}
= P{X1 < F; M(w1), Xy < Fy M(ug), oo, X < Fy H(un)}
= F(Fl_l(ul)’Fgl(UQ)a~->F71(un))7

n
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or equivalently, with x; = Fi_l(ui), i1=1,2,....n,
C(Fl(:cl), FQ({UQ), ceey Fn($n)) = F(xl, Ly eeny xn) (24)
Conversely,

F(l‘l,wg, ,xn) = P{Xl S J}l,XQ S 9, ,Xn S l’n}
= P{Fl(Xl) S Fl(l‘l),FQ(XQ) S FQ(.%’Q), ,Fn(Xn) S Fn(xn)}
== C(Fl(l'l),Fg(iL'Q),...,Fn(l'n)). (25)

O

The practical implication of Sklar’s theorem is that copulas can be used to express a
multivariate distribution in terms of its marginal distributions and the copula function. If
we know a lot about the marginal distributions of individual variables, but little about their
joint behavior, then copulas allow us to piece together the dependence structure of these

variables.

Example 2.1 (Product copula) Let X; and X2 be independent random variables. The

joint distribution function is
F(l‘l, (Eg) = Fl(.%’1) FQ((L‘Q).
Then, with u; = Fi(z1) and ug = Fy(z2),

C(Ul, 'LL2) =C (Fl(xl) ,Fz(xg))
= F(x1,22)
= Fi(x1) Fa(z2)

= U1 Ul.
The product copula corresponds to the independence case.

To summarize, the copula approach specifies a function that binds the marginal distri-
bution functions of random variables. The copula functions can be parameterized to include
measures of dependence between the random variables. As we have seen from Example 2.1,
independence is obtained by specifying a product copula. More copula functions will be

introduced in subsequent sections.
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2.2.2 Survival copulas

In the previous section, we have shown that any joint distribution has a unique copula
representation that uses marginal distribution functions as its variables. In some empirical
studies, such as statistical problems involving lifetime data or duration data, survival times
are of particular interest, or the joint survival functions may be known or easier to specify.
Then survival copulas might be more useful.

Suppose that function C(uj,ug) is a copula for random variables X; and Xs, with
u; = Fi(x;), i = 1,2. The corresponding survival copula c (u1,uz) couples the joint survival
function to its univariate marginal survival functions in a manner completely analogous to
the way a regular copula connects the joint distribution function to its margin distribution
functions.

The joint survival function of two random variables X; and X5 can be related to its

marginal survival functions as follows,

S(x1,x2) = P{X1 > x1, Xo > z2}
=1— Fi(z1) — Fa(z2) + F(z1, 22)
= S1(x1) + So(z2) — 1 + F(x1,22)
= Si(z1) + S2(22) — 1 + C(Fi(21), Fa(2))
= S1(x1) + Sa(z2) — 1+ C(1 — Sy(x1),1 — Sa(x2)), (2.6)

where S;(x;), i = 1,2 are marginal survival functions, and by definition, S;(z;) = 1 —
Analogous to (2.5), the copula representation of the joint survival function can be defined

as

S(1,2) = C(S1(x1), Sa(72)), (2.7)
where C (u1,u2) is called the survival copula.
From (2.6) and (2.7), the regular copula and its corresponding survival copula of a

bivariate distribution can be related as follows:

~

C(ur,u2) =ug +ug — 14+ C(1 —uy, 1 —us). (2.8)

We comment that the survival copula and the survival function of copula are different.

The survival copula C (u1,u2) as defined in (2.7) and (2.8) specifies a function that binds the
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marginal survival functions together, whereas the survival function of the copula is defined

as C(uy,uz) = P{Uy > u1,Us > uy}. Their relationship is given by

C(ul,UQ) = P{U1 > ul,UQ > UQ}
= l—ul—UQ+C(U1,UQ)

= 6(1 —u1,1 —UQ).

2.2.3 Additional properties

(1) Copula density
The joint density function of copula C(uy,us) is given by

0?C (u1,us)

2.
8u1 8u2 ( 9)

c(uy,ug) =

Now we can relate the joint density function of two random variables and its corresponding

copula density as follows:

82F T1,T2
f($1,.%‘2) - 81'(1 8902 )
_ a2C(F1(x1),FQ(Z‘2))
8%1 8.7:2
_ 82C(F1(561), FQ(.Z‘Q)) 8F1(£L’1) aFQ(ZL‘Q)
OF(x1) 0F»(x2) ory AR

= C(ul,UQ)fl(.Tl)fQ(.Z‘g). (2.10)

(2) Conditioning with copula

The conditional distributions can be defined using copulas. Let C;j(u1, u2) denote the deriva-
tive of copula function C'(uy,ue) with respect to u;, ¢ = 1, 2. The relationship between con-
ditional distributions and partial derivatives of copula functions is detailed in the following

proposition.

Proposition 2.1 (Conditioning with copula) Define

aC (uy,
Ci(ur,u2) = (aquluz)’
Colur, uz) = M

Oua
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Then

—~

Fyjo(21 [22) = Cour, uz), 2.11)

—~

Fy i (w2 |21) = Ci(ur, uz). 2.12)

Proof. Sklar’s theorem establishes that
C(ul, 'LLQ) = C(Fl (a;l), FQ(CEQ)) = F(a:l, xQ).

By definition,

Ci(ur,uz) = 60(521, )
_ 8C(F1($1),F2(1‘2))
N 8F1(x1)
8F(331,x2)
__ O
N 8F1 (581)

81’1

Furthermore, the derivatives of the joint distribution function and the marginal distri-

bution function are

8F ) a z2 1 T2
(59611362) — (‘31’1/_00 /_OO f(z1, 22)dz1dzg = /_OO f(z1, 29)d2o,

and
8F1(l’1) _
Thus,
S22 fay, z2)dzo “2 f(x1, 22)
Ch(ug,ug) = == = e T dry = By (20 | 21),
1, o) fi(z1) o filz1) 2(1(e2|71)
which is (2.11). (2.12) can be proven similarly. O

The implication of the above proposition is that if Cj(ui,u2) and Ca(ui,u2) can be
inverted algebraically, then the simulation of the joint distribution can be done using the
corresponding conditional distribution. That is, first simulate a value of Uy, say uy, then
simulate a value of Uy from C1(ui,u2) — the conditional distribution of Uy given Uy = uj.

The detailed procedure of simulating copulas is presented in Appendix B.
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(3) Fréchet-Hoeffding bounds
Because copulas are multivariate distribution functions, the Fréchet-Hoeffding bounds dis-

cussed in Section 2.1.2 also apply to copulas, that is,

n
Max {Zu2 —n+1, 0} < Cluy, ug,y ..., up) < Minf{uq, ug, ..., up }-
i=1
In the case of bivariate copulas, the two bounds are themselves copulas, with the lower
bound
CL(ul,uQ) = Max(u1 +uo — 1, 0), (2.13)

and the upper bound
Cu(u1,u2) = Min(uq, ug). (2.14)

The distribution of Cr,(u1,u2) has all its mass on the diagonal between (0, 1) and (1,0),
whereas that of Cy(u1,us2) has its mass on the diagonal between (0,0) and (1,1). In these
cases we say Cr,(u1,uz) and Cy(ug,ug) describe perfect negative and perfect positive depen-
dence, respectively. In probability theory, perfect positive or negative dependence is defined

in terms of comonotonicity or countermonotonicity (Denuit et al., 2005).

Definition 2.1 X; and X, are comonotonic if and only if there exists a random variable

7 and non-decreasing functions g; and g9, such that
Xi=gq(2), Xo=g(2).

Proposition 2.2 If (X3, X3) has copula Cy then X; and X5 are said to be comonotonic.

If (X1, X2) has copula Cf, then they are said to be countermonotonic.

Proof. See Denuit et al. (2005). O
We have the following remarks: (i) X; and Xy are comonotonic if and only if for any
(x1,22) and (2}, 7)), there are either {z1 < af,z0 < ab} or {z1 > 2,20 > 2}, (ii) X3
and X5 are countermonotonic if and only if for any (x1,22) and (2], %), there are either
{z1 < 2,29 > 2} or {z1 > 2,29 < b}
Comonotonocity and countermonotonicy are two extreme cases of dependence. A de-

tailed introduction of dependence measures will be given in Chapter 4.
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2.3 Some Families of Copulas

A large number of copulas have been proposed in the literature, and each of these copulas
imposes a different dependence structure. In this section, we discuss some copulas that have

appeared frequently in empirical applications.

2.3.1 Archimedean copulas

Bivariate Archimedean copulas take the form

Clur, uz; ) = ¢~ (d(ur) + dluz)), (2.15)

where ¢ is known as a generator function, and -y is the dependence parameter embedded in
the function form of Archimedean generator.
A generator function that satisfies the following properties is capable of generating a

valid copula,
(i) ¢(1) = 0;
(if) ¢'(s) <O;
(iii) ¢"(s) > 0.

These properties imply that ¢(s) is a convex decreasing function.
(1) Product copula
Let ¢(s) = —In(s), implying that the inverse of this generator is ¢~1(¢) = et

Using generator function (2.15), we obtain the product copula below:
C(Ul,UQ) — 67(71n(u1)7ln(u2))
— eln(uutg)
= U1uU?2.
(2) Clayton copula

The Clayton copula has generator function ¢(s) = s~ — 1, and the inverse of the generator
is given by ¢~ 1(t) = (1 +1)~1/7.
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From the definition of Archimedean family of copulas given by (2.15), we can derive the

function form of the Clayton copula:

_ _ _1
Clug,ug) = (14uy  —14uy” —1)77
= (" +uy" — 1) (2.16)

The dependence parameter ~ takes values in the inteval (0,00). As v approaches zero, the
copula becomes the one for the independence case. As v approaches infinity, the copula
reaches the Fréchet-Hoeffding upper bound. The Clayton copula can only account for posi-
tive dependence, and it exhibits relatively strong left tail dependence and relatively weak
right tail dependence. Details of the dependence structure are shown in Chapter 4.

(3) Frank copula

The Frank copula is produced by the generator function, ¢(s) = —In (‘ijj:f). The inverse
of this generator is given by ¢~ (t) = —LIn(1 + e~ t(e™ — 1)).

K]
By the definition of the Archimedean family of copulas in (2.15), we have the function

of the Frank copula:

1 n e YUl 1 n e YU2 1 _
C(ulaUQ) =——In <1 + 61 ( e” -1 )+In( e—7—1 )(6 Y _ 1))
Y

1 (e77 —1)(e” ™2 —1)
_7m<1+ p—— ). (2.17)

The dependence parameter -y can take any real value in (—oo, 00), with values —oo, 0,
and oo corresponding to the Fréchet-Hoeffding lower bound, independence, and the Fréchet-
Hoeffding upper bound, respectively. The Frank copula exhibits strong dependence in the
middle of the distribution, and weak tail dependence. Detailed description of the dependence

structure is in Chapter 4.

2.3.2 Elliptical copulas

Elliptical copulas are associated with elliptical distributions which include the multivariate
normal and multivariate ¢ distributions.

The bivariate normal copula is given by

Cluy,ug) =, (27 (u1), 2 (1))
“L(ug) 1 _ s2—2pst4¢?

-1
@ (u1) o 2
- - 20-0%) dsdt,
/—oo /;oo 277(1 - p2)1/26 ' ’
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where ®, is the distribution function of a standard bivariate normal distribution with cor-
relation coefficient p, and & is the standard normal distribution function.

The normal copula is symmetric in both tails, and allows for both positive and negative
dependence. As the dependence parameter p approaches -1 and 1, the bivariate normal
copula attains the Fréchet-Hoeffding lower and upper bounds.

The bivariate t copula is given by

tol(wy)  ptyt(u2) 1 (s2—2 21\ — 52
B pst +t°)
C(UI 7u2) B /—oo /—oo 2”(1 - 102)1/2 <1 - U(l - p2) > det’

where ;! is the quantile function of the univariate t distribution with v degrees of freedom,

and p is the correlation coefficient.
The bivariate t copula is also symmetric and can capture both positive and negative
dependence. Of the two parameters in the ¢ copula, the degree of freedom v controls the

heaviness of tails, while p measures the correlation between the two variables.



Chapter 3

Modeling Bivariate Distributions

and Copulas with Common
Random Effects

The modeling framework in this project is motivated by the approaches introduced in Mar-
shall and Olkin (1988) on generating multivariate distributions by mixtures and in Oakes
(1989, 1994) on frailty model. These approaches allow derivation of multivariate distri-
butions with univariate marginal distributions as parameters, which greatly simplifies the
construction of copulas. The mixture models can be used to capture a wide range of the
dependence structure, as well as various levels of the tail dependence. This approach is also
quite flexible and can model the joint behavior of random variables in terms of distribution

functions or survival functions.

3.1 Modeling Distribution Functions

Following the presentations of the mixture model in Marshall and Olkin (1988), let X;, i =

1,2, be random variables with conditional distribution functions,
where H; is the baseline distribution function, and © is the common random effect that

affects X1 and Xy simultaneously.

20
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Assume that conditional on © = 60, {X; |6, i = 1,2} are independent. As a result, the

conditional joint distribution function can be written as
F(x1,22|0) = F1(21]|0 = 0)Fy (22 |© = 6)
= Hy (1) Ho(z2)°.
The unconditional joint distribution function is
F(xy,x9) = /_Z Hi (1) Hy(22)%g(0)do
= Eo [Hi(21)®Ha(22)%],

where ¢(#) is the density function of the common random effect ©.

Assume that the Laplace transform of the common random effect variable © is
(s) = Eo [e7*°].
Then the unconditional joint distribution function can be written as
F(x1,z9) = Eg [Hl (CL’l)@HQ(CL'Q)e]
— Fo [ oOnH1 (x1)+@lnH2(xz)}
= ¢ (—InHy(z1) — InHa(x2)) . (3.1)

That is, the joint distribution function of X; and Xs can be expressed by the Laplace
transform of the random effect © and the baseline distribution functions H; and Hs.
Similarly, the unconditional univariate marginal distributions can also be expressed in
terms of the Laplace transform,
Fi(z;) = Eeo [Hi(%;)®]
_ E@ {691nHi(:ci)}
=@ (—InH;(z;)), i=1,2. (3.2)
From equation (3.2), we immediately have —InH;(z;) = ¢~ !(F;(x;)), provided that the
inverse of function ¢ exists. Then the unconditional joint distribution function given by
equation (3.1) can be expressed as a function of univariate marginal distribution functions,
F(x1,x9) = ¢ (—=InHy(x1) — InHy(z2))
= ¢ (¢ (Fi(21)) + o7 (Fa(22))) - (3.3)
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Following the copula representation of joint distribution functions in Chapter 2, the joint
distribution function F' given by equation (3.3) can then be expressed as the following

copula,

Clur,uz) = ¢ (9~ (u1) + ¢~ (ug)) - (3.4)

We remark that modeling the joint distribution function with common random effect ©
gives exactly the same results as the Archimedean approach of generating copulas introduced
in (2.15). The relationship between the Archimedean generator and the Laplace transform

of the common random effect is given by

d(s) = o (s). (3.5)

Here the generator, which is the inverse of the Laplace transform of the common random
effect ©, uniquely determines an Archimedean copula.

The following subsections are devoted to various distributions of the common random
effect ® and their corresponding copulas. The dependence structure of these copulas is
investigated in Chapter 4.

3.1.1 Independence

If the common random effect © is degenerate, the resulting joint distribution and copula
correspond to independence. The Laplace transform of the degenerate distribution with

constant mass at unity is

pls) =e”
The Archimedean generator, therefore, is

o(s) = —Ins,
which corresponds to the product copula, as by (3.4) we can obtain

C(Ul,’LLQ) _ e—(—lnul—lnu2)

= UL U2.



CHAPTER 3. MODELS OF COMMON RANDOM EFFECTS 23

3.1.2 Clayton copula

If the common effect © follows a gamma distribution with a scale parameter of 1 and a

shape parameter of 1/v (or a rate parameter of 7), the Laplace transform is given by
_1
e(s)=(1+s) 7.
The inverse of the Laplace transform is
¢(S) = Si’y - 17
which corresponds to the Clayton copula, as by (3.4) we have
1
Clup,ug) = (14+u; " —1+u, ' —1)"7
1
= (uy " Huy = 1),

that is (2.16) in last chapter.

3.1.3 Frank copula

The Frank copula in (2.17) can be derived from our model by letting the common random

effect © follow a logarithmic distribution

11—

The Laplace transform of the above logarithmic distribution is given by
1 e
p(s)=——In(1+e (7 —1)).
Y
The Archimedean generator, therefore, is
e -1
= ——1 B ———
R
which corresponds to the Frank copula, since by (3.4) we obtain
1 e YUl _q e YU2 _q1
C(ui,ug) = —=In (1 + eln( =71 )+1n< e=v-1 )(677 — 1)>
Y

)

0 e 7 -1
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3.1.4 Gumbel copula

The Gumbel copula was originally studied by Gumbel (1960), and can be found in empirical
work like Hougaard (1986a). Details of its dependence structure is explored in Chapter 4.
The focus of this section is the derivation of the Gumbel copula using common random
effects. If the common random effect © follows a positive stable distribution with probability

density function

1 X I(1+5) _1\FK k
10)=-15 1M<9 ") n<f)

then the resulting multivariate distribution has the representation of the Gumbel copula.

The Laplace transform of the above positive stable distribution is given by

The Archimedean generator, therefore, is
¢(s) = (~Ins)”,

which corresponds to the Gumbel copula, given by

2=

C(ur, up) = ¢~ ()T (=huz)) 7 (3.6)

Table 3.1 summarizes the above mentioned popular copulas and their generators.

Table 3.1: Archimedean Copulas and Their Generators

Generator ¢(s) Laplace transform of © Range of v  Bivariate copula C(uy,us)

Independence —In(s) e’ Not applicable U U2
Clayton s -1 (1+s)~7 >0 (uy? +uy? 1)~
Frank —In (i;t:f) —%ln(l +e¥(e” - 1)) —00 <y < 00 —%/ln (1 + %)

1/y
Gumbel (—Ins)” e y>1 67((7ln“1)w+<7ln“2w)
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3.2 Modeling Survival Functions

In empirical studies that involve duration data and lifetime data, working with survival
functions would be both natural and convenient. We use the ideas proposed in Marshall
and Olkin (1988) for constructing multivariate distributions with mixtures and apply the
same methodology to the joint survival functions and their univariate marginals.

Let X;, i = 1,2, be random variables with conditional survival function
SZ(.CI}@ | @ = 9) = Bi(xi)e,

where B; is the baseline survival function, and © is the common random effect.
Assume that conditional on © = 6, {X; |0, i = 1,2} are independent. As a result, the

conditional joint survival function can be written as

S(:L’l,l’g | 0) = Sl(l‘l | @ = 9)52(1‘2 | @ = 9)
= Bl(l‘l)eBQ(ﬂfQ)e.

The unconditional joint survival function is

S(l’l,l’g) = /_OO 31(1'1)932(1'2)99(9)619

— Fo [Bi(21)® By(22)°] ,

where ¢(#) is the density function of the common random effect ©.

Assume that the Laplace transform of the common random effect variable O is

(s) = Eo [e7°].
Then, the unconditional joint survival function can be written as

S(z1,22) = Fo [31(961)832(332)6]

— E@ |:e@1nBl(x1)+@lnBQ(x2):|

= ¢ (—InB;(x1) — InBa(xz9)) . (3.7)

That is, the joint survival function of X; and X5 can be expressed by the Laplace transform

of the common random effect © and the baseline survival functions By and Bs.
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Similarly, the unconditional univariate marginal survival functions can also be expressed

in terms of the Laplace transform,

Si(z;) = Eo [Bi(2:)°]
= Eo {eGIHBi(xi)]
= ¢ (—InB;(z;)), i=1,2. (3.8)
From equation (3.8), we have —InB;(z;) = ¢~ 1(S;(x;)), given that the inverse of function

¢ exists. Then the unconditional joint survival function given by equation (3.7) can be

expressed as a function of univariate marginal survival functions,

S(z1,22) = ¢ (—=InBi(x1) — InBy(x2))
= ¢ (7' (S1(x1)) + ¢ (Sa(x2))) - (3.9)

Then the joint distribution function can be written as

F($1,$2) = Fl(ClTl) + FQ(IL’Q) -1+ S’(xl,a:Q)
= Fi(z1) + Fa(z2) — 1+ (o (1 = Fi(21)) + ¢ (1 — Fa(x2))). (3.10)

From (3.9), we have the survival copula representation

Clur,uz) = ¢ (o7 (w) + ¢~ (u2)), (3.11)

which corresponds to the survival copula introduced in (2.7).
Furthermore, the joint distribution function F' given by equation (3.10) can also be

expressed as the following regular copula,
Cuy,up) = uy +up — 14+ @@ 11 —uy) + o 11 — ug)). (3.12)

The copulas given by (3.11) and (3.12) are related through equation (2.8), which means
that the two approaches of modeling distribution functions and modeling survival functions
are symmetric. Given the marginal survival functions and the regular copula, the joint
survival distribution and survival copula can be obtained. Given the marginal distribution
functions and the survival copula, the joint distribution and regular copula can be obtained.

In the following subsections, we present the various distributions of the common effect

© and the corresponding copulas based on the modeling of survival functions.
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3.2.1 Independence

Same as the results from modeling the distribution functions, if the common random effect
O is degenerate, the resulting multivariate survival function and copula correspond to in-
dependence. The Laplace transform of the degenerate distribution with constant mass at
unity is

p(s) =e"

The Archimedean generator, therefore, is

¢(8) = —hlS,
which corresponds to the product copula by (3.12) that

C(ui,ug) =us +us — 14 e~ (7l (1—u1)—In (1-u2))

ZU1+UQ—1+(1—U1)(1—UQ)

= U1 ug.

3.2.2 Pareto copula

Now let the common random effect © follows a gamma distribution with a scale parameter
of 1 and a shape parameter of 1/ (or a rate parameter of ). The Laplace transform of the

gamma distribution is given by

p(s) = (1+5)77.

The Archimedean generator, therefore, is
d)(s) =57 - 17

which corresponds to the following Pareto copula, as by (3.12) we can obtain

=

C(ul,UQ):U1+U2—1+(1+(1—U1)_’y—1—}—(1—’&2)_’\/—1) v

=

=ur+ug— 14+ ((1—w) "+ (1 —ug) " —1) 7. (3.13)
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3.2.3 Frank copula

The Frank copula is invariant to the choice of distribution function or survival function.
Assuming that the common random effect © follows a logarithmic distribution as given in

Section 3.1.3, then the Laplace transform has the form
1
P(8) = (1 + (e - 1),

The Archimedean generator, therefore, is

e 75 —1
¢(s) = —In (e’Y—l> )

which corresponds to the Frank copula, as by (3.12) we have

—y(1—uy)_ —y(1—ug) _
C(u,ug) =u; +uzg—1— —In (1 fe N e e (e —1)
v

(e(0-u) — 1) (e7-u2) — 1))

1
=u;+uy—1——-In|1+
g

e 7 -1
1 1 (e*’Y(lfm) _ 1) (e*')’(lfug) . 1)
— —ln (e—’Y(uﬁ-uz—l)) RN
v Y e 7 —1
— 7lln etz —1) e—V(urtuz—1) (e*v(l—ul) —1) (6—7(17112) ~1)
7 e _1
_ (=D e (e - )
Y e Y —1
SN S Gl Clal)
7 e Y —1 .

3.2.4 Hougaard copula

The Hougaard copula, which was proposed in Hougaard (1986b, 1987), can be constructed
through modeling survival functions and assuming that the common random effect follows
a positive stable distribution given in Section 3.1.4.

The Laplace transform of this positive stable distribution is given by

—sl/v

p(s)=e

The Archimedean generator, therefore, is

¢(s) = (=Ins)7,
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which corresponds to the Hougaard copula, given by
Cluy, uz) = g + ug — 1 + e [(FInA—un) T+ (=In(1—u2)) ]/7

Generally speaking, modeling distribution functions and modeling survival functions

yield different joint distributions because
P(X <z|©®=0)=H(z)’# (1-B(z)).

The Frank copula is symmetric around (1/2,1/2). Thus it is invariant to the choice of
distribution function or survival function in the common random effect model. The product
copula is also invariant to the choice of functions. Gamma and positive stable families of the
common random effect yield different bivariate distributions and therefore different copulas.
Table 3.2 summarizes the differences between the two approaches of modeling the joint
behavior of random variables. Properties of these copulas and their dependence structure

are discussed in Chapter 4.

Table 3.2: Two Approaches of Modeling Joint Behavior of Random Variables

Laplace transform of Modeling distribution function

Distribution of ©
the common effect ©

Copula type Copula function C'(uq,usg)
e Degenerate Product (independence) ujug
(L+ )~/ Gamma Clayton (uy "y — 1)~
1 —5(e~ i i 1 (e —1)(em 12 -1)
7;111(1 +e (e —1)) Logarithmic Frank 7;1n (1 + e—wiq)

—sl/r

AN\
e Positive stable Gumbel ef((flnul)wr(*l"u?) )
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Chapter 4
Measuring Dependence

Given the wide selection of copula models, how should one model be chosen over the others in
empirical work? One of the key considerations is the nature of the dependence captured by
different copulas. The nature of the dependence captured by the dependence parameter(s)
varies from one copula to another. Moreover, commonly used measures of dependence are
related to the parameter(s) in copula functions. This chapter starts with a brief review of
the widely used measures of dependence — linear correlation and rank correlation, followed
by the application of measures of rank correlation to the models with common random

effects. Measures of tail dependence will also be discussed.

4.1 Review of Dependence Measures

This section reviews the commonly used measures of dependence in statistics literature. We
focus on the dependence measures that have appeared more often in empirical work, instead
of a complete list of all the measures of dependence.

Two random variables X; and X, are said to dependent or associated if they are not
independent in the sense that F(z1,x2) = Fi(z1)Fa(x2), or S(x1,x2) = S1(x1)S2(z2). Let
d(X1, X2) denote a scalar measure of dependence. Embrechts et al. (2002) listed four desir-

able properties of dependence measure:
(i) Symmetry: 6(X1, Xa) = 0(X2, X1);

(ii) Normalization: —1 < §(X1, X3) < +1;

30
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(iii) 6(Xy,X2) = +1 if and only if (X7, X2) are comonotonic; §(X;, X2) = —1 if and only

if (X1, X2) are countermonotonic;
(iv) For a strictly monotonic transformation T': R — R of Xi:

d(X1,X2) if T is increasing,

6(T(X1), X2) = . ,
—0(X1,X9) if T is decreasing.

4.1.1 Correlation coefficient
The most commonly used measure of dependence (or association) between two random
variables X7 and X5 is Pearson’s correlation coefficient, which is defined as

Cov (Xl, XQ)
[Var(X1)]? [Var(Xs)]

PX1X2 = ) (4'1)

N

where Cov(X1, X2) = E[X1X2] — E[X ]E[X2], Var(X;) and Var(X3) are the variances of
X1 and Xa, respectively.

It is well known that:
(i) px,x, is a measure of linear dependence,
(i) px,x, is symmetric,

(iii) the lower and upper bounds on the inequality —1 < px,x, < +1 measure perfect

negative and positive linear dependence, and
(iv) it is invariant with respect to strictly increasing linear transformations of the variables.
The weakness of using the correlation coefficient as a measure of dependence includes:
(i) in general, zero correlation does not imply independence,
(ii) it is not defined for heavy-tail distributions whose second moments do not exist,
(iii) it is not invariant under strictly increasing nonlinear transformations, and

(iv) attainable values of the correlation coefficients within interval [—1,41] between two

variables depend upon their respective marginal distributions.

These limitations have motivated alternative measures of dependence based on ranks.
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4.1.2 Rank correlation

Consider two random variables X; and Xs with continuous distribution functions F} and
F5, respectively, and joint distribution function F. Two well-established measures of rank
correlation are Spearman’s rho and Kendall’s tau.

Spearman’s rho is the linear correlation between the distribution functions, defined as

ps(X1, X2) = p(F1(X1), Fa(X2)),

where p = px, x, is defined in (4.1).

Kendall’s tau is defined as
7K (X1, X2) = P{(X1 — X7)(X2 — X3) > 0} — P{(X; — X7)(X2 — X3) < 0}, (4.2)

where (X1, X2) and (X], X)) are two independent pairs of random variables from F. The
first term on the right hand side of equation (4.2) is referred to as the probability of con-

cordance, and the second term as the probability of discordance, and hence
Ti (X1, X2) = P{concordance} — P{discordance}.

The similarity between Spearman’s rho and Kendall’s tau is that both of them measure
monotonic dependence between random variables, and both are based on the concept of
concordance, which refers to the property that large values of one random variable are
associated with large values of another, whereas discordance refers to large values of one
being associated with small values of the other.

These two well-established measures of rank correlation have properties of symmetry,
normalization, comonotonicity and countermonotonicity, and both assume the value of zero
under independence. Further,

ps(X1, Xo) = (X1, Xe2) = —1 if and only if C = Cp = Max(uj +uz — 1,0),
ps(X1,X2) = (X1, X2) =41 if and only if C' = Cy = Min(uy,uz),
ps(X1,Xo) =1 (X1,X2) =0 if and only if C = ujus.

4.2 Measures of Rank Correlation for Models of Common
Random Effects

Spearman’s rho and Kendall’s tau can be expressed in terms of copulas as follows:

1 1
ps(Xl,Xg) = pg(C) = 12/ / C(ul,uQ)dulduQ — 3; (4.3)
0 0
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2
T (X1, X2) = 7 (C —4/ / C(u1,u2) 6 C(ul’u2)du1du2 -1 (4.4a)
Ouy Oug
—1-4 / / 0C(ur, ug) 0C(ur, u2) o (4.4b)
0 Jo Ous

More details about (4.3) and (4.4) can be found in Joe (1997) or Nelsen (2006).
For the two approaches of modeling the joint behavior of random variables in Chapter

3, the following proposition shows that the regular copula and its associated survival copula

have same rank correlations.

Proposition 4.1 The rank correlation of the survival copula C is equal to that of the

regular copula C, that is,

ps(C) = ps(C), (4.5)
% (C) = 15 (C), (4.6)

where the survival copula C is defined by equation (2.8).

Proof. From (2.8) and the expression of Spearman’s rho in terms of copulas in (4.3), we

C'\ = //Cul,UQ )duidus — 3

:12/ / (U1+U2—1+C(1—U1,1—U2))dU1dU2—3
0 JO

1 1

= 12/ / (1 — U] — U2 + C(U1,UQ))du1du2 -3
0 0
]

1 1
(1 — U] — UQ)dUld'LLQ + 12/ / C(ul,uQ)dulduQ -3
0 0

/ / C ul,uQ dulduQ -3
= ps(C

have

because in the third last line, fol fol(l —uy — ug)duidug = 0.
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Similarly, using (2.8), (4.4b), and the properties of copulas in Section 2.2.1, we obtain

1 1 9/~ ~
TK(C) =1- 4/ / ac(uh UQ) aC(U1’ U2) dulduQ
0 0 8’&1

Ousy
Ll 7001 —up, 1 — ug) 0C(1 —uy, 1 —ug)
=1—4 ’ -1 ’ — 1| dud
/o / ( (1 — ) )( o1 — ua) > e

11
/ / 9C(u1,up) _ 1 9C(u1,up) _ 1| duidus
o Jo Ouq Oua

_1_4/1 /1 OC (uy, uz) OC (uy, uz)

0 8U1 81@

1l Lol Lot
+ 4/ / Mdulduz + 4/ / Mduldqm — 4/ / duidus
o Jo Ouq o Jo Duz 0 Jo

1 1
-1 _4/ / 8C(U1,’LL2) 8C(u1,u2)du1du2
0 0 6U1 8’&2

:1—

W

du1 du2

o

O
Unlike Pearson’s correlation coefficient, rank correlations depend on the copula of a
bivariate distribution and not on the functional forms of the marginal distributions. In
other words, each copula specifies a unique dependence structure and the rank correlation is
a function of the dependence parameter(s) embedded in the copula. Because of the limited
dependence parameter space, the Clayton, Pareto, Gumbel, and Hougaard copulas permit
only non-negative association, while the Frank copula allows positive as well as negative
association.
Furthermore, Kendall’s tau can be evaluated directly from the Laplace transform of the

common random effect ©, as shown in the following theorem.

Theorem 4.1 Let X; and X5 be random variables with copulas generated by the models

of common random effects (3.4) or (3.11). Then Kendall’s tau is given by

1
(X1, Xp) = 1+ 4 /0 & (71 (5)) ¢ (s)ds,

where ¢(s) is the Laplace transform of the common random effect.

Proof. Genest and MacKay (1986) gave the following expression for Kendall’s tau,

¢(s)
¢'(s)

1
TK(Xl,X2)21+4/ dS,
0
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where ¢(s) is the Archimedean generator.

Since the Archimedean generator, ¢(s), is the inverse of the Laplace transform of the
common random effect, ¢(s), that is, ¢(s) = ¢ ~!(s), then using the formula for the derivative
of an inverse function, we have

o(s)
¢'(s)

The desired result follows immediately. |

= (7 (s) e (s).

Table 4.1 illustrates Spearman’s rho and Kendall’s tau for the copulas specified in Chap-
ter 3.

Table 4.1: Copulas and Their Rank Correlations

Copula type Copula Function C(uq,u2) Spearman’s rho Kendall’s tau
Product U U2 0 0
Clayton ()" +uy T —1)" Complicated form PaE
L~ 1) (e~ 7421
Frank ~din (14 D) 1+ 12{Dy(7) = Di(7)} 1+ 4{Di(y) -1}
1/~

Gumbel ef((flm”)qH*m"Q)w) No closed form 1—471

—((—ln(l—u )7+ (—In(1—u. ))'7) v -1
Hougaard up+uy—1+e 1 2 No closed form 1—7v
Pareto up+ug — 14+ (T —ur) ™7+ (1 —ug) 7 — 1)71” Complicated form PaE

The dependence measures of Frank copula depend on Debye faction, defined as Dy(z) = Iik Iy efil dt, for k =1,2. Di(—z) = Di(z) + ]‘kﬁ

Figure 4.1 shows the scatter plots for bivariate distributions with identical marginal
exponential distributions (with mean of 1) and identical rank correlation but different de-
pendence structures. Perspective plots of the corresponding copula densities are given in
Figure 4.2. If these random variables represent the insurance losses, then the Gumbel and
Pareto copulas would be preferable models for insurers since extreme losses have tendency
to occur together. Measures of tail dependency discussed in next section can be used to

capture the extremal dependence.

4.3 Measures of Tail Dependency

As we have seen from Figures 4.1 and 4.2, copulas with same rank correlation may have

dramatically different tail behavior. Measures of tail dependence may help to distinguish
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Figure 4.1: Simulated Samples from Five Copulas with Same Marginal Distri-
butions (Exponential with Mean of 1) and Same Rank Rorrelation (Kendall’s
tau = 0.50)

Clayton Copula Frank Copula Gumbel Copula

x2

X2

0 2 4 6 8 0 2 4 6 8 10
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Figure 4.2: Five Copulas with the Same Rank Correlation (Kendall’s tau =
0.50)

Clayton Copula Frank Copula Gumbel Copula

Hougaard Copula

copulas. In some empirical applications, the joint behavior of tail values of random variables
is of particular interest. For example, investors may be more concerned about the probability
that the rates of returns of all securities in a portfolio fall below given levels. This requires
measures of tail dependency. The tail dependency measure can be defined in terms of
conditional probability that one random variable exceeds some value given that another
exceeds some value. Various measures of tail dependency can be found in Joe (1997),
Nelsen (2006), Venter (2002), and Frahm (2006).

4.3.1 Tail concentration functions

Let X7 and X5 be random variables with continuous distribution functions F} and F5, and
copula C. Then U; = Fi(X;) and Uz = F»(X32) are standard uniform random variables.
The right and left tail concentration functions can be defined with reference to how much

probability is in regions near (1,1) and (0,0). For any z in (0, 1), the left tail concentration
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function is defined as

L(z) =P(U; < z|Uz < 2)
. P(U1 <Z,U2<Z)

P(UQ < Z)
C(z,z)
= 07 4.7
22, (47)
and the right tail concentration function is
R(z)=P(U; > z|Uz > 2)
. PU; > z,Us > 2)
N P(UQ > Z)
B 1—P(U1 < Z)—P(UQ <Z)—|—P(U1 <z, Uy <Z)
N 1-— P(UQ < Z)
1-224+C(z,2)
— . 4.8
T (4.8)

The relationship between the tail concentration functions of regular copula and its as-

sociated survival copula is detailed in the following proposition.

Proposition 4.2 Let C be the survival copula associated with the regular copula C. Then
the left (right) tail concentration function of C is equal to the right (left) tail concentration

function of C', that is
La(z) =Re(l—2),  Rga(2)=Lc(l-2).

Proof. By the definition of the left tail concentration function in (4.7),

~

C(z,z
22— 14C(1—-2,1-2)
N 1—(1-2)
= Re(1 - 2);
Similarly,
1-2:+C 2,2
o) = =20
C(1l—21-2)
1—=2
=Lc(1l—2).
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4.3.2 Upper (lower) tail dependence coefficients

The degree of extreme co-movements of random variables can be defined by taking limits
of equations (4.7) and (4.8). The upper (lower) tail dependence coefficients capture the

probability that one event is extermal conditional on another extreme event, which are

given by
AL = lim P(Ul < Z|U2 < Z)
z—0
_ i 22 (4.9)
z—0 z
and

)\R = lim P(U1 > Z’Uz > Z)
z—1

1-2:4C
_ i L2402 (4.10)
z—1 1—=2

If Ap (Ap) is positive, then the two variables are said to be right (left) tail dependent, with

larger values indicating stronger dependence.

4.3.3 Extremal dependence coefficients

Let Untin = Min{Uy, Us}, and Unpax = Max{U;,Us}. The lower extremal dependence coeffi-

cient is defined as

er, = lim P(Uzpax < 2 | Unin < 2)
z—0

P(UMaX < Zz, UMin < Z)
z—0 P(UMin < Z)
- P(U1<Z,U2<Z)
_z—)Ol—P(Ul > z,Us >Z)
. P(U1<Z,U2<Z)
= lim
z2—0 P(U1 < Z) +P(U2 < Z) —P(U1 < z,Up < Z)
) C(z,2)
= lim ——72~
250 27 — C(z,2)’

(4.11)
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whereas the upper extremal dependence coefficient is defined as

er = lim P(Upnjax > 2 ‘ Uniin > 2)
z—1

. P(Umax > 2, Untin > 2)
= lim
z—1 P(UMin >Z)
. P(U1>Z,U2>Z)
= lim
2—11 —P(U1 < z,Us < Z)
_hml—P(Ul <Z)—P(U2<Z)+P(U1<Z,U2<Z)
o1 1—P(U1<Z,U2<Z)
. 1=224C(z,2)
= lim
=1 1—=C(z,2)

(4.12)

Thus the lower extremal dependence coefficient can be interpreted as the probability that
the best performer is affected by the worst one provided that the latter has an extremely
bad performance, while the upper extremal dependence coefficient measures the probability
that the worst performer is affected by the best given that the latter has an extremely good
performance.

The following proposition relates the tail dependence coefficients and the extremal de-

pendence coefficients.

Proposition 4.3 Let A, and Ag be the tail dependence coefficients defined by equations
(4.9) and (4.10), and € and er be the corresponding extremal dependence coefficients
defined by equations (4.11) and (4.12). Then

Y Y
oy BT a gy

€L

Proof. From the definition of lower extremal dependence coefficient given in (4.11), and

using lim,_. @ = A by equation (4.9), we have
C(z,z)
— lim ——\ %)
‘L= C C(z,2)
C(2,2)
— 13 z
=l e
z
AL

:2—)\[/.
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Similarly, using (4.12) and (4.10),

=1 1—-C(z,2)
1-224C(z,z)
1—2
=19 1-224C(z,2)
1-z

O

Table 4.2 summarizes the measures of tail dependency for the copula functions specified

in Chapter 3. If the dependency over the right tail is of particular interest to practition-
ers, then the Gumbel and Pareto copulas should be considered. Mis-specification of the
dependence structure, especially the dependency over the tails, may result in devastating

consequences, which will be shown in insurance applications in Chapter 6.
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Chapter 5

Risk Measures

Dependent risks are inherent in the business of insurance companies. The prerequisites of
managing risk are first understanding risks and then quantifying and measuring risks. The
previous chapters of this project are devoted to modeling the dependent risks and identifying
the dependence structure. In this chapter, we will incorporate the dependence between
risks into risk measure calculations with an emphasis on the tail-based risk measures. This
chapter is organized as follows: Section 5.1 provides a review of two widely used tail-based
risk measures — value-at-risk (VaR) and conditional tail expectations (CTE). An illustration
of calculating tail-based risk measures for functions of dependent risks is given in Section
5.2.

5.1 Introduction

A risk measure 7 is a mapping from random variable(s) Y to a non-negative real number,
ie, m:Y — R. According to Artzner et al. (1999), a function 7 : Y — R is said to be

coherent risk measure for risk Y if it satisfies the following properties:

(1) Monotonicity: For two risks Y7 and Ys, if Y7 < Y3, then n(Y7) < 7(Y2);
(ii) Sub-additivity: For two risks Y7 and Ya, m(Y1 + Y2) < 7n(Y1) + 7 (Y2);
(iii) Positive homogeneity: If o > 0, then w(aY) = an(Y);

(iv) Translation invariance: For all a € R, 7(Y + a) = 7(Y) + a.

43
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Numerous risk measures have been proposed in insurance and finance literature, for
example, value-at-risk (VaR), tail VaR, conditional tail expectation (CTE), conditional
VaR, expected shortfalls, Esscher risk measures, and Wang risk measures. Denuit et al.
(2005) provided a review of various methods of measuring risks.

For illustrative purposes, we focus on two tail-based risk measures — VaR and CTE, to

measure dependent risks.

5.1.1 Value-at-risk (VaR)

The value-at-risk (VaR) summarizes the worst loss with a given level of confidence. Despite
its numerous critics, VaR is still one of the most widely used risk measures. VaR has become
the benchmark risk measure used by financial analysts and regulators in quantifying the

market risk and setting capital requirements for market risk exposures (Denuit et al., 2005).

Definition 5.1 Given a risk Y and a probability level p € (0,1), the corresponding VaR,
denoted by VaR(Y,p), is defined as

P(Y < VaR(Y,p)) = p.

The VaR gives the maximum likely loss at a specified confidence level. If risk Y has
a continuous distribution, then VaR(Y,p) can be defined explicitly with the help of the

quantile function F; 1,

VaR(Y,p) = Fy ' (p).

5.1.2 Conditional tail expectation (CTE)

VaR measures the worst case loss, where the worst case is defined as the upper tail event
with 1 — p probability. One problem with the quantile risk measure is that it does not
take into consideration what the loss will be if that 1 — p worst case event actually occurs.
The loss above the quantile and its probabilities do not affect VaR. The conditional tail
expectation (CTE) is designed to address such problems with the quantile risk measure.
The conditional tail expectation (CTE) measures the average loss in the worst 100(1 —

p)% cases, defined as

CTE(p) = E[Y | Y > VaR(Y, p)].
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5.2 VaR and CTE for the Functions of Dependent Risks

As we have mentioned in Chapter 1, insurers are more concerned about their total risk
exposure, which is a function of dependent risks. The function might be a linear form
as is the case for the total loss from different lines of business, different securities in a
given portfolio, and different geographical locations, or a more complicated form such as
reinsurance agreement, which depends on retention and policy limit.

Assume X; and X9 are two dependent risks with joint distribution function F(z1,z2)

and the associated copula function C(Fi(x1), Fo(z2)). We are interested in a new risk,
Y = g(X1, Xa), (5.1)

where g is a general function form satisfying the condition that its first-order partial deriva-
tives are non-negative.

In order to obtain the distribution function Fy (y) or its density function fy (y) based
on the joint distribution function or density function of X; and X5, we can use the method
of transformations.

Define two new variables z; = y = g(z1,22) and zo = x9. 29 could be other functions
of x1 and z2 as long as it yields a convenient inverse transformation. For the sake of
simplicity, we assume that zo = x2 is a simplest function that gives inverse transformation:

x1 = g (21, 22) and w3 = zo. The Jacobian of this transformation is

Oz Oz1

921 0zo

J= dxy Oz

0z1 Ozo

Ox1  Ozy

— | 021 0z2

0 1
0y
62’1 '

Then the joint density of Z; and Zs is

f21,2, (21, 22) = fx1 %, (9 (21, 22), 22) | ]|
81‘1
dz1
091 (z1, 22)
021 ’

= fX17X2 (g_l(zlv z2)’ 22)

= thXz (gil<217 22)7 ZQ)
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The density function fy(y) can be obtained by first replacing z; and z3 by y and o,
respectively, and then integrating the joint density function (5.2),

fr(y) = / Fy % (1, 22) . (5.3)

Even for the simplest function form of g(Xi, X2), an explicit expression of function
in (5.3) can be very hard to derive. Properties of (5.3) can be obtained using numerical
evaluation tools such as simulation.

The remainder of this section will concentrate on the linear combinations of dependent

risks, with the form
Y = aX; + 5Xo. (54)

In the context of financial and actuarial applications, the new risk Y given in (5.4) can
be interpreted as follows. If X7 and X5 are rates of returns of two stocks or stock indices,
and « € [0,1] and 8 =1 — «, then Y is the rate of return of the portfolio. If X; and X5 are
losses from two different lines of insurance, and o = 8 = 1, then Y is insurer’s total loss.

The mean and variance of Y are
E[Y] = aF[X;] + fE[X9],
and
Var[Y] = o®Var[X;] + 8%Var[X3] 4+ 2a6Cov (X1, X5).

If the joint behavior of X7 and X5 is modeled by our common random effect model, then

the variance of Y can be expressed as
Var[Y] = Ee [Var[axl + BXs| @]} + Varg [E[aXl + BXs| @]}
o [a2Var[X1 0] + B2Var[X; | @]] + Vare [aE[Xl 10] + BE[X2 0]
If X; and X2 have a copula function C, i.e., F(x1,z2) = C(Fi(x1), Fa(z2)), then the
distribution function of Y can be expressed as
Fy(y) = P(Y <y)
= P(aX; + X2 < y)

y—Bzo

too pyl2
:/ / f(x1, xo)dz1das

y—Bxzg

_ /_—i—oo /_a C(Fl(xl), F2(1'2))f1($1)f2(l'2)dl'1d1'2, (55)
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where ¢(Fy(x1), Fo(x2)) is the copula density function defined in (2.9) and (2.10).

The closed form solution for equation (5.5) does not exist in most cases. Numerical
methods or simulations are needed to find the statistical properties of Y.

The double integration in equation (5.5) can be reduced to single integration if the joint
behavior of X; and X3 is modeled by our common effect model in Chapter 3. In fact, the

distribution function of Y, conditional on © = 0, is
G(y|0) = P(aX1 + X2 <y|O =0)

+oo _
:/ P <X2 <? BO”“ \Xl = 21,0 = 0) fi(z1)dz

[ () iy

where ¢ is the Laplace transform of the common random effect ©. As a result, the uncon-

ditional distribution function of Y can be expressed as

+00
Fy(y) = G(y|0)f(0)do,
—00
where f(0) is the probability density function of ©.
The explicit expressions of Fy(y) for the Pareto copula and the Gumbel copula are

shown in the following sections.

5.2.1 Pareto copula
The density function of Pareto copula can be derived by taking derivatives of equation
(3.13), namely

0?C (u1,us)
aU18UQ

= @)+ )T -1 T ) )

c(ug,ug) =

Therefore, the distribution function of Y given by equation (5.5) can be written as

+o0 y—gm _9_1
Frw)=[ [ T aefa-Re) 0= R -1
x [1- Fl(ﬂﬁl)]_l_7 [1— Fa(x2)] (1) fo(wa) dary das,
where Fj(x;) and fi(x;),7 = 1,2, are the univariate marginal distribution function and

density function, respectively.
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5.2.2 Gumbel copula
The density function of Gumbel copula can be obtained by taking derivatives of equation

(3.6), as follows
820<’U,1, UQ)

C(UI’U2) - 8U16UQ

2=

— |:(—lnu1)'y+(—lnu2)"/] o42
= [(—lnul)7 + (—lnuz)ﬂ K
uiLuU )
x [(mul)(lnuz)rl {1 +(y—1) [(—mum + (—muz)ﬂ } . (5.6)

Therefore, the distribution function of Y given by equation (5.5) can be expressed as

2=

y— By — |:(—1nF1(1‘1))7+(—1nF2(1‘2))7:|

too e
Fy(y) :/_OO /_OO Fy(x1) Fa(z2)
X |(~I0Fi(21))" + (~InFy(e2))]

2

+ 71
T | (0P (@) (P (s))]
X {1 + (’y — 1) [(—lnFl(xl))'y + (—lnFQ(xQ))’q _3/} fi (wl)fg(wz)d.fldxg, (5.7)

where Fj(x;) and f;(x;), 7 = 1,2, are the univariate marginal distribution function and

density function, respectively.



Chapter 6

Applications

In this chapter, the statistical application of the copula modeling approach to insurance
data is discussed. The joint behavior of losses and loss adjustment expenses in insurance
claims (data) are investigated. The insurance applications based on the fitted model are

illustrated.

6.1 Data and Previous Work

The insurance loss data set was supplied by the Insurance Services Office (ISO) and consists
of liability claims of an insurance company. This data set was available from various sources,
including the R package, “Copula”, and the personal webpage of Professor Edward W. (Jed)
Frees!.

This data set contains 1500 randomly selected claims. For each claim, the indemnity
payment (loss), the allocated loss adjustment expense (ALAE), and the policy limit were
recorded. 34 claims that had indemnity payments greater than the policy limit were cen-
sored. A statistical summary of the data is shown in Table 6.1.

Figure 6.1 shows the scatterplot of losses versus expenses. These plots suggest a positive
dependence between the loss and ALAE, and the dependence appears to become stronger
at high values of losses.

Klugman and Parsa (1999) fitted an inverse paralogistic and an inverse Burr distribution

to the loss and ALAE data, respectively, and then used a Frank copula to model the joint

"http:/ /research3.bus.wisc.edu/file.php/129/DataCode/LOSSDATA .txt
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Table 6.1: Statistical Summary of Losses and Expenses Data

Loss Loss
Loss ALAE Policy Limit

(Uncensored) (Censored)
Number 1,500 1,500 1,352 1,466 34
Average 41,208 12,588 559,098 37,110 217,941
Standard Deviation 102,748 28,146 418,649 92,513 258,205
Minimum 10 15 5,000 10 5,000
25 Percentile 4,000 2,333 300,000 3,750 50,000
Median 12,000 5,471 500,000 11,048 100,000
75 Percentile 35,000 12,572 1,000,000 32,000 300,000
Maximum 2,173,595 501,863 7,500,000 2,173,595 1,000,000

Figure 6.1: Scatterplots of Loss against ALAE
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distribution of losses and expenses. Frees and Valdez (1998) chose Pareto distributions for
the univariate marginals, and used Q-Q plots and the Akaike information criterion (AIC)
for the model selection among the Clayton, Frank, and Gumbel copulas. Both Q-Q plots
and AIC suggested that the Gumbel copula is preferred.

Frees and Valdez (1998) also used the estimated bivariate distribution of losses and
expenses to calculate reinsurance premiums and estimate expenses for pre-specified losses.
Simulations were performed to estimate reinsurance premiums based on a pro-rata sharing
of expenses. If the unrealistic assumption of independence between losses and expenses is
made, reinsurance premiums would be substantially undervalued for higher policy limits
and higher retention values set by the reinsured.

Another empirical investigation using this data set was by Denuit et al. (2005). They
used the losses and expenses data as a case study for modeling Archimedean copulas. Denuit
et al. (2005) confirmed that the Gumbel copula provides the best fit to the data, and the

Frank copula also gives a very good fit.

6.2 Fitting Copula Models

To fit a copula to losses and expenses data, we need to determine the appropriate marginal
distributions first, then choose the function form of copula. A variety of methods can be
used for copula selection, including, among others, the visual detection from the empiri-
cal distributions, log-likelihood values, Akaike Information Criterion (AIC), and Bayesian

Information Criterion (BIC).

6.2.1 Fitting marginal distributions

The first step of copula model fitting is to determine the appropriate marginal distributions.
We present the fit of univariate marginals with generalized Pareto distribution. With loca-
tion parameter, u, scale parameter, 6, and shape parameter, -, the distribution function of

the generalized Pareto distribution is

Flz)=1- <1+7f";“)_

Our choice of generalized Pareto distributions for modeling univariate marginals is based

on two reasons. Firstly, the generalized Pareto distributions would improve the overall fit as
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it has one more parameter. The second and more important reason is that the generalized
Pareto model would be more flexible than the 2-parameter Pareto distribution proposed in
Frees and Valdez (1998) and Denuit et al. (2005). If one is interested in the losses above
a high threshold, then the generalized Pareto model can deal with the threshold excesses
easily by setting the location parameter equal to the threshold.

Since the data set contains censored losses, the log-likelihood function is given by

n

InL(p,0,7) => (1= 6)Inf(zi) + Y 6n (1 - F(ay)),

i=1 i=1
where §; is the censoring indicator, with J; = 0 indicating uncensored case and d; = 1

indicating censored case.

Table 6.2: Fitting Marginal Distributions

Loss ALAE
Parameter
Estimate Standard Error Estimate Standard Error
Location p 10 8.472 15 4.518
Scale 6 12,692.9472 612.485 6,773.2501 289.203
Shape 0.8834 0.051 0.4529 0.036
Log-likelihood -16,536.176 -15,410.135

Table 6.2 summarizes the results from the maximum likelihood estimation fitting of
the marginal distributions. The maximum likelihood estimates of the locations parame-
ters are the minimum values in the sample, and their standard errors are based on their
order statistics. The overall fit shows some minor improvement over the Pareto marginal
distributions in Frees and Valdez (1998) and Denuit et al. (2005), evidenced by smaller
AIC values. Since our generalized Pareto model has three parameters, while the para-
metric model chosen by Frees and Valdez (1998) and Denuit et al. (2005) has two, we
compute and compare the AIC values for each model. AIC of the generalized Pareto
model for loss is 2k — 2In L = 2(3) 4 2(16,536.176) = 33,078.35, which is smaller than
the AIC for the 2-parameter Pareto model of loss, 2(2) + 2(16,537.369) = 33,078.74.
The generalized Pareto estimation of ALAE also has an improvement, with the AIC of
2(3)+2(15,410.135) = 30, 826.27, against the AIC value of 2(2)+2(15, 413.449) = 30, 830.90
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Figure 6.2: Scatterplots of Empirical and Marginal Distributions
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for the 2-parameter Pareto model. However, the comparison of the BIC values, which pe-
nalizes extra parameters more strongly than AIC does, shows that the 2-parameter Pareto

model is preferable.

6.2.2 Visualizing dependence structure

Before fitting copula models, we first look at the joint behavior of the empirical and marginal
distributions of loss and ALAE data. A good model of the bivariate distribution has sta-
tistical properties that resemble those of the empirical distributions. Figure 6.2 gives the
scatterplots of the empirical and marginal distributions of losses versus those of ALAE; the
empirical distribution is given by

~ 1 &

== <

Plo) = 2t <)

where n is the number of observations, and 1 is the indicator function.

Marginal distributions are from the fitted generalized Pareto models in the previous
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section. The joint behavior of marginal distributions is similar to that of the empirical dis-
tribution, which once again justifies the choice of the generalized Pareto marginal distribu-
tions. Both plots show strong right tail dependence and relatively weak left tail dependence,
suggesting Gumbel and Pareto copulas could be good choices for the joint behavior of losses

and expenses.

6.2.3 Fitting copula models

The next step of the estimation process is to feed the marginal distributions obtained from
the previous step to copula functions to estimate the dependence parameter. The maximum

likelihood estimator is obtained by maximizing
n
InL(y) =Y Ine(i, i),
i=1

with respect to the dependence parameter 7, where ¢ denotes the copula density given by
(2.9), and u; and up are marginal distributions from the previous step. The copula functions
to be fitted include all the copula expressions derived through modeling the distribution
functions and the survival functions, as listed in Table 3.2.

Maximum likelihood estimates of selected copula functions are shown in Table 6.3.
FEach copula model is estimated based on empirical marginal distributions and paramet-
ric marginal distributions. The Gumbel copula has the largest log-likelihood value, and
therefore produces the best fit for both empirical and parametric marginal distributions.
The Pareto copula also produces a very good fit. We recall that the Gumbel copula is gen-
erated by modeling the distribution functions and assuming that the common random effect
follows a positive stable distribution, whereas the Pareto copula comes from modeling the
survival functions and assuming that the common random effect has a gamma distribution.
Insurance applications in the next two sections are based on the fitted Gumbel and Pareto
copulas.

Perspective plots of the fitted copulas and their implied bivariate density functions are
shown in Figure 6.3 and Figure 6.4, respectively. Both Gumbel and Pareto copulas have
strong right tail dependence and relatively weak left tail dependence. The trivial difference
between these two copulas is that the Gumbel copula has a slightly heavier left tail than
the Pareto copula. Given the relationships between the marginal distributions as shown in

Figure 6.2, it makes perfect sense why the Gumbel copula gives the best fit and the Pareto
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Table 6.3: Maximum Likelihood Estimates of the Copula Functions

Empirical Distribution

Copula

Dependence parameter Standard error Log-likelihood value
Clayton 0.5196 0.0425 93.833
Frank 3.1014 0.1680 172.506
Gumbel 1.4432 0.0288 206.995
Hougaard 1.3773 0.0277 138.372
Pareto 0.7752 0.0459 201.662

Parametric Marginal Distribution

Copula

Dependence parameter Standard error Log-likelihood value
Clayton 0.5137 0.0436 86.640
Frank 3.1484 0.1699 172.885
Gumbel 1.4555 0.0295 203.774
Hougaard 1.3788 0.0282 132.701
Pareto 0.7972 0.0471 198.691
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Figure 6.3: Perspective Plots of the Fitted Copula Models
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copula is in the second place. That is why we emphasize the importance of visual detection
of the dependence structure before fitting copula models. A final comment regarding fitting
copula to losses and expenses data is that the Frank copula, which was chosen by Klugman
and Parsa (1999), should never be preferred, because the Frank copula is symmetric and
cannot capture the strong dependence in the right tail only.

Figure 6.5 gives the conditional distributions based on the fitted copulas. For the purpose
of comparison, the quantiles of 0.01, 0.05, 0.50, 0.95, and 0.99 are selected. As far as
high quantiles (right tail) are concerned, results from the two fitted copulas are very close.
However, over the left tail, the dependence in the Pareto copula is quite weak compared to

that in the Gumbel copula.

Figure 6.5: Conditional Distribution Functions Based on the Fitted Copulas
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Measures of dependence can be computed from the estimated dependence parameters
given in Table 4.1. For example, the dependence parameter of 1.4555 in the fitted Gumbel
copula corresponds to Kendall’s tau correlation measure of 0.313. Table 6.4 gives the rank
correlations based on the fitted copula models. The fitted Gumbel copula has rank correla-
tions very close to those directly estimated from the raw data, which once again shows that

the Gumbel copula gives the best fit to the losses and expenses data.
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Tail dependency measures based on our fitted copula models are presented in Figure
6.6 and Table 6.5. The upper and lower limits of tail concentration functions as shown in
Figure 6.6 correspond to the tail dependence coefficients in Table 6.5. Both the tail depen-
dence coefficients and extremal dependence coefficients indicate that losses and expenses
are asymptotically independent in the left tails, and asymptotically dependent in the right
tails. As the insurance loss approaches its maximum loss amount, there is a probability of

around 0.40 that the loss adjustment expense also reaches its maximum amount.

Table 6.4: Measures of Dependence Based on the Fitted Copulas

Spearman’s Rho Kendall’s Tau
Raw Data 0.452 0.315
Gumbel Copula 0.448 0.313
Pareto Copula 0.414 0.285

Table 6.5: Measures of Tail Dependency Based on the Fitted Copulas

Tail Dependence Coefficients Extremal Dependence Coefficients
Left Tail Right Tail Left Tail Right Tail
Gumbel Copula 0 0.390 0 0.242
Pareto Copula 0 0.419 0 0.265

6.3 Tail-based Risk Measures for Total Cost of Claim

After estimating and selecting the bivariate models for dependent risks, now we can take a
further step to quantify the impact of dependency between risks. In this and next sections,
we aim at answering two questions: how does ignorance or mis-specification of dependency
affect risk measures? If the unrealistic assumption of independence is made, what is the
magnitude of insurance mispricing?

To answer the first question, we consider the sum of two dependent risks that has been

discussed in Chapter 5 as an illustration. Given the bivariate distribution of losses and
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Figure 6.6: Tail Concentration Functions Based on the Fitted Copulas
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expenses, we are interested in the total cost of claim, which is equal to the sum of losses and
expenses. Numerical integration can be used to find the quantitative properties of interest.
Simulation, however, is much simpler.

The marginal distributions of losses and expenses and the dependence structure captured
by copulas are important inputs into the simulation algorithm. To estimate VaR and CTE,
we simulate 500,000 observations of losses and expenses using the estimated parameters of
the marginal distributions and the dependence parameter that specifies copula. We add up
the simulated losses and loss adjustment expenses to get the total cost for each claim. The
VaR can be obtained from the quantiles of the distribution of the total cost, and the CTE
is calculated as the mean of the simulated value above its corresponding quantile.

The results of VaR and CTE for the Gumbel, Pareto, and Frank copulas, and the
independence case are presented in Table 6.6 and Table 6.7. For comparison purposes, four
quantiles — 90%, 95%, 97.5%, and 99%, were selected.

If independence is assumed, VaR is understated at all four chosen quantiles. The mag-
nitude of underestimation ranges from 1% at the 90th percentile, to around 6% at the 95th

and 97.5th percentiles. However, if the dependence structure is mistakenly specified as the
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Frank copula, then the VaR at 90th and 95th percentiles overestimates those based on the
Gumbel or Pareto copula. But at the 97.5th and 99th percentiles, the Frank copula gives
an underestimation of VaR.

As for the CTE estimates, mis-specification of the dependence structure and ignorance
of dependency make no difference. Both result in underestimation of the average cost in
the worst case scenarios, ranging from about 2% as compared with the Gumbel copula to
around 4% as compared with the Pareto copula.

These results confirm the importance of selecting an appropriate dependence structure
in calculating risk measures. As expected, the unrealistic assumption of independence tends
to understate the actual risk measured by the VaR and CTE. But mis-specification of
dependence structure may lead to an overestimation or underestimation of the VaR. This
suggests that mis-specification of dependency may do as much harm as, if not more than,

the assumption of independence.

Table 6.6: Comparison of Simulation-based Value-at-Risk Estimates

Copula Quantile

90% 95% 97.5% 99%
Gumbel 119,430 223,255 409,120 901,875
Pareto 119,402 222,856 412,470 933,255
Independence 118,435 212,587 385,426 849,477
Frank 125,337 225,528 399,816 877,036

6.4 Pricing Reinsurance Contracts

Knowing the joint distribution of losses (X1) and expenses (X2) also allows us to estimate
reinsurer’s expected payment under a reinsurance agreement such as the one discussed in
Frees and Valdez (1998). Suppose there is a reinsurance policy with limit L and insurer’s

retention R. Also, assume that the reinsurer pays a pro-rata share of expenses, which is

X1—R
X1

The reinsurer’s payment is

for losses below the policy limit and % for losses equal or above the policy limit.
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Table 6.7: Comparison of Simulation-based CTE Estimates

Copula Quantile
90% 95% 97.5% 99%
Gumbel 714,740 1,268,990 2,241,683 4,722,434
Pareto 723,319 1,286,481 2,275,776 4,795,396
Independence 692,263 1,228,894 2,176,917 4,613,115
Frank 700,704 1,236,247 2,177,815 4,586,743
0, if X1 < R;
9(X1,X2) =% X, —R+XLEX, ifR<X <L;

X1
L-R+L7EX,  if X1 > L.

The reinsurance premium can be calculated as E[g(X7, X2)]. Simulation-based re-
insurance premiums for independence, Gumbel copula, and Pareto copula are presented
in Tables 6.8, 6.9, and 6.10, respectively. Premiums are calculated using the 500,000 simu-
lations for each specification of dependence structure as presented in Section 6.3.

For all three cases, reinsurance premiums decrease as insurers’ retention increases. This
makes perfect sense because when the reinsured retains larger amount of loss, reinsurer’s
expected payment falls, and as a result, reinsurance premiums decrease. For a given ratio of
insurers’ retention to policy limit, an increase in policy limit may lead to increase or decrease
in reinsurance premiums. That’s because two forces are working in opposite directions
when policy limit increases. On the one hand, increase in policy limit means that insurers
cede more losses and expenses to reinsurer, which tends to increase reinsurer’s expected
payment. On the other hand, insurers’ retention also increases because of the constant
ratio of insurers’ retention to policy limit, which means that reinsurer’s expected payment
will decrease. The total effect depends on the ratio of insurers’ retention to policy limit.
For example, if the retention is zero, then the reinsurance contract is the same as regular
insurance policy, reinsurance premiums always increase as policy limit increases. If the ratio
of insurers’ retention to policy limit equals 0.25 or 0.50, reinsurance premiums first increase
then decrease. But at a ratio of 0.75 or 0.95, reinsurance premiums always decrease as

policy limit increases.
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If the unrealistic assumption of independence between losses and expenses is made, mis-
pricing of insurance contracts would result. Table 6.11 gives the ratios of dependence to
independence reinsurance premiums based on the fitted models. A ratio above 1.0 suggests
an undervaluation of reinsurance contract under the assumption of independence. An in-
crease in the ratio of insurers’ retention to policy limit leads to an increase in the magnitude
of mispricing. As the policy limit increases, the ratios of dependence to independence rein-
surance premiums tend to rise first, then fall after the policy limit reaches high percentiles.
These results underscore the importance of selecting the appropriate model for extremal

dependence.

Table 6.8: Simulation-based Reinsurance Premiums — Independence Case

Ratio of Insurer’s Retention to Policy Limit (R/L)

Policy Limit (L)
0.00 0.25 0.50 0.75 0.95
10,000 19,758 11,926 7,126 3,285 623
100, 000 38,484 14,523 7,392 3,088 553
500, 000 53,417 13,231 6,435 2,620 460
1,000, 000 59,241 12,297 5,901 2,384 419

Table 6.9: Simulation-based Reinsurance Premiums — Gumbel Copula

Ratio of Insurer’s Retention to Policy Limit (R/L)

Policy Limit (L)
0.00 0.25 0.50 0.75 0.95
10, 000 19,763 13,311 8,319 3,956 765
100, 000 38,513 17,114 9,030 3,863 702
500,000 53,515 15,027 7,396 3,053 542
1,000, 000 59,387 13,647 6,630 2,710 481
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Table 6.10: Simulation-based Reinsurance Premiums — Pareto Copula

63

Ratio of Insurer’s Retention to Policy Limit (R/L)

Policy Limit (L)
0.00 0.25 0.50 0.75 0.95
10, 000 19,745 13,256 8,295 3,952 765
100, 000 38,508 17,286 9,147 3,922 714
500, 000 53,500 15,167 7,506 3,104 553
1,000, 000 59,469 13,889 6,796 2,804 498

Table 6.11: Ratios of Dependence to Independence Reinsurance Premiums

Ratio of Insurer’s Retention to Policy Limit (R/L)

Policy Limit (L) 0.00 0.25 0.50 0.75 0.95
Gumbel Pareto | Gumbel Pareto | Gumbel Pareto | Gumbel Pareto | Gumbel Pareto
10,000 1.000 0.999 1.116 1.112 1.167 1.164 1.204 1.203 1.227 1.227
100, 000 1.001 1.001 1.178 1.190 1.222 1.237 1.251 1.270 1.270 1.291
500, 000 1.002 1.002 1.136 1.146 1.149 1.166 1.165 1.185 1.178 1.203
1,000, 000 1.002 1.004 1.110 1.129 1.124 1.152 1.137 1.176 1.147 1.188




Chapter 7
Concluding Remarks

In this project, the joint behavior of two random variables is studied using models of common
random effects. Following Oakes (1989, 1994) and Marshall and Olkin (1988), dependency
between two random variables is modeled through common random effects. Bivariate distri-
bution and survival functions are generated with univariate marginals as parameters, which
greatly simplifies the construction of copulas. Commonly used copulas, such as the Clayton,
Frank, and Gumbel copulas, can be generated using common random effects. Measures of
tail dependency are applied for the copula model selections. Tail-based risk measures for
the functions of two dependent variables are investigated for particular interests.

Our contributions made in this research project can be described as follows. Firstly, a
unified approach is proposed to study the dependency between random variables. Oakes
(1989, 1994) applied the frailty model to account for the dependencies among multiple lives.
Marshall and Olkin (1988) illustrated the use of mixture models to construct multivariate
distributions. We combine their methods together and use models of common random effects
to study both bivariate distributions and survival functions. The second contribution is the
use of measures of tail dependency for copula model selection. The conventional tools for
model selection such as AIC or BIC focus on the overall fit to the data, and as a result
the selected copula model may or may not be able to capture the dependency in the tails.
Finally, risk measures of functions of dependent risks are investigated. We incorporate the
dependency between random variables into the calculation of tail-based risk measures. The
financial consequences of mis-specification of dependency and ignorance of dependence are
illustrated using insurance losses and expenses data.

This work can be further extended and continued in many ways. Several distributions

64
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of the common random effect © are illustrated in this project. The modeling framework
can be applied to other distributions of ©. For example, if the common random effect has
Laplace transform ¢(s) = (1 — 7)/(e® — ), then the resulting copula belongs to the Ali-
Mikhail-Haq family (Nelsen, 2006). Then, more interesting results, including the behavior
of tail dependency, could be derived from other distributions of the common random effect.
Secondly, more work can be done on the risk measures of functions of dependent risks. We
tried the linear combinations of dependent risks in this project, and used simulations to
find the statistical quantities of interest. Approximations of distribution functions of the
functions of dependent risks such as bounds may be explored to gain more insight into the

impact of dependency between risks.
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Fitting Copulas to Data

Sklar’s Theorem suggests that the construction of a model for the joint behavior of m
random variables X1, Xo, ..., X;,, can be broken into two parts: the estimation of the marginal
distribution functions, Fy, Fy, ..., F,,, and the estimation of the dependence parameter(s) in

copula C'.

A.1 Forming a Pseudo-sample for the Copula

Let ﬁl,ﬁ’27 ,ﬁm denote estimates of the marginal distribution functions. The pseudo-
sample from the copula consists of the vector [71, ﬁg, s ﬁm, where

Uy = (U oo Upn) = (FL(Xp1)s ooy Fop (X)), t=1,2,...,m.

Possible methods of obtaining the marginal estimates F, Fs, ..., I, include the follow-
ing:
(1) Parametric estimation

We can choose an appropriate parametric model for the data to get 1) (Xt1)s ooy ﬁm(Xt m)-

)

(2) Non-parametric estimation

We could estimate the empirical distribution function F\l from X1, X2, ..., X5 by
using
1 n
Fi(z) =~ ; X, <z}, i=1,2,...m,
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where n is the number of observations, and 1 is the indicator function.
(3) Extreme value theory for the tails

If one is interested in the distribution in the tails, for example, insurance losses above
a threshold, then parametric models that provide good overall fits to the data may not
be useful. Empirical distribution functions are also poor estimators of the underlining
distribution in the tails. Extreme value theory can be used to fit a generalized Pareto

distribution for the tails.

A.2 Maximum Likelihood Estimation

Let C, denote a parametric copula, where v is the dependence parameter(s) to be estimated.

The maximum likelihood estimator can be obtained by maximizing
A~ A~ n A~
LT, -, Uniy) = Y Inc(Th)
t=1

with respect to =y, where ¢ is the copula density function with dependence parameter -,
defined as

0mCy(uy,ug, ..., u
C(Ul,'LLQ, ,’U,m) = 8;1581;2 ?8u7 ’m)7

and (7} denotes the t-th pseudo-observation from the copula.

A.3 Estimation Based on Rank Correlations

Suppose that the assumed model is of the form F(x1,x2) = C(Fi(z1), F2(x2);7), where
is the dependence parameter to be estimated. For many copulas, a functional relationship
exists between either Kendall’s tau and v or Spearman’s rho and « (Table 4.1). For example,

if we have a relationship of the form 75 = g(7), then the chosen copula is calibrated by

¥ =g k).

A.4 Full Maximum Likelihood

Alternatively, we can estimate all parameters using the full maximum likelihood approach.

Let C(x1,x2;7) be a bivariate copula model with dependence parameter . Assume that
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both C and F; are differentiable. The joint density is

f(z1,22) = c(Fi(21 | Br), Fa(w2 | B2);v) fr(x1 | Br) fa(w2 | B2),
where c¢ is the copula density defined as

2 T T .
(R |30, Pz 3)) = g S o

and f;(x; | 5;) is the density function corresponding to Fj(z; | 3;), and (;’s are parameter(s)
for the marginal distributions of X;.
The full maximum likelihood estimator can be obtained by maximizing the log-likelihood

function

n 2 n
In L(z1, 225 B1, B2,7) = »_Ine(Fi(wij | B1), Fawa; | B2));) + Y Y In filwij | Bi)
=1 i=1 j=1
with respect to 31, [, and 7.
In this project, we use the two-step maximum likelihood method. Firstly, marginal
distributions for losses and expenses are estimated. Marginal distribution functions are

then fed to the copula functions to estimate the dependence parameter.



Appendix B

Simulating Copulas and Bivariate

Distributions

Simulation is a powerful numerical evaluation approach that can be used to gain insight
into the behavior of dependent risks. In this project, simulations are used on at least
two occasions. Simulations help to visualize the dependence property, especially the tail
dependence structure in Chapter 4. In Chapters 5 and 6, the closed form solution for
the distribution of the functions of dependent risks is not available, where simulations are
applied to generate the tail-based risk measures. This section outlines the procedures used

in simulating copulas and bivariate distributions.

B.1 Conditional Sampling

Conditional sampling is a simple method for generating random variables from a known
copula function. The theoretical basis of this approach is Proposition 2.1. The conditional
distribution of X given X1 = x1 is given by Fy| (22| x1) = C1(u1,uz). If C1 is invertable
algebraically, then X5 can be simulated by the conditional distribution. The steps of simu-

lating copulas by conditioning are as follows:

(i) Draw two independent uniformly distributed variables (vi,v2) from [0, 1].
(ii) Set u; = v;.

(iii) Generate 1 by inverting the marginal distribution function, z1 = F~!(uy).

69
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(iv) Invert the conditional distribution C(u1,u2) and get ug = Cy 1(112 | uq).

(v) Generate z2 by inverting the marginal distribution function, xg = F~!(us).
For example, the conditional distribution of the Pareto copula has the following form:
Cl(ul,uQ) =1- |:(1 — ul)f’y + (1 — UQ)*’7 — 1} K (1 — ul),1,7’

and us can be solved in closed form as

2=

up =1 — [1 Sl —u) T+ (1 —w) (1 — UQ)—ﬁ}

B.2 Sampling by Mixture

The conditional distribution of Gumbel copula cannot be inverted algebraically. To generate
random variables from the Gumbel copula using conditional sampling, we have to calculate
up = Cy Y(vy |uy) iteratively. Marshall and Olkin (1988) proposed a simulating approach
based on mixtures of powers. The following steps show how this algorithm can be used to

generate random variables as an alternative to the conditional sampling:
(i) Draw a random variable 6 with Laplace transform ¢(s).
(ii) Draw two independent uniformly distributed variables (vq,ve) from [0, 1].
(iii) Set u; = (=0 tlnw;) for i = 1,2.
(iv) Generate z; by inverting the marginal distribution functions, z; = F~1(u;) fori = 1, 2.

For example, the Gumbel copula can be simulated by first drawing 6 with Laplace

—si/v

transform p(s) = e and two independent uniform variables (v1,v2), then generating

17,31 .
u; = e (—glnvi) " for i = 1,2.
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